差动继电器实验报告
继电器的检测的实训报告
#### 一、实训目的1. 提升对继电器结构和工作原理的理解。
2. 掌握继电器的基本检测方法和技巧。
3. 培养动手实践能力和故障诊断能力。
4. 熟悉万用表等常用工具的使用。
#### 二、实训内容及步骤##### 1. 实训设备与材料- 继电器若干- 万用表一台- 测试线若干- 鳄鱼夹若干- 电源适配器##### 2. 实训步骤##### 2.1 继电器外观检查1. 观察继电器外观,检查是否有损坏、变形等异常情况。
2. 检查继电器引脚是否完好,是否有松动、腐蚀等现象。
##### 2.2 继电器线圈检测1. 将万用表调至“R×1”或“R×10”档位。
2. 用万用表的两根表笔分别测量继电器线圈的两引脚,读取线圈电阻值。
3. 将测得的电阻值与继电器说明书中的标称值进行对比,判断线圈是否正常。
##### 2.3 继电器接点检测1. 将万用表调至“R×1K”档位。
2. 分别测量继电器常开、常闭接点的通断情况。
3. 在不通电的情况下,常开接点应不通,常闭接点应导通。
4. 通电后,常开接点应导通,常闭接点应不通。
##### 2.4 继电器吸合性能检测1. 将继电器线圈接入电源适配器。
2. 观察继电器吸合情况,判断吸合是否正常。
3. 吸合后,继电器应无明显噪音,衔铁吸合牢固。
##### 2.5 继电器释放性能检测1. 断开电源适配器,观察继电器释放情况。
2. 继电器应能迅速释放,衔铁复位。
#### 三、实训结果及数据处理##### 1. 实训结果1. 通过实训,掌握了继电器的基本检测方法和技巧。
2. 发现部分继电器线圈电阻值与标称值不符,判定为线圈损坏。
3. 发现部分继电器吸合性能不良,判定为吸合不良。
##### 2. 数据处理1. 对检测到的异常继电器进行记录,并分析原因。
2. 对正常继电器进行归类,以便后续使用。
#### 四、实训总结1. 本实训使我对继电器的基本结构、工作原理和检测方法有了更深入的了解。
DCD型差动继电器试验报告
Wp1
Wp2
动作安匝(AW)
使用仪器、仪表
直流
助磁
特性
检验
短路绕组
整定位置
直流助磁电流(A)(IZL)
有直流助磁时动作电流(A)(IDZ)
无直流助磁时动作电流(A)(IDZO)
偏移系数(K)
(IZL/ IDZ)
相对动作电流系数
(ε)(IDZ/IDZO)
使用仪器、仪表
可靠
系数
检验
IDZ2
IDZO
Kk2=IDZ2/IDZO
使用仪器、仪表
整定位置安匝检验
Wc
Wp1
Wp2
WD’
WD”
动作安匝(AW)
使用仪器、仪表
依据
产品技术条件的规定及设计或业主整定值
结论
审核人: 试验人:
Wp2
端②-A
端②-B
端②-C
端②-D
Wc与Wp1串联电压降等于Uwc + Uwp1=
WD’
Wc与Wp2串联电压降等于Uwc + Uwp2=
WD”
使用仪器、仪表
行件作压流验
执元动电电检
动作电压(VDZO)
动作电流(IDZO)
动作值
V
mA
返回值
V
mA
返回系数
使用仪器、仪表
起始动作安匝(AW)
线圈
插头
位置
DCD
工程名称
安装地点
试பைடு நூலகம்日期
型 号
制造厂
主设备名称
额定电流
出厂编号
出厂日期
整定电流
整定匝
灵敏度
差动平衡及短路绕组正确性检验
绕组匝数检验(压降mV)
继电器的实验报告
继电器的实验报告继电器的实验报告引言:继电器是一种电控开关装置,广泛应用于各种电气控制系统中。
它通过电磁原理实现电流的开关控制,具有可靠性高、寿命长等优点。
本实验旨在通过对继电器的实际操作,深入了解其工作原理和应用。
一、实验目的本实验旨在:1. 理解继电器的基本结构和工作原理;2. 掌握继电器的接线方法和使用技巧;3. 了解继电器在电路控制中的应用。
二、实验器材和原理1. 实验器材:- 继电器模块- 直流电源- 开关- 电阻- 电线2. 实验原理:继电器由线圈和触点组成。
当线圈通电时,产生的磁场可以吸引或释放触点,从而控制电路的通断。
继电器的工作原理基于电磁感应和电磁吸引原理,通过线圈中的电流来产生磁场,进而控制触点的状态。
三、实验步骤1. 连接电路:将直流电源的正负极分别接到继电器模块的正负极,将开关连接到线圈的两端,然后将继电器的触点与其他电器设备连接。
2. 实验观察:- 打开电源,观察继电器的工作状态。
当线圈通电时,触点是否吸合?触点吸合后,电路是否通断?- 通过改变开关的状态,观察继电器的响应。
当开关打开时,触点是否释放?电路是否断开?3. 实验记录:记录继电器的工作状态和观察结果,并进行分析。
四、实验结果与分析通过实验观察和记录,可以得出以下结论:1. 当线圈通电时,继电器的触点吸合,电路通断与开关状态相反。
