初中数学三角形教案

合集下载

初中数学第十一章 三角形教案

初中数学第十一章 三角形教案

第十一章三角形教材内容本章主要内容有三角形的有关线段、角,多边形及内角和。

三角形的高、中线和角平分线是三角形中的主要线段,与三角形有关的角有内角、外角。

教材通过实验让学生了解三角形的稳定性,在知道三角形的内角和等于1800的基础上,进行推理论证,从而得出三角形外角的性质。

接着由推广三角形的有关概念,介绍了多边形的有关概念,利用三角形的有关性质研究了多边形的内角和、外角和公式。

这些知识加深了学生对三角形的认识,既是学习特殊三角形的基础,也是研究其它图形的基础。

最后结合实例研究了镶嵌的有关问题,体现了多边形内角和公式在实际生活中的应用.教学目标〔知识与技能〕1、理解三角形及有关概念,会画任意三角形的高、中线、角平分线;2、了解三角形的稳定性,理解三角形两边的和大于第三边,会根据三条线段的长度判断它们能否构成三角形;3、会证明三角形内角和等于1800,了解三角形外角的性质。

4、了解多边形的有关概念,会运用多边形的内角和与外角和公式解决问题。

〔过程与方法〕- 第- 一-网1、在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯;2、在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步培说理和进行简单推理的能力。

〔情感、态度与价值观〕重点难点三角形三边关系、内角和,多边形的外角和与内角和公式,镶嵌是重点;三角形内角和等于1800的证明,根据三条线段的长度判断它们能否构成三角形及简单的平页镶嵌设计是难点。

课时分配11.1与三角形有关的线段……………………………………… 2课时11.2 与三角形有关的角………………………………………… 2课时11.3多边形及其内角和………………………………………… 2课时本章小结………………………………………………………… 2课时11.1.1三角形的边[教学目标]1、了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形;2、理解三角形三边不等的关系,会判断三条线段能否构成一个三角形,并能运用它解决有关的问题.[重点难点] 三角形的有关概念和符号表示,三角形三边间的不等关系是重点;用三角形三边不等关系判定三条线段可否组成三角形是难点。

数学八年级上册《三角形-复习课》教案

数学八年级上册《三角形-复习课》教案
教学重点
三角形三边关系、内角和,多边形的外角和与内角和公式是重点;
教学难点ห้องสมุดไป่ตู้
三角形内角和等于1800的证明,根据三条线段的长度判断它们能否构成三角形是难点。
教学方法与手段
教学准备
第一课时
课时数
1课时
课堂教学实施设计(教师活动、学生活动)
复备内容或集体备课讨论记录(标、增、改、删、调)
一、知识结构(师生一起梳理)(5分钟)
探索∠A与∠1+∠2有什么数量关系?并说明理由。
例3如图所示,在△ABC中,△ABC的内角平分线与外角平分线交于点P,试说明∠P=1/2∠A.
板书设计:
教学小结:
6、三角形的外角和是多少?
n边形的外角和是多少?
你能说明为什么多边形的外角和与边数无关吗?
三、例题导引(15分钟)
例1 如图,在△ABC中,∠A︰∠B︰∠C=3︰4︰5,BD、CE分别是边AC、AB上的高,BD、CE相交于点H,求∠BHC的度数。
例2如图,把△ABC沿DE折叠,当点A落在四边形BCDE内部时,
二、回顾与思考(10分钟)
1、什么是三角形?
什么是多边形?
什么是正多边形?
三角形是不是多边形?
1、什么是三角形的高、中线、角平分线?
2、什么是对角线?
三角形有对角线吗?n边形的的对角线有多少条?
4、三角形的三条高,三条中线,三条角平分线各有什么特点?
5、三角形的内角和是多少?n边形的内角和是多少?
你能用三角形的内角和说明n边形的内角和吗?
初中20-20学年度第一学期教学设计
主备教师
审核教师
授课周次
授课时间
课题
三角形复习课
课型

