最新四年级行程问题之一(相遇问题)

合集下载

行程问题(一)相遇问题

行程问题(一)相遇问题

行程问题(一)基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系.基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间平均速度=总路程÷总时间相遇问题:速度和×相遇时间=相遇路程追及问题:追及时间=路程差÷速度差流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2例1 两地相距360千米,一艘汽艇顺水行全程需要10小时,已知这条河的水流速度为每小时6千米。

往返两地的平均速度是每小时多少千米?1.有一条山路,一辆汽车上山时每小时行30千米,从原路返回下山时每小时行50千米,求汽车上、下山的平均速度。

2.甲、乙两个码头相距144千米,汽船从乙码头逆水行驶8小时到达甲码头,已知汽船在静水中每小时行驶21千米。

求汽船从甲码头顺流行驶几小时到达乙码头?3,甲船逆水航行300千米,需要15小时,返回原地需要10小时;乙船逆水航行同样的一段水路需要20小时,返回原地需要多少小时?例2 甲、乙两车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

两车在距中点32千米处相遇,东、西两地相距多少千米?1,小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫出发,相向而行,并在离中点120米处相遇。

学校到少年宫有多少米?2,甲、乙二人同时从东村到西村,甲每分钟行120米,乙每分钟行100米,结果甲比乙早5分钟到达西村。

东村到西村的路程是多少米?例3 快车和慢车同时从甲、乙两地相向开出,乙车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。

慢车每小时行多少千米?1,兄弟二人同时从学校和家中出发,相向而行。

含答案】四年级奥数行程问题精选练习(相遇、追及)

含答案】四年级奥数行程问题精选练习(相遇、追及)

含答案】四年级奥数行程问题精选练习(相遇、追及)小牛老师工作室精华讲义:小学奥数行程问题知识点一:相遇问题1.两辆汽车同时从相距325千米的两地相对开出。

甲车速度为35千米/时,乙车速度为30千米/时。

当甲、乙两车相遇时,它们各行驶了多少千米?解答:两车相对速度为35+30=65千米/时。

根据相遇问题,它们行驶的总时间相等,所以它们各行驶了325/2=162.5千米。

2.高小帅家距离学校3000米。

小帅妈妈从家出发接小帅放学,小帅也要从学校回家。

他们同时出发。

小帅妈妈每分钟比小帅多走24米。

30分钟后两人相遇。

那么小帅的速度是多少?解答:设小帅速度为v,则小帅妈妈速度为v+24.根据相遇问题,它们行驶的总时间相等,所以小帅行驶了30v米,小帅妈妈行驶了30(v+24)米。

因为两人相遇,所以它们行驶的总路程为3000米,即30v+30(v+24)=3000,解得v=48米/分钟,即小帅的速度为48/60=0.8米/秒。

3.甲、乙两辆汽车分别从A、B两地相对而行。

已知甲车的速度为38千米/时,乙车的速度为40千米/时。

甲车先行2小时后,乙车才开始出发,乙车行驶5小时后两车相遇。

求A、B两地的距离。

解答:设A、B两地的距离为d。

则甲车行驶了d+2×38千米,乙车行驶了5×40千米。

因为它们相遇,所以它们行驶的总路程相等,即d+2×38+5×40=2×38+5×40+d,解得d=342千米。

4.两列城际列车从两城同时相对开出,其中一列车的速度为40千米/时,另一列车的速度为45千米/时。

在行驶途中,两列车先后各停车4次,每次停车15分钟。

这样经过7小时后两车相遇。

求两城的距离。

解答:设两城的距离为d。

则两车相对速度为40+45=85千米/时。

因为两车在行驶途中各停车4次,所以它们行驶的总时间为7小时-4×4×15分钟=6.4小时。

(完整版)相遇问题与追及问题

(完整版)相遇问题与追及问题

相遇与追及问题一、学习目标1.理解相遇与追及的运动模型,掌握相遇与追及这两种情况下路程、时间、速度这三个基本量之间的关系.会利用这个关系来解决一些简单的行程问题.2.体会数形结合的数学思想方法.二、主要内容1.行程问题的基本数量关系式:路程二时间X速度;速度二路程F时间;时间二路程F速度.2.相遇问题的数量关系式:相遇路程二相遇时间X速度和;速度和二相遇路程F相遇时间;相遇时间二相遇路程F速度和.3.追及问题的数量关系式:追及距离二追及时间X速度差;速度差二追及距离F追及时间;追及时间二追及距离F速度差.4.能熟练运用路程、时间、速度这三个基本量的关系,结合图形分析,解决一些简单的行程问题.三、例题选讲例1两辆汽车同时分别从相距500千米的A,B两地出发,相向而行,速度分别为每小时40千米和每小时60千米.求几小时后两车相遇.例2甲车在乙车前200千米,同时出发,速度分别为每小时40千米与60千米.问多少小时后,乙车追上甲车.例3一辆公共汽车和一辆小轿车同时从相距598千米的两地相向而行.公共汽车每小时行40千米,小轿车每小时行52千米,问几小时后两车相距138千米?例4甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇.求东、西两地相距多少千米?例6一辆卡车和一辆摩托车同时从A、B两地相对开出,两车在途中距A地60千米处第一次相遇•然后,两车继续前进,卡车到达B地,摩托车到达A地后都立即返回,两车又在途中距B地30千米处第二次相遇.求A、B两地相距多少千米?例7甲、乙、丙三人进行100米赛跑•当甲到达终点时,乙离终点还有20米,丙离终点还有40米.如果甲、乙、丙赛跑的速度都不变,那么当乙到达终点时,丙离终点还有多远?例8小明步行上学,每分行75米,小明离家12分后,爸爸骑单车去追,每分行375米.问爸爸出发多少分后能追上小明?例9解放军某部快艇追击敌舰,追到A岛时,敌舰已逃离该岛15分钟,已测出敌舰每分钟行驶1000米,解放军快艇每分钟行驶1360米,在距离敌舰600米处可开炮射击.问解放军快艇从A岛出发经过多少分钟就可以开炮射击敌舰?例10甲、乙两人在环形跑道上以各自的不变速度跑步,如果两人同时从同地相背而行乙跑4分钟后两人第一次相遇,已知甲跑一周需6分钟,那么乙跑一周需要多少分钟?例11两名运动员在湖周围环形道上练习长跑,甲每分跑250米,乙每分跑200米,两人同时从两地同向出发,经过45分甲追上乙,如果两人同时同地反向出发,经过多少分两人相遇?例12甲、乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米,如果她们同时分别从直路两端点出发,跑了6分,那么,这段时间内,两人共迎面相遇了多少次?巩固练习:1、甲、乙两站相距980千米,两列火车由两站相对开出,快车每小时行50千米,慢车每小时行多少千米,两车经10小时能相遇?2、甲车每小时行60千米,1小时后,乙车紧紧追赶,速度为每小时80千米,几小时后乙车可追上甲车?3、早晨6时,有一列货车和一列客车同时从相距360千米的甲、乙两城相对开出,中途相遇,这期间,货车停车一次60分钟,客车停车两次各30分钟,已知货车每小时行42千米,客车每小时行78千米,问两车在几点钟相遇?4、东、西两镇相距240千米,一辆客车从上午8时从东镇开往西镇,一辆货车在上午9时从西镇开往东镇,到正午12点,两车恰好在两镇间的中点相遇,如果两车都从上午8时由两地相向开出,速度不变,到上午10时,两车还相距多少千米?5、骑单车从甲地到乙地,以每小时10千米的速度行进,下午1点到,以每小时15千米的速度行进,上午11点到.如果希望中午12点到,那么应以怎样的速度行进呢?6、某人由甲地去乙地,如果他从甲地先骑摩托车行了12小时,再换骑自行车行9小时,恰好到达乙地.如果他从甲地先骑自行车行了21小时,再换骑摩托车行8小时,也恰好到达乙地.问:全程骑摩托车需要多少小时才能到达乙地?7、兄妹两人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门口时,发现忘了带课本,立即沿原路返回去取,行至离校门口180米处与妹妹相遇,他们家离学校多少米?8、兄妹两人在周长300米的圆形水池边玩.从同一地点同时背向饶水池而行.哥哥每分钟走13米,妹妹每分钟走12米.他们第5次相遇时,哥哥共走了多长的路?课后作业:1.甲以每小时4千米的速度步行去学校,乙比甲晚4小时骑自行车从同一地点出发去追甲,乙每小时行12千米,乙多少小时可追上甲?2.小张从家到公园,原打算每分钟走50米,为了提早10分钟到,他把速度加快,每分钟走75米.小张家到公园有多少米?3.父亲和儿子都在某厂工作,他们从家里出发步行到工厂,父亲用40分钟,儿子用30分钟.如果父亲比儿子早5分钟离家,问儿子用多少分钟可赶上父亲?4.解放军某部小分队,以每小时6千米的速度到某地执行任务,途中休息30分后继续前进,在出发5.5小时后,通讯员骑摩托车以56千米的速度追赶他们。

