纯水与超纯水的制备工艺

合集下载

edi超纯水设备制作工艺

edi超纯水设备制作工艺

edi超纯水设备制作工艺EDI超纯水设备是一种高纯度水处理设备,其工艺是利用电化学反应原理,通过阴/阳离子交换膜的作用、电势力驱动、离子分离等多重步骤,将水中的离子和杂质去除,生产出极佳的高纯度水。

制作EDi超纯水设备首先要进行原水处理,也就是水源的预处理。

一般来说,原水处理的标准要根据最终使用的水质决定,以保证出水质量的稳定性和一致性。

原水预处理的步骤包括混凝、沉淀、过滤、活性炭吸附、反渗透等过程。

接下来,需要进行离子交换静态混合,它是基于阴/阳离子交换原理和电荷原则进行的。

水经过阴阳离子交换树脂的过滤,可去除残留的阴离子和阳离子污染物,提高水的质量。

然后,进行电去离子,该步骤是整个EDI设备的核心部分。

电去离子相当于一个具有较小孔径的离子交换膜,通过交换膜的作用,水中的离子被分离成两部分,正离子被吸附在阴离子交换层上,负离子被吸附在阳离子交换层上,两个反应相互重复进行,不断驱动以达到去离子的效果。

其间如果出现严重的闪耀放电等工作失误,需要进行维护或保养。

最后,进行在线TOC监测和红外线消毒两道工序,确保产出水的高纯度、优质、安全。

TOC(total organic carbon)是指水中有机碳总量,通过在线测量,对生产的高纯水进行监测,以确保该水无机有机杂质偏低,质量稳定。

红外线消毒可以用尤里龙灯或紫外线消毒等方法进行,这些都是非化学消毒手段,无二次污染,确保产水的无菌性。

整个EDI超纯水设备制作工艺复杂,其中每一个步骤都至关重要。

通过不断优化设备的工艺流程、技术创新和设备改进,构建出更加稳定、可靠的超纯水设备,为实际应用提供了保障。

超纯水处理原理,工艺及技术简介

超纯水处理原理,工艺及技术简介

超纯水处理原理, 工艺流程及技术简介1.超纯水制备原理威立雅实验室超纯水器通常由原水预处理系统、反渗透纯化系统、超纯化后处理系统三部分组成。

预处理的目的主要是使原水达到反渗透膜分离组件的进水要求,保证反渗透纯化系统的稳定运行。

反渗透膜系统是一次性去除原水中98%以上离子、有机物及100%微生物(理论上)最经济高效的纯化方法。

超纯化后处理系统通过多种集成技术进一步去除反渗透纯水中尚存的微量离子、有机物等杂质,以满足不同用途的最终水质指标要求。

2.原水预处理系统预处理系统通常由聚丙烯纤维(PP)过滤器和活性炭(AC)过滤器组成。

对硬度较高的原水还需加装软化树脂过滤器。

PP滤芯可高效去除原水中5μm以上的机械颗粒杂质、铁锈及大的胶状物等污染物,保护后续过滤器,其特点是纳污量大, 价格低廉。

AC活性炭滤芯可高效吸附原水中余氯和部分有机物、胶体,保护聚酰胺反渗透复合膜免遭余氯氧化。

软化树脂可脱除原水中大部分钙镁离子,防止后续RO膜表面结垢堵塞,提高水的回收率。

3.反渗透纯化系统反渗透(Reverse Osmosis,简称RO)是以压力差为推动力的一种高新膜分离技术,具有一次分离度高、无相变、简单高效的特点。

反渗透膜“孔径”已小至纳米(1nm=10-9m),在扫描电镜下无法看到表面任何“过滤”小孔。

在高于原水渗透压的操作压力下,水分子可反渗透通过RO半透膜,产出纯水,而原水中的大量无机离子、有机物、胶体、微生物、热原等被RO膜截留。

通常当原水电导率<200μS/cm时,一级RO纯水电导率≤5μs/cm,符合实验室三级用水标准。

对于原水电导率高的地区,为节省后续混床离子交换树脂更换成本,提高纯水水质,客户可考虑选择二级反渗透纯化系统,二级RO纯水电导率约1~5μS/cm,与原水水质有关。

4.超纯化后处理系统①混床离子交换纯化柱混床离子交换纯化柱由阴离子交换树脂和阳离子交换树脂按比例混合而成。

阳离子交换树脂用其H+交换去除水中的阳离子,阴离子交换树脂用其OH-交换去除水中的阴离子,在混床树脂中被交换出来的H+和OH-结合生成H2O,因此混床离子交换纯化柱可用来深度去除RO纯水中尚存的微量离子。