这是因为线圈通电时产生的磁场吸引触点,使其闭合,从而使电路通断。
2. 当线圈断电时,继电器的触点释放,电路断开。
这是因为线圈断电后,磁场消失,触点失去吸引力,从而打开电路。
3. 继电器的工作可靠性高,能够承受较高的电流和电压。
因此,在电路控制中,可以使用继电器来实现对电器设备的远程控制和保护。
五、实验应用继电器在各个领域都有广泛的应用,例如:1. 工业控制系统:继电器可以用于控制机器设备的启停、电流的开关以及电路的保护。
2. 家庭电器:继电器可以用于空调、电视机等家电的远程控制。
3. 交通信号灯:继电器可以用于控制交通信号灯的开关和时间间隔。
差动继电器实验报告
差动继电器实验报告篇一:继电保护实验报告继电保护实验报告学院:专业:电气工程及其自动化班级: XX级电气3班学号:姓名:指导老师 :实验二:常规继电器特性实验(一)电磁型电压、电流继电器的特性实验1.实验目的1)了解继电器基本分类方法及其结构。
2)熟悉几种常用继电器,如电流继电器、电压继电器、时间继电器、中间继电器、信号继电器等的构成原理。
3)学会调整、测量电磁型继电器的动作值、返回值和计算返回系数。
4)测量继电器的基本特性。
5)学习和设计多种继电器配合实验。
2.继电器的类型与原理继电器是电力系统常规继电保护的主要元件,它的种类繁多,原理与作用各异。
1)继电器的分类继电器按所反应的物理量的不同可分为电量与非电量的两种。
属于非电量的有瓦斯继电器、速度继电器等;反应电量的种类比较多,一般分类如下:(1)按结构原理分为:电磁型、感应型、整流型、晶体管型、微机型等。
(2)按继电器所反应的电量性质可分为:电流继电器、电压继电器、功率继电器、阻抗继电器、频率继电器等。
(3)按继电器的作用分为:起动动作继电器、中间继电器、时间继电器、信号继电器等。
近年来电力系统中已大量使用微机保护,整流型和晶体管型继电器以及感应型、电磁型继电器使用量已有减少。
2)电磁型继电器的构成原理继电保护中常用的有电流继电器、电压继电器、中间继电器、信号继电器、阻抗继电器、功率方向继电器、差动继电器等。
下面仅就常用的电磁继电器的构成及原理作要介绍。
信号继电器在保护装置中,作为整组装置或个别元件的动作指示器。
按电磁原理构成的信号继电器,当线圈通电时,衔铁被吸引,信号掉牌(指示灯亮)且触点闭合。
失去电源时,有的需手动复归,有的电动复归。
信号继电器有电压起动和电流起动两种。
3.实验内容1)电流继电器特性实验电流继电器动作、返回电流值测试实验。
实验步骤如下:(l)按图接线,将电流继电器的动作值整定为1.2A,使调压器输出指示为OV,滑线电阻的滑动触头放在中间位置。
数字式差动继电器特性实验
电气与信息工程学院实验报告课程名称微型机继电保护基础(第四版)实验项目名称数字式差动继电器特性实验年级2010级班级电气1001学号201024050121姓名吴伟明实验日期2013年12月17日批阅教师签字成绩内容一、实验目的四、实验方法及步骤二、实验原理五、实验记录及数据处理三、实验仪器六、实验结果分析及问题讨论一、实验目的1、了解数字式差动继电器的算法。
2、测试数字式比率制动差动继电器的比率制动曲线特性。
二、实验原理比率制动式差动继电器的动作电流是随外部短路电流按比率增大,既能保证外部短路不误动,又能保证内部短路有较高的灵敏度。
同时考虑躲开正常运行时差动回路中的不平衡电流,其动作方程可表示为:(I d>I d.min)∩(I d>K I r)其中,I d表示计算所得的差动电流,I d.min表示差动继电器的起动差流整定值,I r表示计算所得的制动电流,K表示比率制动系数整定值。
比率制动式差动保护制动特性曲线如图1。
图1比率制动式差动保护制动特性曲线本实验装置差动电流I d表示为:I d=∣I1′+I2′∣。
式中I1′表示1侧的电流向量和经电流平衡系数调整后的2侧的电流向量。
I2′=K ph·I2.Re′,I2.Re′为2侧电流的实际电流,其中K ph 表示电流平衡的调整系数,用来消除两侧额定电流不等及两侧TA变比不等引起的电流不平衡,其中K ph固定取1。
本实验装置制动电流I r表示为:I r=∣I1′-I2′∣/2。
本实验装置构成的数字式比率制动差动继电器将I11作为1侧电流I1,将I31作为2侧电流I2。
三、实验仪器多功能微机保护实验台四、实验方法及步骤1.向多功能微机保护实验装置中下载差动继电器特性实验程序。
2.按要求接好连线:将测试仪的三相电流信号分别与多功能微机保护实验装置引到实验台面上的各接线端子按相连接即可。
将Ian 、Ibn 和Icn 用导线短接后连接到测试仪的I n 接线端上。
差动继电器实验报告doc
