甘肃省白银市靖远县2018-2019学年高一上学期期末数学试题

合集下载

【优质文档】2018–2019学年度高一数学上学期期末质量检测试卷一含答案

【优质文档】2018–2019学年度高一数学上学期期末质量检测试卷一含答案

3. 下列各组函数中表示同一函数的是(

A. y
x2 和 y ( x)2
B.
y x 和 y 3 x3
C. y log a x2 和 y 2log a x
D. y x 和 y alog a x ( a 0, a 1)
4. sin15 cos 45 sin 75 sin135 的值为( )
A. 3 2
1
B.
2
1
C.
D.
3
2
2
5. 如果点 P(sin , cos ) 位于第四象限,那么角 所在的象限是( )
A. 第一象限 B. 第二象限 C 第三象限 D. 第四象限
第 1页共6 页
1
6. 函数 f ( x )
1 2x
-x 2 的零点一定位于下列哪个区间(

A. (0,1) B. (1, 2) C. (2, 3) D. (3, 4)

A.0
B.1
C.2
D.3
8. 已知 a 0 且 a 1 ,f ( x) x 2 a x ,当 x ( 1,1) 时恒有 f ( x )
取值范围是(
1 A. (0, ] [3,
3
)
B.
[1 ,1)(1,3] C.
1 [ ,1) [3,
3
3
) D.
1 (0, ]
(1,3]
3
2 ,则实数 a 的
3
二、填空题
( I )若 A B A ,求实数 m 的取值范围;
( II )若 A B
,求实数 m 的取值范围 .
1
16. (本小题 13 分)计算: l o g 2 32 lg 4 lg 25 5log5 2 2(16) 2

【优质文档】2018-2019学年高一(上)期末数学试卷(含答案)

【优质文档】2018-2019学年高一(上)期末数学试卷(含答案)

18.已知向量 =( x,﹣ 1), =( x﹣2 ,3), =( 1﹣ 2x, 6). ( 1)若 ⊥( 2 + ),求 | | ; ( 2)若 ? < 0,求 x 的取值范围.
2
19.已知函数 f( x)=Asinx+cosx, A> 0. ( 1)若 A=1,求 f ( x)的单调递增区间;

22. 解: Ⅰ)若 a=1,则 f( x)=

函数 f ( x)的图象如下图所示:

(Ⅱ)若 f( x) ≥2﹣ x 对任意 x∈[1,2] 恒成立, 即 x2﹣ 4ax+3a2≥2﹣ x 对任意 x∈[1 ,2] 恒成立, 即 x2+( 1﹣4 a) x+(3a2﹣ 2) ≥0对任意 x∈[1 , 2]恒成立,
( 2)函数 f( x)在 x=x0 处取得最大值
,求 cosx0 的值.
20.已知 f ( x)是定义在 R上的偶函数,当 x ≥0时, f( x) =xa( a∈R),函数 f( x)的图象经过点( ( 1)求函数 f ( x)的解析式; ( 2)解不等式 f ( x2)﹣ f(﹣ x2+x﹣ 1)> 0.
4, 2).
3
21.已知向量 =( sinx ,﹣ 1), =( cosx , m),m∈ R.
( 1)若 m= ,且 ∥ ,求
的值;
( 2)已知函数 f ( x) =2( + ) ? ﹣2m2﹣ 1,若函数 f( x)在 [ 0, ] 上有零点,求 m 的取值范围.
22. 设函数 f ( x) =
由 y=x2+( 1﹣ 4a) x+( 3a2﹣ 2)的图象是开口朝上,且以直线 x=
为对称轴的抛物线,

2018-2019学年高一上学期期末考试数学试题

2018-2019学年高一上学期期末考试数学试题

2018-2019学年高一上学期期末考试数学试题考试范围:必修4(时间:120分钟 满分:150分)一、选择题(本大题共12 小题,每小题5分,共60分)1.sin(-2 055°)等于( )A.6-242+64C. D.2+642-642.若sin α>0且tan α<0,则的终边在( )α2A.第一象限B.第二象限C.第一象限或第三象限D.第三象限或第四象限3.若sin(π-α)=-,且α∈(π,),则sin(+α)等于( )533π2π2A.- B.5353C.- D.23234.已知D 是△ABC 所在平面内一点,=+,则( )→AD 713→AB 613→AC A.= B.=→BD 713→BC →BD 613→BC C.= D.=→BD 137→BC →BD 136→BC5.已知a 与b 的夹角为,a=(1,1),|b|=1,则b 在a 方向上的投影为( )π3A B..2262C. D.12326.函数f(x)=cos(x+)-cos(x-)是( )π4π4A.周期为π的偶函数B.周期为2π的偶函数C.周期为π的奇函数D.周期为2π的奇函数7.已知a,b 均为单位向量,它们的夹角为60°,那么|a+3b|等于( )A. B. 710C. D.4138.若tan(π-α)=,α是第二象限角,则等于( )341sin π+α2·sin π-α2A. B.5910C. D.101099.已知α是锐角,a=(,sin α),b=(cos α,),且a∥b,则α为( )3413A.15° B.45°C.75°D.15°或75°10.已知函数y=sin (2x+)在x=处取得最大值,则函数y=cos(2x+)的图象( )ϕπ6ϕA.关于点(,0)对称π6B.关于点(,0)对称π3C.关于直线x=对称π6D.关于直线x=对称π311.函数f(x)=2sin(ωx+)(ω>0,-<<)的部分图象如图所示,则ω,的值ϕπ2ϕπ2ϕ分别是( )A.2,-B.2,-π3π6C.4,-D.4,π6π312.将函数f(x)=2cos 2x-2sin xcos x-的图象向左平移t(t>0)个单位,所33得图象对应的函数为奇函数,则t 的最小值为( )A. B.2π3π3C. D. π2π6二、填空题(本大题共4小题,每小题5分,共20分)13.已知角α的终边过点(-3cos θ,4cos θ),其中θ∈(,π),则cos α=π214.已知向量a=(-2,3),b=(4,m),若(a+2b)∥(a-b),则实数m= . 15.若函数f(x)=sin(ωx+)(ω>0)图象的两条相邻的对称轴之间的距离为,π6π2且该函数图象关于点(x 0,0)成中心对称,x 0∈,则x 0= . [0,π2]16.如图,在矩形ABCD 中,AB=,BC=2,点E 为BC 的中点,点F 在边CD 上,2若·=,则·的值是 .→AB →AF 2→AE →BF三、解答题(本大题共6小题,共70分)17.(本小题满分10分)(1)设tan α=-,求的值;121sin 2α-sinαcosα-2cos 2α(2)已知cos(75°+α)=,且-180°<α<-90°,求cos(15°-α)的值.1318.(本小题满分10分)已知=(4,0),=(2,2),=(1-λ)+λ(λ2≠λ).→OA →OB 3→OC →OA →OB (1)求·,在上的投影;→OA →OB →OA →OB (2)证明A,B,C 三点共线,并在=时,求λ的值;→AB →BC (3)求||的最小值.→OC 19.(本小题满分12分)已知函数f(x)=cos(2x-)+sin 2x-cos 2x+.π32(1)求函数f(x)的最小正周期和单调递增区间;(2)若存在t∈[,]满足[f(t)]2-2f(t)-m>0,求实数m 的取值范围.π12π3220.(本小题满分12分)已知向量a=(3sin α,cos α),b=(2sin α,5sin α-4cos α),α∈(,2π),3π2且a⊥b.(1)求tan α的值;(2)求cos(+)的值.α2π321.(本小题满分12分)已知函数f(x)=Asin(ωx+)(A>0,ω>0,||<)在一个周期内的图象如图所示.ϕϕπ2(1)求函数的解析式;(2)设0<x<π,且方程f(x)=m 有两个不同的实数根,求实数m 的取值范围以及这两个根的和.22.(本小题满分14分)已知向量a=(-sin ,1),b=(1,cos +2),函数f(x)=a·b.3x 2x 232(1)求函数f(x)在x∈[-π,]的单调减区间;5π3(2)当x∈[,π]时,若f(x)=2,求cos 的值.π3x 2。

甘肃省白银市靖远县2017-2018学年高一上学期期末考试数学试题精编含解析

甘肃省白银市靖远县2017-2018学年高一上学期期末考试数学试题精编含解析

甘肃省靖远县2017-2018学年高一上学期期末考试数学试题一、选择题(本大题共12小题,共60.0分)1.已知集合A={1,3},B={3,5},则A∩B=( )A. {3}B. {1,5}C. {5}D. {1,3,5}【答案】A【解析】【分析】直接利用交集运算得答案.【详解】∵集合A={1,3},B={3,5},∴A∩B={3}故选:A【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.下列四组直线中,互相平行的是()A. 与B. 与C. 与D. 与【答案】D【解析】由两直线平行的充要条件,可知A选项两直线垂直:B选项两直线重合,C选项两直线相交:D选项两直线平行故选D3.圆x2+4x+y2=0的圆心和半径分别为( )A. ,4B. ,4C. ,2D. ,2【答案】C【解析】【分析】将圆的方程化为标准方程,即可得到答案。

【详解】圆的方程可化为,可知圆心为,半径为2.故答案为C.【点睛】本题考查了圆的方程,圆的半径及圆心坐标,属于基础题。

4.在空间中,下列命题错误的是( )A. 如果两条直线垂直于同一条直线,那么这两条直线平行B. 如果两个平面垂直于同一个平面,那么这两个平面可能互相垂直C. 过直线外一点有且只有一条直线与已知直线平行D. 不共线的三个点确定一个平面【答案】A【解析】【分析】对于选项A,这两条直线可能异面,也可能相交,不一定平行;选项B成立,比如正方体的两个相邻面与底面;选项C和D,根据公理可以知道一定正确。

【详解】对于选项A,如果两条直线垂直于同一条直线,这两条直线可能异面,也可能相交,不一定平行,故A错误;对于选项B,如果两个平面垂直于同一个平面,那么这两个平面可能互相垂直,是正确的,比如正方体的两个相邻面与底面;对于选项C和D,根据公理可以知道一定正确;所以答案为A.【点睛】本题考查了点线面的性质及它们之间的关系,属于基础题。

5.下列各函数在其定义域内为增函数的是( )A. B. C. D.【答案】B【解析】【分析】对选项逐个讨论单调性,即可选出答案。

2018-2019高一数学上学期期末复习试卷

2018-2019高一数学上学期期末复习试卷

.精选文档 .2018-2019 高一数学上学期期末复习试卷2018-2019 学年高一(上)数学期末复习一、选择题 ( 本大题共 12 小题,每题 5 分,共 60 分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的1.函数的定义域为( )A. ( ,1) B. ( , ∞ ) C.( 1,+∞)D.( ,1)∪(1,+∞)2.以正方体 ABD— A1B11D1的棱 AB、 AD、 AA1所在的直线为坐标轴成立空间直角坐标系,且正方体的棱长为一个单位长度,则棱 1 中点坐标为 ( )A.(,1,1)B.( 1,,1)C.( 1,1,)D.(,,1)3.若,,,则与的地点关系为( )A.订交B.平行或异面C.异面D.平行4.假如直线同时平行于直线,则的值为( )A.B.C.D.5.设,则的大小关系是( )A.B.C.D.6.空间四边形ABD中, E、 F 分别为 A、 BD中点,若D =2AB,EF⊥ AB,则直线 EF 与 D 所成的角为 ( )1 / 8.精选文档 .A. 45°B. 30°C. 60°D.90°7.假如函数在区间上是单一递加的,则实数的取值范围是()A.B.C.D.8.圆:和圆:交于A,B两点,则AB 的垂直均分线的方程是 ( )A.B.C.D.9.已知,则直线与圆的地点关系是( )A.订交但可是圆心B.过圆心C.相切D.相离10.某三棱锥的三视图如右图所示,则该三棱锥的表面积是()A. 28+ 65 B. 60+125C. 56+ 125 D. 30+ 6511.若曲线与曲线有四个不一样的交点,则实数的取值范围是()A.B.C.D.12.已知直线与函数的图象恰巧有 3 个不一样的公共点,则实数的取值范围是 ( )A.B.C.D.二、填空题 ( 本大题共 4 小题,每题 5 分,共 20 分.请把正确答案填在题中横线上)13.若是奇函数,则.14.已知,则.15.已知过球面上三点A,B,的截面到球心的距离等于球半径的一半,且AB=B=A=3 ,则球的体积是.16.如图,将边长为 1 的正方形ABD沿对角线 A 折起,使得平面AD⊥平面AB,在折起后形成的三棱锥D- AB 中,给出以下三种说法:①△ DB 是等边三角形;②A⊥ BD;③三棱锥D- AB 的体积是 26.此中正确的序号是________( 写出全部正确说法的序号) .三、解答题 ( 本大题共 6 小题,共70 分.解答时应写出必需的字说明、证明过程或演算步骤)17.( 本小题 10 分 ) 依据以下条件,求直线的方程:(1)已知直线过点 P( -2,2) 且与两坐标轴所围成的三角形面积为 1;(2)过两直线 3x-2y+ 1=0 和 x+ 3y+ 4= 0 的交点,且垂直于直线 x+ 3y + 4= 0.18.( 本小题12 分 ) 已知且,若函数在区间的最大值为 10,求的值.19.( 本小题 12 分) 定义在上的函数知足 , 且 . 若是上的减函数,务实数的取值范围.20.( 本小题12 分 ) 如图,在直三棱柱(侧棱垂直于底面的三棱柱)中,,分别是棱上的点(点不一样于点),且为的中点.求证:( 1)平面平面;(2)直线平面.21.( 本小题 12 分 ) 如下图,边长为 2 的等边△ PD所在的平面垂直于矩形 ABD所在的平面, B= 22,为 B 的中点.(1)证明: A⊥P;(2)求二面角 P-A- D 的大小.22.( 本小题 12 分 ) 已知圆: x2+ y2+ 2x- 4y+ 3=0.(1)若圆的切线在 x 轴和 y 轴上的截距相等,求此切线的方程.(2)从圆外一点 P(x1 , y1) 向该圆引一条切线,切点为,为坐标原点,且有|P| = |P| ,求使得 |P| 获得最小值的点P 的坐标.答案一、选择题ABAD BDAD B二、填空题13. 14 . 13 15 . 16. ①②三、解答题17.( 本小题 10 分 )(1)x + 2y- 2= 0 或 2x+y +2=0.(2)3x - y+ 2= 0.18.( 本小题 12 分 )当 0&lt;a&lt;1时,f(x)在[-1,2]上是减函数,当 x=- 1 时,函数 f(x)获得最大值,则由2a-1- 5=10,得 a=215,当 a&gt;1 时, f(x) 在[ - 1, 2] 上是增函数,当 x= 2 时,函数获得最大值,则由2a2- 5= 10,得 a= 302 或 a=- 302( 舍) ,综上所述, a= 215 或 302.19.( 本小题 12 分 )由 f(1 -a) + f(1 - 2a) < 0,得 f(1 -a) <- f(1 - 2a) .∵f( - x) =- f(x),x∈ (-1,1),∴f(1 -a) <f(2a - 1) ,又∵ f(x)是(-1,1)上的减函数,∴- 1< 1-a< 1,- 1< 1- 2a< 1, 1-a> 2a- 1,解得0< a< 23.故实数 a 的取值范围是0,23.20.( 本小题 12 分 )(1)∵ 是直三棱柱,∴ 平面。