制备纯水的工艺过程

制备纯水的工艺过程

制备纯水的工艺过程纯水是指纯净的H2O,不含任何杂质的水,具有极高的纯度。

纯水在许多领域都有广泛的应用,比如实验室、医药、电子、化妆品等行业。

下面将详细介绍制备纯水的工艺过程。

1.原水处理a.澄清使用过滤器或澄清剂去除悬浮物、泥沙等杂质。

澄清后的水质更清澈透明。

b.活性炭吸附使用活性炭去除水中的有机物、色素等,提高水的透明度和口感。

c.软化使用软水器去除水中的硬度物质,如钙、镁离子,以减少对后续设备的影响。

2.反渗透经过原水处理后,将原水通过反渗透设备进行处理。

反渗透是一种通过半透膜分离溶质和水的方法,可以有效去除原水中的可溶性盐类、微生物、重金属等杂质。

该过程主要包括三个步骤:a.预处理预处理包括混凝和消毒,以去除水中的胶体、杂质等,并杀灭或去除水中的微生物。

将预处理后的水通过精密滤芯过滤,去除微小颗粒和胶体,保护反渗透膜的完整性。

c.反渗透分离将过滤后的水送入反渗透设备,通过高压迫使水通过半透膜,将溶质和杂质留在膜的一侧,得到纯净的反渗透水。

3.再处理反渗透得到的水称为初级纯水,但仍可能含有少量溶解性气体和有机物。

为了获得更高纯度的水,需要进行再处理。

再处理常用的方法有:a.离子交换使用离子交换树脂去除水中的离子,如钠、钾、氨等,以提高水的纯度。

b.电去盐使用电离子交换装置,利用电解作用将阳离子和阴离子分开,去除水中的离子和溶解物。

c.超纯水设备运用超滤、电积等技术,进一步去除微小颗粒、气体和有机物,得到高纯度的纯水。

4.储存和消毒纯水处理后,需要经过储存和消毒,以确保水的纯净和安全。

纯水通常通过不锈钢或玻璃容器储存,防止二次污染。

b.消毒使用消毒剂进行消毒,杀灭残留的微生物,确保纯水的卫生安全。

以上就是制备纯水的工艺过程。

纯水的制备需要经过原水处理、反渗透、再处理以及储存和消毒等步骤,每个步骤都起着关键的作用,以确保获得高纯度的纯净水。

实验室用纯水的制备原理

实验室用纯水的制备原理

实验室用纯水的制备原理
制备纯水的过程称为脱离子化,其原理是通过特殊的物理或化学方法,将水中的杂质离子和分子从水中分离出来,从而得到极其纯净的水。

常用的制备纯水的方法包括:
1. 蒸馏法:将水加热至沸点以上,产生水蒸气,通过冷凝器将水蒸气重新凝结成纯水的方法。

这种方法特别适用于制备超纯水。

2. 反渗透法:通过半透膜将水经过一定压力的作用,将杂质离子和分子挡在半透膜的一侧,而纯水则通过半透膜被收集。

3. 离子交换法:利用强酸型或强碱型交换树脂,对水样进行交换处理,去除质子和其他离子,得到纯净水。

4. 电渗析法:利用电场的作用,将水中的电解质分子和离子带到阳极或阴极上,在阳阴极之间的中间腔内进行离子分离,从而得到纯净水。

以上方法均可得到较高纯度的纯水,但并不能完全去除所有的离子和杂质分子。

因此,在实际应用中,需要根据具体需要选择合适的制备方法。

水的纯化与超纯水的制备

水的纯化与超纯水的制备
表 3 几种电阻率不同的纯水的离子计算浓度
离子
Na + Cl Fe2 + Na + + Cl - + SO42 Na + + Cl -
1812MΩ 1810MΩ 1715MΩ
018
113
118
< 011 0115 015
210
214
210
< 011 013
111
< 011 012
019
15MΩ 116 211 514 514 510
— 27 —
云南环境科学 第 24 卷 第 2 期 2005 年 6 月
用好树脂时会得到好结果 。
113 反渗透法 目前是一种应用最广的脱盐技术 。反渗透膜虽
在 1977 年就有了 , 但其规模化生产和广泛用于脱 盐却是近几年的事情 。反渗透膜能去除无机盐 、有
机物 (分子量 > 500) 、细菌 、热源 、病毒 、悬浊物 (粒径 > 011μm) 等 。产出水的电阻率能较原水的 电阻率升高近 10 倍 。
表 2 反渗透膜对杂质的去除能力
离子
去除率 ( %)
离子
去除率 ( %)
离子
去除率 ( %)
Mn + 2 96~99
SO4 - 2
90~99
NO3 -
50~75
Al3 + 95~99
Ca2 + 92~99
Mg2 + Na + K+ NH4 +
92~99 75~95 75~93 70~90
C03 - 2
出的 , 对一 、二级水不主张测量 pH 一样 , 超纯水
就更难准确测量了 。

超纯水制备技术工艺及其原理全面解析

超纯水制备技术工艺及其原理全面解析

超纯水制备技术工艺及其原理全面解析对于超纯水的需求随着半导体工业的发展,对超纯水质量要求提高,从而大大的推动了纯水技术的发展,膜技术得到了广泛的应用,微滤,超滤,电渗析和反渗透技术先进的水处理技术得到了飞速的发展,膜法制备纯水取代了传统的离子交换器系统,解决了TOC问题,满足了电子行业对纯水质量的要求。

超纯水制备工艺1.传统超纯水制备工艺流程:原水—多介质过滤器—活性炭过滤器—一级除盐—混床—超纯水2.膜法超纯水制备工艺流程:原水—超滤—反渗透—EDI—超纯水在膜法工艺中,超滤,微滤替代澄清,石英砂过滤器,活性炭过滤器,除去水中的悬浮物胶体和有机物,降低浊度,SDI,COD等,可以实现反渗透装置对污水回用的安全,高效运行,以反渗透替代离子交换器脱盐,进一步除去有机物,胶体,细菌等杂志,可以保证反渗透出水满足EDI进水的要求,以EDI代替混床深度脱盐,利用电而不是酸碱对树脂再生,避免了二次污染。