初中数学教案:三角形全等的判定教案

初中数学教案:三角形全等的判定教案

初中数学教案:三角形全等的判定教案一、教学目标:1. 让学生理解三角形全等的概念,掌握三角形全等的判定条件。

2. 培养学生运用全等三角形的性质解决实际问题的能力。

3. 培养学生的观察能力、动手能力和逻辑思维能力。

二、教学内容:1. 三角形全等的定义:如果两个三角形的所有对应边和对应角都相等,这两个三角形叫做全等三角形。

2. 三角形全等的判定条件:SSS(边-边-边)、SAS(边-角-边)、ASA (角-边-角)、AAS(角-角-边)。

三、教学重点与难点:1. 教学重点:三角形全等的判定条件及其应用。

2. 教学难点:三角形全等判定条件的理解和运用。

四、教学方法:1. 采用直观演示法,让学生通过观察和动手操作,加深对三角形全等概念的理解。

2. 采用案例分析法,让学生通过分析实际案例,掌握三角形全等的判定条件。

3. 采用小组合作学习法,培养学生的团队合作精神和沟通能力。

五、教学步骤:1. 导入新课:通过复习已学的几何知识,引导学生进入三角形全等的新课学习。

2. 讲解三角形全等的定义和判定条件:详细讲解三角形全等的概念,以及SSS、SAS、ASA、AAS四种判定条件。

3. 案例分析:给出几个实际案例,让学生运用判定条件判断三角形是否全等。

4. 动手操作:让学生自行取材,进行三角形全等的实际操作,加深对全等三角形性质的理解。

5. 课堂练习:布置一些有关三角形全等的练习题,巩固所学知识。

6. 总结与反思:对本节课的内容进行总结,引导学生思考如何运用三角形全等的知识解决实际问题。

7. 作业布置:布置一些有关三角形全等的家庭作业,巩固所学知识。

8. 课后反思:对课堂教学进行反思,总结教学过程中的优点和不足,为下一步教学做好准备。

六、教学评价:1. 通过课堂提问、练习和作业,评价学生对三角形全等概念和判定条件的掌握程度。

2. 观察学生在动手操作和小组合作学习中的表现,评价其观察能力、动手能力和团队协作能力。

3. 结合学生的课堂表现和作业完成情况,对学生的学习态度和思维能力进行评价。

初中数学教案直角三角形

初中数学教案直角三角形

初中数学教案直角三角形初中数学教案直角三角形第一部分:概述直角三角形是初中数学中重要的几何概念之一。

本教案旨在帮助初中学生理解直角三角形的特性、性质及相关运算。

第二部分:教学目标1. 理解直角三角形的定义和特点。

2. 掌握勾股定理的应用。

3. 能够计算直角三角形的三边关系和角度关系。

4. 运用所学知识解决实际问题。

第三部分:教学内容及教学步骤一、直角三角形的定义和特点1. 引入:通过展示直角三角形的图形,引导学生观察直角三角形的特点。

2. 解释直角三角形的定义:一个三角形有一个内角为90°的角,则称该三角形为直角三角形。

3. 引导学生发现和总结直角三角形的性质:直角三角形的两条腿和斜边之间有一定的关系。

二、勾股定理的应用1. 介绍勾股定理的概念和背景。

2. 教授勾股定理的表达形式:在直角三角形中,直角边的平方之和等于斜边的平方。

3. 练习:提供一些直角三角形的边长,要求学生使用勾股定理验证是否成立。

三、直角三角形的三边关系和角度关系1. 讨论直角三角形的三边关系:a. 引导学生观察直角三角形的三边关系。

b. 解释相似三角形的概念,引导学生发现并总结直角三角形的三边关系。

2. 讨论直角三角形的角度关系:a. 解释直角三角形内角的性质:直角三角形的两个锐角之和等于90°。

b. 引导学生推导直角三角形内角的关系。

四、解决实际问题1. 提供一些实际生活中的问题,要求学生使用所学知识解决问题,例如街道的斜率、建筑物的高度等。

第四部分:教学辅助工具及资源1. 直角三角形的图片和图形。

2. 角规、直尺、计算器等几何工具。

第五部分:教学评估1. 利用课堂练习、小组讨论等形式,检查学生在课上学习的掌握情况。

2. 第一次给予及时反馈,帮助学生更好地理解并纠正错误。

第六部分:拓展和延伸1. 提供一些拓展和延伸学习的资源,如相关的数学游戏、练习册等。

2. 鼓励学生通过阅读数学书籍、网络资源等进行更深入地学习。

初中数学教案直角三角形的性质与计算

初中数学教案直角三角形的性质与计算

初中数学教案直角三角形的性质与计算【教案】一、教学目标:1. 了解直角三角形的定义和性质;2. 掌握直角三角形内角和为90°的计算方法;3. 熟练应用勾股定理求解直角三角形的边长。

二、教学重点:1. 直角三角形的定义和性质;2. 直角三角形内角和为90°的计算方法;3. 勾股定理的应用。

三、教学内容:1. 直角三角形的定义和性质直角三角形是指其中一个角度为直角(90°)的三角形。

①直角三角形的特点:直角三角形的两条边相互垂直。

②直角三角形的性质:直角三角形的斜边是其他两条边的最大边,而其他两条边之间存在特殊的关系,即勾股定理。

2. 直角三角形内角和为90°的计算方法直角三角形有一个直角(90°)和两个锐角,三角形内角和为180°。

那么,在直角三角形中的两个锐角的和一定为90°。

3. 勾股定理的应用勾股定理是指在直角三角形中,直角边的平方等于两直角边平方和。

设直角三角形的直角边分别为a、b,斜边长度为c,则有勾股定理:a^2 + b^2 = c^2四、教学过程:1. 导入:通过举例子,引出直角三角形的定义和性质;2. 演示:以标准的直角三角形为例,讲解直角三角形内角和为90°的计算方法;3. 练习:通过多组习题,让学生巩固直角三角形的定义和性质,并掌握计算直角三角形内角和的方法;4. 引导:结合实际问题,说明勾股定理的应用,并教给学生如何应用勾股定理计算直角三角形的边长;5. 练习:通过一些实际问题,让学生运用勾股定理解决直角三角形的边长问题;6. 拓展:介绍勾股定理的推广形式(奇异数的情况);7. 总结:概括直角三角形的性质和计算方法,并复习重点内容;8. 小结:向学生总结本节课的要点,并提醒学生预习下节课内容。

五、教学辅助材料:1. 直角三角形图片和示意图;2. 直角三角形的计算题目。

六、教学评价:通过观察学生在课堂练习中的表现,检查学生对直角三角形性质的理解以及计算方法的掌握情况。

初中数学_认识三角形教学设计学情分析教材分析课后反思

初中数学_认识三角形教学设计学情分析教材分析课后反思

第四章三角形1认识三角形(第1课时)一、教材分析本节课是在小学初步认识三角形的基础上,又具体介绍了三角形的有关概念和三角形三个内角的和是180°的关系。

它既是上学期所学线段和角的延续,又是后继学习全等三角形和四边形的基础,在知识体系上具有承上启下的作用.这部分内容主要帮助学生初步形成三角形的概念,体验和理解三角形内角和定理的内容.直角三角形的性质是三角形内角和定理的内容。