【优质文档】2018–2019学年度高一数学上学期期末质量检测试卷十八含答案

【优质文档】2018–2019学年度高一数学上学期期末质量检测试卷十八含答案

C

-3
8.直线 4x+3y﹣ 5=0 与圆( x﹣ 1)2+(y﹣2)2=9 相交于 A、 B 两点,则 AB 的长
度等于( ) A.
B.4
C.2
D.1
9.函数 f (x)= ln(x+1)﹣ 的零点所在区间是( )
A.( ,1) B.( 1, e﹣ 1) C.( e﹣ 1, 2) D.(2,e)
12.已知函数 f (x)=
,若 a,b,c 互不相等,且 f( a)
=f( b) =f(c),则 abc 的取值范围是 ( )
A.[ 2,3]
B.(2,3) C. [ 2,3)
D.(2,3]
第 II 卷
二、填空题(本大题 4 小题,每小题 5 分,共 20 分,答案写在答题卡相应横线
第 2 页 共 19 页
1.已知全集 U R ,集合 A { y | y 2x 1} , B { x |ln x 0} ,则 (eU A) B
()
A.
1 B. { x | x 1}
2
C. { x | x 1}
D. { x |0 x 1}
2.函数 f (x)=
+lg(3x+1)的定义域是( )
A.(﹣ , +∞)
B.(﹣ ,1)
C.(﹣ , ) D.(﹣∞,﹣ )
3.已知 m ,n 是两条不同直线, , 是两个不同平面, 则下列命题正确的是 ( )
A.若 , 垂直于同一平面,则 与 平行
B.若 m , n 平行于同一平面,则 m 与 n 平行
C.若 , 不平行,则在 内不存在与 平行的直线
D.若 m , n 不平行,则 m 与 n 不可能垂直于同一平面

甘肃省白银市靖远县2019-2020学年高一上学期期末考试联考数学试题(解析版)

甘肃省白银市靖远县2019-2020学年高一上学期期末考试联考数学试题(解析版)

甘肃省白银市靖远县2019-2020学年 高一上学期期末考试联考试题一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}|12A x x =-<<,{}|10B x x =-<,则()AB =R( )A. {}|12x x <<B. {}|12x x <≤C.{}|12x x ≤<D.{}|12x x ≤≤【答案】C 【解析】因为集合{}{}|10|1B x x x x =-<=<,所以{}|1C B x x =≥R ,所以(){}|12AC B x x =≤<R .故选:C. 2.函数()()lg 2f x x =+的定义域是( )A.(]2,5- B.()2,5-C.(]2,5 D.()2,5【答案】A【解析】由()()lg 2f x x +,得5020x x -≥⎧⎨+>⎩,即52x x ≤⎧⎨>-⎩,所以(]2,5x ∈-. 故选:A. 3.若直线220x y 与()3510x a y +-+=平行,则a 的值为( )A. 1B. -1C. 132D. 132-【答案】B【解析】因为直线220x y 与()3510x a y +-+=平行,所以351122a -=≠-,解得1a =-.故选:B.4.函数()542xf x ⎛⎫=- ⎪⎝⎭的零点所在的区间是( )A()1,2B.()2,3C.()3,4D.()0,1【答案】A【解析】()f x 是单调递增函数,且()3102f =-<,()9204f =>,所以()f x 的零点所在的区间为()1,2故选:A. 5.已知()3,0A ,()0,2B ,()2,6C ,则ABC ∆的BC 边上的中线所在的直线方程为( )A. 260x y ++=B. 260x y +-=C. 260x y --=D. 210x y --=【答案】B【解析】BC 的中点为()1,4D ,2AD k =-,∴BC 边上的中线所在的直线方程为()23y x =--,即260x y +-=.故选:B.6.若直线20x y ++=被圆224x y +=截得的弦长为则m =( )A.B. 5C. 10D. 25【答案】B【解析】圆的圆心坐标为()0,0,半径2r,直线被圆截得的弦长为1=,则5m =.故选:B. 7.若实数0.2log 0.3a =,0.3log 0.2b =,0.3log 2c =,则( )A. c b a <<B. c a b <<C. a b c <<D. b a c <<【答案】B【解析】因为对数函数0.2log y x=是单调递减的,所以0.20.2log 0.3log 0.21a =<=,同理,0.30.3log 0.2log 0.31b =>=,所以01a b <<<,而0.30.3log 2log 10c =<=,所以c a b <<.故选:B.8.已知圆柱的底面圆的面积为9π,高为2,它的两个底面的圆周在同一个球的球面上,则该球的表面积为( ) A. 16π B. 20π C. 40π D. 40π3【答案】C【解析】因为圆柱的底面圆的面积为9π,所以圆柱的底面圆的半径为3r =,又因为圆柱的两个底面的圆周在同一个球的球面上,所以该球的半径R ==则该球的表面积为24π40πR =. 故选:C. 9.函数()()32ln f x x x x=+的部分图象大致为( )A. B.C. D.【答案】C 【解析】由题意,3()(2)ln ()f x x x x f x -=-+-=-,即()f x 是定义在()(),00,-∞⋃+∞上的奇函数,所以排除A ,B ; 当01x <<时,()0f x >;当1x >时,()0f x >,排除D.故选:C .【点睛】本题考查由函数解析式判断性质进而识别图像,属于中等题型. 10.某几何体的三视图如图所示,则该几何体的表面积为( )A. 115πB. 140πC. 165πD. 215π【答案】A【解析】由三视图可知,该几何体由一个半球与一个圆锥拼接而成, 且球的半径和圆锥底面圆半径相同,如图所示:由三视图可知,半球半径为5,所以半球的表面积为21×4π×5=50π2, 圆锥的底面圆半径为5,母线长为13,所以圆锥的侧面积为π51365π⨯⨯=, 所以该几何体的表面积65π50π115πS =+=.故选:A. 11.已知()2,0A -,()2,0B ,点P 是圆C :()(2231x y -+=上的动点,则22AP BP+的最小值为( ) A. 9B. 14C. 18D. 26【答案】D的【解析】设O 为坐标原点,(),P x y ,则()()22222222AP BP x y x y +=+++-+()2222828x y PO =++=+,又()()222min 419PO OC r =-=-=,所以()22min18826AP BP+=+=.故选:D.12.设1x ,2x ,3x 分别是方程3log 3x x +=,()3log 2x +=,e ln 4x x =+的实根,则( ) A.123x x x <+ B.213x x x << C.231x x x << D.321x x x <<【答案】C 【解析】由题,对于3log 3x x +=,由3log y x=与3y x =-的图像,如图所示,可得123x <<;对于()3log 2x +=由()3log 2y x =+与y =,如图所示,可得210x -<<;对于e ln 4xx =+,由e 4xy =-与ln y x =的图像,如图所示,可得()30,1x ∈或()31,2x ∈,故231x x x <<二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.已知点()3,1A ,()1,3B -,则以线段AB 为直径的圆的标准方程为______. 【答案】()()22125x y -+-=【解析】因为圆心的坐标为()1,2,()()22231125R =-+-=,所以该圆的标准方程为()()22125x y -+-=.故答案为:()()22125x y -+-=.14.已知函数()()25f x x αα=-是幂函数,则()f α=______.【答案】27 【解析】因为()()25f x x αα=-是幂函数,所以251α-=,解得3α=,即()3f x x =,所以()()327f f α==.故答案为:27.15.已知圆1C :()()222110x y -+-=与圆2C :2260x y x y +--=,则两圆的公共弦所在的直线方程为______. 【答案】250x y --= 【解析】将圆1C :()()222110x y -+-=化为224250x y x y +---=, 联立两圆方程2222425060x y x y x y x y ⎧+---=⎨+--=⎩两圆方程相减,得两圆公共弦所在直线的方程为250x y --=. 故答案为:250x y --=.16.如图,在ABC ∆中,AB BC ⊥,D ,E 分别为AB ,AC 边上的中点,且4AB =,2BC =.现将ADE ∆沿DE 折起,使得A 到达1A 的位置,且160A DB ∠=︒,则1A C =______.【答案】【解析】易知DE BD ⊥,1DE A D⊥,1BDA D D=,所以DE ⊥平面1A BD,因为160A DB ∠=︒,12A D BD ==,所以12A B =.又//BC DE ,所以BC ⊥平面1A BD,所以1BC A B⊥,从而1AC ==.故答案为:三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.已知集合{|2A x x a =≤-或}3x a >+,(){}33|log log 5B x y x x ==+-.(1)当1a =时,求A B ;(2)若AB B =,求实数a 的取值范围.【解】(1)因为050x x >⎧⎨->⎩,所以05x <<,即{}|05B x x =<<,当1a =时,{|1A x x =≤-或}4x >,所以{|1A B x x ⋃=≤-或}0x >.(2)因为AB B =,所以B A ⊆, {}|05B x x =<<,则30a +≤或25a -≥,即3a ≤-或7a ≥, 所以实数a 的取值范围为(][),37,-∞-+∞.18.已知直线l 的方程为43120x y +-=,1l与l 垂直且过点()1,3--.(1)求直线1l的方程;(2)若直线2l 经过1l 与l 的交点,且垂直于x 轴,求直线2l的方程. 【解】(1)由1l 与l 垂直,则可设1l:340x y m -+=, ∵1l过()1,3--,∴()()31430m ⨯--⨯-+=,解得9m =-,∴1l:3490x y --=. (2)联立1l 与l ,可得1l与l 的交点坐标为()3,0,又2l 垂直于x 轴,则直线2l的方程为3x =.19.已知函数()f x 是定义在R 上的奇函数,当()0,x ∈+∞时,()232f x x ax a=++-.(1)求()f x 的解析式;(2)若()f x 是R 上的单调函数,求实数a 的取值范围.【解】(1)因为函数()f x 是定义在R 上的奇函数,所以()00f =,当0x <时,0x ->,则()()()232f x x a x a -=-+-+-()232x ax a f x =-+-=-,所以()()2320x ax a f x x =-+-+<,所以()2232,00,032,0x ax a x f x x x ax a x ⎧++->⎪==⎨⎪-+-+<⎩.(2)若()f x 是R 上的单调函数,且()00f =,则实数a 满足02320a a ⎧-≤⎪⎨⎪-≥⎩,解得302a ≤≤, 故实数a 的取值范围是30,2⎡⎤⎢⎥⎣⎦.20.已知圆C 的圆心在x 轴正半轴上,且圆C 与y 轴相切,点()2,4P 在圆C 上.(1)求圆C 的方程; (2)若直线l :()140m x y m ++++=与圆C 交于A ,B 两点,且8AB =,求m 的值.【解】(1)设圆心(),0C a ,则圆C 的方程可设为()222x a y a -+=.因为点()2,4P 在圆C 上,所以()22224a a -+=,解得5a =.故圆C 的方程为()22525x y -+=.(2)由(1)可知圆C 的圆心()5,0C ,半径=5r .因为8AB =,所以圆心C 到直线l 的距离3d ===,即231070m m ++=,解得1m =-或73m =-.21.如图,在三棱锥P ABC -中,AB BC ⊥,3AB =,4BC =,AC AP =,PA ⊥平面ABC ,过A 作AD PB ⊥于D ,过D 作DE PC ⊥于E ,连接AE .(1)证明:AE PC ⊥. (2)求三棱锥P ADE -的体积.【解】(1)证明:因为PA ⊥平面ABC ,所以PA BC ⊥. 又AB BC ⊥,PAAB A =,所以BC ⊥平面PAB ,所以BC AD ⊥, 又AD PB ⊥,PB BC B ⋂=, 所以AD ⊥平面PBC ,从而AD PC ⊥.又DE PC ⊥,AD DE D ⋂=,所以PC ⊥平面ADE . 因为AE ⊂平面ADE ,所以AE PC ⊥.(2)解:由(1)知PE 是三棱锥P ADE -的高,所以13P ADE ADE V S PE-∆=⋅.由已知5AC PA ==,又AB AP AD BP ⋅==122AE PE PC ===,由(1)知AD ⊥平面PBC ,则AD DE ⊥,所以DE ==,所以1122ADE S AD DE ∆=⋅==所以1112533234P ADE ADE V S PE -∆=⋅==. 22.已知函数2e 2e ()3x xf x -+=,其中e 为自然对数的底数.(1)证明:()f x 在(0,)+∞上单调递增;(2)函数25()3g x x =-,如果总存在1[,](0)x a a a ∈->,对任意()()212,x f x g x ∈R 都成立,求实数a 的取值范围. 【解】(1)设120x x <<,则11221222()()()()33x x x x f x f x e e e e ---=+-+1212211[()()]3x x x x e e e e =-+-1212122()(1)x x x x x x e e e e e e --=,∵120x x <<,∴12x x e e <,121xx e e>,∴12())0(f x f x -<,即12()()f x f x <,∴()f x (0,)+∞上单调递增;(2)总存1[,](0)x a a a ∈->,对任意()()212,x f x g x ∈R 都成立,即maxmax()()f x g x ≥,25()3g x x =-的最大值为max 5()3g x =, 22()3x xe ef x -+=是偶函数,在(0,)+∞是增函数,∴当[,]x a a ∈-时,max 22()()3a a e e f x f a -+==, ∴22533a a e e -+≥,整理得22520a a e e -+≥,(2)(21)0a a e e --≥, ∵0a >,∴1a e >,即210a e ->,∴20a e -≥,∴ln 2a ≥.即a 的取值范围是[ln 2,)+∞.。