差动继电器实验报告篇一:继电保护实验报告继电保护实验报告学院:专业:电气工程及其自动化班级: XX级电气3班学号:姓名:指导老师 :实验二:常规继电器特性实验(一)电磁型电压、电流继电器的特性实验1.实验目的1)了解继电器基本分类方法及其结构。
2)熟悉几种常用继电器,如电流继电器、电压继电器、时间继电器、中间继电器、信号继电器等的构成原理。
3)学会调整、测量电磁型继电器的动作值、返回值和计算返回系数。
4)测量继电器的基本特性。
5)学习和设计多种继电器配合实验。
2.继电器的类型与原理继电器是电力系统常规继电保护的主要元件,它的种类繁多,原理与作用各异。
1)继电器的分类继电器按所反应的物理量的不同可分为电量与非电量的两种。
属于非电量的有瓦斯继电器、速度继电器等;反应电量的种类比较多,一般分类如下:(1)按结构原理分为:电磁型、感应型、整流型、晶体管型、微机型等。
(2)按继电器所反应的电量性质可分为:电流继电器、电压继电器、功率继电器、阻抗继电器、频率继电器等。
(3)按继电器的作用分为:起动动作继电器、中间继电器、时间继电器、信号继电器等。
近年来电力系统中已大量使用微机保护,整流型和晶体管型继电器以及感应型、电磁型继电器使用量已有减少。
2)电磁型继电器的构成原理继电保护中常用的有电流继电器、电压继电器、中间继电器、信号继电器、阻抗继电器、功率方向继电器、差动继电器等。
下面仅就常用的电磁继电器的构成及原理作要介绍。
信号继电器在保护装置中,作为整组装置或个别元件的动作指示器。
按电磁原理构成的信号继电器,当线圈通电时,衔铁被吸引,信号掉牌(指示灯亮)且触点闭合。
失去电源时,有的需手动复归,有的电动复归。
信号继电器有电压起动和电流起动两种。
3.实验内容1)电流继电器特性实验电流继电器动作、返回电流值测试实验。
实验步骤如下:(l)按图接线,将电流继电器的动作值整定为1.2A,使调压器输出指示为OV,滑线电阻的滑动触头放在中间位置。
实验四:常规差动继电器特性测试
实验:常规差动继电器特性测试一、实验目的1、了解常规差动继电器的工作原理,掌握设置继电器动作定值的方法。
2、掌握差动继电器特性的测试方法,测试差动继电器的比率制动曲线特性。
二、实验设备及器材1、TQXDB-IB 多功能继电保护实验培训系统2、LCD-4型变压器差动继电器 三、实验原理LCD-4型变压器差动继电器用于变压器差动保护中,作为主保护。
LCD-4型差动继电器为整流型继电器,由差动元件和瞬动元件两部分组成。
差动元件由差动工作回路、二次谐波制动回路、比率制动回路和直流比较回路所组成。
LCD-4型变压器差动继电器内部未设置平衡绕组及抽头,因TA 变比不一致而引起的不平衡电流通过专用自耦变流器补偿消除。
谐波制动系数通常调整在0.2-0.25之间。
通过切换片1QP 实现三种不同的比率制动系数0.4、0.5、0.6。
过切换片2QP 获得1、1.5、2、2.5A 四个不同的整定值。
四、实验内容及步骤1、实验接线。
如图所示完成实验接线。
差动继电器AK24V+24V-I1电流输出电流表特性实验信号源I1I2I2nI2电流输出电流表I1n差动继电器特性测试实验连线图2、整定值设置。
将差动继电器动作值整定为2A ,制动系数设置为0.5。
3、打开特性实验信号源开关。
调节I2输出到2A ,然后调节I1输出使得I1逐渐增加,当继电器动作时记录I1电流值,将值记入表1中。
4、改变I2输出电流值为2.5A 、3A 、3.5A 、4A 、4.5A 、5A 重复步骤3,将数据记入表1中。
5、将“制动系数”整定为0.4和0.6,重复步骤3-4,再次测试继电器的制动曲线,将三次测试得到的曲线d I = f(r I ) 画在同一个坐标图中进行比较。
五、实验数据及分析处理表1 差动继电器特性实验(制动系数0.5)表2 差动继电器特性实验(制动系数0.4)表3 差动继电器特性实验(制动系数0.6)六、实验注意事项1、本实验为强电类实验,实验中如有异常情况,应立即停止实验并切断电源。
lcd-4差动继电器特性分析结果
lcd-4差动继电器特性分析结果
1.差动保护功能:LCD-4差动继电器能够检测电路中的差动电流,并在差动电流超过设定阈值时触发动作。
这种保护功能可以有效地防止电路中的故障电流引起的损坏或事故。
2.高精度测量:LCD-4差动继电器采用先进的电流传感器和测量电路,能够实现高精度的电流测量。
其测量误差较小,可靠性和稳定性较高,适用于各种精密电气设备的保护。
3.快速动作:LCD-4差动继电器在检测到差动电流超过设定阈值时,能够迅速地触发动作,并切断电路。
其快速动作特性可以有效地缩短故障电流存在时间,降低对设备的损害程度。