直角三角形的性质是三角形内角和定理的延伸,是以后学习“解直角三角形”必备的基础;直角三角形判定是平面几何中证明垂直问题的一个常用工具;直角三角形两锐角互余和两锐角互余的三角形是直角三角形这两个定理的探究形式体现了由几何实验到几何论证的研究过程.二、学情分析学生的知识技能基础:学生在小学已经学习了有关三角形的一些初步知识,能在生活中抽象出三角形的几何图形,并能给出三角形的简单概念及一些相关概念.但不够严密,教师要在教学中指出,并要相对严密地给出概念.学生在第二章对两直线平行的条件以及平行线的特征进行了探索,使学生具备了利用平行线的结论得出三角形内角和的结论的基本知识和基本技能.对特殊的直角三角形的两个锐角关系,利用三角形的内角和定理进行了验证和运用,让学生体会到我们熟悉的直角三角形的性质和判定,最后通过习题巩固三角形内角和知识,培养学生思维的广阔性.学生的活动经验基础:学生在以前的几何学习过程中,已对图形的概念、线段及角的表示法、线段的测量等有了一定的认识,为认识三角形概念、表示法的学习奠定了基础.在小学学习三角形的内角和的结论时是通过撕、拼的方法得到的,具备了直观操作的经验,同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力.三、教学目标分析让学生掌握三角形的概念,能指出三角形的顶点、边、角等基本元素,能用适当的符号表示三角形以及这些基本元素;经历探索、验证“三角形内角和等于180°”的活动过程,获得一定的推理活动经验;能应用三角形内角和定理解决一些简单的问题;能运用直角三角形两锐角互余的性质解决简单的问题;会按角的大小关系对三角形分类,能判断出给定三角形的形状.基于此,本节课的教学目标是:(1)知识与技能:通过观察、操作、想象、推理“三角形内角和等于180°”的活动过程,发展空间观念,推理能力和有条理地表达能力.(2)过程与方法:让学生在数学活动中通过相互间的合作与交流,培养学生的相互协作意识及数学表达能力.(3)情感与态度:在探究学习中体会数学的现实意义,培养学习数学的信心,体验解决问题方法的多样性.四、教学设计分析本节课设计了八个教学环节:第一环节:情境引入;第二环节:概念讲解;第三环节:合作学习;第四环节:猜角游戏;第五环节:巩固练习;第六环节:课堂小结;第七环节:达标检测;第八环节:布置作业.第一环节情境引入活动内容:设计找相同游戏,让学生在生活中的图片中找出有关三角形.活动目的:使学生能从生活中抽象出几何图形 ,感受到我们生活在几何图形的世界之中. 培养学生善于观察生活、乐于探索研究的学习品质,在课堂上用源于生活实际的图片展开教学,从而更大地激发学生学习数学的兴趣.实际教学效果:学生能很好的找出生活中的三角形的实例,如斜拉桥、塔吊、自行车的大梁、房屋等,这些充分体现了学生走进生活、感受数学的高涨热情.第二环节概念讲解活动内容:参照教材提供的屋顶框架图,提出问题(1)你能从中找出四个不同的三角形吗?(自己添加字母)(2)这些三角形有什么共同的特点?活动目的: 通过上题的分析引导学生归纳三角形的概念、基本要素(边、角、顶点),体会用符号表示三角形的必要性,培养学生观察分析能力及归纳总结的能力,设计添加字母,是为了考查学生对于点的表示方法的掌握.实际教学效果:学生对三角形的概念已牢固掌握并能熟练应用,能在图中找出三角形的个数.第三环节 合作学习活动内容:以4人合作小组为单位,充分利用课前准备的任意三角形纸片,探索验证三角形内角和为180°的方法.然后各小组选派代表展示设计的方案并陈述理由.活动目的:学生在探究过程中,教师到各小组巡回指导,参与他们的讨论,鼓励他们提出疑问,但是并不急于评判他们的答案,而是有针对性的启发和指导,引导学生在操作中自觉思考:能否利用平行线的有关事实说明理由,让学生们主动思考,团结协作的释疑. 在这一环节中一方面充分利用学生已有的知识和经验,另一方面使学生通过多角度思考、分析、说理、操作加深学生对三角形内角和为180°的理解,从而突出和解决了本节课的重点,同时在教学中注重在直观操作的基础上进行简单的推理,使学生学会用一定的方式有条理地表达推理过程,为今后的几何证明打下基础.实际教学效果:通过小组讨论、展台演示等手段,激发了学生学习的兴趣,创设师生间民主、互动的学习氛围,为每一个学生创设了平等参与学习的机会.通过合作交流,使学生在横向交流中各尽所能,取长补短,各有所获,在交往互动中共同发展.附学生设计验证方法: 斜梁 斜梁横梁第四环节猜角游戏活动内容:1、教师借助下图提出问题:(1)下面的图(1)、图(2)、图(3)中的三角形被遮住的两个内角是什么角?试着说明理由.(2)将图(3)的结果与图(1)、图(2)的结果进行比较,可以将三角形如何按角分类?2、进一步学习上述游戏活动中得出的直角三角形的相关知识——直角三角形的符号、斜边、直角边,并提出问题:直角三角形有许多性质,你能发现它的两个锐角之间有什么关系吗?从而引导学生发现直角三角形两个锐角互余.活动目的:通过第1个活动,使学生从游戏中归纳出根据三角形内角的大小只能把三角形分成三类.然后让学生任意说出三角形的两个内角的度数,请其他同学说出是什么三角形.通过对三角形分类的学习,使学生了解数学分类的基本思想.当只露出一个内角为锐角时,引导学生发现三种情况都是可以的,即两个锐角,一个锐角一个直角,一个钝角一个锐角,从而使学生初步体会反证法的思想,为后面进一步研究反证法奠定基础.第2个活动是学生在理解三角形内角和为180°之后的延伸——直角三角形的符号、斜边、直角边以及直角三角形两个锐角互余,培养学生良好的学习习惯,提高学生灵活运用所学知识的能力.实际教学效果:通过在游戏中对问题的解决,使学生有成就感,树立了学好数学的信心.学生通过游戏活动,发现三角形三个角之间的关系与三角形的具体形状无本质关系,特殊三角形的特殊性质与其形状有关——直角三角形两个锐角互余.第五环节巩固练习活动内容:在这个环节设计了想一想、随堂练习想一想1、观察下图中的三角形,你能够按角将它们的形状分类吗?随堂练习2.一个三角形两个内角的度数分别如下,这个三角形是什么三角形?(1)30度和60度(2)40度和70度(3)50度和20度活动目的:关于练习的安排是考查学生对于三角形分类及内角和定理的.实际教学效果:学生够积极参与,顺利解决这两题.第六环节课堂小结活动内容:引导学生进行小结活动目的:鼓励学生结合本节课的学习谈自己的收获与感想,包括三角形的内角和为180°,直角三角形的表示法及有关概念,直角三角形两锐角互余,三角形按角分类.实际教学效果:学生通过自己的思考、归纳、总结本节课所学的知识要点,并敢于提出问题,说出自己的困惑,使学生带着问题走进课堂,又带着思索走出课堂,不仅激发了学生的学习兴趣,而且使数学学习延伸到课外.第七环节达标检测活动内容:设计六道难易程度不一样的题目。