小学四年级行程问题(相遇问题)例题加练习

小学四年级行程问题(相遇问题)例题加练习

例1、艾迪和薇儿同时从甲、乙两地出发,相向而行。

艾迪每分钟走60米,薇儿每分钟走45米,8分钟后两人相遇。

(1)1分钟后艾迪和薇儿一共走了多少米?
(2)相遇时艾迪和薇儿各走了多少米?
(3)甲、乙两地相距多少米?
练一练
甲、乙两车分别从A、B两地同时出发,相向而行,8小时相遇,若甲车每小时行40千米,乙车每小时行60千米,那么
(1)两车相遇时,甲车行了多少千米?乙车行了多少千米?
(2)求A、B两地的距离。

相遇时间=路程和÷速度和
例2、玩具车的速度是5m/s, 遥控车的速度是 6m/s, 两车从相距110米的跑道两端同时出发相向而行,经过几秒两车相遇。

练一练2
大王和小任从相距1000米的两地同时出发相向而行,大王的速度是7米/秒,小任的速度3米/秒,经过几秒后,两人相遇。

速度和=路程和÷相遇时间。

甲的速度=速度和-乙的速度。

例3、甲车与乙车从相距360千米的两地同时出发,相向而行,经过6小时相遇,已知甲车每小时行36千米,则乙车的速度是多少?
练一练3
小云和小白分别从相距14千米的甲、乙两地同时出发,相向而行,2小时后相遇。

已知小云每小时行3千米,那么小白每小时行多少千米?。

行程问题之相遇问题例题解析

行程问题之相遇问题例题解析

行程问题之相遇问题例题解析一)相遇问题两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。

它的特点是两个运动物体共同走完整个路程。

小学数学教材中的行程问题,一般是指相遇问题。

相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度。

它们的基本关系式如下:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和-已知的一个速度1.求路程(1)求两地间的距离例1 两辆汽车同时从甲、乙两地相对开出,一辆汽车每小时行56千米,另一辆汽车每小时行63千米,经过4小时后相遇。

甲乙两地相距多少千米?(适于五年级程度)解:两辆汽车从同时相对开出到相遇各行4小时。

一辆汽车的速度乘以它行驶的时间,就是它行驶的路程;另一辆汽车的速度乘以它行驶的时间,就是这辆汽车行驶的路程。

两车行驶路程之和,就是两地距离。

56×4=224(千米)63×4=252(千米)224+252=476(千米)综合算式:56×4+63×4=224+252=476(千米)答略。

例2 两列火车同时从相距480千米的两个城市出发,相向而行,甲车每小时行驶40千米,乙车每小时行驶42千米。

5小时后,两列火车相距多少千米?(适于五年级程度)解:此题的答案不能直接求出,先求出两车5小时共行多远后,从两地的距离480千米中,减去两车5小时共行的路程,所得就是两车的距离。