4.多功能保护:LCD-4差动继电器不仅具有差动保护功能,还可以实现过电流、过载、过压、欠压等多种保护功能。
通过合理设置参数,可以满足不同电气设备的保护需求。
5.远程监控与控制:LCD-4差动继电器支持远程监控与控制功能,可以通过网络或其他通信方式实时监测继电器的状态,并进行远程控制。
这种功能方便了设备的管理和维护,提高了工作效率。
LCD-4差动继电器具有差动保护、高精度测量、快速动作、多功能保护和远程监控与控制等特性。
它在各种电气设备中广泛应用,为设备的安全运行提供了可靠保障。
主变差动实验报告
一、实验目的1. 理解主变差动保护的基本原理和作用。
2. 掌握主变差动保护的实验方法及步骤。
3. 分析实验数据,验证差动保护的性能。
二、实验原理主变差动保护是一种重要的继电保护装置,用于保护电力系统中的主变压器。
它的工作原理是基于差动原理,通过比较主变压器两侧的电流,当两侧电流不相等时,说明主变压器内部存在故障,此时差动保护装置会发出动作信号,切断故障电路,保护主变压器及其连接的设备。
实验中,主变差动保护采用BCH-2型差动继电器,通过测量主变压器两侧的电流,比较其差值,当差值超过整定值时,继电器动作,发出保护信号。
三、实验设备1. 主变压器:三相三绕组降压变压器,容量Se40.5MVA,电压110/22.5%kV/385/22.5%kV/11kV,接线方式:Ydd11-11,变压器额定电流:213A/608A/2130A。
2. BCH-2型差动继电器。
3. 电流互感器:带有气隙的D级铁芯互感器。
4. 实验控制箱。
5. 示波器。
6. 电源。
四、实验步骤1. 连接实验电路,确保各设备连接正确。
2. 调整电流互感器变比,使其满足实验要求。
3. 设置差动继电器整定值,包括差动线圈匝数、继电器动作电流和灵敏度。
4. 通电运行,观察差动继电器动作情况。
5. 改变主变压器两侧电流,观察差动继电器动作情况。
6. 记录实验数据,分析差动保护性能。
五、实验数据及分析1. 实验数据如下:| 差动线圈匝数(Wcd.js) | 继电器动作电流(Idz) | 灵敏度(K1m) || ----------------------- | --------------------- | -------------- || 6 | 10A | 2.1 |2. 实验过程中,当主变压器两侧电流相等时,差动继电器不动作;当主变压器两侧电流不等时,差动继电器动作,发出保护信号。
3. 分析实验数据,可知:(1)差动继电器动作电流和灵敏度满足实验要求,能够有效保护主变压器。
继电器控制的实验报告
继电器控制的实验报告
《继电器控制的实验报告》
继电器是一种常用的电气控制器件,它可以通过控制小电流来开关大电流,被
广泛应用于各种电气控制系统中。
为了更好地了解继电器的工作原理和控制方法,我们进行了一系列的实验。
实验一:继电器的基本原理
在这个实验中,我们首先学习了继电器的基本原理。
我们使用了一个简单的继
电器电路,通过接通和断开控制电路来观察继电器的工作状态。
通过这个实验,我们深入了解了继电器是如何通过控制小电流来实现开关大电流的功能。
实验二:继电器的控制方法
在第二个实验中,我们学习了继电器的控制方法。
我们使用了不同的电路布置
和控制信号,来观察继电器的响应和工作状态。
通过这个实验,我们掌握了不
同控制方法对继电器的影响,为以后的实际应用提供了重要的参考。
实验三:继电器在电气控制系统中的应用
最后,我们进行了一次继电器在电气控制系统中的应用实验。
我们设计了一个
简单的电气控制系统,并使用继电器来实现对电路的开关控制。
通过这个实验,我们深入了解了继电器在实际应用中的重要性和作用,为今后的工程实践提供
了宝贵的经验。
通过以上一系列的实验,我们对继电器的工作原理、控制方法和实际应用有了
更深入的了解。
这些实验不仅加深了我们对继电器的理论知识,也为我们今后
在电气控制领域的工作提供了重要的实践经验。
继电器作为一种重要的电气控
制器件,将继续在各种电气控制系统中发挥重要作用。
继电器实验报告总结
继电器实验报告总结
继电器是一种常见的电气控制元件,具有开关信号转换、放大和隔离等功能。
本次实验旨在通过搭建继电器电路,掌握继电器的工作原理和应用技巧。
实验步骤:
1.根据电路图,搭建继电器电路。
电路图中包括继电器、开关、电源和负载等元件。
2.连接电源,并使用万用表检测电路的电压和电流情况。
确保电路连接正确,电压和电流在正常范围内。
3.按下开关,观察负载的变化。
继电器的触点应该打开或关闭,控制负载的通断。
4.测试不同电压和电流下继电器的工作情况。
通过调整电源电压和负载电流,观察继电器的响应时间、吸合和断开的稳定性等性能指标。
实验结果:
1.继电器能够实现开关信号的转换和放大,对电路的控制作用非常重要。
2.继电器的工作原理是通过电磁吸合和断开触点来控制负载的通断状态。
3.继电器的性能指标包括响应时间、吸合和断开的稳定性、最大通电电流等,需要根据实际应用场景进行选择。
4.在实际应用中,继电器常用于电器控制、自动化控制、安全保护等领域,具有很大的应用前景。
总结:
通过本次实验,我对继电器的工作原理和应用技巧有了更深入的了解。
继电器作为电气控制元件的重要组成部分,具有很大的应用前景。
在今后的学习和工作中,我将继续深入探究继电器的应用,为实际生产和工程项目提供更好的服务。
电力实验22
二十一、BCH-2差动继电器特性实验一、实验目的熟悉差动继电器的工作原理、实际结构、基本特性,掌握执行元件和工作安匝的整定调试方法。
二、预习与思考1、BCH—2型差动继电器为何具有较强的躲开励磁涌流的能力2、当差动继电器的差动线圈接入正弦交流时,有短路线圈和无短路线圈对BCH—2型继电器的动作安匝有何影响当Wd"/Wdˊ值变化时对继电器的动作安匝有何影响3、在励磁涌流时,当Wd"/Wdˊ值变化时或Wd"/Wdˊ按比例增加时,对继电器的动作安匝有何影响三、用途与特点BCH-2型差动继电器用于两绕组或三绕组电力变压器以及交流发电机的单相差动保护线路中,并作为主保护。
该继电器能较好地躲过在非故障状态时所出现的暂态电流的干扰。
例如当电力变压器空载合闸,或短路切除后电压恢复时出现很大的涌磁电流,其瞬间值常达到额定电流的5—10倍; 这时差动保护不会误动作。
当发生区内(即两电流互感器间)短路时,却能迅速切除故障。
四、原理说明BCH-2型差动继电器系由执行元件电磁式继电器DL—11/及一个中间快速饱和变流器组成。
中间速饱和变流器的导磁体是三柱形的铁心。
在导磁体的中间柱上置有工作(差动)绕组、平衡(I、II)绕组和短路绕组,此短路绕组与右侧柱上的短路绕组相连接。
在导磁体的左侧柱上置有二次绕组,它与执行元件相连接。
速饱和变流器的所有绕组都是制成带有抽头的,这样就可以对继电器的参数进行阶段性的调整。
当用BCH-2继电器保护电力变压器时,平衡绕组的圈数根据这样的条件来选择:即当发生穿越性短路时,所有绕组的安匝数相等。
当用继电器保护两绕组变压器时,动作电流可以在更细致的范围内进行调整,因为这时可以利用两个平衡绕组。
中间速饱和变流器及执行元件放在一个外壳中,继电器可以作成前接线或后接线(本实验装置设计为挂箱面板接线)两种形式。
用插头螺丝选择快速饱和变流器绝缘安装板上相应的插孔,即可对差动继电器动作电流、平衡电流,抑制励磁涌流进行需调整。
继电器的特性实验
实验一电磁型继电器的特性实验一.实验目的:1.进一步了解电磁型继电器(电流、电压、时间、中间继电器)的构造、工作原理和特性;2.了解继电器各种参数的意义,掌握继电器整定植的调试方法;3.了解有关仪器、仪表的选择原则及使用方法。
二.实验项目:1.打开外壳,仔细观察各种继电器的内部构造,并记录下继电器铭牌的主要参数;2.测定电流继电器的动作电流、返回电流及返回系数;3.测定电压继电器的动作电压、返回电压及返回系数;4.测定时间继电器的动作电压、返回电压及返回系数;5.测定中间继电器的动作电压、返回电压及返回系数。
三.实验内容:(一)熟悉常用继电器的内部接线DL-21C DL-22C;DY-22C DL-23C;DY-23CDS-21A~24A DZ-31B(二)测定电流继电器的动作电流I.d.j。
返回电流I f.j及返回系数K f。
1.实验接线:图1-1 电流继电器实验接线图2.实验需用仪器设备①交流电流表 0~5A②单相自藕调压器(ZOB) 2KVA 220/0~250V 一台③滑线电阻 69Ω3.9A或40Ω6A 一台④电流继电器 DL-21C 一个3.实验方法(1)首先将继电器的两组线圈串联;将继电器的整定把手放在某一选定位置;将自藕调压器把手旋至输出为零伏位置;将滑线电阻的滑动端放在阻值为最大位置;(2)合上电源开关,逐渐增大通入继电器的电流,使继电器刚好动作(常开接点闭合,即指示灯亮)的最小电流称为电流继电器的动作电流Id.j.(3)逐渐减小通入继电器的电流,使继电器的接点返回到原始位置(常开接点断开,即指示灯灭)的最大电流称为电流的继电器的返回电流If.j.(4)测定Id.j 和If.j时,对所选的整定位置重复作三次,将测量结果填入表1中(5)断开电源,将继电器的两组线圈改为并联.然后,按上述方法测量继电器线圈并联时的和将测量结果填入表2中.(6)数据处理误差: △I%=要求:返回系数:K=要求:0.05<Kf<0.9表1 继电器的两组线圈串联(表中电流单位:A )表 2 继电器的两组线圈并联(表中电流单位:A )(三)测定低电压继电器的动作电压Ud.j 返回电压Uc。