原水水质概论水中的杂质按存在的形态的不同可以分为悬浮物,胶体和溶解性固体三种,其中固体含量用总固体量作为指标,把一定量水样在105-110°烘箱中烘干到恒重,所得的重量及为总固含量。

第一类是悬浮物物指悬浮于水中的物质,颗粒直径在10-4mm 以上,如泥沙,粘土,动植物残骸,微生物,有机物,藻类等第二类是胶体,指水中带电荷的胶体为例,颗粒直径在10-5mm之间,胶体颗粒是许多分子或离子集合体,这种细小颗粒具有较大的比表面积,从而使他具有特殊的吸附能力,而被吸附的物质往往是水中的离子,因此胶体颗粒带有一定的电荷,如硅铁铝化合物及一些高分子有机物如腐殖质等,也有一些在此粒径范围的细菌,病毒等。

第三类是溶解物,只被水所溶解的,分子或离子状态的溶质或气体如氯化物,硫酸盐等。

悬浮物和胶体是使天然水产生浑浊的主要原因。

原水的预处理反渗透因为膜材料及元件的关系,对进水水质有一定的要求,预处理解决的问题是赌赛,结构,污染和波坏,堵塞时指水中的颗粒,悬浮物,胶体,铁氧化物沉淀等堵塞膜元件的流道,结垢是指难溶盐在浓水侧浓缩厚结晶析出,可预先除去或加阻垢剂。

光伏工艺超纯水流程

光伏工艺超纯水流程

光伏工艺超纯水流程
光伏制造中,超纯水(Ultra-Pure Water,UPW)流程通常用于清洗和处理光伏电池制造过程中的各种表面,以确保电池的性能和可靠性。

以下是一般光伏工艺中超纯水流程的主要步骤:
1. 原水处理:从水源获取原水后,通过预处理步骤去除原水中的杂质,包括悬浮颗粒、离子、有机物等。

通常采用过滤、沉淀、膜分离等方法。

2. 反渗透(RO):将预处理后的水送入反渗透系统。

反渗透是一种通过半透膜过滤来去除水中溶解的离子、微生物和有机物的过程。

RO系统通常用于生产高纯水。

3. 离子交换(IX):经过RO处理的水可能还包含一些溶解的离子,离子交换过程可以进一步去除这些离子,提高水的纯度。

IX通常使用离子交换树脂来实现。

4. 超纯水系统:使用电离树脂和深度过滤等技术,制备超纯水。

这个步骤确保水中几乎没有任何离子和杂质。

5. 储存和分配:超纯水通常会被储存在超纯水储罐中,并通过分配系统输送到生产线上的需要部位。

6. 设备清洗:超纯水通常用于清洗光伏电池制造过程中的设备和工艺步骤,以确保光伏电池表面无杂质,提高电池的性能。

7. 电池清洗:在光伏电池制造的特定步骤,超纯水可能被用于清洗光伏电池的表面,以确保电池的表面质量,影响电池的光吸收和电荷分离。

这些步骤可能会有所变化,具体取决于光伏电池制造的工艺和要求。

超纯水在光伏制造中是一个关键的材料,确保光伏电池的高质量和性能。

超纯水的制备及检测技术

超纯水的制备及检测技术

超纯水的制备及检测技术超纯水是指除去所有杂质和离子的水,其纯度高于一般纯净水。

在许多领域,如电子、制药、化工等,超纯水被广泛应用。

本文将以超纯水的制备及检测技术为主题,介绍超纯水的制备方法和常用的检测技术。

一、超纯水的制备方法1.反渗透法反渗透法是目前制备超纯水最常用的方法之一。

它通过半透膜将水中的离子和杂质分离出去,从而得到纯净的水。

反渗透设备通常由预处理系统、反渗透系统和后处理系统组成。

预处理系统用于去除水中的悬浮物、胶体、有机物等杂质;反渗透系统采用高压将水通过半透膜,将离子、溶解性无机物和有机物等分离出去;后处理系统用于进一步去除残留的离子和杂质,以获得最终的超纯水。