480-(40+42)×5=480-82×5=480-410=70(千米)答:5小时后两列火车相距70千米。

例4 两列火车从甲、乙两地同时出发对面开来,第一列火车每小时行驶60千米,第二列火车每小时行驶55千米。

两车相遇时,第一列火车比第二列火车多行了20千米。

求甲、乙两地间的距离。

(适于五年级程度)解:两车相遇时,两车的路程差是20千米。

四年级奥数之行程问题

四年级奥数之行程问题

行程问题知识要点:1、相遇问题或背向问题AB两地的距离=甲走的距离+乙走的距离 = 甲的速度×时间+乙的速度×时间=甲的速度+乙的速度×时间.2、追击问题:甲乙的距离=甲走的距离-乙走的距离 = 甲的速度×时间-乙的速度×时间= 甲的速度-乙的速度×追击的时间相遇问题例1.甲乙二人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,问:二人几小时后相遇例2.东、西镇相距45千米,甲、乙二人分别从两镇同时出发相向而行,甲比乙每小时多行1千米,5小时后两人相遇,问两人的速度各是多少例 3. 甲、乙两车分别从相距240千米的A、B两城同时出发,相向而行,已知甲车到达B城需3小时,乙车到达A 城需6小时,问:两车出发后多长时间相遇例4.两列火车相向而行,甲车每小时行36千米,乙车每小时行54千米.两车错车时,甲车上一乘客发现:从乙车车头经过他的车窗时开始到乙车车尾经过他的车窗共用了14秒,求乙车的车长;例5.甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,问两次相遇点相距多少千米例6.有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等;某人骑自行车过桥时,上坡、走平路和下坡的速度分别为4米/秒、6米/秒和8米/秒,求他过桥的平均速度;同步练习:1、汽车以40千米/时的速度从甲地到乙地,到达后立即以60千米/时的速度返回甲地;求该车的平均速度; 2.A、B两地相距480千米,甲、乙两车同时从两站相对开出,甲车每小时行驶35千米,乙车每小时行驶45千米,一只燕子以每小时50千米的速度和甲车同时出发飞向乙车,遇到乙车又折回向甲车飞去,遇到甲车又折回飞向乙车,这样一直飞下去,燕子飞了多少千米两车才能相遇3.甲、乙两人同时从A、B两地相向而行,甲每小时行12千米,乙每小时行10千米;两人在离中点3千米的地方相遇;A、B两地相距多远4.一只蚂蚁沿等边三角形的三条边由A点开始爬行一周;在三条边上它每分钟分别爬行15cm,20cm,30cm如下图;它爬行一周平均每分钟爬行多少厘米5.两列火车,一列长101米,每秒行20米;另一列长103米,每秒行17米.两车相向而行,从车头相遇到车尾离开需几秒6.在400米的环行跑道上,甲、乙两人同时同地起跑,如果同向而行3分20秒相遇,如果背向而行40秒相遇,已知甲比乙快,求甲、乙的速度各是多少7.甲、乙二人同时从起点出发,向同一个方向行走,甲每小时行5千米,而乙第一小时行1千米,第二小时行2千米,以后每小时比前一小时多行1千米,问经过多少时间乙追上甲追及问题例7. 一辆汽车和一辆摩托车同时从甲乙两城同时出发,向一个方向前进,汽车在前,每小时40千米;摩托车在后,每小时75千米;经过3小时摩托车追上了汽车;甲乙两地相距多少千米例8. 小彬和小明每天早晨坚持跑步,小彬每秒跑4米,小明每秒跑6米.如果小明站在百米跑道的起点处,小彬站在他前面10米处,两人同时同向起跑,几秒后小明能追上小彬例9.甲乙两人赛跑,甲的速度是8米/秒,乙的速度是5米/秒,如果甲从起点往后退20米,乙从起点处向前进10米,问甲经过几秒钟追上乙例10、甲每小时行60千米,乙每小时行45千米,甲、乙两人同时从A地出发去B地,甲到达B地后立即沿原路返回,在距B地30千米处与乙相遇,A、B两地相距多少千米例11.小兰和小松同时从学校去少年宫,小兰步行每分钟走6米,小松骑自行车,每小时行15千米,小松比小兰早到12分钟,学校到少年宫一共有多少米例12、快车长106米,慢车长74米,两车同向行使,快车追上慢车后,又给过1分钟才超过慢车,如果相向而行的话,车头相接后经过12秒两车才完全离开;就两列车的速度同步练习8.小明以每分钟50米的从学校步行回家,12分钟后小强从学校出发骑自行车去追小明,结果在距学校1000米处追上小明;问:小强骑自行车的速度;9.小明每天早上要在7:50之前赶到距家1000米的学校上学;小明以80米/分的速度出发,5分后,小明的爸爸发现他忘了带语文书;于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他;1爸爸追上小明用了多长时间2追上小明时,距离学校还有多远10.长180米的客车速度是每秒15米,他追上并超过长100米的货车用了28秒,如果两列火车相向而行,从遇到到完全离开需要多少时间同步测试1、一列客车和一列货车同时从北京站反向而行,货车每小时比客车多走了7千米,4小时后两车相距468千米;求两车的速度;2. 一列客车和一列货车,同时从东、西两地相向开出,客车每小时行56千米,客车每小时行48千米,两车在离中点32千米的地方相遇,求东西两地间的距离是多少千米3、小军和小红两人同时从相距2000米的两地同时同向而行,小军每分钟行120米;小红每分钟行80米;如果一只狗与小军同时出发,它每分钟行400米,当它遇到小红后,立即回头向小军跑去,遇到小军后又立即向小红跑去;这样来回不断,直到小军和小红相遇为止,这时狗跑了多少米4. 龟兔赛跑,全程2000米;龟每分钟爬25米,兔每分钟跑320米,兔自以为速度快,在途中睡了一觉,结果龟到了终点时,兔子离终点还有400米;兔子在途中睡了多少分钟5.甲乙两车相距90千米,两车同向而行,甲车每小时行65千米,乙车每小时行50千米,经过多少小时甲车能追上乙车6.某学校组织学生看电影,第一批的学生骑自行车先走,他们的速度是200/分,10分钟后,其余同学乘汽车前往电影院,汽车的速度是600/分,结果所有的同学同时到达;求学校和电影院的距离;7.小明步行上学,每分行75米,小明离家12分钟后,爸爸发现小明的数学书没有带,就骑自行车去追,每分钟行375米,爸爸出发多少分钟后能追上小明8、已知甲骑自行车追赶前面步行的乙,乙的速度是每分钟60米,甲的速度是每分钟150米,甲出发8分钟追上乙,那么乙比甲早出发多少分钟9.在400米的环行跑道上,甲、乙两人同时同地起跑,如果同向而行3分20秒相遇,如果背向而行40秒相遇,已知甲比乙快,求甲、乙的速度各是多少10.甲、乙二人同时从起点出发,向同一个方向行走,甲每小时行4千米,而乙第一小时行1千米,第二小时行2千米,以后每小时比前一小时多行1千米,问经过多少时间乙追上甲11、小亮从家到学校,步行需要40分,骑自行车需要 15分;当他骑车走了9分后自行车发生故障,只好步行到学校,那么,他从家到学校共用了多少时间1-10 A D. C. C. B. D. B. C. D. B.11-16左,2.80°. 7;21. 2:3 Q3﹣,0;.17. ﹣2.18. CD==2.19. 概率为.20. AP=;当x=,即AP=时,.21. AE的长是1.4.22. 设正方形DEFG的边长是x,则=,解得:x=;23. tan∠CMA===3; n=.。

四年级 奥数行程问题(相遇问题)

四年级 奥数行程问题(相遇问题)

A
客车每小时走120千米
(540-120×1)÷(120+90) =420÷210 =2(小时) 答:货车出发2小时后两车相遇。
B
货车每小时走90千米
客车和货车共 同走的路程是 540千米吗?
2、甲、乙两地相距102千米。赵、李二人骑自行车分别 从两地同时、相向出发,赵每小时行15千米,李每小时 行14千米。李在途中因修车敢误了1小时,然后继续前 进。他们经过多少小时相遇?
乙每小时走4千米
甲、乙1小时共走多 少千米?走完这段路程 甲、乙一共需要几小时?
思维发散
1、A、B两地相距540千米。一列客车与一列货车分别从 A、B两地相向而行。客车每小时行120千米,货车每小 时行90千米,已知客车出发1小时后,货车才出发求货车 出发几小时后,两车相遇?
120千米
(540-120)千米
330÷(60+50) =330÷110 =3(小时)
80×3=240(千米)
骑摩托车的人与甲 乙两人是同时出发、同 时停止吗?那么骑摩托 车的人行驶的时间和甲、 乙两人的相遇时间有什 么关系?
答:摩托车行驶了240千米。
“中间往返”这类题目的核心就是往返行驶的时间与相遇时间相等。
思维发散
1、甲、乙两队同时从相隔50千米的两地出发,相向而行。 甲队每小时行15千米,乙队每小时行10千米,同时,一个 通讯员每小时行20千米,在两车队中间往返联络,问两队 相遇时,通讯员行了多少千米?
50÷(15+10)×20 =50÷25×20 =2×20 =40(千米)
答:通讯员行了多少千米。
通讯员行驶的时
间与两车队的相遇 时间有什么关系?
2、A、B两地相距648千米。甲、乙两列火车从A、B两地相 对开出,甲列火车每小时行驶60千米,乙列火车每小时行驶 48千米。乙出发时,从车厢里飞出一只鸽子,这只鸽子以每 小时80千米的速度在两列火车之间往返飞行(遇到一列车后 马上返回,向另一列车飞去)。当两列车相遇时,鸽子飞行 了多少千米?