继电器的实验报告
一、实验目的1. 了解继电器的基本分类、结构和工作原理。
2. 熟悉常用继电器的特性和应用。
3. 掌握继电器实验的基本步骤和操作方法。
4. 培养动手能力和实验技能。
二、实验原理继电器是一种电控制器件,用于自动或半自动地控制电路的通断。
它主要由线圈、铁芯、衔铁、触点等部分组成。
当线圈通过电流时,铁芯产生磁性,吸引衔铁,使触点闭合或断开,从而实现电路的通断控制。
三、实验设备1. 继电器实验台2. 交流电源3. 电流表4. 电压表5. 阻值可调电阻6. 开关7. 导线四、实验步骤1. 接线:根据实验电路图,将继电器、电阻、开关、电源等元器件连接好,确保连接正确无误。
2. 调节电阻:将电阻的滑动触头置于中间位置,调节电阻值,使电流表读数为零。
3. 通电实验:1. 闭合开关,使线圈通电。
2. 观察继电器动作情况,记录电流表和电压表的读数。
3. 断开开关,使线圈断电。
4. 观察继电器复位情况,记录电流表和电压表的读数。
4. 改变电阻值:重复步骤3,改变电阻值,观察继电器动作情况和电流、电压变化。
5. 更换继电器:更换不同型号的继电器,重复步骤3和4,比较不同继电器的特性和性能。
五、实验结果与分析1. 实验现象:当线圈通电时,继电器动作,触点闭合;断电时,继电器复位,触点断开。
2. 数据分析:1. 当电阻值较小时,电流表读数较大,继电器动作电流较小;当电阻值较大时,电流表读数较小,继电器动作电流较大。
2. 不同型号的继电器,其动作电流和复位电流有所不同,性能有所差异。
六、实验结论1. 继电器是一种常用的电控制器件,具有结构简单、可靠性高、控制范围广等优点。
2. 继电器的工作原理是利用线圈通电产生的磁场吸引衔铁,使触点闭合或断开,从而实现电路的通断控制。
3. 通过实验,掌握了继电器实验的基本步骤和操作方法,了解了不同型号继电器的特性和性能。
七、实验心得1. 实验过程中,要注意安全,防止触电事故发生。
2. 实验操作要规范,确保实验结果的准确性。
继电器保实验报告
一、电流差动纵联保护原理
电流差动纵联保护是利用线路两端的电流量的向量和在内部故障和非故障时的特征差异构成的保护,下图为电流差动纵联保护的原理图:
图 一 电流差动纵联保护原理图 KD 为差动继电器,其中I r =I n +I m :
1、当K2故障(或正常运行)时:I m ,I n 反向,I r =I n +I m =0;
2、当K1故障(内部短路)时:I m ,I n 接近同向,I r ≠0且具有很大量值,因此利用差动电流的幅值大小即可反应区外和区内短路。
正常运行或外部故障时,由于两端TA 不可能完全相同,以及两端TA 饱和情况不一致等因数,流入KD 的电流通常不为零(不平衡电流),因而在设计差动继电器的动作判据时需考虑其影响。
目前,一般采用的动作判据为:
{|I m +I n |≥k|I m −I n ||I m +I n |≥I op
为正常运行情况下不误动的最小门槛值,K 为制动系数,可在0~1之间取值,
|I m +I n |称为差动电流,|I m −I n |称为制动电流。
根据动作方程,可以得到动作特性图(横坐标为制动电流,纵坐标为差动电流):
024
6
8
差动
电流
(A
)制动电流(A )
图 二 电流差动纵联动作特性图 op I
由上图可得,状态1为空载状态,状态2为区内A 相发生单相短路接地的故障状态,触发状态2后,故障相电压UA 、UX 降低,非故障相电压不变,故障相电流Ia 、Ix 增大,非故障相电流保持为0,经过延时为578-70=508ms 后,继电器动作,断路器1、2、3跳开,电压电流波形均变为0.。
DCD(2)A差动继电器特性实验
实验四 DCD-2(A)型差动继电器特性实验一、实验目的1. 了解继电器原理及构造(由执行元件DL-11/0.2及速饱和变流器组成具有助磁特性)。
2. 了解继电器躲开非周期分量电流的能力。
3. 掌握差动继电器的调试方法。
二、继电器的用途、结构和原理1. 用途:DCD-2(A)型差动继电器躲避电力变压器励磁涌流的性能比DCD-5(A)、DCD-4型差动继电器好,并且能提高保护装置躲过外部短暂态不平衡电流的性能,可作为双绕组和三绕组电力变压器、发电机以及母线的差动保护。
2. 结构和原理:继电器由执行元件(DL-11/0.2)和速饱和变流器两部分构成。
其内部接线如下:DCD-2(A)差动继电器的基本原理为:整个继电器由执元件和速饱和变流器两部分组成,继电器具有一对常开接点,所有部件都组装在一个壳里,速饱和变流器由三柱型硅钢片交错叠成,中间柱的截面大一倍。
