南京市高二上学期期末数学试卷(理科)(II)卷新版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南京市高二上学期期末数学试卷(理科)(II)卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共12题;共24分)
1. (2分) (2019高二上·长治月考) 已知点是椭圆上的一点,,是椭圆的两个焦点,且,则的面积为()
A .
B .
C .
D .
2. (2分)由曲线,直线及轴所围成的图形的面积为()
A . 4
B . 6
C .
D .
3. (2分)(2018·佛山模拟) 已知双曲线的左焦点为,右顶点为,虚轴的一个端点为,若为等腰三角形,则该双曲线的离心率为()
A .
B .
C .
D .
4. (2分)直线,当此直线在轴的截距和最小时,实数的值是()
A . 1
B .
C . 2
D . 3
5. (2分) (2017高二上·集宁月考) 在同一坐标系中,方程与的曲线大致是()
A .
B .
C .
D .
6. (2分)(2018·辽宁模拟) 已知当时,关于的方程有唯一实数解,则
值所在的范围是()
A .
B .
C .
D .
7. (2分) (2018高三上·德州期末) 已知的定义域为,若对于,,,,,
分别为某个三角形的三边长,则称为“三角形函数”,下例四个函数为“三角形函数”的是()
A . ;
B . ;
C . ;
D .
8. (2分) (2015高二下·郑州期中) 如图所示,图中曲线方程为y=x2﹣1,用定积分表达围成封闭图形(阴影部分)的面积是()
A .
B .
C .
D .
9. (2分) (2017高三上·会宁期末) 函数y=ax﹣(a>0,a≠1)的图象可能是()
A .
B .
C .
D .
10. (2分) (2017高三上·北京开学考) 若函数f(x)= x2﹣lnx在其定义域的一个子区间(k﹣1,k+1)上不是单调函数,则实数k的取值范围是()
A . (1,2)
B . [1,2)
C . [0,2)
D . (0,2)
11. (2分) (2017高二下·邢台期末) 已知,设,
若,则()
A .
B .
C .
D .
12. (2分)用火柴棒摆“金鱼”,如图所示:
按照上面的规律,第n个“金鱼”图需要火柴棒的根数为()
A . 6n-2
B . 8n-2
C . 6n+2
D . 8n+2
二、填空题 (共4题;共4分)
13. (1分) (2016高二上·黑龙江期中) 已知P是曲线 =1(xy≠0)上的动点,F1 , F2为椭圆的左、右焦点,O为坐标原点,若M是∠F1PF2的角平分线上的一点,且• =0,则| |的取值范围是________.
14. (1分) (2017高三上·宿迁期中) 不等式x6﹣(x+2)3+x2≤x4﹣(x+2)2+x+2的解集为________.
15. (1分) (2017高二下·烟台期中) 如图,设D是图中边长为4的正方形区域,E是D内函数y=x2图象下方的点构成的区域.向D中随机投一点,则该点落入E中的概率为________.
16. (1分)(2017·云南模拟) 在平面内,Rt△ABC中,BA⊥CA,有结论BC2=AC2+AB2 ,空间中,在四面体V﹣BCD中,VB,VC,VD两两互相垂直,且侧面的3个三角形面积分别记为S1 , S2 , S3 ,底面△BCD的面积记为S,类比平面可得到空间四面体的一个结论是________.
三、解答题 (共6题;共55分)
17. (10分)已知直线l1:x+my+6=0与l2:(m﹣2)x+3my+2m=0.
(1)当m为何值时,l1与l2平行;
(2)当m为何值时,l1与l2垂直.
18. (10分) (2016高三上·沈阳期中) 已知函数f(x)=lnx﹣.
(1)当a>0时,判断f(x)在定义域上的单调性;
(2)若f(x)在[1,e]上的最小值为,求a的值.
19. (5分)(2019·乌鲁木齐模拟) 已知函数f(x)=ex+ (其中e是自然对数的底数).
(Ⅰ)当t=0时,求f(x)的最值;
(Ⅱ)若t≠0时,f(x)在()上的最小值为1,求实数t的取值范围.
20. (10分)(2017·江西模拟) 如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC= AD=1,CD= .
(1)求证:平面PQB⊥平面PAD;
(2)若二面角M﹣BQ﹣C为30°,设PM=tMC,试确定t的值.
21. (10分)如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E、F分别在A1B1、C1D1上,A1E=D1F=4,过点E,F的平面与此长方体的面相交,交线围成一个正方形。
(1)
(Ⅰ)在图中画出这个正方形(不必说出画法和理由);
(2)
(Ⅱ)求直线AF与平面所成角的正弦值
22. (10分) (2016高二上·湖南期中) 已知等差数列{an}满足:a2=3,a5﹣2a3+1=0.
(1)求{an}的通项公式;
(2)若数列{bn}满足:{bn}=(﹣1)nann(+n∈N*),求{bn}的前n项和Sn.