初中数学《全等三角形》教案优秀6篇

初中数学《全等三角形》教案优秀6篇
课前准备全等三角形纸片、三角板、
教学过程
一、创设情境,导入新课
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边。
(2)到目前为止,可
2.两角和其中一角的对边。
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
2、把下列各式化成最简二次根式:
六、作业
教材P、187习题11、4;A组1;B组1、
七、板书设计
数学全等三角形教案篇四
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
1、被开方数的因数是整数,因式是整式、
2、被开方数中不含能开得尽方的'因数或因式、
例1?指出下列根式中的最简二次根式,并说明为什么、
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、
例2?把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、

新人教版九年级数学三角函数教案5篇

新人教版九年级数学三角函数教案5篇

新人教版九年级数学三角函数教案5篇新人教版九年级数学三角函数教案1教学目的1,使学生了解本章所要解决的新问题是:已知直角三角形的一条边和另一个元素(一边或一锐角),求这个直角三角形的其他元素。

2,使学生了解“在直角三角形中,当锐角A取固定值时,它的对边与斜边的比值也是一个固定值。

重点、难点、关键1,重点:正弦的概念。

2,难点:正弦的概念。

3,关键:相似三角形对应边成比例的性质。

教学过程一、复习提问1、什么叫直角三角形2,如果直角三角形ABC中∠C为直角,它的直角边是什么斜边是什么这个直角三角形可用什么记号来表示二、新授1,让学生阅读教科书第一页上的插图和引例,然后回答问题:(1)这个有关测量的实际问题有什么特点(有一个重要的测量点不可能到达)(2)把这个实际问题转化为数学模型后,其图形是什么图形(直角三角形)(3)显然本例不能用勾股定理求解,那么能不能根据已知条件,在地面上或纸上画出另一个与它全等的直角三角形,并在这个全等图形上进行测量(不一定能,因为斜边即水管的长度是一个较大的数值,这样做就需要较大面积的平地或纸张,再说画图也不方便。

)(4)这个实际问题可归结为怎样的数学问题(在Rt△ABC中,已知锐角A和斜边求∠A的对边BC。

)但由于∠A不一定是特殊角,难以运用学过的定理来证明BC的长度,因此考虑能否通过式子变形和计算来求得BC的值。

2,在RT△ABC中,∠C=900,∠A=300,不管三角尺大小如何,∠A的对边与斜边的比值都等于1/2,根据这个比值,已知斜边AB的长,就能算出∠A的对边BC的长。

类似地,在所有等腰的那块三角尺中,由勾股定理可得∠A的对边/斜边=BC/AB=BC/=1/=/2 这就是说,当∠A=450时,∠A的对边与斜边的比值等于/2,根据这个比值,已知斜边AB的长,就能算出∠A的对边BC的长。

那么,当锐角A取其他固定值时,∠A的对边与斜边的比值能否也是一个固定值呢(引导学生回答;在这些直角三角形中,∠A的.对边与斜边的比值仍是一个固定值。

初中数学教案:认识三角形(2021年浙教版)

初中数学教案:认识三角形(2021年浙教版)

1.1认识三角形第1课时班级姓名学习目标:1、结合具体实例,进一步认识三角形的概念及基本要素。

2、理解三角形三边关系的性质,并会初步应用它们来解决问题。

3、通过观察、操作、想象、推理、交流等活动,发展空间观念和推理能力。

学习重点:三角形的有关概念及三角形三边关系的性质。

学习难点:判断三条线段能否组成三角形,过程较为复杂,是本节教学的难点一.课前预学在这座铁塔上我们可以看到许多三角形的支架,你能举出在生活中看到的三角形的例子吗?那么,怎样的图形叫做三角形呢?二、课中导学【想一想】什么是三角形?三角形:________________________________________________________________【想一想】如何表示三角形?AB C“三角形”可以用符号“____________”表示如图中顶点是A,B,C 的三角形,记作“____________ ”.读作“____________”【想一想】三角形的角可以怎么表示?AB C三角形的内角:_______________________________________如图:三角形有三个角:_________________________【想一想】三角形的边可以怎么表示?AB C a b c如图三角形中三边可表示为______________________,【思考】三角形的三个内角有什么关系?回顾我们小学做过的剪拼,你是怎样操作的?所以三角形的内角有以下性质:_____________________________________________【做一做】(1)说出图中所有的三角形,以及每一个三角形的三条边和三个内角A(2)若∠A=40°,∠C=60°,求∠ABC 的度数。