差动绕组Wc和两个平衡绕组Wp1、Wp2以相同的绕向绕在中间柱上,它们的作用是:由于两个平衡绕组与差动绕组的绕向一致,所以平衡绕组产生的磁通起着增强或削弱差动绕组产生的磁通的作用(两绕组内电流方向相同时起增强作用,方向相反时起削弱作用)。
由于变压器各側电流互感器的变化不能完全配合,在变压器正常运行时,Wc中有不平衡电流流过,当把平衡线圈接入后,如果平衡绕组的匝数选得适当,就能完全或几乎完全使不平衡电流得到补偿,使得变压器在正常运行时,二次绕组W2内完全或几乎完全没有不平衡电流感应的电势,从而提高了保护装置的可靠性。
在保护区内部发生故障时,流过平衡绕组内的电流所产生的磁通与差动绕组内电流所产生的磁通方向一致,于是就增加了使继电器动作的安匝数,从而提高了保护装置的灵敏度,此即Wc、Wp1、Wp2三个绕组绕向需要一致的原因。
短路绕组分为Wd’、Wd”两部分,Wd”的匝数为Wd’匝数的两倍,Wd’绕在中间柱上,Wd”绕在左边柱上,在中间柱和左边柱所构成的闭合磁路内,Wd’与Wd”的绕向相同,二次绕组W2绕在右边柱上并接入执行元件。
DCD-5差动继电器
DCD-5差动继电器DCD-5(BCH-1)型差动继电器特性实验DCD-5(BCH-1)型差动继电器特性实验(一)实验目的(二)DCD-5型差动继电器简介DCD-5型差动继电器用于电力变压器的差动保护。
由于继电器带有一个制动绕组,当被保护变压器外部故障不平衡电流较大时,能产生制动作用。
这两部分磁通分别在W2的两部分绕组中感应出电势,该电势达一定值时(视执行元件的动作电压而定),执行元件就动作。
制动绕组Wres的作用是加速两侧边柱的饱和,从而使得W2与Wd,Wbl、Wb2间的相互作用减弱。
从图6-1(a)中可??和制动绕组中电流I以看出,在一侧边柱内,差动绕组中电流I?d 产生的磁通?dres?和??相加,而在另一侧边柱内,??相减,因而每侧边柱内的合产生的磁通?dresres成磁通等于这两个磁通的向量和。
令?表示工作电流和制动电流间的相位角,当?、??=0?或180?时,两边柱内的合成磁通分别为?而在?=90?d?res绝对值的和或差;或270?时,两边柱内的合成磁通相等。
由此看出,继电器的动作电流(即Wd内的电流)不仅与Wres内的大小有关,而且还与二者之间的相位有关。
当二者间的相位一定时,继电器的动作电流随Wres内电流的增减而增减,这就是继电器具有制动特性的概念。
Wb1,Wb2和Wd的绕向一致,所以平衡绕组产生的磁通起着增强或削弱差动绕组产生的磁通作用(两绕组内电流方向相同时起增强作用,方向相反时起削弱作用)。
由于变压器各侧电流互感器的变比不能完全配合,在变压器正常运行时,Wd中有不平衡电流Iunb流过。
当平衡绕组接入后,如果平衡绕组的匝数选得适当,就能完全或几乎完全使Iunb得到补偿使得变压器在正常运行时,W2内完全或几乎完全没有Iunb感应电势,从而提高了保护装置的可靠性。
当保护区内部发生故障时,流过平衡绕组内的电流所产生的磁通与差动绕组内电流所产生的磁通方向一致,于是就增加了使继电器动作的安匝数,从而提高了保护装置的灵敏度,此即Wd、Wbl、Wb2三个绕组绕向一致的原因。
继电器的检测实习报告
一、实习目的通过本次继电器检测实习,旨在了解继电器的基本结构、工作原理、性能参数以及检测方法,提高对继电器检测技术的掌握程度,培养实际操作能力和解决实际问题的能力。
二、实习内容1. 继电器基本知识(1)继电器是一种自动控制元件,主要用于自动控制电路中,实现电路的通断、转换和保护等功能。
(2)继电器按工作原理可分为电磁继电器、电子继电器、固体继电器等;按驱动方式可分为直流继电器、交流继电器等。
2. 继电器检测方法(1)外观检查:检查继电器外壳有无破损、变形、腐蚀等现象,触点有无氧化、烧蚀等。
(2)绝缘电阻测试:使用兆欧表检测继电器线圈和外壳之间的绝缘电阻,应符合规定值。
(3)吸合电压测试:使用电压表检测继电器线圈在吸合时的电压,应符合规定值。
(4)释放电压测试:使用电压表检测继电器线圈在释放时的电压,应符合规定值。
(5)接触电阻测试:使用万用表检测继电器触点间的接触电阻,应符合规定值。
(6)动作时间测试:使用计时器检测继电器从吸合到释放的时间,应符合规定值。
三、实习过程1. 实习准备(1)了解继电器的基本知识、结构和工作原理。
(2)熟悉各种继电器检测仪器的使用方法。
(3)准备检测用的工具和设备。
2. 实习步骤(1)外观检查:对继电器进行外观检查,确保其外观完好,无破损、变形、腐蚀等现象。
(2)绝缘电阻测试:使用兆欧表检测继电器线圈和外壳之间的绝缘电阻,记录测试数据。
(3)吸合电压测试:使用电压表检测继电器线圈在吸合时的电压,记录测试数据。