四年级 奥数行程问题(相遇问题)

四年级 奥数行程问题(相遇问题)

2×2÷(12-10)×(12+10) =4÷2×22 =2×22 =44(千米)
答:两地相距44千米。
甲一共比乙多 走了多少千米?
2、两列火车同时从A、B两地同时开出。客车每小时行 60千米,货车每小时行驶54千米,几小时后客车在超过 中点18千米处与货车相遇?求A、B两地相距多少千米。
18×2÷(60-54) =36÷6 =6(小时)
行程问题
——
甲车
乙车
相遇问题是行程问题中的重要一部分,相遇问题的特 征是:两个物体从两地出发,相向而行,共同行一段路程, 直至相遇。这类问题的基本数量关系是:总路程=速度和 ×相遇时间,这里的“速度和”是指两个物体在单位时间 内共同行的路程,还可以推导出以下的数量关系:
1.速度和=总路程÷相遇时间 2.相遇时间=总路程÷速度和
本讲我们主要解决以下几种类型:
1、一般相遇问题:如果两个物体是同时出发,那 么相遇路程就是两个物体原来相距的路程;如果两 个物体不是同时出发,那么它们的相遇路程等于两 个物体原来相距的路程减去其中一个物体先走的路 程;
2、中点相遇问题:相遇路程等于相遇地点与中 点距离的两倍;
3、往返相遇问题:同时出发,同时停止,则中间往 返的时间就相遇时间;
A
客车每小时走120千米
(540-120×1)÷(120+90) =420÷210 =2(小时) 答:货车出发2小时后两车相遇。
B
货车每小时走90千米
客车和货车共 同走的路程是 540千米吗?
2、甲、乙两地相距102千米。赵、李二人骑自行车分别 从两地同时、相向出发,赵每小时行15千米,李每小时 行14千米。李在途中因修车敢误了1小时,然后继续前 进。他们经过多少小时相遇?

行程问题之相遇问题

行程问题之相遇问题

行程问题之相遇问题专题一:简单的相遇问题。

例:一列快车和一列慢车同时从甲乙两地相向而行,慢车每小时行50千米,快车比慢车快20%,经过2.5小时,两车相遇,请问甲乙两地相距多少千米?总结:练习:甲乙两人骑摩托车分别从两城市同时相对行驶。

甲的速度是每小时65千米,比乙车快10千米,经过6小时相遇,两城市相距多少千米?专题二:时间不同时相遇问题。

例:两城市相距328千米,甲乙两人骑自行车同时从两城市出发,相向而行。

甲每小时行28千米,乙每小时行22千米。

乙在中途修车耽误1小时,然后继续行驶,与甲相遇。

求出发到相遇经过多少时间?总结:练习:甲乙两人从相距46千米的A、B两地出发相向而行,甲先出发1小时后乙再出发。

两人在乙出发4小时后相遇,又已知甲比乙每小时快2千米,求甲乙两人的速度。

例:AB两地相距418千米,甲乙两车同时从两地相向而行,甲车每小时行36千米,乙车每小时行34千米,开出1小时后,甲车因有事返回原地,然后又立即出发与乙车继续相向而行,那么经过几小时两车相遇?总结:练习:A、B两地相距352千米。

甲乙两车从AB两地对开。

甲车每小时行36千米,乙车每小时行44千米,乙车因事在甲车开出32千米后才出发。

两车各自出发起到相遇时,哪辆车走的路程多?多多少?专题三:环形相遇问题。

例:绕湖一周是24千米,小张和小王从湖边某一地点同时出发反向而行.小王以4千米/小时速度每走1小时后休息5分钟;小张以6千米/小时速度每走50分钟后休息10 分钟.问:两人出发多少时间第一次相遇?总结:练习:绕湖一周是24千米,小张和小王从湖边某一地点同时出发反向而行.小王速度为4千米/小时;小张速度为6千米/小时.问:两人出发多少时间第一次相遇?例:在一圆形跑道上,甲从 A 点、乙从B 点同时出发反向而行,6 分后两人相遇,再过4 分甲到达B 点,又过8 分两人再次相遇.甲、乙环行一周各需要多少分?总结:练习:如右图,A,B 是圆的直径的两端,甲在 A 点,乙在 B 点同时出发反向而行,两人在C 点第一次相遇,在D 点第二次相遇.已知C 离A 有80 米,D 离B 有60 米,求这个圆的周长.专题四:相遇问题提高。

四年级行程问题之一相遇问题完整版

四年级行程问题之一相遇问题完整版

四年级行程问题之一相遇问题HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】四年级行程问题之相遇问题研究路程、时间和速度这三者关系的问题称为行程问题。

行程问题主要包括相遇问题和追及问题。

相遇问题的特点是:总路程是由两人共同行完。

基本的计算公式如下:一、基本例题例1、甲、乙两人分别从相距20千米的两地同时出发相向而行,甲每小时行6千米,乙每小时行4千米,两人几小时后相遇?例2、甲、乙两车分别从相距480千米的A、B两城同时出发相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时,两车出发后几小时相遇?例3、东、西两村相距60千米,甲、乙两人骑车分别从东、西两村同时出发相向而行,5小时后两人相遇,已知甲每小时行5千米,求乙的速度是多少?例4、东、西两村相距55千米,甲、乙两人分别从东、西两村同时出发相向而行,5小时后两人相遇,已知甲每小时比乙多行1千米,求甲、乙两人的速度?例5、A、B两地相距200千米,甲开车从A地出发到B地,同时乙骑车从B地出发到A地,4小时后相遇,已知甲的速度是乙的4倍,求甲、乙两人的速度?例6、甲、乙两人分别从相距40千米的两地同时出发相向而行,甲每小时行6千米,乙每小时行4千米,相遇时甲比乙多行多少千米?例7、小李和小王在环形的操场上跑步,操场的周长是400米,两人从同一起点同时出发相背而行,小李每秒跑3米,小王每秒跑5米。

(1)多少秒以后他们第一次相遇?(2)第一次相遇时两人各跑了多少米?(3)多少秒以后他们第二次相遇?第二次相遇时两人各跑了多少米?(4)多少秒以后他们5次相遇?(5)他们第6次相遇时一共跑了多少米?二、课内练习1、李明和张玫两人的家相距2公里,上午8时两人同时从家里出发,李明每分钟行120米,张玫每分钟行80米,两人几点几分相遇?相遇时李明比张玫多行多少米?2、甲、乙两车分别从相距240千米的A、B两城同时出发相向而行,已知甲车从A 城到B城需3小时,乙车从B城到A城需5小时,两车出发后几小时相遇?3、东、西两村相距80千米,甲、乙两人骑车分别从东、西两村同时出发相向而行,4小时后两人相遇,已知甲每小时行8千米,求乙的速度是多少?4、东、西两村相距40千米,甲、乙两人分别从东、西两村同时出发相向而行,8小时后两人相遇,已知甲每小时比乙多行1千米,求甲、乙两人的速度?5、A、B两地相距320千米,甲车从A地出发到B地,同时乙车从B地出发到A 地,4小时后相遇,已知甲车的速度是乙车的3倍,求甲、乙两车的速度?6、陈老师和刘老师在环形的操场上跑步,操场的周长是400米,两人从同一起点同时出发相背而行,陈老师每秒跑4米,刘老师每秒跑6米。

数学--行程问题

数学--行程问题

A、B两地相距700千米,慢车行完全程需要10小时,快车行完全程需要8小时,慢车从A地出发1小时后,快车才从B地开出,快车开出几小时后与慢车相遇?练习一:客货两车同时从A、B两地相对开出,4.5小时相遇,相遇时客车比货车多行了27千米,货车的速度是客车的54,求A、B两地相距多少千米?练习二:甲、乙两人同时从A、B两地相向而行,第一次在离A地75米处相遇,相遇后继续前进到达目的地后又立刻返回,第二次相遇在离B地55米处,求A、B两地相距多远?如果第二次相遇在离A地55米处,A、B两地相距又是多远?练习三:兄妹二人同时离家去学校,哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门时发现忘记带课本,立即沿原路回家去取,行至离学校180米处与妹妹相遇,那么他们家离学校有多少米?练习四:货车速度是客车的109,两车分别从甲、乙两地同时相向而行,在离两地中点3千米处相遇,相遇后,两车分别用原速继续前进,问当客车到达甲站时,货车还离乙站多远?练习五:甲、乙两车同时从A、B两站相对开出,5小时后甲到达中点,乙车离中点还有60千米,已知乙车速度是甲车的32,求A、B两站的距离。