【思考】三角形怎样分类?想一想:怎样判断一个三角形的形状_______________________________________________________________________________________ _______________________________________________________________________________________ _____________________________________________________________________________________ 三角形三边关系:文字表述:__________________________________________________几何语言:___________________________________________________________________________________________________________________________________________________________【例1】判断下列各组线段中,哪些首尾相接能组成三角形,哪些不能组成三角形,并说明理由.(1)a=2.5 cm,b=3cm,c=5cm(2)e=6.3cm,f=6.3cm,g=12.6cm计算每个三角形的任意两边之差,并与第三边比较,你能得到什么结论?小组交流。

初中三角形全等公开课教案

初中三角形全等公开课教案

初中三角形全等公开课教案教学目标:1. 知识与技能:理解并掌握三角形全等的概念及性质。

2. 过程与方法:经历观察、操作、测量等探究活动,增强动手能力和解决问题的能力。

3. 情感、态度价值观:感受生活中的数学,体会数学的魅力,从而激发学习数学的兴趣,获得成功的情感体验。

教学重难点:1. 教学重点:三角形全等的概念与性质。

2. 教学难点:三角形全等的性质。

教学过程:一、导入新课1. 图片导入:展示一些生活中的全等图形,如全等的三角形、正方形等。

2. 提问:这些图形有什么特点?它们能够完全重合,形状和大小完全相同。

3. 引导学生思考:为什么我们会说这些图形是全等的呢?二、讲解新知1. 操作观察,得出概念a. 给学生分发纸板,请他们将各自的三角尺按在纸板上,画下图形,并裁下。

b. 提问:照图形裁下来的纸板和三角尺的形状、大小完全一样吗?把三角尺和裁得的纸板放在一起能够完全重合吗?c. 预设:形状大小完全一样,能完全重合。

d. 多媒体上展示用同一张底片冲洗出来的两张尺寸大小一样的照片,请学生观察,放在一起是否也能完全重合。

e. 教师总结全等形和全等三角形的概念。

2. 平移、翻折、旋转,对应关系a. 小组活动:对一个三角形作出平移、翻折、旋转三种变换,然后动手操作进行探究,看看对于变换前后的两个三角形是否全等。

b. 学生汇报探究结果,教师引导学生总结三角形全等的性质。

三、巩固练习1. 让学生独立完成一些关于三角形全等的练习题,巩固所学知识。

2. 教师选取一些学生的作业进行点评,解答学生的疑问。

四、课堂小结1. 让学生回顾本节课所学的内容,总结三角形全等的概念和性质。

2. 强调三角形全等在实际生活中的应用价值。

五、课后作业1. 请学生总结三角形全等的性质,并写在日记中。

2. 设计一些关于三角形全等的习题,提高学生的解题能力。

教学反思:本节课通过图片导入、操作观察、小组活动等方式,让学生直观地理解了三角形全等的概念和性质。

初中数学三角形教案(7篇)

初中数学三角形教案(7篇)

初中数学三角形教案(7篇)一、教材分析本节教材是学生对小学阶段三角形有初步了解的根底上进一步熟悉三角形的特点和性质。

三角形是最简洁、最根本,很常见的一种几何图形,在工农业生产和日常生活中有广泛的应用价值。

对学生更好地熟悉现实世界,拓展空间观念都有特别重要的作用,同时对今后学习三角形全等、相像和解直角三解形,解决相关的实际问题,都有不行低估的作用。

二、教学目标1、结合实物和图形理解三角形定义2、找到全部三角形的共同特点。

3、会用三角形顶点的三个大写字母和形象符号(“△”)来记一个三角形。

4、初步了解任意三角形三边之间的大小关系。

5、能应用所学学问解决日常生活中与三角形有关的实际问题。

6、初步感受三角形简洁、广泛地适用性。

7、培育学生动手、动脑、合作、沟通、探究意识。

三、教学重难点重点:三角形共同特点的理解及三角形三边关系性质的理解。

难点:应用三边关系性质解决简章的实际问题。

四、教具及材料预备三角板、实物的三角形、包装带、剪刀、头钉、白纸、透亮胶等(师生同备)五、学生状况及教学构思七年级学生年龄较小,思维正处在由详细形象思维向抽象规律思维转化的阶段,针对这一特点,在教学中设计了以下教学环节:从实际动身说三角形、找三角形、记三角形、画三角形、算三角形、感悟三角形、剪三角形、做三角形、小结三角形的教学环节。

六、教学实施1、师:在小学我们进一步了解了三角形,今日我们在一起进一步熟悉三角形的定义、记法及其相关性质,随之在黑板上板书课题(1熟悉三角形)哪位同学能列举日常生活中与三角形有关的实例(同学们争先举手答问)。

生:像铁塔,空调器支架、铁桥、教室里饮水机支架、屋顶支架等都是由很多三角形构成的。

师:在黑板上画出同学熟识的屋顶框架图。

2、师:既然小到生活小事,大到交通、建筑等随处可见三角形的图形,那么三角形有哪些共同特点呢?甲生:每一个三角形都有三个内角,三个顶点。

乙生:每一个三角形都由三条线段组成。

丙生:任意三角形的三内角之和都等于180°。

初中数学三角形教案设计:提高学生对三角形的认识和应用能力

初中数学三角形教案设计:提高学生对三角形的认识和应用能力

初中数学三角形教案设计:提高学生对三角形的认识和应用能力一、教学目标本教案的教学目标是:通过讲解三角形基础知识,让学生了解三角形的定义、性质和分类方法,掌握常规三角形的面积、周长、角度等计算公式,同时培养学生对应用型问题的分析能力和解决问题的方法。