2.电离交换法电离交换法是利用离子交换树脂将水中的离子和杂质去除的方法。

离子交换树脂具有特定的化学性质,能够吸附水中的离子,并释放出等量的其他离子。

该方法可以去除水中的阳离子和阴离子,得到纯净的水。

电离交换法制备超纯水的设备主要由离子交换柱、再生柱和混床柱组成。

离子交换柱用于去除水中的阳离子或阴离子;再生柱用于对交换柱进行再生,使其恢复吸附能力;混床柱用于进一步去除残留的离子和杂质。

二、超纯水的检测技术1.电导率检测法电导率是电解质溶液导电能力的度量,也是评价水的纯度的重要指标之一。

超纯水由于几乎没有离子存在,因此具有极低的电导率。

电导率检测法通过测量水溶液的电导率来判断超纯水的纯度。

常用的电导率检测仪器有电导率计,通过测量电导池两端的电压和电流,计算出电导率值。

电导率值越低,表示水的纯度越高。

2.总有机碳检测法总有机碳(TOC)是指水中所有有机物的总含量。

超纯水中的有机物含量非常低,因此测量TOC可以评价超纯水的纯度。

常用的TOC检测仪器有氧化炉-红外检测器法和紫外光氧化法。

氧化炉-红外检测器法通过将水样中的有机物氧化为二氧化碳,并利用红外检测器测量产生的二氧化碳含量来计算TOC值。

紫外光氧化法则是通过紫外光照射水样,将有机物氧化为二氧化碳,再用红外检测器测量二氧化碳含量。

超纯水水处理工艺

超纯水水处理工艺

超纯水是一种极度纯净的水,通常用于半导体制造、医药、实验室研究等对水质要求极高的领域。

以下是一个常见的超纯水处理工艺:
1. 预处理:超纯水处理系统通常包括一系列的预处理步骤,如过滤、软化和反渗透等,以去除水中的固体颗粒、有机物、金属离子等杂质。

2. 反渗透(RO):通过高压将水推过半透膜,将其中的溶解固体、有机物质、细菌、病毒等去除,产生相对纯净的水。

3. 阳离子交换器:用于去除水中的阳离子,如钠、钙、镁等,以进一步提高水的纯度。

4. 阴离子交换器:用于去除水中的阴离子,如硫酸根离子、硝酸根离子等。

5. 混床离子交换器:混合了阳离子交换树脂和阴离子交换树脂,用于进一步去除水中的离子,产生极为纯净的水。

6. 紫外灭菌:利用紫外光的杀菌作用,去除水中的微生物,确保水质的纯净度。

7. 管路和储存:超纯水需要在整个输送过程中尽量避免与空气接触,
因此需要采用高纯度的管路和容器进行输送和储存。

超纯水处理工艺的每个步骤都需要严格控制和监测,以确保水质符合相关标准和要求。

同时,设备的维护和管理也至关重要,以保证长期稳定地提供超纯水。

纯水制备工艺

纯水制备工艺

纯水制备工艺
纯水的制取工艺:
1.反渗透过滤系统
反渗透是实验室纯水机最常用的过滤方法,它的过滤优点和缺点,我们已经介绍过很多次了,比如在讲时就给大家介绍过。

优点是在一定程度上有效地去除所有类型的污染物(颗粒,胶体和溶解的无机物),日常维护比较少。

而缺点是由于RO膜的紧密孔隙度限制了其流速,因此纯水的制取量相比较其他方法来说比较少,而且制取成本较高。

2.紫外线辐射制取纯水
优点是有效消毒处理,将有机化合物(185nm和254nm)氧化为<5ppb TOC。

缺点是会降低水质的电阻率,不会去除颗粒,胶体或离子。

3.蒸馏制取纯水
蒸馏制取该方法的基础是在蒸汽相中随后冷凝而转移水。

该方法的主要缺点是将水转化为蒸汽所需的电力维护成本非常高。

此外,在蒸汽形成过程中与水分子一起,其他溶质可以根据其挥发性进入蒸汽,最终溶解到制取的纯水中。

4.去离子交换
优点是能够有效去除溶解于水中的有害离子,比如重金属离子,而且制取的超纯水电阻率接近18兆欧。

缺点是无法去除不溶于水的矿物质,而且纯水制取成本较高。

因此多与反渗透配合使用。

纯水纯净水超纯水的区别课件

纯水纯净水超纯水的区别课件

03 应用领域
纯水的主要应用领域
家庭饮用
纯水符合国家饮பைடு நூலகம்水标准,可用 于家庭饮用、煮饭、煲汤等。
工业生产
纯水在工业生产中广泛应用于清 洗、冷却、制造加工等领域。
实验室用水
纯水满足实验室基本用水需求, 可用于化学反应、实验器具清洗
等。
纯净水的主要应用领域
饮料生产
纯净水口感清爽,符合饮料生产 用水要求,可用于生产各种瓶装
纯净水的质量标准与检测方法
质量标准
纯净水是经过深度处理和去离子等工艺处理的水,其水质应 符合国家相关标准和规定的要求。纯净水中的杂质和有害物 质含量极低,但几乎不含矿物质和微量元素。
检测方法
纯净水的检测主要包括理化指标和微生物指标的检测。理化 指标包括浊度、pH值、溶解性总固体、电导率、氧化还原电 位等;微生物指标包括细菌总数、总大肠菌群等。
水、果汁等。
餐饮业
纯净水无杂质,可用于餐饮业的水 源,如制冰、烹饪等。
美容美发
纯净水有助于保持皮肤和头发的清 洁与健康,可用于美容美发行业。
超纯水的主要应用领域
电子工业
超纯水满足电子工业高纯度用水要求,用于清洗 和制造集成电路、半导体等。
制药行业
超纯水无菌、无杂质,符合制药行业对高纯度药 水的需求。
超纯水的质量标准与检测方法
质量标准
超纯水是经过超滤、反渗透、离子交换等工艺处理的水,其水质应符合国家相关标准和规定的要求。超纯水中的 杂质和有害物质含量极低,几乎不含矿物质和微量元素,是一种高纯度的水。
检测方法
超纯水的检测主要包括理化指标和微生物指标的检测。理化指标包括浊度、pH值、溶解性总固体、电导率、氧 化还原电位、吸光度等;微生物指标包括细菌总数、总大肠菌群等。同时,还需要对超纯水中痕量有机物、痕量 重金属等进行检测和分析。