练习六:客车由甲地到乙地需行10小时,货车从乙地到甲地需15小时,两车同时相向开出,相遇时客车距乙地还有192千米,两地的距离是多少千米?当甲在60 米赛跑中冲过终点线时,比乙领先10 米、比丙领先20 米,如果乙和丙按原来的速度继续冲向终点,那么当乙到达终点时将比丙领先多少米?练习一:2.一只兔子奔跑时,每一步都跑0.5 米;一只狗奔跑时,每一步都跑1.5 米. 狗跑一步时,兔子能跑三步.如果让狗和兔子在100 米跑道上赛跑,那么获胜的一定是练习二:骑车人以每分钟300 米的速度,从102 路电车始发站出发,沿102路电车线前进,骑车人离开出发地2100 米时,一辆102 路电车开出了始发站,这辆电车每分钟行500 米,行5 分钟到达一站并停车1 分钟.那么需要多少分钟,电车追上骑车人?练习三:甲、乙两人同时从A 点背向出发沿400 米环行跑道行走,甲每分钟走80 米,乙每分钟走50 米,这二人最少用分钟再在A 点相遇.9.在400 米环形跑道上,A、B 两点相距100 米(如图).甲、乙两人分别从A、B 两点同时出发,按逆时针方向跑步.甲每秒跑5 米,乙每秒跑4 米,每人每跑100 米,都要停10秒钟.那么,甲追上乙需要的时间是多少秒?【题目】比和比例【答案】题目】比例模型【答案】01甲、乙两人分别从相距 100 米的 A 、B 两地出发,相向而行,其中甲的速度是 2 米每秒,乙的速度是 3 米每秒。

四年级奥数:行程问题之相遇问题、追及问题

四年级奥数:行程问题之相遇问题、追及问题

四年级奥数:行程问题之相遇问题、追及问题两个运动的物体,以不同的速度从不同地点出发沿同一线路相向而行,两个物体之间的距离不断缩短,直到相遇。

我们把这样的问题叫做相遇问题,相遇问题的关系式为:相遇路程=速度和×相遇时间。

解相遇问题一定要紧盯速度与相遇路程。

本篇我主要会讲到以下几种类型的题目:(1)一般相遇问题:如果两个物体是同时出发,那么相遇路程就是两个物体原来相距的路程;如果两个物体不是同时出发,那么它们的相遇路程等于两个物体原来相距的路程减去其中一个物体先走的路程;(2)中点相遇问题:相遇路程等于相遇地点与中点距离的两倍;(3)往返相遇问题:同时出发,同时停止,则中间往返的时间就是相遇时间;(4)环形相遇问题:同时、同地背向出发,相遇路程就是一周的长度。

一般相遇问题一般行程问题中,路程=速度×时间,速度=路程÷时间,时间=路程÷速度。

例题1,此类相遇问题中:相遇时间=相遇路程÷速度和。

中点相遇问题相遇问题中,路程差=速度差×时间差;速度差=路程差÷时间;时间=路程差÷速度差。

中点相遇问题中,快的多走的路程就是距离中点路程的两倍。

相遇时间=路程差÷速度差。

往返相遇问题往返相遇问题的关键是,往返行驶的时间与相遇时间相等。

环形相遇问题环形跑道上同时背向行驶,相遇几次,则相遇路程就是几个全程,再根据相遇时间=路程÷速度和求解。

在追及问题中,必定有一个物体的速度较快,而另一个物体速度较慢,解题的关键是找到追及路程。

追及问题的关系式为:追及时间×速度差=追及路程。

两种追及路线的追及路程分别是:(1)直线追及:如果两人同时同向不同地出发,那么追及路程就是两人相距的路程;如果两人同地同向不同时出发,那么追及路程就是先走的路程;(2)环形追及:如果两人同时、同地、同向出发,那么追及问题就是一周的长;如果是不同时或不同向或不同地出发,需要结合具体情景,借助示意图和列表进行分析。

小升初数学专题讲练--行程问题(一):相遇问题-追及问题

小升初数学专题讲练--行程问题(一):相遇问题-追及问题

行程问题(一)相遇问题追及问题【基本公式】1、路程=速度×时间2、相遇问题:相遇路程=速度和×相遇时间3、追及问题:相差路程=速度差×追及时间行程问题(一)-----相遇问题【典型例题】1、老李和老刘同时从两地相对出发,老李步行每分钟走8米,老刘骑自行车的速度是老李步行的3倍,经过5分钟后两人相遇,问这两地相距多少米2、在一条笔直的公路上,王辉和李明骑车从相距900米的A、B两地同时出发,王辉每分钟行200米,李明每分钟行250米,经过多少时间两人相距2700米(分析各种情况)3、客货两车同时从甲、乙两地相对开出,客车每小时行44千米,货车每小时行52千米,两车相遇后继续以原速度前进,到达乙、甲两地后立即返回,第二次相遇时,货车比客车多行60千米。

问甲、乙两地相距多千米4、小冬从甲地向乙地走,小青同时从乙地向甲地走,当各自到达终点后,又迅速返回,各自速度不变,两人第一次相遇在距甲地40米处,第二次相遇在距乙地15米处,问甲、乙两地相距多少米5、甲村、乙村相距6千米,小张与小王分别从甲、乙两村出发,在两村之间往返行走(到达另一村后就马上返回)。

在出发后40分钟两人第一次相遇。

小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇。

问小张和小王两人的速度各是多少6、小张与小王分别从甲、乙两村出发,在两村之间往返行走(到达另一村后就马上返回)。

他们离甲村千米处第一次相遇,在离乙村2千米处第二次相遇。

问他们两人第四次相遇的地点离乙村有多远(相遇指迎面相遇)7、甲、乙两辆汽车同时从东西两地相向开出,甲每小时行56千米,乙每小时行48千米,两车在离两地中点32千米处相遇。

问:东西两地间的距离是多少千米8、甲、乙两地相距15千米,小聪和小明分别从甲、乙两地同时相向而行,2小时后在离中点千米处相遇,求小聪和小明的速度。

9、甲、乙两人同时从相距50千米的两地同时出发相向而行,甲每小时行3千米,乙每小时行2千米,与甲同时同向而行的一条小狗,每小时行5千米,小狗在甲、乙之间不停往返,直到两人相遇为止。

行程问题(相遇问题)五道典型例题(附解题思路及答案)

行程问题(相遇问题)五道典型例题(附解题思路及答案)