白银市2018-2019学年第一学期期中考试高一数学模拟试题

白银市2018-2019学年第一学期期中考试高一数学模拟试题

白银市2018-2019学年第一学期期中考试高一数学模拟试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合1}x |Q {x A >∈=,则( )A .A ∈φB .A ∉2C .A ∈2D .A ⊆}2{2.下列四组中的)(),(x g x f ,表示同一个函数的是( )A .0)(,1)(x x g x f == B .1)(,1)(2-=-=x x x g x x f C .42)()(,)(x x g x x f == D .393)(,)(x x g x x f ==3.下列函数在区间),0(+∞上是增函数的是( )A . )1ln(+=x yB .2)1(-=x yC .2-=x yD . x y -=34.下列函数的图像关于y 轴对称的是( )A .x x e e y -+=B .x y 2= C. x y 2log = D .3x y = 5.已知函数⎪⎩⎪⎨⎧>≤=0,log 0,2)(21x x x x f x ,则=-)]2([f f ( )A . -1B .0 C. 1 D .26.函数xe xf x1)(-=的零点所在的区间是( ) A .)21,0( B .)1,21( C. )23,1( D .)2,23( 7.若1.02=a ,2.27.0=b ,3.0log 2=c ,则( )A .c b a >>B .c a b >> C. b a c >> D .a c b >>8.已知幂函数)()(322Z m x x f m m ∈=--的图像关于原点对称,且在),0(+∞上是减函数,则=m ( )A . 0B .0或2 C. 0 D .29.定义在R 上的函数满足)()(x f x f =-,且在),0(+∞上为增函数,若)()(n f m f >,则必有( )A . n m >B . n m < C. ||||n m < D .22n m >10.在同一坐标系中,函数xa y )1(=与)(log x y a -=(其中0>a 且1≠a )的图像只可能是( ) A .B . C. D .11.已知函数⎪⎩⎪⎨⎧>≤+-=1,21,5)3()(x xa x x a x f 是R 上的减函数,则a 的取值范围是( ) A . )2,0( B . ]2,0( C. )3,0( D .]3,0(12.若方程0)21(|ln |=+-a x x 有两个不等的实数根,则a 的取值范围是( )A . ),21(+∞ B .),1(+∞ C. )21,(-∞ D .)1,(-∞ 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知集合3}2{1,,=A ,}4,,2{m B =,}4,3,2,1{=B A ,则=m . 14.函数2log )(2-=x x f 的定义域为 .15.已知函数2log )(2-=x x f ,则)(x f 的值域是 .16.已知函数)(x f 对任意的正实数y x ,,均有)()()(y f x f xy f +=,且1)2(=f ,则=)21(f . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 计算下列各式的值:(1)3202)833()21()32(--+-; (2)2)2(lg 20lg 5lg 8lg 3225lg +++.18. 求函数324)(1--=+x x x f ,]1,1[-∈x 的值域. 19. 解下列不等式:(1)313)21(2+-<x x ; (2)1)4(log )12(log 33<-+-x x .20. 已知函数)(x f 是奇函数,且0<x 时,x x x f -+=11)(. (1)求)5(f 的值;(2)求函数)(x f 的解析式.21. 已知函数xm x x f +=)(,且2)1(=f . (1)求m ;(2)证明:)(x f 的奇偶性;(3)函数)(x f 在),1(+∞上是增函数还是减函数?并用定义证明. 22.已知定义域为R 的函数1212)(++-=x x a x f 是奇函数. (1)求a 的值;(2)证明:)(x f 为R 上的增函数;(3)若对任意的R x ∈,不等式0)1()1(2>-++mx f mx f 恒成立,求实数m 的取值范围.试卷答案一、选择题1-5: BDAAD 6-10: BABDC 11、12:BC二、填空题13. 1或3 14. ),4[+∞ 15. ),2[+∞- 16.-1三、解答题17.(1)原式=322)827(1)32(1-+323))23((149-+=1)23(1492=-+= (2)原式=2)2(lg )2lg 1(5lg 2lg 25lg 2++++)2lg 5(lg 2lg 5lg 2+++=3=18.解:322)2()(2-∙-=x x x f ,设x t 2=,∵]1,1[-∈x ,∴]2,0[∈t , 4)1(32)(22--=--=t t t t f ,可得:]3,4[)(--∈t f ,综上所述:函数的值域为]3,4[--.19.(1)∵313)21(2+-<x x ,∴31322---<x x ,∴313--<-x x ,∴24-<x , ∴21-<x ,∴)21,(--∞∈x . (2)∵1)4(log )12(log 33<-+-x x ,∴1)4)(12(log 3<--x x ,∴3log )4)(12(log 33<--x x∴3)4)(12(0<--<x x ,∴∈x )4,27()1,21( .20.(1)因为函数)(x f 是偶函数,且0<x 时,x x x f -+=11)(, ∴32)5()5(-=-=f f ,∴32)5(-=f . (2)设0>x ,则0<-x ,所以)(11)(x f x x x f =+-=-, 所以0>x 时,xx x f +-=11)(. 所以⎪⎪⎩⎪⎪⎨⎧>+-=<-+=0,110,00,11)(x x x x x x x x f .21.(1)2)1(=f ,∴21=+m ,∴1=m(2)x x x f 1)(+=,)(1)(x f xx x f -=--=-, ∴)(x f 是奇函数.(3)设21,x x 是),1(+∞上的任意两个实数,且21x x <,则)11()1(1)()(2121221121x x x x x x x x x f x f -+-=+-+=- 212121x x x x x x ---= 2121211)(x x x x x x --= 当211x x <<时,121>x x ,0121>-x x ,从而0)()(21<-x f x f ,即)()(21x f x f < ∴函数x xx f +=1)(在),1(+∞上为增函数. 22.(1)∵函数是奇函数,∴0)1()1(=-+f f , 可得012141=+-++a a ,解之得:2=a , 检验:2=a 时,12212)(++-=x x x f ,∴2221)22(2)12(22212)(111+-=+-=+-=-++--+--x xx x x x x x x f ∴0)()(=-+x f x f 对R x ∈恒成立,即)(x f 是奇函数.∴2=a(2)证明:令x t 2=,则t t y 221+-=1121+-∙=t t )121(21+-=t 1121+-=t 设R x ∈1,R x ∈2,且21x x <,∵x t 2=在R 上是增函数,∴210t t <<,当210t t <<时,∴ 021<-t t ,011>+t ,012>+t ,∴21y y <,可得)(x f 在R 上是增函数.(3)∵)(x f 是奇函数,∴不等式0)1()1(2>-++mx f mx f 等价于)1()1(2->+mx f mx f ∵)(x f 在R 上是增函数,∴对任意的R t ∈,原不等式恒成立,即112->+mt mt 对任意R t ∈恒成立, 化简整理得:022>+-mt mt 对任意R t ∈恒成立,(1)当0=m 时,不等式即为02>恒成立,符合题意; (2)当0≠m 时,有⎩⎨⎧<-=∆>0802m m m ,即80<<m , 综上所述:可得实数m 的取值范围为80<≤m .。

靖远县一中2018-2019学年高三上学期11月月考数学试卷含答案

靖远县一中2018-2019学年高三上学期11月月考数学试卷含答案

靖远县一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 下列图象中,不能作为函数y=f (x )的图象的是()A .B .C .D .2. 已知变量满足约束条件,则的取值范围是( ),x y 20170x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩y x A . B .C .D .9[,6]59(,[6,)5-∞+∞U (,3][6,)-∞+∞U [3,6]3. 执行如图所示的程序框图,若输出的结果是,则循环体的判断框内①处应填()A .11?B .12?C .13?D .14?4. 已知为抛物线上两个不同的点,为抛物线的焦点.若线段的中点的纵坐标为,M N 、24y x =F MN 2班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________,则直线的方程为( )||||10MF NF +=MN A . B . 240x y +-=240x y --= C .D .20x y +-=20x y --=5. 若关于x 的方程x 3﹣x 2﹣x+a=0(a ∈R )有三个实根x 1,x 2,x 3,且满足x 1<x 2<x 3,则a 的取值范围为()A .a >B .﹣<a <1C .a <﹣1D .a >﹣1 6. 已知AC ⊥BC ,AC=BC ,D 满足=t+(1﹣t ),若∠ACD=60°,则t 的值为()A .B .﹣C .﹣1D .7. 下列函数中,定义域是R 且为增函数的是( )A.xy e -=B.3y x =C.ln y x =D.y x=8. 下列命题的说法错误的是()A .若复合命题p ∧q 为假命题,则p ,q 都是假命题B .“x=1”是“x 2﹣3x+2=0”的充分不必要条件C .对于命题p :∀x ∈R ,x 2+x+1>0 则¬p :∃x ∈R ,x 2+x+1≤0D .命题“若x 2﹣3x+2=0,则x=1”的逆否命题为:“若x ≠1,则x 2﹣3x+2≠0”9. 由直线与曲线所围成的封闭图形的面积为( )A B1C D10.图1是由哪个平面图形旋转得到的()A .B .C .D .11.已知集合M={0,1,2},则下列关系式正确的是()A .{0}∈MB .{0}MC .0∈MD .0M∉⊆12.已知函数满足,且,分别是上的偶函数和奇函数,()xF x e =()()()F x g x h x =+()g x ()h x R 若使得不等式恒成立,则实数的取值范围是( )(0,2]x ∀∈(2)()0g x ah x -≥A .B .C .D .(,-∞(,-∞(0,)+∞二、填空题13.如图是正方体的平面展开图,则在这个正方体中①与平行;②与是异面直线;BM ED CN BE ③与成角;④与是异面直线.CN BM 60︒DM BN 以上四个命题中,正确命题的序号是(写出所有你认为正确的命题).14.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=5,BC=4,AA 1=3,沿该长方体对角面ABC 1D 1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为 .15.设,记不超过的最大整数为,令.现有下列四个命题: x R ∈x []x {}[]x x x =-①对任意的,都有恒成立;x 1[]x x x -<≤②若,则方程的实数解为;(1,3)x ∈{}22sincos []1x x +=6π-③若(),则数列的前项之和为;3n n a ⎡⎤=⎢⎥⎣⎦n N *∈{}n a 3n 23122n n -④当时,函数的零点个数为,函数的0100x ≤≤{}22()sin []sin1f x x x =+-m {}()[]13xg x x x =⋅--零点个数为,则.n 100m n +=其中的真命题有_____________.(写出所有真命题的编号)【命题意图】本题涉及函数、函数的零点、数列的推导与归纳,同时又是新定义题,应熟悉理解新定义,将问题转化为已知去解决,属于中档题。