(4)释放电压测试:使用电压表检测继电器线圈在释放时的电压,记录测试数据。
(5)接触电阻测试:使用万用表检测继电器触点间的接触电阻,记录测试数据。
(6)动作时间测试:使用计时器检测继电器从吸合到释放的时间,记录测试数据。
3. 实习结果分析(1)根据检测数据,分析继电器是否满足性能要求。
(2)找出不符合要求的继电器,分析原因,提出改进措施。
四、实习心得体会1. 通过本次实习,我对继电器的基本知识、结构和工作原理有了更深入的了解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
竭诚为您提供优质文档/双击可除差动继电器实验报告
篇一:变压器差动保护实验
实验内容实验二变压器差动保护实验
(一)实验目的
1.熟悉变压器纵差保护的组成原理及整定值的调整方法。
2.了解Y∕Δ接线的变压器,其电流互感器二次接线方式对减少不平衡电流的影响。
3.了解差动保护制动特性的特点。
(二)变压器纵联差动保护的基本原理1.变压器保护的配置
变压器是十分重要和贵重的电力设备,电力部门中使用相当普遍。
变压器如发生故障将给供电的可靠性带来严重的后果,因此在变压器上应装设灵敏、快速、可靠和选择性好的保护装置。
变压器上装设的保护一般有两类:一种为主保护,如瓦斯保护,差动保护;另一种称后备保护,如过电流保护、低电压起动的过流保护等。
本试验台的主保护采用二次谐波制动原理的比率制动
差动保护。
2.变压器纵联差动保护基本原理
如图7-1所示为双绕组纵联差动保护的单相原理说明图,元件两侧的电流互感器的接线应使在正常和外部故障时流
入继电器的电流为两侧电流之差,其值接近于零,继电器不动作;内部故障时流入继电器的电流为两侧电流之和,其值为短路电流,继电器动作。
但是,由于变压器高压侧和低压侧的额定电流不同,为了保证正常和外部故障时,变压器两侧的两个电流相等,从而使流入继电器的电流为零。
即:
式中:KTAY、KTA△——分别为变压器Y侧和△侧电流
互感器变比;KT——变压器变比。
显然要使正常和外部故障时流入继电器的电流为零,就必须适当选择两侧互感器的变比,使其比值等于变压器变比。
但是,实际上正常或外部故障时流入继电器的电流不会为零,即有不平衡电流出现。
原因是:(1)各侧电流互感器的磁化特性不可能一致。
(2)为满足(7-1)式要求,计算出的电流互感器的变
比,与选用的标准化变比不可能相同;
(3)当采用带负荷调压的变压器时,由于运行的需要为维持电压水平,常常变化变比KT,从而使(7-1)式不能得到满足。
(4)由图7-1可见,变压器一侧采用△接线,一侧采用Y
接线,因而两侧电
流的相位会出现30°的角度差,就会产生很大的不平衡电流(见图7-2)。
(5)由于电力系统发生短路时,短路电流中含有非周期分量,这些分量很难感应到二次侧,从而造成两侧电流的误差;
(6)分析表明,当变压器空载投入和外部故障切除后,电压恢复时,有可能出现很大的变压器激励电流,通称为激励涌流。
由于涌流只流过变压器的一侧,其值又可达到额定电流6~8倍,常导致差动保护的误动。
为了要实现变压器的纵联差动保护,就要努力使(7-1)式得到满足,尽量减少不平衡电流,上述六种因素中有些因素因为其数值很小,有些因素因为是客观存在不能人为改变的,故常常在整定计算时将它们考虑在可靠系数中。
本试验台上学生可以自己动手接线,将两侧电流互感器副方的电流接入微机保护,若接线正确,则流入微机保护的差电流近似为零,否则差电流较大,如图7-2所示。
Y侧与△侧的一次
电流有30°的误差,因此可以将Y侧电流互感器二次电流接成△,△侧的二次电流接成Y进行校正。
变压器差动保护中,虽然采用了种种办法来减少不平衡电流的影响,但是不平衡电流仍然比较大,而且其值随着一次穿越变压器的短路电流的增大而增大,这种关系可近似用图7-3的直线1来描述。
若变压器差动保护的动作电流按躲开外部故障的最大短路电流来整定,如图7-3的直线2,可见保护的动作电流较大,这时对于短路电流较小的内部故障,灵敏度往往不能满足要求。
如果能利用变压器的穿越电流来产生制动作用,使得穿越电流大时,
产生的
制动作用大,穿越电流小时,产生的制动作用小,并且使保护的动作电流也随制动作用的大小而改变,即制动作用大时,动作电流大些,制动电流小时,动作电流也小,那么在任何外部短路电流的情况下,差动保护的动作电流都能大于相应的不平衡电流,从而既提高灵敏度,又不致误动作,差动保护的制动特性曲线如图7-3的曲线3所示,曲线3上方阴影部分的区域为差动保护的动作区。
曲线3中A点对应为差动保护的最小动作电流Ipu.0,一般取(0.25~0.5)In。
Ipu.0小时保护较灵敏。
b点对应的制动电流,一般取(0.8-1.2)In。
当b点取值小时,保。