超纯水工艺流程

超纯水工艺流程

超纯水工艺流程
《超纯水工艺流程》
超纯水是一种极其纯净的水,其纯度高达18.25兆欧/厘米,远远超过了普通的饮用水和工业用水。

超纯水在微电子、光伏、医药等领域有着广泛的应用,因此其生产工艺也显得尤为重要。

以下是超纯水工艺的一般流程:
1. 原水处理
超纯水的原水通常选择自来水、蒸馏水或反渗透水,首先需要对原水进行预处理,包括过滤、软化、脱盐等步骤,一般选择反渗透膜进行脱盐处理,以去除水中的大部分离子、微生物和有机物。

2. 离子交换树脂处理
经过反渗透处理的水质虽然较好,但离子交换树脂可进一步去除水中的残余离子,采用混床树脂或阳离子/阴离子交换树脂
系统,使水中的离子浓度进一步降低。

3. 超滤处理
通过超滤膜进行微观过滤,去除水中的胶体、微生物、有机物等微小颗粒,提高水质的纯净度。

4. 紫外辐照
经过超滤处理的水进行紫外辐照消毒,在不使用化学药剂的情况下杀灭水中的微生物。

5. 臭氧氧化
采用臭氧氧化技术可以去除水中的有机物和氧化性物质,提高水的纯净度。

6. 在线检测
在生产过程中建立在线监测系统,对水质进行实时监测,及时调整生产工艺,保证超纯水的质量。

通过以上的一系列工艺步骤,可以生产出超纯水,保证其符合特定领域的要求。

超纯水工艺的流程虽然繁琐,但对于相关行业的发展和应用来说,其纯净度和稳定性是至关重要的。

超纯水技术过程

超纯水技术过程

超纯水技术过程1. 引言超纯水技术是一种用于制备高纯度水的工艺,广泛应用于电子、光电、制药、化工等领域。

它通过去除水中的杂质和离子,使得水达到极高的纯度,从而满足各种特殊工艺对水质的要求。

本文将详细介绍超纯水技术的过程和相关设备。

2. 超纯水技术过程超纯水技术主要包括预处理、反渗透、电离交换和混床等步骤。

下面将逐一介绍每个步骤的原理和操作。

2.1 预处理预处理是超纯水技术的第一步,其目的是去除原水中的悬浮物、胶体物质、有机物和部分无机盐等杂质。

常见的预处理方法包括沉淀、过滤和活性炭吸附等。

2.1.1 沉淀沉淀是利用重力作用使固体颗粒从悬浮液中沉降下来的方法。

常见的沉淀剂有铁盐、铝盐等。

在沉淀过程中,杂质颗粒会与沉淀剂发生凝聚,形成较大的颗粒,从而易于沉降。

2.1.2 过滤过滤是利用过滤介质(如砂子、活性炭等)对悬浮物进行拦截的方法。

通过选择合适的过滤介质和控制过滤速度,可以有效去除悬浮物和胶体物质。

2.1.3 活性炭吸附活性炭吸附是利用活性炭对有机物和部分无机盐进行吸附的方法。

活性炭具有较大的比表面积和孔隙结构,能够吸附水中的有机物和部分溶解性无机盐。

2.2 反渗透反渗透是超纯水技术中最常用的一种方法,其原理是利用半透膜将水分子从溶液中分离出来。

反渗透设备通常由压力容器、半透膜和压力泵组成。

在反渗透过程中,原水被加压送入压力容器内,经过半透膜后变为两部分:一个是富含溶质的浓水,另一个是几乎不含溶质的纯水。

通过调节压力和流速,可以控制反渗透膜对溶质的截留率,从而实现对溶质的去除。

2.3 电离交换电离交换是利用树脂对水中离子进行选择性吸附和交换的过程。

树脂通常是一种高分子化合物,具有许多可交换离子基团。

在电离交换设备中,水通过树脂床层时,正、负离子与树脂上的交换基团发生吸附和释放反应。

通过选择合适的树脂和控制操作条件,可以实现对水中特定离子(如钠、钙、镁等)的去除或富集。

2.4 混床混床是将阳离子交换器和阴离子交换器结合在一起使用的方法。

纯化水制备流程

纯化水制备流程

纯化水制备流程一、引言本文主要介绍纯化水制备的流程,涉及到纯化前的设备准备、水处理方法、检测等环节,旨在为科研单位、制药企业等提供一种制备高纯度水的方法,提高实验、生产的质量与效率。