2018-2019标准试卷(含答案)高一(上)期末数学试卷

2018-2019标准试卷(含答案)高一(上)期末数学试卷

○…………装…………学校:___________姓名:______○…………装…………2018-2019标准试卷(含答案)高一(上)期末数学试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 若,则( ) A. B. C. D.2. 某电视台在因特网上就观众对其某一节目的喜爱程度进行调查,参加调查的人数为人,其中持各种态度的人数如表所示: 电视台为了了解观众的具体想法和意见,打算从中抽选出人进行更为详细的调查,为此要进行分层抽样,那么在分层抽样时,每类人中各应抽选出的人数为( ) A.,,, B.,,, C.,,, D.,,,3. 若,且,则与的夹角是( ) A. B. C. D.4. A. B. C. D.5. 如图,给出的是的值的一个程序框图,判断框内应填入的条件是( )A. B. C. D.6. 某次数学测试中,小明完成前道题所花的时间(单位:分钟)分别为,,,,.已知这组数据的平均数为,方差为,则的值为( ) A. B. C. D.7. 已知过点的直线与圆相切,且与直线垂直,则 A. B. C. D.8. 天气预报说,在今后的三天中,每一天下雨的概率均为.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生到之间取整数值的随机数,用,,,表示下雨,用,,,,,表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下组随机数:据此估计,这三天中恰有两天下雨的概率近似为( ) A. B. C. D.9. 设曲线的方程为,直线的方程,则曲线上的点到直线的距离为的点的个数为( ) A. B. C. D.10. 已知函数向左平移个单位后,得到函数,下列关于的说法正确的是( ) A.图象关于点中心对称 B.图象关于轴对称 C.在区间单调递增 D.在单调递减11. 已知是所在平面内一点,为边中点,且,那么面积是面积的( )倍. A. B. C. D.12. 定义在上的函数满足,当时,,则( ) A. B. C. D. 二、填空题(本大题共4小题,每小题5分,共20分)1. 化简:________.2. 函数的图象如图所示,则的解析式为________.3. 已知一个三角形的三边长分别是,,,一只蚂蚁在其内部爬行,若不考虑蚂蚁的大小,则某时刻该蚂蚁距离三角形的三个顶点的距离均超过的概率是________.4. 给出下列四个命题: ①的对称轴为,; ②函数的最大值为; ③函数的周期为; ④函数在上是增函数.其中正确命题的个数是________ A.个 B.个个.个.三、解答题(本大题共6小题,共70分.第17题10分,其它均12分)1. 某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如表: (1)请将上表数据补充完整,填写在相应位置,并直接写出函数的解析式;(2)将图象上所有点向左平行移动个单位长度,得到的图象.若图象的一个对称中心为,求的最小值.2. 有名学生参加某次考试,成绩(单位:分)的频率分布直方图如图所示:(1)求频率分布直方图中的值;(2)分别求出成绩落在,,中的学生人数;(3)从成绩在的学生中任选人,求所选学生的成绩都落在中的概率.3. (1)求值:; 3.(2)已知,求的值.4. 已知函数.(1)若,且,求的值;(2)求函数的最小正周期及单调递增区间.5. 已知圆的方程:(1)求的取值范围;(2)若圆与直线相交于,两点,且,求的值.6. 已知()其最小值为.(1)求的表达式;(2)当时,要使关于的方程有一个实根,求实数的取值范围.参考答案与试题解析2016-2017学年福建省泉州市德化一中高一(上)期末数学试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【答案】C【考点】三角函数值的符号【解析】化切为弦,然后利用二倍角的正弦得答案.2.【答案】D【考点】分层抽样方法【解析】根据分层抽样的定义建立比例关系即可得到结论.3.【答案】A【考点】平面向量数量积的运算【解析】由,可得,展开即可得出.4.【答案】A【考点】两角和与差的正切公式【解析】把所给的式子展开,利用两角和的正切公式,化简可得结果.5.【答案】B【考点】程序框图【解析】判断程序框图的功能,找出规律然后推出判断框的条件.6.【答案】B【考点】极差、方差与标准差众数、中位数、平均数【解析】利用平均数、方差的概念列出关于,的方程组,解这个方程组,求解即可.7.【答案】C【考点】直线与圆的位置关系【解析】由题意判断点在圆上,求出与圆心连线的斜率就是直线的斜率,然后求出的值即可.8.【答案】B【考点】模拟方法估计概率【解析】由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下组随机数,在组随机数中表示三天中恰有两天下雨的有可以通过列举得到共组随机数,根据概率公式,得到结果.9.【答案】B【考点】圆与圆的位置关系及其判定【解析】求出圆心坐标,利用圆心到直线的距离与条件之间的关系即可得到结论.10.【答案】C【考点】函数y=Asin(ωx+φ)的图象变换【解析】根据函数图象的平移变换法则“左加右减,上加下减”,易得到函数的图象向左平移个单位后,得到的图象对应的函数解析式,然后利用函数的对称性,单调性判断选项即可.11.【答案】C【考点】平面向量的基本定理及其意义【解析】根据题意与平面向量的加法法则,得出,再根据为边中点得出,从而得出是的中点,结合图形求出面积是面积的倍.12.【答案】C【考点】函数的周期性 函数单调性的性质 【解析】利用函数的周期性及时的表达式,可求得时的表达式,从而可判断逐个选项的正误. 二、填空题(本大题共4小题,每小题5分,共20分) 1.【答案】 【考点】运用诱导公式化简求值 【解析】直接利用诱导公式化简求解即可. 2.【答案】 【考点】由y=Asin (ωx+φ)的部分图象确定其解析式 【解析】由函数图象得到,解方程组得到,的值,再由图象得到周期,代入周期公式求得,再由求得的值. 3.【答案】 【考点】 几何概型 【解析】分别求出对应事件对应的面积,利用几何概型的概率公式即可得到结论. 4.【答案】 B【考点】命题的真假判断与应用 【解析】求出函数的对称轴判断①的正误;公式的最值判断②的正误;函数的周期判断③的正误;函数的单调性判断④的正误;三、解答题(本大题共6小题,共70分.第17题10分,其它均12分) 1.【答案】 解:(1)根据表中已知数据,解得,,.数据补全如下表: 且函数表达式为.(2)由知,得. 因为的对称中心为,. 令,解得,.由于函数的图象关于点成中心对称,令, 解得,.由可知,当时,取得最小值. 【考点】由y=Asin (ωx+φ)的部分图象确定其解析式函数y=Asin (ωx+φ)的图象变换 【解析】(1)根据表中已知数据,解得,,.从而可补全数据,解得函数表达式为. (2)由及函数的图象变换规律得.令,解得,.令,解得,.由可得解. 2.【答案】 解:(1)根据各小组频率和等于,得; , ∴;…(2)成绩落在中的学生人数为 ,成绩落在中的学生人数是 ,成绩落在中的学生人数是 ;…(3)设落在中的学生为,,,, 落在中的学生为,,则 ,基本事件个数为,设“此人的成绩都在”,则事件包含的基本事件数, ∴事件发生的概率为.… 【考点】频率分布直方图列举法计算基本事件数及事件发生的概率 【解析】(1)根据各小组频率和等于,求出的值; (2)利用频率,计算成绩落在、、中的学生人数;(3)用列举法求出从中的学生抽取人的基本事件数以及此人的成绩都在的基本事件数,求出概率即可. 3.【答案】 解:(1)原式 ;(2)由,得,又,则, 所以 .【考点】两角和与差的正弦公式 弦切互化两角和与差的余弦公式 【解析】(1)根据两角和与差的正弦函数公式分别化简分子与分母,然后利用诱导公式 及,利用特殊角的三角函数值求出即可. (2)因为,所以化简得:,然后把原式的分子利用二倍角的正弦、余弦函数公式化简,分母利用同角三角函数间的基本关系把;然后对分子分母都除以进行化简,然后把代入求出值即可.4.【答案】解:(1)∵,且,∴,∴;(2)∵函数,∴的最小正周期为;令,,解得,;∴的单调增区间为,.【考点】正弦函数的图象【解析】(1)根据题意,利用求出的值,再计算的值;(2)化简函数,求出的最小正周期与单调增区间即可.5.【答案】解:(1)方程,可化为,∵此方程表示圆,∴,即.(2)圆的方程化为,圆心,半径,则圆心到直线的距离为由于,则,有,∴,得.【考点】直线与圆的位置关系【解析】(1)方程,可化为,利用方程表示圆,即可求的取值范围;(2)求出圆心到直线的距离,利用,求的值.6.【答案】解:(1)∵,∴,∴,当时,则当时,;当时,当时,;当时,当时,;∴(2)当时,.令.欲使有一个实根,则只需使或即可.解得或.【考点】三角函数中的恒等变换应用三角函数的最值【解析】(1)利用的范围确定,对函数解析式化简整理,对进行分类讨论,利用抛物线的性质求得每种情况的的解析式,最后综合.(2)根据(1)中获得当时的解析式,令,要使有一个实根需和异号即可.。