二、教学重难点本教案的教学重点是:让学生掌握三角形的基础知识,如三角形的定义、性质和分类方法,学习各种不同类型的三角形。

教学难点是:让学生掌握三角形应用问题的分析和解决方法。

三、教学内容1、三角形的定义和泰勒定理三角形的定义:平面上的三点A、B、C,连成的三条线段就是三角形ABC。

其中,AB、BC、CA称为三角形ABC的三边,而∠A、∠B、∠C则称为三角形ABC的三角。

泰勒定理:若O为任意一点,O到三角形任意一顶点的距离分别为a、b、c,则有公式:cosA=(b²+c²-a²)/2bc,cosB=(a²+c²-b²)/2ac,cosC=(a²+b²-c²)/2ab2三角形的性质(1)三角形三边之和等于180度。

(2)三角形的任意两边之和大于第三边。

(3)三角形三角公式,即面积S=1/2bh。

(4)等腰三角形的底角和顶角相等。

(5)等边三角形的三个角都是60度。

(6)直角三角形的斜边平方等于两直角边平方的和:c²=a²+b²。

3、三角形的分类(1)根据三边的长度进行分类:①等边三角形:三边相等。

②等腰三角形:两边相等。

③普通三角形:三边都不相等。

(2)根据三个角的大小进行分类:①直角三角形:一个角是90°。

②锐角三角形:三个角都小于90°。

③钝角三角形:一个角大于90°。

4、三角形的计算公式(1)三角形的周长P=a+b+c。

(2)三角形的面积S=1/2bh。

(3)正弦定理:a/sinA=b/sinB=c/sinC=2R,其中的R为三角形外接圆的半径。

初中数学《3.1 认识三角形》教案1word版

初中数学《3.1 认识三角形》教案1word版

《3.1认识三角形》教案教学目标:1.知识与技能结合具体实例,进一步认识三角形的概念,掌握三角形三条边的关系.2.过程与方法通过观察、操作、想象、推理、交流等活动,发展空间观念,推理能力和有条理地表达能力. 3.情感、态度与价值观联系学生的生活环境、创设情景,帮助学生树立几何知识源于实际、用于实际的观念,激发学生的学习兴趣.教学重点难点:1.重点让学生掌握三角形的概念及三角形的三边关系,并能运用三边关系解决生活中的实际问题.2.难点探究三角形的三边关系应用三边关系解决生活中的实际问题.教学设计:本节课件设计了以下几个环节:回顾与思考、情境引入、三角形的概念、探索三角形三边关系、练习应用、课堂小结、探究拓展思考、布置作业.第一环节回顾与思考1、如何表示线段、射线和直线?2、如何表示一个角?第二环节情境引入活动内容:让学生收集生活中有关三角形的图片,课上让学生举例,并观察图片.活动目的:让学生能从生活中抽象出几何图形,感受到我们生活在几何图形的世界之中.培养学生善于观察生活、乐于探索研究的学习品质,从而更大地激发学生学习数学的兴趣第三环节三角形概念的讲解活动内容观察下面的屋顶框架图,回答如下问题(1)你能从中找出四个不同的三角形吗?(2)与你的同伴交流各自找到的三角形.(3)这些三角形有什么共同的特点?通过上题的分析引出三角形的概念、三角形的表示方法及三角形的边角的表示方法.并出两道习题加以练习,从练习中归纳出三角形的三要素和注意事项.第四环节探索三角形三边关系第一部分探索三角形的任意两边之和大于第三边活动内容:在四根长度分别是8cm 、10cm 、15cm 、20cm 的小木棒中选三根木棒摆三角形.学生统计能否摆成三角形的情况.第二部分探索三角形的任意两边之差小于第三边活动内容:通过让学生测量任意三角形三边长度来比较两边之差与第三边的关系,教师通过几何画板验证,从而得出结论.第五环节练习提高活动内容:1.有两根长度分别为5厘米和8厘米的木棒,用长度为2厘米的木棒与它们能摆成三角形吗?为什么?长度为13厘米的木棒呢?2.如果三角形的两边长分别是2和4,且第三边是奇数,那么第三边长为.若第三边为偶数,那么三角形的周长.3.有两根长度分别为5cm 和8cm 的木棒,用长度为2cm 的木棒与它们能摆成三角形吗?为什么?长度为13cm 的木棒呢?动手摆一摆.学生回答完上面问题后想一想能取一根木棒与原来的两根木棒摆成三角形吗?第六环节课堂小结活动内容:学生自我谈收获体会,说说学完本节课的困惑.教师做最终总结并指出注意事项. 学生对本节内容归纳为以下两点:1.了解了三角形的概念及表示方法;2.三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边.注意事项为:判断a ,b ,c 三条线段能否组成一个三角形,应注意:a +b >c ,a +c >b ,b +c >a 三个条件缺一不可.当a 是a ,b ,c 三条线段中最长的一条时,只要b +c >a 就是任意两条线段的和大于第三边.斜梁 斜梁直梁。

数学初中教案:三角形的性质和判定

数学初中教案:三角形的性质和判定

数学初中教案:三角形的性质和判定一、三角形的性质1. 三角形的定义和分类三角形是由三条线段组成的图形,其中每两条线段之间都相交于一个端点。

根据三个内角的大小关系,可以将三角形分为锐角三角形、直角三角形和钝角三角形。

2. 三角形内外角关系任意一个三角形,其内角之和始终等于180度。

这意味着如果一个内角为90度,则其他两个内角之和必然为90度。

根据这个性质可以判定一个三角形是否为直角三角形。

3. 等边三角形等边三角形是指具有3条相等边长的三角形。

在等边三情况下,它的3个内心均为重心坐标,3个内夹紧都是60度。

由于它的特殊性质,我们可以通过观察边长是否相等来判定一个图案是否为等边。

4. 等腰三划分等腰可被划分为以下方面:I) 内部到底:高所在两侧两底得出获同样长度;II)60º平分线:从基底中间画一斜向上的射线;III)高:从顶点到底线垂直的线;根据这些性质,我们可以用它功能了来判定一个图形是否具备等腰三角形的特征。