二、设备准备1.反渗透设备:选择适宜的反渗透装置,选择要点包括产水量、程序控制模式、材质、耐腐蚀性等。

在反渗透过程中,对水的质量要求严格,应及时清洗滤膜。

2.超纯水制备设备:主要包括电离子交换仪、超纯水产生仪、混床器、活性碳过滤器、纯水贮存罐等。

设备要求稳定、安全、高效、自动化程度高和易于操作。

三、水处理方法1.过滤:通常使用滤芯、滤膜、活性炭、混床树脂等工艺,以去除水中的悬浮物、有机物、微生物及大部分的离子,有效提高水的质量。

在使用中应定期更换滤芯、滤膜。

2.反渗透:利用反渗透技术膜的孔隙压力差,迫使水分子从溶液中通过反渗透膜,去除水中的杂质,减少电导率。

反渗透膜的微孔直径一般在0.0001~0.0005微米,其对水的要求很高。

3.电离交换:主要通过电离子交换技术,将水中的离子以电荷作用分离出来,进一步去除微量杂质、提高水的离子纯度。

四、水质检测及评价1.电导率测量:反映水中的电解质含量,水的电导率越低,水质越纯净。

建议使用专业电导率检测仪器进行精确测量。

2. pH值检测:反映水中的酸碱度,一般为纯净水的pH值为6.5-7.5之间,一般使用玻璃电极进行测量。

3.总有机碳检测:反映水中有机物总量,较高的总有机碳指标,意味着可能存在大量有机污染物质,建议使用专业总有机碳检测仪器进行检测。

4.细菌检测:使用菌落计数法、膜过滤法等方法对水中细菌的数量进行检测,细菌越少,水质越好。

五、流程操作1.准备将设备检查清洗、运输安装,检查反渗透膜的压力,检查增塞物、粗沙等填料情况。

2.处理把原水送入设备中,根据实际需要选择反渗透、活化炭、混床树脂等处理单元,对水进行连续处理,并随时检测水质的各项指标,确保水质达到纯净水的标准。

3.贮存将纯净水贮存入对应的容器中,存放区域应干净、通风、无异味。

纯水、纯化水和超纯水有什么区别?

纯水、纯化水和超纯水有什么区别?

纯水、纯化水和超纯水有什么区别?纯水、纯化水和超纯水有什么区别?纯化、纯化水和超纯水不仅在制备方法上有所区别,而且其制造的难易程度也不相同。

就当下水处理行业现状而言,市面上大多纯水是通过反渗透、蒸馏等方法制备得到。

纯化水是采用至少饮用水标准的水为原水经过反渗透法、离子交换法、蒸馏法或者其他适宜方法制备得到。

而超纯水的制备工艺相比一般的制水工艺更加复杂,是在纯水的基础上经过多种水处理方法制备而来。

超通常超纯水的制备采用预处理、反渗透技术、纯化处理和后处理四大步骤。

目前较为主流的超纯水工艺是通过双级反渗透水处理设备辅以EDI设备制备。

由于制备工艺的区别,纯水设备、纯化水设备和超纯水设备在制备工艺流程也不相同,最终的水系统则需要根据原水水质和用水需求而设计。

图一净得瑞纯化水设备纯水、纯化水和超纯水有什么区别?在重金属、细菌、微粒数等指标方面要求不尽相同。

比如,纯水杂质含量为ppm级,而超纯水为ppb级。

对于超纯水,这种纯度很高的的水除了水分子外,将水中导电的介质几乎完全去除,不存在有细菌、病毒、含氯二恶英等有机物。

当然了,超纯水也没有人体所需的矿物质微量元素,因此从人体健康的角度来讲,超纯水并不建议直接饮用。

纯水、纯化水和超纯水有什么区别?纯水、纯化水和超纯水对输送管道材质的要求不同。

相比之下,超纯水和纯化水对输送管道材质的要求比纯水的要严格得多了。

无论是纯水、纯化水还是超纯水,在管道的选择上,主要考虑水质和管道腐蚀的两大方面的要求,可供选择的管道有不锈钢管道和塑料管道两种,既要保证水质达标,又应该做到经济合理。