白银市高中2018-2019学年上学期高三数学期末模拟试卷含答案

白银市高中2018-2019学年上学期高三数学期末模拟试卷含答案

白银市高中2018-2019学年上学期高三数学期末模拟试卷含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 底面为矩形的四棱锥P -ABCD 的顶点都在球O 的表面上,且O 在底面ABCD 内,PO ⊥平面ABCD ,当四棱锥P -ABCD 的体积的最大值为18时,球O 的表面积为( ) A .36π B .48π C .60πD .72π2. 已知()(2)(0)x b g x ax a e a x =-->,若存在0(1,)x ∈+∞,使得00()'()0g x g x +=,则b a的 取值范围是( )A .(1,)-+∞B .(1,0)- C. (2,)-+∞ D .(2,0)- 3. 已知正△ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( )A .B .C .D .4. 若,m n 是两条不同的直线,,,αβγ是三个不同的平面,则下列为真命题的是( ) A .若,m βαβ⊂⊥,则m α⊥ B .若,//m m n αγ=,则//αβC .若,//m m βα⊥,则αβ⊥D .若,αγαβ⊥⊥,则βγ⊥5. 若直线y=kx ﹣k 交抛物线y 2=4x 于A ,B 两点,且线段AB 中点到y 轴的距离为3,则|AB|=( ) A .12 B .10C .8D .66. 设集合( )A .B .C .D .7. 根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20﹣80mg/100ml (不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100ml (含80)以上,属于醉酒驾车.据《法制晚报》报道,2011年3月15日至3月28日,全国查处酒后驾车和醉酒驾车共28800人,如下图是对这28800人酒后驾车血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为( )A .2160B .2880C .4320D .86408. 已知函数,函数,其中b ∈R ,若函数y=f (x )﹣g (x )恰有4个零点,则b 的取值范围是( )A .B .C .D .9. 已知△ABC 的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A 的轨迹方程是( )A .(x ≠0)B .(x ≠0)C .(x ≠0)D .(x ≠0)10.()()22f x a x a =-+ 在区间[]0,1上恒正,则的取值范围为( )A .0a >B .0a <<C .02a <<D .以上都不对11.记集合T={0,1,2,3,4,5,6,7,8,9},M=,将M 中的元素按从大到小排列,则第2013个数是( )A .B .C .D .12.已知a ,b 都是实数,那么“a 2>b 2”是“a >b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件二、填空题13.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=AD=3cm ,AA 1=2cm ,则四棱锥A ﹣BB 1D 1D 的体积为 cm 3.14.i 是虚数单位,化简: = .15.如图所示,正方体ABCD ﹣A ′B ′C ′D ′的棱长为1,E 、F 分别是棱AA ′,CC ′的中点,过直线EF 的平面分别与棱BB ′、DD ′交于M 、N ,设BM=x ,x ∈[0,1],给出以下四个命题: ①平面MENF ⊥平面BDD ′B ′;②当且仅当x=时,四边形MENF 的面积最小; ③四边形MENF 周长l=f (x ),x ∈0,1]是单调函数; ④四棱锥C ′﹣MENF 的体积v=h (x )为常函数; 以上命题中真命题的序号为 .16.对任意实数x ,不等式ax 2﹣2ax ﹣4<0恒成立,则实数a 的取值范围是 . 17.已知集合{}|03,A x x x R =<∈≤,{}|12,B x x x R =-∈≤≤,则A ∪B = ▲ .18.已知圆C 的方程为22230x y y +--=,过点()1,2P -的直线与圆C 交于,A B 两点,若使AB最小则直线的方程是 .三、解答题19.如图,在四棱锥P ﹣ABCD 中,AD ∥BC ,AB ⊥AD ,AB ⊥PA ,BC=2AB=2AD=4BE ,平面PAB ⊥平面ABCD ,(Ⅰ)求证:平面PED ⊥平面PAC ;(Ⅱ)若直线PE 与平面PAC 所成的角的正弦值为,求二面角A ﹣PC ﹣D 的平面角的余弦值.20.(本小题满分10分)已知函数f(x)=|x-a|+|x+b|,(a≥0,b≥0).(1)求f(x)的最小值,并求取最小值时x的范围;(2)若f(x)的最小值为2,求证:f(x)≥a+b.21.已知梯形ABCD中,AB∥CD,∠B=,DC=2AB=2BC=2,以直线AD为旋转轴旋转一周的都如图所示的几何体(Ⅰ)求几何体的表面积(Ⅱ)判断在圆A上是否存在点M,使二面角M﹣BC﹣D的大小为45°,且∠CAM为锐角若存在,请求出CM的弦长,若不存在,请说明理由.22.如图所示,已知在四边形ABCD中,AD⊥CD,AD=5,AB=7,BD=8,∠BCD=135°.(1)求∠BDA的大小(2)求BC的长.23.已知函数f(x)=x﹣1+(a∈R,e为自然对数的底数).(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(Ⅱ)求函数f(x)的极值;(Ⅲ)当a=1的值时,若直线l:y=kx﹣1与曲线y=f(x)没有公共点,求k的最大值.24.记函数f(x)=log2(2x﹣3)的定义域为集合M,函数g(x)=的定义域为集合N.求:(Ⅰ)集合M,N;(Ⅱ)集合M∩N,∁R(M∪N).白银市高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)一、选择题1. 【答案】【解析】选A.设球O 的半径为R ,矩形ABCD 的长,宽分别为a ,b , 则有a 2+b 2=4R 2≥2ab ,∴ab ≤2R 2,又V 四棱锥P -ABCD =13S 矩形ABCD ·PO=13abR ≤23R 3. ∴23R 3=18,则R =3, ∴球O 的表面积为S =4πR 2=36π,选A. 2. 【答案】A【解析】考点:1、函数零点问题;2、利用导数研究函数的单调性及求函数的最小值.【方法点晴】本题主要考查函数零点问题、利用导数研究函数的单调性、利用导数研究函数的最值,属于难题.利用导数研究函数()f x 的单调性进一步求函数最值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③令()0f x '>,解不等式得的范围就是递增区间;令()0f x '<,解不等式得的范围就是递减区间;④根据单调性求函数()f x 的极值及最值(若只有一个极值点则极值即是最值,闭区间上还要注意比较端点处函数值的大小).3. 【答案】D【解析】解:∵正△ABC的边长为a,∴正△ABC的高为,画到平面直观图△A′B′C′后,“高”变成原来的一半,且与底面夹角45度,∴△A′B′C′的高为=,∴△A′B′C′的面积S==.故选D.【点评】本题考查平面图形的直观图的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.4.【答案】C【解析】试题分析:两个平面垂直,一个平面内的直线不一定垂直于另一个平面,所以A不正确;两个平面平行,两个平面内的直线不一定平行,所以B不正确;垂直于同一平面的两个平面不一定垂直,可能相交,也可能平行,所以D不正确;根据面面垂直的判定定理知C正确.故选C.考点:空间直线、平面间的位置关系.5.【答案】C【解析】解:直线y=kx﹣k恒过(1,0),恰好是抛物线y2=4x的焦点坐标,设A(x1,y1)B(x2,y2)抛物y2=4x的线准线x=﹣1,线段AB中点到y轴的距离为3,x1+x2=6,∴|AB|=|AF|+|BF|=x1+x2+2=8,故选:C.【点评】本题的考点是函数的最值及其几何意义,主要解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.6.【答案】B【解析】解:集合A中的不等式,当x>0时,解得:x>;当x<0时,解得:x<,集合B中的解集为x>,则A∩B=(,+∞).故选B【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.7.【答案】C【解析】解:由题意及频率分布直方图的定义可知:属于醉酒驾车的频率为:(0.01+0.005)×10=0.15,又总人数为28800,故属于醉酒驾车的人数约为:28800×0.15=4320.故选C8.【答案】D【解析】解:∵g(x)=﹣f(2﹣x),∴y=f(x)﹣g(x)=f(x)﹣+f(2﹣x),由f(x)﹣+f(2﹣x)=0,得f(x)+f(2﹣x)=,设h(x)=f(x)+f(2﹣x),若x≤0,则﹣x≥0,2﹣x≥2,则h(x)=f(x)+f(2﹣x)=2+x+x2,若0≤x≤2,则﹣2≤﹣x≤0,0≤2﹣x≤2,则h(x)=f(x)+f(2﹣x)=2﹣x+2﹣|2﹣x|=2﹣x+2﹣2+x=2,若x>2,﹣x<﹣2,2﹣x<0,则h(x)=f(x)+f(2﹣x)=(x﹣2)2+2﹣|2﹣x|=x2﹣5x+8.作出函数h(x)的图象如图:当x≤0时,h(x)=2+x+x2=(x+)2+≥,当x>2时,h(x)=x2﹣5x+8=(x﹣)2+≥,故当=时,h(x)=,有两个交点,当=2时,h(x)=,有无数个交点,由图象知要使函数y=f(x)﹣g(x)恰有4个零点,即h (x )=恰有4个根,则满足<<2,解得:b ∈(,4),故选:D .【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键.9. 【答案】B 【解析】解:∵△ABC 的周长为20,顶点B (0,﹣4),C (0,4),∴BC=8,AB+AC=20﹣8=12, ∵12>8∴点A 到两个定点的距离之和等于定值, ∴点A 的轨迹是椭圆,∵a=6,c=4∴b 2=20,∴椭圆的方程是故选B .【点评】本题考查椭圆的定义,注意椭圆的定义中要检验两个线段的大小,看能不能构成椭圆,本题是一个易错题,容易忽略掉不合题意的点.10.【答案】C 【解析】试题分析:由题意得,根据一次函数的单调性可知,函数()()22f x a x a =-+在区间[]0,1上恒正,则(0)0(1)0f f >⎧⎨>⎩,即2020a a a >⎧⎨-+>⎩,解得02a <<,故选C. 考点:函数的单调性的应用. 11.【答案】 A【解析】进行简单的合情推理. 【专题】规律型;探究型.【分析】将M 中的元素按从大到小排列,求第2013个数所对应的a i ,首先要搞清楚,M 集合中元素的特征,同样要分析求第2011个数所对应的十进制数,并根据十进制转换为八进行的方法,将它转换为八进制数,即得答案.【解答】因为=(a1×103+a2×102+a3×10+a4),括号内表示的10进制数,其最大值为9999;从大到小排列,第2013个数为9999﹣2013+1=7987所以a1=7,a2=9,a3=8,a4=7则第2013个数是故选A.【点评】对十进制的排序,关键是要找到对应的数是几,如果从大到小排序,要找到最大数(即第一个数),再找出第n个数对应的十进制的数即可.12.【答案】D【解析】解:∵“a2>b2”既不能推出“a>b”;反之,由“a>b”也不能推出“a2>b2”.∴“a2>b2”是“a>b”的既不充分也不必要条件.故选D.二、填空题13.【答案】6【解析】解:过A作AO⊥BD于O,AO是棱锥的高,所以AO==,所以四棱锥A﹣BB1D1D的体积为V==6.故答案为:6.14.【答案】﹣1+2i.【解析】解:=故答案为:﹣1+2i.15.【答案】①②④.【解析】解:①连结BD,B′D′,则由正方体的性质可知,EF⊥平面BDD′B′,所以平面MENF⊥平面BDD′B′,所以①正确.②连结MN,因为EF⊥平面BDD′B′,所以EF⊥MN,四边形MENF的对角线EF是固定的,所以要使面积最小,则只需MN的长度最小即可,此时当M为棱的中点时,即x=时,此时MN长度最小,对应四边形MENF的面积最小.所以②正确.③因为EF⊥MN,所以四边形MENF是菱形.当x∈[0,]时,EM的长度由大变小.当x∈[,1]时,EM的长度由小变大.所以函数L=f(x)不单调.所以③错误.④连结C′E,C′M,C′N,则四棱锥则分割为两个小三棱锥,它们以C′EF为底,以M,N分别为顶点的两个小棱锥.因为三角形C′EF的面积是个常数.M,N到平面C'EF的距离是个常数,所以四棱锥C'﹣MENF的体积V=h(x)为常函数,所以④正确.故答案为:①②④.【点评】本题考查空间立体几何中的面面垂直关系以及空间几何体的体积公式,本题巧妙的把立体几何问题和函数进行的有机的结合,综合性较强,设计巧妙,对学生的解题能力要求较高.16.【答案】(﹣4,0].【解析】解:当a=0时,不等式等价为﹣4<0,满足条件;当a≠0时,要使不等式ax2﹣2ax﹣4<0恒成立,则满足,即,∴解得﹣4<a<0,综上:a的取值范围是(﹣4,0].故答案为:(﹣4,0].【点评】本题主要考查不等式恒成立问题,注意要对二次项系数进行讨论.17.【答案】1-1,3] 【解析】试题分析:A ∪B ={}{}|03,|12,x x x R x x x R <∈-∈≤≤≤=1-1,3]考点:集合运算 【方法点睛】1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.3.在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍. 18.【答案】30x y -+= 【解析】试题分析:由圆C 的方程为22230x y y +--=,表示圆心在(0,1)C ,半径为的圆,点()1,2P -到圆心的距()1,2P -在圆内,所以当AB CP ⊥时,AB 最小,此时11,1CP k k =-=,由点斜式方程可得,直线的方程为21y x -=+,即30x y -+=.考点:直线与圆的位置关系的应用.三、解答题19.【答案】【解析】解:(Ⅰ)∵平面PAB ⊥平面ABCD ,平面PAB ∩平面ABCD=AB ,AB ⊥PA ∴PA ⊥平面ABCD 结合AB ⊥AD ,可得分别以AB 、AD 、AP 为x 轴、y 轴、z 轴,建立空间直角坐标系o ﹣xyz ,如图所示… 可得A (0,0,0)D (0,2,0),E (2,1,0),C (2,4,0), P (0,0,λ) (λ>0)∴,,得,,∴DE ⊥AC 且DE ⊥AP ,∵AC 、AP 是平面PAC 内的相交直线,∴ED ⊥平面PAC . ∵ED ⊂平面PED ∴平面PED ⊥平面PAC(Ⅱ)由(Ⅰ)得平面PAC 的一个法向量是,设直线PE 与平面PAC 所成的角为θ,则,解之得λ=±2∵λ>0,∴λ=2,可得P的坐标为(0,0,2)设平面PCD的一个法向量为=(x0,y0,z0),,由,,得到,令x0=1,可得y0=z0=﹣1,得=(1,﹣1,﹣1)∴cos<,由图形可得二面角A﹣PC﹣D的平面角是锐角,∴二面角A﹣PC﹣D的平面角的余弦值为.【点评】本题在四棱锥中证明面面垂直,并且在线面所成角的正弦情况下求二面角A﹣PC﹣D的余弦值.着重考查了线面垂直、面面垂直的判定定理和利用空间向量研究直线与平面所成角和二面角大小的方法,属于中档题.20.【答案】【解析】解:(1)由|x-a|+|x+b|≥|(x-a)-(x+b)|=|a+b|得,当且仅当(x-a)(x+b)≤0,即-b≤x≤a时,f(x)取得最小值,∴当x∈[-b,a]时,f(x)min=|a+b|=a+b.(2)证明:由(1)知a+b=2,(a+b)2=a+b+2ab≤2(a+b)=4,∴a+b≤2,∴f(x)≥a+b=2≥a+b,即f(x)≥a+b.21.【答案】【解析】解:(1)根据题意,得;该旋转体的下半部分是一个圆锥,上半部分是一个圆台中间挖空一个圆锥而剩下的几何体,其表面积为S=×4π×2×2=8π,或S=×4π×2+×(4π×2﹣2π×)+×2π×=8π;(2)作ME⊥AC,EF⊥BC,连结FM,易证FM⊥BC,∴∠MFE为二面角M﹣BC﹣D的平面角,设∠CAM=θ,∴EM=2sinθ,EF=,∵tan∠MFE=1,∴,∴tan=,∴,∴CM=2.【点评】本题考查了空间几何体的表面积与体积的计算问题,也考查了空间想象能力的应用问题,是综合性题目.22.【答案】【解析】(本题满分为12分)解:(1)在△ABC中,AD=5,AB=7,BD=8,由余弦定理得…=…∴∠BDA=60°…(2)∵AD⊥CD,∴∠BDC=30°…在△ABC中,由正弦定理得,…∴.…23.【答案】【解析】解:(Ⅰ)由f(x)=x﹣1+,得f′(x)=1﹣,又曲线y=f(x)在点(1,f(1))处的切线平行于x轴,∴f′(1)=0,即1﹣=0,解得a=e.(Ⅱ)f′(x)=1﹣,①当a≤0时,f′(x)>0,f(x)为(﹣∞,+∞)上的增函数,所以f(x)无极值;②当a>0时,令f′(x)=0,得e x=a,x=lna,x∈(﹣∞,lna),f′(x)<0;x∈(lna,+∞),f′(x)>0;∴f(x)在∈(﹣∞,lna)上单调递减,在(lna,+∞)上单调递增,故f(x)在x=lna处取到极小值,且极小值为f(lna)=lna,无极大值.综上,当a≤0时,f(x)无极值;当a>0时,f(x)在x=lna处取到极小值lna,无极大值.(Ⅲ)当a=1时,f(x)=x﹣1+,令g(x)=f(x)﹣(kx﹣1)=(1﹣k)x+,则直线l:y=kx﹣1与曲线y=f(x)没有公共点,等价于方程g(x)=0在R上没有实数解.假设k>1,此时g(0)=1>0,g()=﹣1+<0,又函数g(x)的图象连续不断,由零点存在定理可知g(x)=0在R上至少有一解,与“方程g(x)=0在R上没有实数解”矛盾,故k≤1.又k=1时,g(x)=>0,知方程g(x)=0在R上没有实数解,所以k的最大值为1.24.【答案】【解析】解:(1)由2x﹣3>0 得x>,∴M={x|x>}.由(x﹣3)(x﹣1)>0 得x<1 或x>3,∴N={x|x<1,或x>3}.(2)M∩N=(3,+∞),M∪N={x|x<1,或x>3},∴C R(M∪N)=.【点评】本题主要考查求函数的定义域,两个集合的交集、并集、补集的定义和运算,属于基础题.。