二、三角形的判定1. 任意两边之和大于第三边设三角形的三边分别为a、b、c,那么满足条件a+b>c、a+c>b 和 b+c>a则可以断定该图案是一个三角形。

如果不满足这个条件,则无法构成一个三角形。

2. 直角三角形判定根据勾股定理,直角三角形的两条直角边平方和等于斜边平方。

因此如果已知3条边长,可以通过计算来判断是否构成直角三角形。

此外,如果某个内角为90度,则也可以确定该图案是一个直角三解题思?3. 等腰/等边/等腰等比例问题:I) 内底:底所在端实际长度相同II) 顶线:从顶点画一向下推进的射线。

III)60º平分:从顶点与基地中间心产生一个斜着相反的量线。

鉴于上述性质表现出如下结果:-当2天长度大小相同,并且顶部夹紧为60度时,我们可以确定一个等腰分组。

-当3端实践长度均相同时,可以确定图形为等边区域。

-当内底为同样大小及上界具有60度角度时,我们可以判定图案为一个等腰/锐角三高。

数学初中教案:三角形的性质和判定

数学初中教案:三角形的性质和判定

数学初中教案:三角形的性质和判定一、三角形的性质三角形是初中数学中的重要概念,它具有丰富的性质和判定条件。

在本教案中,我们将学习三角形的基本性质,包括角的性质、边的性质,以及根据这些性质判断三角形的方法。

1. 角的性质在一个三角形中,各个内角的和为180°。

这是三角形最基本的性质之一,也是我们确定一个三角形的关键条件之一。

除了三角形内角和为180°之外,我们还需要了解三角形内角的其他性质。

首先,等腰三角形的顶角相等,等腰三角形是指两条边相等的三角形;其次,等边三角形的三个内角都相等,等边三角形是指三条边都相等的三角形。

2. 边的性质三角形边的性质也是我们需要了解的重要内容。

首先,三角形的任意两边之和大于第三边,这是三角形存在的必要条件。

其次,等腰三角形的底边上的两个角相等,等边三角形的三条边都相等。

了解了三角形的角性质和边性质,我们就可以通过观察三角形的边长和角度,判断一个图形是否为三角形。

二、判断三角形的方法在本节中,我们将学习如何根据已知条件判断一个图形是否为三角形。

1. 由三条边判定三角形我们已经知道,一个图形是否为三角形,需要满足任意两边之和大于第三边的条件。

因此,判断一个图形是否为三角形的最简单方法就是比较三条边长。

2. 由两边及夹角判定三角形除了比较三条边长外,我们还可以根据已知的两边和夹角来判断一个图形是否为三角形。

首先,如果已知两边相等,且夹角相等,那么这个图形就是等腰三角形;其次,如果已知两边相等,但夹角不相等,那么这个图形就是普通的三角形;最后,如果已知两边不相等,那么这个图形不是三角形。

3. 由两个角及夹边判定三角形最后,我们还可以根据已知的两个角和夹边来判断一个图形是否为三角形。

如果已知两个角的大小,且夹边长度满足大边对大角,小边对小角的关系,那么这个图形就是三角形。

如果已知两个角的大小,但夹边的长度不满足上述关系,那么这个图形不是三角形。

通过学习以上方法,我们可以灵活地判断一个图形是否为三角形,从而加深对三角形性质和判定方法的理解。

全等三角形教案【优秀7篇】

全等三角形教案【优秀7篇】

全等三角形教案【优秀7篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!全等三角形教案【优秀7篇】在教学工作者开展教学活动前,时常会需要准备好教案,教案是教学活动的总的组织纲领和行动方案。

初中数学初二数学上册《直角三角形全等的判定》教案、教学设计

初中数学初二数学上册《直角三角形全等的判定》教案、教学设计
5.教学环境:
-创设轻松愉快的学习氛围,鼓励学生积极参与,勇于提问,敢于表达。
-建立良好的班级纪律,保证课堂教学的有序进行。
-利用学校教学资源,如数学实验室、多媒体教室等,为学生提供丰富的学习资源。
四、教学内容与过程
(一)导入新课
在导入环节,我将采用生活实例引发学生对直角三角形全等判定方法的思考。首先,我会向学生展示一张由两个直角三角形组成的楼梯图片,并提出问题:“如何判断这两个直角三角形是否全等?”让学生在观察图片的基础上,尝试回答问题。接着,我会让学生拿出提前准备好的两个直角三角形纸片,进行实际操作,观察、思考如何判断它们是否全等。
(二)讲授新知
在讲授新知环节,我会按照以下步骤进行:
1.复习全等三角形的判定方法,引导学生回顾SSS、SAS、ASA、AAS等判定方法。
2.引导学生观察直角三角形的特殊性,即有一个角是直角,从而得出直角三角形的全等判定方法。
3.逐一讲解直角三角形全等的五种判定方法(SSS、SAS、ASA、AAS、HL),并结合实例进行说明。
4.教学步骤:
-导入:通过生活中的直角三角形实例,引发学生思考,激发学习兴趣。
-探究:引导学生复习全等三角形的判定方法,自主探究直角三角形全等的判定方法。
-讲解:结合实例,详细讲解五种判定方法的适用条件,帮助学生理解和记忆。
-应用:设计不同难度的练习题,让学生在实际操作中巩固所学知识。
-总结:通过师生共同总结,梳理本节课的知识点,形成知识网络。
此外,初二学生的抽象思维能力逐渐增强,他们对于直观、具体的实例更容易产生兴趣。因此,在本章节的教学中,教师应充分关注学生的认知特点,结合实际情境,激发学生的学习兴趣,帮助他们建立清晰的知识体系。
同时,初二学生正处于青春期,个体差异较大,学习态度、学习习惯等方面存在一定差异。教师需针对不同学生的特点,因材施教,使每个学生都能在原有基础上得到提高,从而提高整体教学效果。在此基础上,注重培养学生的团队合作精神,让学生在交流与合作中共同进步。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形复习教案
教学目标1、理解并掌握三角形及三角形的重要线段的概念;
2、掌握三角形的三边间的关系;
3、会利用三角形的内角和定理及外角公式计算角度。