纯水、纯化水和超纯水有什么区别?纯水、纯化水和超纯水的电导率不同。

按电导率从大到小排序:纯水电导率纯化水电导率超纯水电导率。

纯水的电导率为2-10us/cm 之间,纯化水的电导率为0.2us/cm,超纯水的电导率为 0.1us/cm。

纯水、纯化水和超纯水有什么区别?纯水、纯化水和超纯水在用途上不同。

超纯水制备工艺流程

超纯水制备工艺流程

超纯水制备工艺流程一、引言超纯水是一种几乎不含任何杂质的纯净水,广泛应用于电子、制药、化工等领域。

超纯水的制备工艺流程非常重要,本文将介绍一种常见的超纯水制备工艺流程。

二、原水处理超纯水的制备首先需要对原水进行处理,以去除其中的杂质。

原水一般经过预处理系统,包括颗粒过滤器、活性炭吸附器和反渗透膜等设备,去除其中的悬浮物、有机物和大部分离子,得到初级纯水。

三、电离交换树脂处理初级纯水通过电离交换树脂处理器进行处理,以去除其中的离子杂质。

电离交换树脂是一种能够选择性吸附和释放离子的材料,通过将初级纯水通过电离交换树脂层,可去除其中的阳离子和阴离子,得到更加纯净的水。

四、精密过滤经过电离交换树脂处理后的水通过精密过滤器进行进一步处理。

精密过滤器具有非常细小的孔径,可以去除水中的微小悬浮物和细菌等微生物,确保水质的纯净度。

五、臭氧氧化精密过滤后的水通过臭氧氧化器进行处理,以去除其中的有机物和微生物。

臭氧氧化是一种强氧化剂,能够有效地分解有机物和杀灭微生物,提高水的纯净度。

六、二次电离交换树脂处理臭氧氧化后的水再次经过电离交换树脂处理器进行处理,以进一步去除其中的离子杂质。

这一步骤可以提高水的纯净度,并确保水中的离子浓度达到超纯水的要求。

七、超滤经过二次电离交换树脂处理后的水通过超滤器进行进一步处理。

超滤器具有非常小的孔径,可以去除水中的胶体、大分子有机物和微生物等,确保水的纯净度和透明度。

八、混床离子交换树脂处理超滤后的水通过混床离子交换树脂处理器进行处理,以进一步去除其中的离子杂质。

混床离子交换树脂是一种同时具有阳离子和阴离子交换功能的材料,可以去除水中的所有离子,得到极高纯度的超纯水。

九、臭氧消毒经过混床离子交换树脂处理后的水通过臭氧消毒器进行处理,以杀灭其中的微生物。

臭氧消毒能够高效杀灭水中的细菌、病毒和其他微生物,确保水的卫生安全。

十、精密过滤和活性炭吸附臭氧消毒后的水通过精密过滤器和活性炭吸附器进行最后的处理。

超纯水制备方法范文

超纯水制备方法范文

超纯水制备方法范文超纯水(Ultrapure water, UPW)是指除去了绝大部分杂质、离子和溶解固体的水,其纯度达到或接近于高纯水、电子级水和纳米级水。

超纯水在电子、光电子、半导体、生物医药等领域具有广泛的应用,制备方法主要包括蒸馏法、离子交换法、反渗透法等。

蒸馏法是最传统和常见的制备超纯水的方法之一、其基本原理是根据水和其他溶质的沸点差异,利用水在常压下沸点为100℃,辅以加热器将水加热,待水完全蒸发后,经冷凝器冷却形成超纯水。

由于水蒸气蒸发后会带走大部分溶质,所以蒸馏法可以去除水中绝大部分有机和无机杂质,但无法去除极少量的挥发性溶质,如CO2、SO2等。

离子交换法是制备超纯水的另一种常用方法。

该方法利用离子交换树脂对水中的离子进行吸附和交换,从而达到去除溶质的目的。

具体操作步骤为:将水通过预处理装置,如颗粒过滤器和活性炭吸附器,去除其中的悬浮颗粒和有机物;然后将水流经阴阳离子交换柱,去除其中的阳离子和阴离子;最后,通过混床柱以及去气器去除水中的二氧化碳和空气。

离子交换法可以去除水中的绝大部分离子,但由于存在局限性,如水样质量变化、树脂耗损等,所以需要定期更换和再生离子交换树脂。

反渗透法是一种基于半透膜分离原理的制备超纯水的方法,广泛应用于实际生产中。

其基本原理是将水通过一个半透膜,通过膜上的微孔来实现水和其他溶质的分离。

具体操作步骤为:首先将水通过预处理装置,如颗粒过滤器和活性炭吸附器,去除其中的悬浮颗粒和有机物;然后将水推入反渗透膜系统,施加一定的压力,使水通过膜孔,截留住大部分离子和溶解固体;最后,将通过膜的水进一步通过离子交换装置和混床柱,以去除剩余的离子和气体。

反渗透法可以高效地去除水中的离子、溶解固体等溶质,但要求水样压力较高、设备投资和运营成本较高。

除了上述方法,还有一些其他制备超纯水的方法,如电析法、电渗析法、超滤法等。

这些方法在特定情况下也可以应用于制备超纯水,但相对而言,应用较广泛且经济实用的方法还是蒸馏法、离子交换法和反渗透法。

超纯水的成分

超纯水的成分

超纯水的成分超纯水是指经过多重净化工艺处理后的水质,其中所含杂质被大幅度去除,达到极高的纯净度。

其成分主要由水分子(H2O)组成,不含任何其他化学物质。

超纯水的制备过程严格控制水源和操作条件,以确保最终产品的纯净度和稳定性。

超纯水的制备主要通过离子交换、反渗透和电极去离子等方法进行。

首先,水源经过初步处理,去除悬浮物和有机物等大分子杂质。

然后,通过离子交换树脂去除水中的离子,如钙离子、镁离子、铁离子等。

离子交换是利用树脂的特殊性质,通过吸附和释放离子,将水中的杂质去除掉。

接下来,利用反渗透技术进一步去除水中的微量离子和溶解物,将水分子从其它物质中分离出来。

反渗透是利用半透膜,通过高压将水分子从含有杂质的水中挤压出来,从而实现水分离。

最后,通过电极去离子技术进一步提高水的纯度。

电极去离子是利用电离膜将水中的离子去除,使得水质更加纯净。

超纯水的成分中,水分子是主要组成部分。

水分子由一个氧原子和两个氢原子组成,呈现出特殊的分子结构和性质。

水分子具有极性,即氧原子带负电荷,氢原子带正电荷。

这种极性使得水分子之间存在着氢键的相互作用,形成液态水的特有性质。

水分子还具有良好的溶解性,可以溶解许多物质,形成溶液。

除了水分子外,超纯水中还可能存在微量的气体。

一般来说,超纯水中氧气、二氧化碳和氮气是最常见的气体成分。

这些气体可能来自空气中的溶解,也可能来自水处理过程中的气体吸附。

虽然气体成分很少,但仍然需要对超纯水进行适当的处理和保护,以确保其纯净度。

超纯水中还可能存在微量的有机物和微生物。

这些有机物和微生物可能来自水源、水处理过程中的污染或环境中的污染物。

虽然这些杂质通常在超纯水中的含量非常低,但仍然需要采取严格的控制措施,以确保超纯水的质量。

超纯水的成分主要由水分子组成,不含其他化学物质。

通过多重净化工艺处理,超纯水达到了极高的纯净度和稳定性。

超纯水在许多领域都有广泛的应用,如电子工业、制药工业、化学分析等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纯水与超纯水的制备工艺
最佳水质:
1. 天然水中常见杂质
包括可溶性无机物、有机物、颗粒物、微生物、可溶性气体等。