2018-2019学年甘肃省白银市会宁县高一(上)期末数学试卷(解析版)

2018-2019学年甘肃省白银市会宁县高一(上)期末数学试卷(解析版)

2018-2019学年甘肃省白银市会宁县高一(上)期末数学试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x﹣1>2x},B={x|2x+3>x},则A∩B等于()A.{x|﹣3<x<﹣1}B.{x|﹣1<x<0}C.{x|x<﹣1}D.{x|x>﹣3} 2.(5分)若一个圆锥的表面积为3π,侧面展开图是半圆,则此圆锥的高为()A.1B.C.D.23.(5分)函数的定义域为()A.(﹣∞,3]B.(1,3]C.(1,+∞)D.(﹣∞,1)∪[3,+∞)4.(5分)已知直线x+2ay﹣1=0与直线(3a﹣1)x﹣y﹣1=0垂直,则a的值为()A.0B.C.1D.5.(5分)若幂函数f(x)的图象过点(3,),则函数y=f(x)+2﹣x的零点为()A.1B.2C.3D.46.(5分)设α,β表示两个不同平面,m表示一条直线,下列命题正确的是()A.若m∥α,α∥β,则m∥βB.若m∥α,m∥β,则α∥βC.若m⊥α,α⊥β,则m∥βD.若m⊥α,m⊥β,则α∥β7.(5分)一个几何体的三视图如图所示,则这个几何体的体积是()A.2B.4C.6D.88.(5分)已知a=log32,b=log95,c=30.1,则a,b,c的大小关系为()A.a<b<c B.b<a<c C.a<c<b D.b<c<a9.(5分)已知直线l:x﹣y+6=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,则|CD|=()A.B.4C.D.610.(5分)关于x的方程|lg|x﹣1||=a(a>0)的所有实数解的和为()A.2B.4C.6D.811.(5分)在四棱锥P﹣ABCD中,PC⊥底面ABCD,底面ABCD为正方形,PC=2,点E 是PB的中点,异面直线PC与AE所成的角为60°,则该四棱锥的体积为()A.B.C.2D.312.(5分)已知函数f(x)=(a>0且a≠1),若函数f(x)的值域为R,则实数a的取值范围是()A.(0,]B.(1,]C.[2,+∞)D.[3,+∞)二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知点A(3,2,1),点B(﹣1,4,3),线段AB中点为M,O为坐标原点,则|OM|=.14.(5分)若x log32=1,则4x﹣2﹣x=.15.(5分)一等腰直角三角形,绕其斜边旋转一周所成几何体体积为V1,绕其一直角边旋转一周所成几何体体积为V2,则=.16.(5分)定义域为[﹣2,2]的减函数f(x)是奇函数,若f(﹣2)=1,则t2﹣at+2a+1≤f(x)对所有的﹣1≤t≤1,及﹣2≤x≤2都成立的实数a的取值范围为.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程及演算步骤.17.(10分)已知函数f(x)=,f(1)=1,f(2)=5.(1)求函数f(x)的解析式;(2)求函数f(x)在[﹣1,﹣]上的值域.18.(12分)如图,在四棱锥P﹣ABCD中,P A⊥底面ABCD,底面ABCD是平行四边形,AB⊥AC,AE⊥PC,垂足为E.(1)证明:PC⊥平面ABE;(2)若PC=3PE,PD=3,M是BC中点,点N在PD上,MN∥平面ABE,求线段PN的长.19.(12分)已知函数f(x)=log a x(a>0且a≠1),f(x)在[,2]上的最大值为1.(1)求a的值;(2)当函数f(x)在定义域内是增函数时,令g(x)=f(+x)+f(﹣x),判断函数g(x)的奇偶性,并求函数g(x)的值域.20.(12分)如图,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,AC=BC=5,AB=6,BB1=6,BC1∩B1C=O,D是线段AB的中点.(1)证明:AC1∥平面B1CD;(2)求三棱锥A1﹣OCD的体积.21.(12分)已知f(log2x)=2x.(1)判断f(x)的单调性,并用定义法加以证明;(2)若实数t满足不等式f(3t﹣1)﹣f(﹣t+5)>0,求t的取值范围.22.(12分)已知圆M过点()且与圆N:x2+8x+y2﹣1=0为同圆心,圆N与y 轴负半轴交于点C.(1)若直线y=x+m被圆M截得的弦长为,求m的值;(2)设直线:y=kx+3与圆M交于点A,B,记A(x1,y1),B(x2,y2),若x1x2+(y1+1)(y2+1)=12,求k的值.2018-2019学年甘肃省白银市会宁县高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:集合A={x|x﹣1>2x}={x|x<﹣1},B={x|2x+3>x}={x|x>﹣3},则A∩B={x|﹣3<x<﹣1}.故选:A.2.【解答】解:设圆锥的母线长为l,底面半径为r,高为h,则πr2+πrl=3π,…①又2πr=πl,…②由①②解得l=2,r=1,∴高h==.故选:C.3.【解答】解:由,解得1<x≤3.∴函数的定义域为(1,3].故选:B.4.【解答】解:a=0时,两条直线不垂直.a≠0,由×=﹣1,解得:a=1.综上可得:a=1.故选:C.5.【解答】解:设幂函数f(x)=xα(α为常数).∵幂函数y=f(x)的图象过点(3,),∴=3α,解得α=.∴f(x)=,令y=f(x)+2﹣x=0,即+2﹣x=0,解得:=2,x=4,故选:D.6.【解答】解:A中缺少m⊂β的情况;B中α,β也可能相交;C中缺少m⊂β的情况;故选:D.7.【解答】解:由题意可知几何体是放倒的四棱柱,底面是直角梯形,所以几何体的体积为:=6.故选:C.8.【解答】解:,;∴a<b<c.故选:A.9.【解答】解:圆心(0,0)到直线l的距离d==3,圆的半径r=2,∴|AB|=2=2,设直线l的倾斜角为α,则tanα=,∴α=30°,过C作l的平行线交BD于E,则∠ECD=30°,CE=AB=2,∴CD===4.故选:B.10.【解答】解:方程|lg|x﹣1||=a(a>0),可得lg|x﹣1|=a或﹣a,即有|x﹣1|=10a或10﹣a,可得x=1±10a或1±10﹣a,则关于x的方程|lg|x﹣1||=a(a>0)的所有实数解的和为4.故选:B.11.【解答】解:在四棱锥P﹣ABCD中,PC⊥底面ABCD,底面ABCD为正方形,PC=2,点E是PB的中点,异面直线PC与AE所成的角为60°,作EF⊥BC,垂足为F,连结AF,则F是BC的中点,EF⊥平面ABCD,EF=1,∠AEF=60°,∴AF=,设AB=a,则=3,解得a2=,∴该四棱锥的体积V==.故选:A.12.【解答】解:函数f(x)=(a>0且a≠1),当0<a<1时,当x≥1时,有a<f(x)=a x+a≤2a,而二次函数y=﹣a(x﹣1)2+3开口向下,此时函数f(x)的值域不可能为R;当a>1时,当x≥1时,f(x)≥2a,当x<1时,f(x)<3,若f(x)的值域为R,只需2a≤3,可得1<a≤.综上可得a的取值范围是(1,].故选:B.二、填空题:本大题共4小题,每小题5分,共20分.13.【解答】解:∵点A(3,2,1),点B(﹣1,4,3),线段AB中点为M,O为坐标原点,∴M(1,3,2),∴|OM|==.故答案为:.14.【解答】解:x log32=1,则log32x=1,∴2x=3,∴2﹣x=,∴4x﹣2﹣x=9﹣=,故答案为:.15.【解答】解:一等腰直角三角形,绕其斜边旋转一周所成几何体体积为V1,绕其一直角边旋转一周所成几何体体积为V2,设斜边长为2,则直角边长为,∴V1=2×=,V2==,∴==.答案为:.16.【解答】解:根据题意,f(x)为定义域为[﹣2,2]的奇函数,则f(2)=﹣f(﹣2)=﹣1,则有﹣1≤f(x)≤1,当﹣1≤t≤1时,t2﹣at+2a+1≤﹣1即≤t2﹣at+2a+2≤0恒成立,令g(t)=t2﹣at+2a+2,必有,解可得:a≤﹣3,则a的取值范围为(﹣∞,﹣3];故答案为:(﹣∞,﹣3].三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程及演算步骤.17.【解答】解:(1)∵f(1)=1,f(2)=5;∴;解得a=3,b=1;;(2)在上单调递增;;∴f(x)在上的值域为.18.【解答】证明:(1)∵P A⊥底面ABCD,∴P A⊥AB,∵AB⊥AC,P A∩AC=A,∴AB⊥平面P AC,∵PC⊂平面P AC,AB⊥PC,AE⊥PC,AB∩AE=A,∴PC⊥平面ABE.解:(2)∵MN∥平面ABE,∴设过MN与平面ABE平行的平面与PC交于点F,与AD交于点G,则MF∥BE,MG∥AB,又ABCD是平行四边形,CD∥AB,∴MG∥CD,∴CD∥平面MFNG,∴CD∥FN,∵M是BC中点,∴F是CE中点,∵PC=3PE,∴PF=,∴PN==2.19.【解答】解:(1)根据题意,函数f(x)=log a x(a>0且a≠1),f(x)在[,2]上的最大值为1,若a>1,则f(x)=log a x为增函数,则有f(2)=1,解可得a=2;若0<a<1,则f(x)=log a x为减函数,则有f()=1,解可得a=;故a的值为2或;(2)根据题意,若函数f(x)为增函数,则a>1,g(x)=f(+x)+f(﹣x)=log a(+x)+log a(﹣x);有,解可得﹣<x<,即函数的定义域为(﹣,);又由g(﹣x)=log a(﹣x)+log a(+x)=g(x),则函数g(x)为偶函数;又由g(x)=log a(+x)+log a(﹣x)=log a(﹣x2),设t=﹣x2,x∈(﹣,),则y=log a t,又由t=﹣x2,则0<t≤,则g(x)≤﹣2,故g(x)的值域为(﹣∞,﹣2].20.【解答】解:(1)证明:在△ABC1中,∵O,D为中点,∴OD∥AC1,∵OD⊂平面B1CD,AC1⊄平面B1CD,∴AC1∥平面B1CD;(2)∵O为CB1中点,∴,易得:===18,在等腰三角形CAB中,CD⊥AB,∴CD⊥平面A1B1D,且CD=4,∴==24,∴.故三棱锥A1﹣OCD的体积为:12.21.【解答】解:(1)令t=log2x,(t∈R),则x=2t,f(t)=2t+1﹣2﹣t ∴f(x)=2×2x﹣2﹣x,任取x1,x2∈R,且x1<x2,∵f(x1)﹣f(x2)=2×2﹣2﹣2×2+2=2(2﹣2)+=(2﹣2)(2+),∵x1<x2,∴2<2,∴f(x1)﹣f(x2)<0即f(x1)<f(x2),∴f(x)在R上是增函数(2)不等式化为f(3t﹣1)>f(﹣t+5)∵f(x)在R上是增函数,∴3t﹣1>﹣t+5,∴t∴t的取值范围是(,+∞)22.【解答】解:(1)圆N的圆心为(﹣4,0),故可设圆M的方程为(x+4)2+y2=r2,则(﹣+4)2+()2=r2=1,∴圆M的标准方程为(x+4)2+y2=r2,∵直线y =x+m被圆M 截得的弦长为,∴M到直线y =x+m的距离d ===,∴m =或m =(2)联立方程,消y可得(1+k2)x2+(6k+8)x+24=0,设A(x1,y1),B(x2,y2),则x1+x2=﹣,x1x2=,△=(6k+8)2﹣96(1+k2)>0,(*),∴x1x2+(y1+1)(y2+1)=(1+k2)x1x2+4k(x1+x2)+16=24﹣+16=12,解得k=1或k=7,但k=7不满足(*),∴k=1第11页(共11页)。

甘肃省白银市靖远县2017-2018学年高一上学期期末考试数学试题(解析版)

甘肃省白银市靖远县2017-2018学年高一上学期期末考试数学试题(解析版)