行程问题(相遇问题)五道典型例题(附解题思路及答案)行程问题中的相遇问题同一般行程问题一样,也是研究速度,时间和路程三者数量之间关系的问题。

只是一般的行程问题研究的是一个物体的运动,而相遇问题研究的是两个物体的运动,它研究的速度包含两个物体的速度,路程也是两个物体的路程。

下面我们通过五道典型例题来分析下如何解答相遇问题。

1、甲乙两车同时从AB两地相对开出。

如果甲每小时行驶40千米,乙车每小时行5O千米,5小时后相遇。

求AB两地相距多少千米?解题思路:此题是相遇问题中最简单的一种类型。

解题方法有两种。

第一种方法:根据速度x时间=路程,分别算出甲乙两车各自的路程,然后相加,就是AB两地的距离。

方法二:因为两车行使时间相同,可以先算出两车速度和,再根据速度x时间=路程,用速度和x时间算出两车行的总路程,即AB两地的距离。

答案:方法一:40x5=200千米50x5=250千米200十250=450(千米)答:AB两地相距450千米。

方法二:(40十50)x5=450(千米)答:AB两地相距450千米。

2、甲乙两车同时从AB两地相对开出,如果甲每小时行驶40千米,乙每小时行50千米,5小时后,两车相距10千米。

求AB两地最大相距多少千米?最小相距多少千米?解题思路:此题是相遇问题中稍复杂的一种类型。

两车行了5小时后还没相遇,此时相距10千米,这时求出的是AB两地的最大距离。

另一种情况是两车相遇后仍继续行驶,到再次相距10千米时用时5小时,此时求出的则是AB两地的最小距离。

解题方法,根据速度x时间=路程,分别算出甲乙两车各自的路程,然后相加,再加上10千米,就是AB两地的最大距离。

根据速度x时间=路程,分别算出甲乙两车各自的路程,然后相加,再减去10千米,就是AB两地的最小距离。

•答案: 40×5=200千米50×5=250千米200十250十10=460(千米)200+250-10=440(千米)'答:AB两地最大相距460千米,最小相距440千米。

行程问题(一)——相遇问题

行程问题(一)——相遇问题

行程问题(一)——相遇问题公式:路程=速度×时间速度=路程÷时间时间=路程÷速度例1、客车和货车同时从A、B两地相向开出,客车每小时行60千米,货车每小时行80千米。

两车在距中点30千米处相遇。

求A、B两地相距多少千米?练习1 甲、乙两车同时从东西两地相向而行,甲车速度56千米/小时,乙车速度48千米/小时,两车在离中点32千米处相遇。

求东西两地相距多少千米?练习2 甲乙两人同时从A、B两地相向而行,甲骑车每小时行16千米,乙骑摩托车每小时行65千米。

甲离出发点62.4千米处与乙相遇。

A、B两地相距多少千米?练习3 两艘宇宙飞船径直相向飞行,一艘飞船的速度为每分钟8千米,另一艘为每分钟12千米。

假设它们正好相距5000千米,那么在相遇前1分钟相距多少千米?例2 两地相距3千米,甲乙两人同时从两地出发相向而行。

甲每分钟行80米,乙每分钟行70米。

如果有一只狗与甲同行,狗每分钟跑150米,当狗遇到乙时立即返回,遇到甲后又迎乙跑去。

这样,狗不停地在甲乙之间往返跑,直到两人相遇为止。

那么狗在两人中间跑的路程是多少?练习1 两辆汽车从相距500千米的两城同时出发,相向而行。

一辆摩托车以每小时80千米的速度在两汽车之间不断往返联络。

已知两汽车的速度分别为40千米和60千米。

求两汽车相遇时,摩托车共行了多少千米?练习2 两队同学从相距30千米的甲乙两地相向出发,一只鸽子以每小时20千米的速度在两队同学之间不断往返送信。

如果鸽子从同学们出发到相遇共飞行了30千米,而甲队同学比乙队同学每小时多走0.4千米。

求两队同学的行走速度。

例3 甲乙两辆旅游车同时从A、B两地出发,相向而行,4小时相遇。

相遇后甲车继续行使了3小时到达B 地,乙车每小时行24千米。

问AB两地相距多少千米?练习1 甲乙两人从AB两地相向而行,6分钟相遇,相遇后甲继续走4分钟到达B地,乙每分钟行40米。

问:AB两地相距多少米?例4 甲乙两人同时从东西两镇出发相向而行,经过2小时40分钟,在途中相遇,相遇后各自继续前进。

应用题板块-行程问题之相遇追及(小学四年级奥数题)

应用题板块-行程问题之相遇追及(小学四年级奥数题)

应用题板块-行程问题之相遇追及(小学四年级奥数题)【一、题型要领】1. 相遇问题【基本概念】小王在A地要去B地,小张在B地要去A地(下图左侧部分),两人分别行走一段时间后,就会在途中相遇(下图右侧部分)。

【基本公式】(1)总路程= 小王行走的路程+ 小张行走的路程(2)小王行走的路程= 小王行走的速度* 小王行走的时间(3)小张行走的路程= 小张行走的速度* 小张行走的时间由(1)(2)(3)可得(4)总路程= 小王行走的速度* 小王行走的时间+ 小张行走的速度* 小张行走的时间如果小张和小王同时出发,可得(5)总路程=(小王行走的速度 + 小张行走的速度)* 行走的时间【解题关键】两地相距的距离等于小王行走的路程加上小张行走的路程,再分别根据两人的速度和时间去计算两人行走的路程即可2. 追及问题【基本概念】小张在前方行走,小王在后方与小张同方向行走(下图左侧部分),如果小王行走的速度大于小张,则经过一段时间以后,小王就会追上小张(下图右侧部分)【基本公式】(1)小王和小张相距的路程= 小王行走的路程- 小张行走的路程(2)小王行走的路程= 小王行走的速度* 小王行走的时间(3)小张行走的路程= 小张行走的速度* 小张行走的时间由(1)(2)(3)可得(4)小王和小张相距的路程 = 小王行走的速度* 小王行走的时间- 小张行走的速度* 小张行走的时间如果小张和小王同时出发,可得(5)小王和小张相距的路程 =(小王行走的速度 - 小张行走的速度)* 行走的时间【解题关键】小王和小张相距的距离等于小王行走的路程减去小张行走的路程,再分别根据两人的速度和时间去计算两人行走的路程即可【举一反三】有一类题目是为赶时间,题目描述“为了节省XX时间从原本的速度x变成了之后的速度y”,解题时可以假象成另一个人以原速度提前走了XX 时间,而自身以修改后的速度从原地出发,最终两人同时到达终点,即可用“追及”问题解答【二、重点例题】例题1【题目】小张从甲地到乙地步行需要36分钟,小王骑自行车从乙地到甲地需要12分钟,他们同时出发,几分钟后两人相遇?【分析】走同样长的距离,小张花费的时间是小王花费时间的36 ÷ 12 = 3(倍),因此自行车的速度是步行速度的3倍。

行程问题之相遇问题

行程问题之相遇问题

行程问题之相遇问题(一)1、两辆汽车同时从甲、乙两地相对开出,一辆汽车每小时行56千米,另一辆汽车每小时行63千米,经过4小时后相遇,求甲、乙两地的路程是多少千米?2、甲、乙两地相距135千米,小李和小刘骑自行车分别从甲、乙两地出发,相向而行,小李每小时行15千米,小刘每小时行12千米,两人几小时后相遇?3、A、B两地相距6400米,甲、乙两人同时从A、B出发相向而行,甲骑摩托车每分钟行600米,乙骑自行车每分钟行200米。

多少分钟后,两车相距800米?4、一辆长途客车和一辆小轿车同时从相距765千米的两地相向而行。

长途客车每小时行70千米,小轿车每小时行100千米。

经过多少小时后两车相距85千米?5、两地相距460千米,一辆公共汽车和一辆小轿车同时从两地相向出发,经过5小时相遇。

已知公共汽车的速度是每小时40千米,小轿车的速度是每小时多少千米?6、一列货车和一列客车同时从某站向相反的方向开出,货车每小时行54千米,客车每小时行58千米,6小时后两车相距多少千米。