纯水、超纯水系统就是要尽可能彻底地去处这些杂质。

2. 净化水质的主要工艺
目前常用净化水质的工艺方法有蒸馏法、反渗透法、离子交换法、EDI、紫外氧化法等。

同时我们可以将水的纯化过程大致分为3大步,前处理(生产出纯水),离子交换(可生产出
18.2MΩ-cm超纯水)和后处理(生产出符合特殊要求的超纯水)。

根据进水的水质和对出水水质的要求,确定每一步采用的方法工艺
纯化过程3大步:
1、前处理
主要包括预处理单元和反渗透(RO)单元,由于预处理后的水将通过反渗透进行再一步的净化,所以一定要尽量去除对反渗透膜有影响的杂质;主要包括大颗粒物质、余氯以及钙离子镁离子。

在此要说明的一点是必须要根据进水水质的差异针对性地配备
不同的处理单元。

多数纯水仪生产厂家并不能很好帮助客户解决这个问题,这会导致后续的纯化无法达到理想结果并缩短反渗透膜等仪器主要部件的寿命。

超纯水设备很好的解决了这一问题,分别设计生产了线绕过滤器、活性碳吸附过滤器以及软化树脂针对性地去除水中大颗粒物质、余氯以及钙离子镁离子,达到最佳的预处理效果。

反渗透是使用一个高压泵对高浓度溶液提供比渗透压差大的压力,水分子将被迫通过半透膜到低浓度的一边,反渗透可以滤除90%-99%的包括无机离子在内的绝大多数污染物,因为它出众的纯化效率,反渗透是水纯化系统的一个非常有效的技术,因为反渗透能去除大部分的污物,所以它经常被用作为前道处理手段,能显著地延长去离子交换柱的使用时间。

鉴于反渗透在水质纯化过程中是非常关键并且反渗透膜的更换价格较高,我们建议用户一定要选择对反渗透膜有保护功能的超纯水系统。

为了尽可能延长反渗透膜的使用寿命以及提高反渗透膜的过滤效率,莱特莱德超纯水系统采用了先进的独特技术,结合领先的反渗透限流设计,在出水处有限流阀,使反渗透膜始终浸泡在水中,不致因变干而影响寿命。

延长了反渗透膜寿命就是保证了出水水质,同时也提升了超纯水系统的性价比。

2、离子交换
离子交换即是,水中的正离子与离子交换树脂中的H+ 离子交换,水中的负离子与离子交换树脂上的OH-离子交换,从而达到纯化水的目的。

通过离子交换去除离子,理论上几乎能除去所有的离子物质,在25℃时,出水电阻率达到18.2MΩ-cm。

经离子交换出水水质的高低主要取决于离子交换树脂的质量和交换柱内水与树脂的交换效率。

市面上离子交换树脂鱼龙混杂,质量参差不齐,用户很难分辨。

所以我们建议用户一定要关注树脂的品牌。

莱特莱德超纯水系统采用世界上最高质量的离子交换树脂,配合Heal Force 特有的交换柱内压式结构设计,保证树脂与水充分接触,显著提高交换效率将离子交换柱的处理能力发挥到极限。

这里要注意的是离子交换法能有效的去除离子,却无法有效的去除大部分的有机物或微生物,而微生物可附着在树脂上,并以树脂作为培养基,使得微生物可快速生长并产生热源。

因此,需配合其他的纯化方法设计使用,也就是下面我们要讨论的后处理部分。

3、后处理
主要根据客户的特殊要求生产出低有机物型、低热源型等的超纯水。

针对不同要求有多种处理方式,如超滤过滤法用于去除
热源,双波长紫外氧化法用于降低水中总有机碳(TOC),微滤去除细菌等。

超滤(UF)薄膜则是一个分子筛,它以尺寸为基准,让溶液通过极细微的滤膜,以达到分离溶液中不同大小分子的目的,可将超纯水中的热源含量降至0.001EU/ml以下。

双波长紫外氧化法可利用光氧化有机化合物,将超纯水中的总有机碳浓度降低至
5ppb以下。

最稳水质:
超纯水设备能够制造出高质量的超纯水只是第一步,对于用户使用来说,能够尽量长时间的稳定保持高出水水质才是用户最为关心的问题。

目前厂商大多强调让客户注意使用细节,常换配件耗材,而从自身方面所做的改进并不多。

而超纯水系统则完全不一样,它除了具备一些常见的功能,如任意设置时间自动清洗功能,待机2小时及多种时间断的循环杀菌、消毒模式(采用双氧水作为消毒剂的液体消毒方式,更好的保护操作者及过滤柱,同时保证超纯水的质量),断水自动停机,纯水/超纯水双流路设计等,还有一项独特的配置保证稳定水质:两级离子交换且每级都由两根柱子组成,可降低紫外灯的有机负荷,更进一步提高了水质和延长配件使用寿命,一举两得。

同时莱特莱德超纯水系统多达4个超小型,高精度,1/0.01常数的电阻率传感器,分别精确监测各路纯水的电导率或电阻率,温度自动补偿,并有TOC测量可供选择,实现电阻率,TOC实时检测。

通过这些高精度传感器,
超纯水设备就具备了具有自动判别或提示预处理柱,反渗透膜,初级纯化柱,多功能纯化柱,微滤,超滤,紫外灯管等失效,以保证机器处在最佳运行状态,保证产水质量。

(注:本资料素材和资料部分来自网络,仅供参考。

请预览后才下载,期待您的好评与关注!)。

相关文档
最新文档