甘肃省靖远县2017-2018学年高一上学期期末考试数学试题一、选择题(本大题共12小题,共60.0分)1.已知集合A={1,3},B={3,5},则A∩B=( )A. {3}B. {1,5}C. {5}D. {1,3,5}【答案】A【解析】【分析】直接利用交集运算得答案.【详解】∵集合A={1,3},B={3,5},∴A∩B={3}故选:A【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.下列四组直线中,互相平行的是()A. 与B. 与C. 与D. 与【答案】D【解析】由两直线平行的充要条件,可知A选项两直线垂直:B选项两直线重合,C选项两直线相交:D选项两直线平行故选D3.圆x2+4x+y2=0的圆心和半径分别为( )A. ,4B. ,4C. ,2D. ,2【答案】C【解析】【分析】将圆的方程化为标准方程,即可得到答案。

【详解】圆的方程可化为,可知圆心为,半径为2.故答案为C.【点睛】本题考查了圆的方程,圆的半径及圆心坐标,属于基础题。

4.在空间中,下列命题错误的是( )A. 如果两条直线垂直于同一条直线,那么这两条直线平行B. 如果两个平面垂直于同一个平面,那么这两个平面可能互相垂直C. 过直线外一点有且只有一条直线与已知直线平行D. 不共线的三个点确定一个平面【答案】A【解析】【分析】对于选项A,这两条直线可能异面,也可能相交,不一定平行;选项B成立,比如正方体的两个相邻面与底面;选项C和D,根据公理可以知道一定正确。

【详解】对于选项A,如果两条直线垂直于同一条直线,这两条直线可能异面,也可能相交,不一定平行,故A错误;对于选项B,如果两个平面垂直于同一个平面,那么这两个平面可能互相垂直,是正确的,比如正方体的两个相邻面与底面;对于选项C和D,根据公理可以知道一定正确;所以答案为A.【点睛】本题考查了点线面的性质及它们之间的关系,属于基础题。

5.下列各函数在其定义域内为增函数的是( )A. B. C. D.【答案】B【解析】【分析】对选项逐个讨论单调性,即可选出答案。

【数学试题】2018-2019学年高一第一学期期末考试 (修复的)最终版

【数学试题】2018-2019学年高一第一学期期末考试 (修复的)最终版
直方图,其中产品净重的范围是96,106 ,样本数据分组为96,98 ,98,100 ,100,102 , 102,104 ,
104,106 则这组数据中众数的估计值是
A. 100
B. 101
C. 102
D. 103
-1-
-1--1-
3. 某中学为了了解高一、高二、高三这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按
15. 下表记录了某公司投入广告费 x 与销售额 y 的统计结果,由表可得线性回归方程为 yˆ bˆx aˆ ,据此方程
预报当 x 6 时, y _____________.
x
4
2
3
5
y
49
26
39
54
附:参考公式:
n
n
xi x yi y
xi yi nx y
bˆ i1
n
数学试卷
(考试时间:上午 8:00——9:30)
说明:本试卷为闭卷笔答,答题时间 90 分钟,满分 100 分. 一、 选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只有一项是符合题
目要求的,请将其字母标号填入下表相应位置)
题号 1 2 3 4 5 6 7 8 9 答案
达到 0.1,则需对区间至多等分的次数为
A. 2
B. 3
C. 4
D. 5
10. 在边长分别为 3,3,2 5 的三角形区域内随机确定一点,则该点到三个顶点的距离都不小于 1 的概率是
A. 5 10
B. 1 5 20
C. 1 5 10
4 D.
9
11. 下列说法正确的是 A. 对任意的 x 0 ,必有 ax loga x

2019-2020学年甘肃省白银市靖远县高一上学期期末联考数学试题(解析版)

2019-2020学年甘肃省白银市靖远县高一上学期期末联考数学试题(解析版)

2019-2020学年甘肃省白银市靖远县高一上学期期末联考数学试题一、单选题1.已知集合{}|12A x x =-<<,{}|10B x x =-<,则()A B =R I ð( ) A .{}|12x x << B .{}|12x x <≤C .{}|12x x ≤<D .{}|12x x ≤≤【答案】C【解析】确定集合B ,由集合运算的定义求解. 【详解】因为集合{}{}|10|1B x x x x =-<=<,所以{}|1R C B x x =≥,所以(){}|12R A C B x x =≤<I .故选:C. 【点睛】本题考查集合的运算,属于基础题.2.函数()()lg 2f x x +的定义域是( ) A .(]2,5- B .()2,5-C .(]2,5D .()2,5【答案】A【解析】使解析式有意义,因此必须有5x 0-≥且20x +>. 【详解】由()()lg 2f x x =+,得5020x x -≥⎧⎨+>⎩,即52x x ≤⎧⎨>-⎩,所以(]2,5x ∈-.故选:A. 【点睛】本题考查求函数定义域,即求使函数式有意义的自变量的取值范围. 3.若直线220x y -+=与()3510x a y +-+=平行,则a 的值为( ) A .1 B .-1C .132D .132-【答案】B【解析】由两直线平行的充要条件计算.因为直线220x y -+=与()3510x a y +-+=平行,所以351122a -=≠-,解得1a =-. 故选:B. 【点睛】本题考查两直线平行的充要条件.两直线1112220,0A x B y C A x B y C ++=++=平行,12210A B A B -=是必要条件,不是充要条件,仅由12210A B A B -=求出参数值,一般要代入直线方程检验是否平行.4.函数()542xf x ⎛⎫=- ⎪⎝⎭的零点所在的区间是( )A .()1,2B .()2,3C .()3,4D .()0,1【答案】A【解析】根据函数单调递增和()10f <,()20f >得到答案. 【详解】()f x 是单调递增函数,且()3102f =-<,()9204f =>,所以()f x 的零点所在的区间为()1,2 故选:A 【点睛】本题考查了零点所在的区间,意在考查学生对于零点存在定理的应用.5.已知()3,0A ,()0,2B ,()2,6C ,则ABC ∆的BC 边上的中线所在的直线方程为( )A .260x y ++=B .260x y +-=C .260x y --=D .210x y --=【答案】B【解析】计算得到()1,4D ,2AD k =-,再计算直线方程得到答案. 【详解】BC 的中点为()1,4D ,2AD k =-,∴BC 边上的中线所在的直线方程为()23y x =--,即260x y +-=. 故选:B本题考查了直线方程,意在考查学生的计算能力.6.若直线20x y +=被圆224x y +=截得的弦长为则m =( )A .B .5C .10D .25【答案】B【解析】圆的圆心坐标为()0,0,半径2r =1=,计算得到答案. 【详解】圆的圆心坐标为()0,0,半径2r =,直线被圆截得的弦长为1=,则5m =. 故选:B 【点睛】本题考查了根据弦长求参数,意在考查学生的计算能力.7.若实数0.2log 0.3a =,0.3log 0.2b =,0.3log 2c =,则( ) A .c b a << B .c a b <<C .a b c <<D .b a c <<【答案】B【解析】与中间值 0和1比较后可得. 【详解】因为对数函数0.2log y x =是单调递减的,所以0.20.2log 0.3log 0.21a =<=,同理,0.30.3log 0.2log 0.31b =>=,所以01a b <<<,而0.30.3log 2log 10c =<=,所以c a b <<.故选:B. 【点睛】本题考查比较对数的大小,对于同底数的对数,可以利用对数函数的单调性比较,不同底数的对数可以与中间值0,1等比较后得出结论.8.已知圆柱的底面圆的面积为9π,高为2,它的两个底面的圆周在同一个球的球面上,则该球的表面积为( ) A .16π B .20πC .40πD .403π【答案】C【解析】圆柱轴截面的对角线是球的直径,由此可求得球半径. 【详解】因为圆柱的底面圆的面积为9π,所以圆柱的底面圆的半径为3r =,又因为圆柱的两个底面的圆周在同一个球的球面上,所以该球的半径221310R =+=,则该球的表面积为2440R ππ=. 故选:C. 【点睛】本题考查球与内接圆柱的关系,可通过作圆柱的轴截面与球联系,圆柱的轴截面矩形的外接圆是球的大圆.9.函数()()32ln f x x x x =+的部分图象大致为( )A .B .C .D .【答案】C【解析】根据函数解析式,判断函数的奇偶性,排除A 、B ,再根据函数值的正负情况,即可判断. 【详解】由题意,3()(2)ln ()f x x x x f x -=-+-=-,即()f x 是定义在()(),00,-∞⋃+∞上的奇函数,所以排除A ,B ;当01x <<时,()0f x >;当1x >时,()0f x >,排除D 故选:C. 【点睛】本题考查由函数解析式判断性质进而识别图像,属于中等题型. 10.某几何体的三视图如图所示,则该几何体的表面积为( )A .115πB .140πC .165πD .215π【答案】A【解析】根据三视图,得到原几何体,结合三视图中的线段长度,计算出每部分的表面积,从而得到答案. 【详解】由三视图可知,该几何体由一个半球与一个圆锥拼接而成, 且球的半径和圆锥底面圆半径相同,如图所示 由三视图可知,半球的半径为5, 所以半球的表面积为2145=502ππ⨯⨯, 圆锥的底面圆半径为5,母线长为13, 所以圆锥的侧面积为51365ππ⨯⨯=, 所以该几何体的表面积6550115S πππ=+=.故选:A.【点睛】本题考查由三视图还原几何体,求球的表面积和圆锥侧面积,属于简单题. 11.已知()2,0A -,()2,0B ,点P 是圆C :()(22371x y -+=上的动点,则22AP BP +的最小值为( )A .9B .14C .18D .26【答案】D【解析】设O 为坐标原点,(),P x y ,化简得到22228AP BP PO +=+,再计算()22min 9PO OC r =-=得到答案.【详解】设O 为坐标原点,(),P x y ,则()()22222222AP BP x y x y +=+++-+()2222828x yPO=++=+,又()()222min 419PO OC r =-=-=,所以()22min18826AP BP+=+=.故选:D 【点睛】本题考查了圆相关的最值问题,变换22228AP BP PO +=+是解题的关键. 12.设1x ,2x ,3x 分别是方程3log 3x x +=,()3log 2x x +=-ln 4x e x =+的实根,则( )A .123x x x <+B .213x x x <<C .231x x x <<D .321x x x <<【答案】C【解析】将方程有实根转化为两函数有交点,利用图像判断交点的位置,进而判断选项 【详解】由题,对于3log 3x x +=,由3log y x =与3y x =-的图像,如图所示,可得123x <<;对于()3log 2x x +=-,由()3log 2y x =+与y x =-的图像,如图所示,可得210x -<<;对于ln 4x e x =+,由4xy e =-与ln y x =的图像,如图所示,可得()30,1x ∈或()31,2x ∈ 故231x x x << 【点睛】本题考查零点的分布,考查转化思想与数形结合思想二、填空题13.已知点()3,1A ,()1,3B -,则以线段AB 为直径的圆的标准方程为______.【答案】()()22125x y -+-= 【解析】求出圆心坐标和半径可得. 【详解】因为圆心的坐标为()1,2,()()22231125R =-+-=,所以该圆的标准方程为()()22125x y -+-=.故答案为:()()22125x y -+-=. 【点睛】本题考查求圆的标准方程,属于基础题. 14.已知函数()()25f x x αα=-是幂函数,则()fα=______.【答案】27【解析】根据幂函数定义求出参数α. 【详解】因为()()25f x x αα=-是幂函数,所以251α-=,解得3α=,即()3f x x =,所以()()327ff α==.故答案为:27. 【点睛】本题考查幂函数的概念,属于基础题.15.已知圆1C :()()222110x y -+-=与圆2C :2260x y x y +--=,则两圆的公共弦所在的直线方程为______. 【答案】250x y --=【解析】两圆方程相减可得公共弦所在直线方程. 【详解】将圆1C :()()222110x y -+-=化为224250x y x y +---=,联立两圆方程2222425060x y x y x y x y ⎧+---=⎨+--=⎩两圆方程相减,得两圆公共弦所在直线的方程为250x y --=. 故答案为:250x y --=. 【点睛】本题考查两圆相交,求公共弦所在直线方程.不需要求出交点坐标,只要两圆方程相减即得.16.如图,在ABC ∆中,AB BC ⊥,D ,E 分别为AB ,AC 边上的中点,且4AB =,2BC =.现将ADE ∆沿DE 折起,使得A 到达1A 的位置,且160A DB ∠=︒,则1A C =______.【答案】2【解析】由于折叠过程中DE 与AD 和BD 的垂直关系保持不变,因此可得DE ⊥平面1A BD ,结合平行的性质可得1CB BA ⊥,然后在直角三角形中可求得1A C .【详解】易知DE BD ⊥,1DE A D ⊥,1BD A D D =I ,所以DE ⊥平面1A BD ,因为160A DB ∠=︒,12A D BD ==,所以12A B =.又//BC DE ,所以BC ⊥平面1A BD ,所以1BC A B ⊥,从而2212222AC =+=. 故答案为:22 【点睛】本题考查空间图形折叠问题,考查线面垂直的判定定理和性质定理.属于中档题.三、解答题17.已知集合{|2A x x a =≤-或}3x a >+,(){}33|log log 5B x y x x ==+-. (1)当1a =时,求A B U ;(2)若A B B =I ,求实数a 的取值范围.【答案】(1){|1x x ≤-或}0x >;(2)(][),37,-∞-+∞U .【解析】(1)计算{}|05B x x =<<,{|1A x x =≤-或}4x >,再计算A B U 得到答案.(2)根据A B B =I 得到B A ⊆,故30a +≤或25a -≥,计算得到答案. 【详解】(1)因为050x x >⎧⎨->⎩,所以05x <<,即{}|05B x x =<<,当1a =时,{|1A x x =≤-或}4x >,所以{|1A B x x ⋃=≤-或}0x >. (2)因为A B B =I ,所以B A ⊆, {}|05B x x =<<, 则30a +≤或25a -≥,即3a ≤-或7a ≥, 所以实数a 的取值范围为(][),37,-∞-+∞U . 【点睛】本题考查了并集的计算,根据包含关系求参数,意在考查学生对于集合知识的综合应用. 18.已知直线l 的方程为43120x y +-=,1l 与l 垂直且过点()1,3--. (1)求直线1l 的方程;(2)若直线2l 经过1l 与l 的交点,且垂直于x 轴,求直线2l 的方程. 【答案】(1)3490x y --=;(2)3x =【解析】(1)由垂直求出直线1l 斜率,写出点斜式方程后化简即可. (2)求出直线1l 与l 的交点坐标可得2l 方程. 【详解】解:(1)由1l 与l 垂直,则可设1l :340x y m -+=, ∵1l 过()1,3--,∴()()31430m ⨯--⨯-+=, 解得9m =-,∴1l :3490x y --=.(2)联立1l 与l ,可得1l 与l 的交点坐标为()3,0, 又2l 垂直于x 轴,则直线2l 的方程为3x =. 【点睛】本题考查求直线方程,考查两直线垂直的条件.属于基础题. 19.已知函数()f x 是定义在R 上的奇函数,当()0,x ∈+∞时,()232f x x ax a =++-.(1)求()f x 的解析式;(2)若()f x 是R 上的单调函数,求实数a 的取值范围.【答案】(1)()2232,00,032,0x ax a x f x x x ax a x ⎧++->⎪==⎨⎪-+-+<⎩;(2)30,2⎡⎤⎢⎥⎣⎦ 【解析】(1)由奇函数的定义可求得解析式;(2)由分段函数解析式知,函数在R 上单调,则为单调增函数,结合二次函数对称轴和最值可得参数范围.即0x >时要是增函数,且端点处函数值不小于0. 【详解】解:(1)因为函数()f x 是定义在R 上的奇函数,所以()00f =,当0x <时,0x ->,则()()()232f x x a x a -=-+-+-()232x ax a f x =-+-=-, 所以()()2320x ax a f x x =-+-+<,所以()2232,00,032,0x ax a x f x x x ax a x ⎧++->⎪==⎨⎪-+-+<⎩. (2)若()f x 是R 上的单调函数,且()00f =,则实数a 满足02320a a ⎧-≤⎪⎨⎪-≥⎩,解得302a ≤≤, 故实数a 的取值范围是30,2⎡⎤⎢⎥⎣⎦.【点睛】本题考查函数的奇偶性与单调性,分段函数在整个定义域上单调,则每一段的单调性相同,相邻端点处函数值满足相应的不等关系.20.已知圆C 的圆心在x 轴正半轴上,且圆C 与y 轴相切,点()2,4P 在圆C 上. (1)求圆C 的方程;(2)若直线l :()140m x y m ++++=与圆C 交于A ,B 两点,且8AB =,求m 的值.【答案】(1)()22525x y -+=;(2)1m =-或73m =-【解析】(1)设出圆心坐标为(,0)a ,得圆标准方程()222x a y a -+=,利用P 在圆上求出参数a ;(2)求出圆心到直线的距离d ,然后通过勾股定理列式求得m . 【详解】解:(1)设圆心(),0C a ,则圆C 的方程可设为()222x a y a -+=.因为点()2,4P 在圆C 上,所以()22224a a -+=,解得5a =.故圆C 的方程为()22525x y -+=.(2)由(1)可知圆C 的圆心()5,0C ,半径=5r . 因为8AB =,所以圆心C 到直线l 的距离()()25142516311m m d m +++==-=++,即231070m m ++=,解得1m =-或73m =-. 【点睛】本题考查求圆的标准方程,考查直线与圆相交弦长问题.圆的弦长可通过圆心到直线的距离,圆的半径由勾股定理求得:弦长222l r d =-(d 为弦心距).21.如图,在三棱锥P ABC -中,AB BC ⊥,3AB =,4BC =,AC AP =,PA ⊥平面ABC ,过A 作AD PB ⊥于D ,过D 作DE PC ⊥于E ,连接AE .(1)证明:AE PC ⊥. (2)求三棱锥P ADE -的体积. 【答案】(1)证明见解析;(2)12534【解析】(1)由PA ⊥平面ABC ,得PA BC ⊥,从而得BC ⊥平面PAB ,即得BC AD ⊥,于是有AD ⊥平面PBC ,从而AD PC ⊥,得出PC ⊥平面ADE .最后得证线线垂直;(2)由(1)得PE 是三棱锥P ADE -的高,求出高和底面面积即可得体积. 【详解】(1)证明:因为PA ⊥平面ABC ,所以PA BC ⊥. 又AB BC ⊥,PA AB A =I , 所以BC ⊥平面PAB , 所以BC AD ⊥,又AD PB ⊥,PB BC B ⋂=, 所以AD ⊥平面PBC ,从而AD PC ⊥. 又DE PC ⊥,AD DE D ⋂=, 所以PC ⊥平面ADE .因为AE ⊂平面ADE ,所以AE PC ⊥.(2)解:由(1)知PE 是三棱锥P ADE -的高,所以13P ADE ADE V S PE -∆=⋅. 由已知22345AC PA =+==, 又34AB AP AD BP ⋅== 15222AE PE PC ===, 由(1)知AD ⊥平面PBC ,则AD DE ⊥,所以2217DE AE AD =-=所以11223417172ADE S AD DE ∆=⋅== 所以115212533234172P ADE ADE V S PE -∆=⋅==. 【点睛】本题考查证明线线垂直,考查求三棱锥体积.在证线线垂直时用的是线面垂直的性质定理,而要证线面垂直就要证线线垂直,本题利用线面垂直判定定理和性质定理进行线线垂直与线面垂直的多次转换,务必注意.22.已知函数22()3x xe ef x -+=,其中e 为自然对数的底数.(1)证明:()f x 在(0,)+∞上单调递增; (2)函数25()3g x x =-,如果总存在1[,](0)x a a a ∈->,对任意()()212,x R f x g x ∈…都成立,求实数a 的取值范围.【答案】(1)证明见解析;(2)[ln 2,)+∞ 【解析】(1)用增函数定义证明;(2)分别求出()f x 和()g x 的最大值,由()f x 的最大值不小于()g x 的最大值可得a 的范围. 【详解】(1)设120x x <<, 则11221222()()()()33x x x x f x f x e e e e ---=+-+1212211[()()]3x x x x e e e e=-+- 1212122()(1)x x x x x x e e e e e e--=, ∵120x x <<,∴12x x e e <,121x x e e >,∴12())0(f x f x -<,即12()()f x f x <, ∴()f x 在(0,)+∞上单调递增;(2)总存在1[,](0)x a a a ∈->,对任意()()212,x R f x g x ∈…都成立,即max max ()()f x g x ≥,25()3g x x =-的最大值为max 5()3g x =,22()3x xe ef x -+=是偶函数,在(0,)+∞是增函数,∴当[,]x a a ∈-时,max22()()3a ae ef x f a -+==, ∴22533a a e e -+≥,整理得22520a a e e -+≥,(2)(21)0a a e e --≥,∵0a >,∴1a e >,即210a e ->,∴20a e -≥,∴ln 2a ≥.即a 的取值范围是[ln 2,)+∞.【点睛】本题考查函数的单调性,考查不等式恒成立问题.单调性的证明只能按照定义的要求进行证明.而不等式恒成立问题要注意问题的转化,本题中问题转化为max max ()()f x g x ≥,如果把量词改为:对任意1x ,总存在2x ,使得12()()f x g x ≥成立,则等价于min min ()()f x g x ≥,如果把量词改为:对任意1x ,任意2x ,使得12()()f x g x ≥恒成立,则等价于min max ()()f x g x ≥,如果把量词改为:存在1x ,存在2x ,使得12()()f x g x ≥成立,则等价于max min ()()f x g x ≥.(12,x x 的范围均由题设确定).。