7、乙两人同时从两地出发,相向而行,甲每分钟68米,乙每分钟行62米,15分钟后两人交叉而过又距离150米,两地间的路程是多少?8、一列每小时行48千米的火车,从甲站开出两小时后,另一列火车以同样的速度从乙站相对开出,经过3小时后与甲站开出的火车相遇,求甲、乙两站的距离。

9、两列火车同时分别从甲、乙两站相对开出,它们的速度分别是57千米,79千米。

5小时候,两车还差120千米才能相遇,求甲、乙两站间的路程10、甲、乙两辆汽车从A、B两地同时相向出发,出发2小时,两车相距141千米。

出发后5小时,两车相遇。

A、B两地相距多少千米?11、甲汽车的速度是65千米,乙汽车的速度是56千米,他们同时从A、B两地相对开出,4小时后相遇。

相遇时,离A、B两地的中点多少千米?12、甲从B地去A地,每小时行4千米;乙从A地去B地,每小时行5千米。

两人同时出发,在离A、B两地的中点1千米处相遇。

最新四年级数学应用题专题-相遇问题

最新四年级数学应用题专题-相遇问题

四年级数学应用题专题-相遇问题相遇问题是行程问题的一种典型应用题,也是相向运动的问题.无论是走路、行车还是物体的移动,总是要涉及到三个量:路程、速度、时间.路程、速度、时间三者之间的数量关系路程=速度×时间,时间=路程÷速度.相遇问题的计算关系式为:总路程=速度和×相遇时间“总路程”指两人从出发到相遇共同的路程;“速度和”指两人在单位时间内共同走的路程;“相遇时间”指从出发到相遇所经的时间.通常情况下对于相遇问题的求解还要借助线段图来进行直观地分析和理解题意,以突破难点.一般的相遇问题:甲从A 地到B 地,乙从B地到A地,然后两人在A 地到B 地之间的某处相遇,实质上是甲、乙两人一起走了A←→B这段路程,如果两人同时出发,那么有:(2)甲(乙)走的路程=甲(乙)的速度×相遇时间(3)全程=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间例1. 两列火车从两个车站同时相向出发,甲车每小时行48 千米,乙车每小时行78 千米,经过3.5 小时两车相遇.两个车站之间的铁路长多少千米?解法一、(48+78)×3.5=126×3.5=441(千米)=441(千米)例2. A、D 两地相距520 千米,甲骑摩托车每小时行30 千米,乙骑电动车每小时行驶20 千米,几小时以后还相距70 千米没有相遇?=9(时)例3. A、D 两地相距520 千米,甲骑摩托车每小时行30 千米,乙骑电动车每小时行驶20 千米,几小时相遇以后相距70 千米?=11.8(时)例4. 甲、乙两站相距840 千米,两列火车同时从两站相对开出,8 小时后相遇,解法一、=49(千米)答:第二列火车的速度是每小时49 千米.解法二、840÷8-56=105-56=49(千米)答:第二列火车的速度是每小时49 千米.例5.甲、乙两城相距680千米,从甲城开往乙城的普通客车每小时行驶60千米,2小时后,快车从乙城开往甲城,每小时行80千米,快车开出几小时后两车相遇?=4(时)小结:解答一般的相遇问题,我们常规的思路是,抓住相遇问题的基本数量关系:(甲速+乙速)×相遇时间=路程来解答.但有一些相遇问题的已知和所求比较特殊,如果仍采用常规的解题思路就难以解决问题,针对各种不同的情况,下面介绍几种特殊的解题方法.例1.甲车从A城到B城,速度是50千米/小时.乙车从B城到A城,速度是40千米/小时.两车同时出发,结果在离A、B两城的中点C30千米的地方相遇,求A、B两城间的路程?分析与解:这道题的条件与问题如图所示.要求A、B两城的距离,关键是求出相遇时间.因路程是未知的,所以用路程÷(甲速+乙速)求相遇时间有一定的困难.抓住题设中隐含的两个数量差,即甲车与乙车的速度差:50千米/小时-40千米/小时=10千米/小时;相遇时两车的路差:30千米×2=60千米.再将其对应起来思维:正因为甲车每小时比乙车多走10千米,所以甲车多走60千米所花去的时间6小时正是两车相遇的时间.因此,求A、B两地距离的综合算式是:(50+40)×[30×2÷(50-40)]=90×[60÷10]=90×6=540(千米).答:A、B两地的路程是540千米.二、突出不变量并采用整体的思维方法例2. A、B 两地间的公路长96 千米,张华骑自行车自A 往B,王涛骑摩托车自B 往A,他们同时出发,经过80 分两人相遇,王涛到A 地后马上折回,在第一次相遇后40 分追上张华,王涛到B 地后马上折回,问再过多少时间两个人再相遇?分析与解:根据题意张华、王涛三次相遇情况可画示意图.这道题如果从常规思路入手,运用相遇问题的基本数量关系来求解是非常不易的.但可根据题中小张、小王三次相遇各自的车速不变和在相距96 千米的两地其同时相向而行相遇时间不变,进行整体思维.从图中可以看到:第三次相遇时,王涛走的路程是2AB+BE 张华走的路程是AE,两人走的总路程是3 个AB,所花的时间是80×3=240 (分).可见,从第二次相遇到第三次相遇所经过的时间的综合算式是:80×3-80-40=120(分).答:再经过120 分钟两人再次相遇.1、甲、乙两列火车同时从相距 735 千米的两地相向而行,甲列车每小时行 85 千米,乙列车每小时行90 千米,几小时两列火车相遇?2、两列火车从两个车站同时相向出发,甲车每小时行85 千米,乙车每小时行78 千米,经过6.5 小时两车相遇.两个车站之间的铁路长多少千米?3、两人骑马同时从相距165 千米的两地相对跑来,5 小时相遇.第一匹马每小时跑 15 千米,第二匹马每小时跑多少千米?第二匹马比第一匹马多跑多少千米?4、小明和张楠分别从相距4320 米的甲乙两地同时相对而行,小明骑车每分钟走160 米,是张楠步行速度的2 倍,多少分钟后两人相遇?5、甲、乙两艘轮船从相距654 千米的两地相对开出而行,8 小时两船还相距22 千米.已知乙船每小时行42 千米,甲船平均每小时行多少千米?6、一辆汽车和一辆自行车从相距172.5 千米的甲、乙两地同时出发,相向而行,3 小时后两车相遇.已知汽车每小时比自行车多行31.5 千米,求汽车、自行车的速度各是多少?7、甲、乙两车同时从相距480 千米的两地相对而行,甲车每小时行45 千米,途中因汽车故障甲车停了1 小时,5 小时后两车相遇.乙车每小时行多少千米?2、两列火车从两个车站同时相向出发,甲车每小时行85 千米,乙车每小时行78答:两个车站之间的铁路长1059.5 千米.3、两人骑马同时从相距165 千米的两地相对跑来,5 小时相遇.第一匹马每小时跑 15 千米,第二匹马每小时跑多少千米?第二匹马比第一匹马多跑多少千米?答:第二匹马每小时跑18 千米.第二匹马比第一匹马多跑15 千米.4、小明和张楠分别从相距4320 米的甲乙两地同时相对而行,小明骑车每分钟走160 米,是张楠步行速度的2 倍,多少分钟后两人相遇?答:18 分钟后两人相遇.5、甲、乙两艘轮船从相距654 千米的两地相对开出而行,8 小时两船还相距22答:甲船平均每小时行驶37 千米.6、一辆汽车和一辆自行车从相距172.5 千米的甲、乙两地同时出发,相向而行,3 小时后两车相遇.已知汽车每小时比自行车多行31.5 千米,求汽车、自行车的速度各是多少?13+31.5=44.5(千米)中因汽车故障甲车停了1小时,5小时后两车相遇.乙车每小时行多少千米?300÷5=60(千米)答:乙车每小时行驶60千米.中因汽车故障甲车停了1小时,5小时后两车相遇.乙车每小时行多少千米?300÷5=60(千米)答:乙车每小时行驶60千米.中因汽车故障甲车停了1小时,5小时后两车相遇.乙车每小时行多少千米?300÷5=60(千米)答:乙车每小时行驶60千米.。