难点重点1、熟练掌握三角形的三条重要线段;
2、会灵活运用内角和定理及外角公式计算角度
一、知识点梳理
(1) 三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.
(2) 三角形的分类. ⎪⎩⎪⎨⎧钝角三角形直角三角形锐角三角形 ⎪⎪⎩⎪⎪⎨⎧)
(等边三角形等腰三角形不等边三角形 (3) 三角形的三边关系:
三角形任意两边之和大于第三边,任意两边之差小于第三边.
(4) 三角形的重要线段
①三角形的中线:顶点与对边中点的连线,三条中线交点叫重心
②三角形的角平分线:内角平分线与对边相交,顶点和交点间的线段,三个角的角平分线的交点叫内心
③三角形的高:顶点向对边作垂线,顶点和垂足间的线段.三条高的交点叫垂心(分锐角三角形,钝角三角形和直角三角形的交点的位置不同)
(5)三角形具有稳定性
(6)三角形的内角和定理及性质
定理:三角形的内角和等于180°.
推论1:直角三角形的两个锐角互补。

推论2:三角形的一个外角等于不相邻的两个内角的和。

推论3:三角形的一个外角大于与它不相邻的任何一个内角。

(7)多边形的外角和恒为360°。

二、典例分析
例1 一个三角形的两边长分别为2和9,第三边为奇数,则此三角形的周长是多少?(三边关系:判定能否成三角形;求线段的取值范围;证明线段的不等关系)
针对性练习:若一个等腰三角形的周长为17cm ,一边长为3cm ,则它的另一边长是 。

三角形 (按角分) 三角形 (按边分)
例2如图,已知ABC ∆中,ACB ABC ∠∠和 的角平分线BD,CE 相交于点 O,且 60=∠A 求的度数BOC ∠。

(内角和定理)
思考:若 n A =∠,则BOC ∠的度数为多少?
例3 如图,BP 平分∠FBC ,CP 平分∠ECB ,∠A=40°求∠BPC 的度数。

例4 如图,AD 是ABC ∆的中线,DE=2AE.若ABE ABC S cm S △△求,242=
例5:已知一个多边形的每个外角都是其相邻内角度数的1/4,求这个多边形的边数。

(内角和与外角和、用方程解)
一个正多边形的每一个内角和都等于1200,求它的边数。

A C E
P B 4 2 1
3 F
正多边形与镶嵌
例6 用正三角形、正方形、正六边形能否进行镶嵌?
思路分析:可以进行镶嵌的条件是:一个顶点各个内角和是360°。

三、本章思想方法:
1、方程思想
例7 已知:在ABC ∆中,∠C=∠ABC ,BE ⊥AC ,BDE ∆是正三角形,求∠C 的度数。

2、化归思想:(证明线段的平行问题,常转化为证明角相等或互补来解决)
例8:如图,∠B=42°,∠A+10°=∠1,∠ACD=64°,求证:AB ∥CD 。

D C
A B
针对性练习:
1、能把一个任意三角形分成面积相等的两个三角形的线段是三角形的( )
A 、角平分线
B 、中线
C 、高
D 、两边中点连线
2、如图2,在ABC ∆中,点D 、E 、F 分别是BC 、AD 、CE 的中点,且24cm S ABC =△,则BEF
S △的值为 。

A.2cm 2
B.1cm 2
C.12cm 2
D.14cm 2
3、ABC ∆中,AB=AC.周长为16cm.AC 边上的中线BD 将ABC ∆分成周长之差为2cm 的两个三角形.求ABC ∆的各边长.
图2
反馈练习:
1、下面四个图形中,线段BE是⊿ABC的高的图是()
A. B. C. D.
2.如图所示,在△ABC中,∠ACB=90°,把△ABC沿直线AC翻折180°,使点B 落在点B′的位置,则线段AC具有性质( )
A.是边BB′上的中线
B.是边BB′上的高
C.是∠BAB′的角平分线
D.以上三种
3、有下列长度的三条线段,能组成三角形的是( )
A.1cm,2cm,3cm
B.1cm,2cm,4cm;
C.2cm,3cm,4cm
D.2cm,3cm,6cm
4、已知等腰三角形的两边长分别为3和6,则它的周长为( )
A.9
B.12
C.15
D.12或15
5、如果三角形的三个内角的度数比是2:3:4,则它是( )
A.锐角三角形
B.钝角三角形;
C.直角三角形
D.钝角或直角三角形
6、已知△ABC中,∠A=2(∠B+∠C),则∠A的度数为( )
A.100°
B.120°
C.140°
D.160°
7、在△ABC中,∠B,∠C的平分线交于点O,若∠BOC=132°,则
∠A=_______度.
8、如图所示,在△ABC中,AD⊥BC于D,AE平分∠BAC,且∠B=36°,
∠C=76°,求∠EAD的度数。

9、如图,已知DE分别交△ABC的边AB、AC于点D、E,交BC的延长线于点F,∠B=63°,∠ACB=75°,∠AED=46°,求∠BDF的度数。

B
C
E
B
C
B
A
C
E
B
A
C
E
B'
C
A。

相关文档
最新文档