白银市靖远县2018-2019学年高一上学期期末考试数学试题含解析

白银市靖远县2018-2019学年高一上学期期末考试数学试题含解析

高一数学试卷一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1。

下列命题正确的是( )A. 在空间中两条直线没有公共点,则这两条直线平行B. 一条直线与一个平面可能有无数个公共点C. 经过空间任意三点可以确定一个平面D. 若一个平面上有三个点到另一个平面的距离相等,则这两个平面平行 【答案】B 【解析】 【分析】根据平面的基本性质和空间中两直线的位置关系,逐一判定,即可得到答案.【详解】由题意,对于A 中, 在空间中两条直线没有公共点,则这两条直线平行或异面,所以不正确;对于B 中, 当一条直线在平面内时,此时直线与平面可能有无数个公共点,所以是正确的;对于C 中, 经过空间不共线的三点可以确定一个平面,所以是错误的;对于D 中, 若一个平面上有三个点到另一个平面的距离相等,则这两个平面平行或相交,所以不正确,故选B .【点睛】本题主要考查了平面的基本性质和空间中两直线的位置关系,其中解答中熟记平面的基本性质和空间中两直线的位置关系是解答的关键,着重考查了推理与论证能力,属于基础题. 2。

已知集合{}|132A x x =-<-≤,{}|36B x x =≤<,则AB =()A 。

()2,6 B. (]2,5 C 。

[]3,5 D 。

[)3,6【答案】C 【解析】 【分析】先求得集合{}|25A x x =<≤,结合集合的交集运算,即可求解. 【详解】由题意,集合{}{}|132|25A x x x x =-<-≤=<≤,{}|36B x x =≤<, 所以[]3,5AB =.故选:C 。

【点睛】本题主要考查了集合的运算,其中解答中熟记集合的交集的概念及运算是解答的关键,着重考查了推理与运算能力,属于基础题.3.已知函数2()1x f x a -+=+,若(1)9-=f ,则a =()A 。

2 B. 2- C. 8D.8-【答案】A 【解析】 【分析】直接将1-代入函数的解析式,根据指数的运算即可得结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、单选题甘肃省白银市靖远县2018-2019学年高一上学期期末数学试题
1. 下列命题正确的是( )
A .在空间中两条直线没有公共点,则这两条直线平行
B .一条直线与一个平面可能有无数个公共点
C .经过空间任意三点可以确定一个平面
D .若一个平面上有三个点到另一个平面的距离相等,则这两个平面平行
2. 已知集合,,则( )A .
B .
C .
D .
3. 已知函数,若,则( )A .2
B .
C .8
D .4.
已知直线

与:
,若,则( )A .5B .6C .7D .8
5. 已知函数,则()
A.2B.3C.4D.5
6. 方程的根所在的区间为()
A.B.C.D.
7. 不论为何实数,直线恒过定点()
A.B.
C.D.
8. 定义在上的奇函数在上有2个零点,则在上的零点个数为()
A.3B.4C.5D.6
9. 已知,是不同的平面,m,n是不同的直线,则下列命题不正确的是
A.若,,,则
B.若,,则,
C.若,,则
D.若,,则
10. 若函数在上有最大值8,则在上有()
A.最小值-8B.最大值8C.最小值-6D.最大值6
二、填空题三、解答题11. 如图,在长方体中,点,,分别是棱,,的中点,则下列说法正确的是( )
A .
B .平面
C .平面平面
D .平面平面
12. 若直线l :
与曲线M :有两个不同交点,则k 的取值范围是
A .
B .
C .
D .
13. 函数的定义域为________.
14. 计算:______.
15. 已知直线:
,点是圆:上的动点,则点
到直线的最大距离为______.
16. 已知在棱长为1的正方体中,点是线段上的动点,点是线段上的动点,则的最小值是______.
17. 已知集合,.
(1)当时,求;
(2)若,求的取值范围.
18. 已知直线l:kx-2y-3+k=0.
(1)若直线l不经过第二象限,求k的取值范围.
(2)设直线l与x轴的负半轴交于点A,与y轴的负半轴交于点B,若△AOB的面积为4(O为坐标原点),求直线l的方程
19. 在四棱柱中,已知底面ABCD是菱形,平面ABCD,M、N分别是棱、的中点
证明:平面DMN;
证明:平面平面在D.
20. 已知函数.
(1)求的单调区间;
(2)求的值域.
21. 如图,在四棱锥中,点是底面对角线上一点,,是边长为的正三角形,,.
(1)证明:平面.
(2)若四边形为平行四边形,求四棱锥的体积.
22. 已知过坐标原点的直线l与圆C:x2+y2﹣8x+12=0相交于不同的两点A,B.
(1)求线段AB的中点P的轨迹M的方程.
(2)是否存在实数k,使得直线l1:y=k(x﹣5)与曲线M有且仅有一个交点?若存在,求出k的取值范围;若不存在,说明理由.。

相关文档
最新文档