(精选)四年级奥数- 问题解决 -行程问题-相遇问题1

(精选)四年级奥数- 问题解决  -行程问题-相遇问题1
行程问题之相遇问题1
一复习: 1、什么是速度?
2、行程问题中,常用的数量关系。
——×——=路程 速度=——÷—— 时间=——÷——
相遇问题的含义:两个 运动的物Fra bibliotek同时由两地 出发相向而行,在途中 相遇。这类应用题叫做 相遇问题。
例、两辆汽车同时从甲乙两地同时 出发相向而行,A车每小时行65千米, B车每小时行70千米。3小时后两车 相遇,甲乙两地相距多少千米? 请先画线段图,再解决下面的问题。 解法一:先算出A车的路程是:( )。再算出B车的路程是( )。最后A车的路程+B车的路程= 相遇的路程和。列综合算式为:( )。 解法二:先算两车每时行的路程, 也就是速度和是( )。再算两车3时行的路程,也就是 路程和是:( )。
明家相距多少米?
3、两艘军舰同时从相距948千米的
两个港口对开.一艘军舰每小时行 38千米.另一艘军舰每小时行41千 米.经过几小时两艘军舰可以相遇?
4、甲乙两个工程队合修一条隧道, 各从隧道的一端开始施工,甲队每 天开凿25米,乙队每天开凿20米, 经过56天隧道凿通,这条隧道长多 少米?
5、甲乙两辆汽车同时从A、B两个车 站出发相向而行,经过5小时在途中 相遇,甲车每小时行85千米,乙车每 小时行80千米,乙车在途中曾停车1 小时,A、B两站相距多少千米?
相遇问题中,当两车行驶时间相同 时:
——×——=路程和
相遇时间=——÷——
速度和=——÷——
练习 1、两辆汽车同时从甲乙两地同时
出发相向而行,A车每小时行65千 米,B车每小时行70千米。3小时后 两车相遇,甲乙两地相距多少千米?
2. 小华和小明分别从自己家出发, 向对方的家走去,小华每分钟走50 米,小明每分钟走60米,经过5分 钟两人还差50米相遇。求小华和小
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四年级行程问题之相遇问题
研究路程、时间和速度这三者关系的问题称为行程问题。

行程问题主要包括相遇问题和追及问题。

相遇问题的特点是:总路程是由两人共同行完。

基本的计算公式如下:
一、基本例题
例1、甲、乙两人分别从相距20千米的两地同时出发相向而行,甲每小时行6千米,乙每小时行4千米,两人几小时后相遇?
例2、甲、乙两车分别从相距480千米的A、B两城同时出发相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时,两车出发后几小时相遇?
例3、东、西两村相距60千米,甲、乙两人骑车分别从东、西两村同时出发相向而行,5小时后两人相遇,已知甲每小时行5千米,求乙的速度是多少?
例4、东、西两村相距55千米,甲、乙两人分别从东、西两村同时出发相向而行,5小时后两人相遇,已知甲每小时比乙多行1千米,求甲、乙两人的速度?
例5、A、B两地相距200千米,甲开车从A地出发到B地,同时乙骑车从B地出发到A地,4小时后相遇,已知甲的速度是乙的4倍,求甲、乙两人的速度?
例6、甲、乙两人分别从相距40千米的两地同时出发相向而行,甲每小时行6千米,乙每小时行4千米,相遇时甲比乙多行多少千米?
例7、小李和小王在环形的操场上跑步,操场的周长是400米,两人从同一起点同时出发相背而行,小李每秒跑3米,小王每秒跑5米。

(1)多少秒以后他们第一次相遇?
(2)第一次相遇时两人各跑了多少米?
(3)多少秒以后他们第二次相遇?第二次相遇时两人各跑了多少米?
(4)多少秒以后他们5次相遇?
(5)他们第6次相遇时一共跑了多少米?
二、课内练习
1、李明和张玫两人的家相距2公里,上午8时两人同时从家里出发,李明每分钟行120米,张玫每分钟行80米,两人几点几分相遇?相遇时李明比张玫多行多少米?
2、甲、乙两车分别从相距240千米的A、B两城同时出发相向而行,已知甲车从A城到B城需3小时,乙车从B城到A城需5小时,两车出发后几小时相遇?
3、东、西两村相距80千米,甲、乙两人骑车分别从东、西两村同时出发相向而行,4小时后两人相遇,已知甲每小时行8千米,求乙的速度是多少?
4、东、西两村相距40千米,甲、乙两人分别从东、西两村同时出发相向而行,8小时后两人相遇,已知甲每小时比乙多行1千米,求甲、乙两人的速度?
5、A、B两地相距320千米,甲车从A地出发到B地,同时乙车从B地出发到A地,4小时后相遇,已知甲车的速度是乙车的3倍,求甲、乙两车的速度?
6、陈老师和刘老师在环形的操场上跑步,操场的周长是400米,两人从同一起点同时出发相背而行,陈老师每秒跑4米,刘老师每秒跑6米。

(1)多少秒后他们第3次相遇?
(2)第3次相遇时刘老师比陈老师多跑多少米?
(3)他们第7次相遇时,一共跑了多少米?
7、甲、乙两人分别从AB两地同时出发相向而行,出发后2小时后相距55千米,出发后5小时相距22千米,从出发到相遇共需要几小时?
三、作业
1、甲、乙两车分别从相距180千米的两地同时出发相向而行,甲车每小时行35千米,乙车每小时行25千米,两车几小时后相遇?
2、甲、乙两车分别从相距240千米的A、B两城同时出发相向而行,已知甲车从A城到B城需3小时,乙车从B城到A城需5小时,两车出发后几小时相遇?
4、学校到少年宫有3千米,陈林从学校到少年宫去,同时吴欣从少年宫回学校,20分钟后两人相遇,已知陈林每分钟比吴欣多行20米,求两人每分钟各行多少米?
5、A、B两地相距240千米,甲车从A地出发到B地,同时乙车从B地出发到A地,5小时后相遇,已知甲车的速度是乙车的2倍,求甲、乙两车的速度?
6、王欣欣和陆萌萌两人同时从相距2000米的两地相向而行,王欣欣每分钟行
110米,陆萌萌每分钟行90米,如果一只狗与王欣欣同时同向而行,每分钟行500米,遇到陆萌萌后立即返回跑向王欣欣,遇到王欣欣后再立即跑向陆萌萌,这样不断来回,直到两人相遇为止。

狗共跑了多少米?
*7、甲、乙两人从相距100千米的两地出发相向而行,甲先出发1小时,两人在乙出发4小时后相遇。

已知甲比乙每小时多行2千米,求甲、乙各自的速度。

相关文档
最新文档