正弦定理练习 含答案上课讲义

合集下载

正弦定理练习--含答案

正弦定理练习--含答案

课时作业1 正弦定理时间:45分钟 满分:100分课堂训练1.(2013·湖南理,3)在锐角△ABC 中,角A ,B 所对的边长分别为a ,b .若2a sin B =3b ,则角A 等于( )A.π12 B.π6 C.π4 D.π3【答案】 D【解析】 本题考查了正弦定理由a sin A =b sin B ,得sin A =32, ∴∠A =π3.2.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知∠A =π3,a =3,b =1,则c 等于( )A .1B .2 C.3-1 D. 3 【答案】 B【解析】 由正弦定理a sin A =bsin B , 可得3sin π3=1sin B ,sin B =12,故∠B =30°或150°,由a >b ,得∠A >∠B . ∴∠B =30°,故∠C =90°, 由勾股定理得c =2,故选B.3.在△ABC 中,若tan A =13,C =56π,BC =1,则AB =________. 【答案】102【解析】 ∵tan A =13,且A 为△ABC 的内角,∴sin A =1010.由正弦定理得AB =BC sin C sin A =1×sin 56π1010=102.4.在△ABC 中,若∠B =30°,AB =23,AC =2,求△ABC 的周长.【分析】 本题是已知两边及其一边所对的角,要求其周长,自然要考虑去寻求第三边BC ,但BC 的对角∠A 未知,只知道∠B ,可结合条件由正弦定理先求出∠C ,再由三角形内角和定理求出∠A .【解析】 由正弦定理,得sin C =AB sin B AC =32. ∵AB >AC ,∴∠C >∠B ,又∵0°<∠C <180°,∴∠C =60°或120°.(1)如图(1),当∠C =60°时,∠A =90°,BC =4,△ABC 的周长为6+23;(2)如图(2),当∠C=120°时,∠A=30°,∠A=∠B,BC=AC=2,△ABC的周长为4+2 3.综上,△ABC的周长为6+23或4+2 3.【规律方法】已知三角形两边和其中一边的对角时,应先由正弦定理求出正弦值,再判定这个角是否最大,若最大,则有两角,分别为一个锐角、一个钝角,且两角互补,否则只有一解,且为锐角.课后作业一、选择题(每小题5分,共40分)1.在△ABC中,sin A=sin C,则△ABC是()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形【答案】 B【解析】∵sin A=sin C,∴由正弦定理得a=c,∴△ABC为等腰三角形,故选B.2.已知△ABC的三个内角之比为A:B:C=1:2:3,那么a b c=()A.1:2:3 B.1:2: 3C.1: 2 : 3 D.1: 3 :2【答案】 D【解析】 设∠A =k ,∠B =2k ,∠C =3k ,由∠A +∠B +∠C =180°得,k +2k +3k =180°,∴k =30°,故∠A =30°,∠B =60°,∠C =90°.由正弦定理得a :b :c =sin A :sin B :sin C =sin30°:sin60°:sin90°=1: 3 :2.3.在△ABC 中,已知a =8,∠B =60°,∠C =75°,则( ) A .b =4 2 B .b =4 3 C .b =4 6 D .b =323【答案】 C【解析】 ∠A =180°-60°-75°=45°,由a sin A =b sin B 可得b =a sin Bsin A =8sin60°sin45°=4 6.4.已知△ABC 中,a =1,b =3,A =π6,则B =( ) A.π3 B.23π C.π3或23π D.56π或π6 【答案】 C【解析】 由a sin A =b sin B 得sin B =b sin Aa , ∴sin B =3·sin30°1=32,∴B =π3或23π. 5.在△ABC 中,已知∠A =30°,a =8,b =83,则△ABC 的面积S 等于( )A .32 3B .16C .326或16D .323或16 3【答案】 D【解析】 由正弦定理,知 sin B =b sin A a =83sin30°8=32, 又b >a ,∴∠B >∠A ,∴∠B =60°或120°. ∴∠C =90°或30°.∴S =12ab sin C 的值有两个,即323或16 3.6.在△ABC 中,cos A cos B =b a =85,则△ABC 的形状为( ) A .钝角三角形 B .锐角三角形 C .等腰三角形 D .直角三角形【答案】 D【解析】 ∵cos A cos B =b a =sin Bsin A ,即sin2A =sin2B ,∴∠A =∠B 或∠A +∠B =π2,又cos A ≠cos B ,∴∠A ≠∠B ,∴∠A +∠B =π2,∴△ABC 为直角三角形.7.已知△ABC 中,2sin B -3sin A =0,∠C =π6,S △ABC =6,则a =( )A .2B .4C .6D .8【答案】 B【解析】 由正弦定理得a sin A =bsin B ,故由2sin B -3sin A =0, 得2b =3a .①又S △ABC =12ab sin C =12ab sin π6=6, ∴ab =24.②解①②组成的方程组得a =4,b =6.故选B.8.在△ABC 中,∠A =60°,a =13,则a +b +csin A +sin B +sin C 等于( )A.833B.2393C.2633 D .2 3 【答案】 B【解析】 由a =2R sin A ,b =2R sin B ,c =2R sin C 得 a +b +csin A +sin B +sin C =2R =a sin A =13sin60°=2393.二、填空题(每小题10分,共20分)9.在△ABC 中,b 2-c 2a 2sin 2A +c 2-a 2b 2sin 2B +a 2-b 2c 2sin 2C 的值为________.【答案】 0【解析】 可利用正弦定理的变形形式a =2R sin A ,b =2R sin B ,c =2R sin C 代入原式即可.10.在锐角三角形ABC 中,若∠A =2∠B ,则ab 的取值范围是________.【答案】 (2,3)【解析】 ∵△ABC 为锐角三角形,且∠A =2∠B , ∴⎩⎪⎨⎪⎧0<2∠B <π2,0<π-3∠B <π2,∴π6<∠B <π4.∵∠A =2∠B ,∴sin A =sin2B =2sin B cos B ,∴a b =sin Asin B =2cos B ∈(2,3).三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.(1)在△ABC 中,已知a =5,∠B =45°,∠C =105°,求b . (2)在△ABC 中,已知∠A =45°,a =2,b =2,求B .【解析】 (1)∵∠A +∠B +∠C =180°,∴∠A =180°-(∠B +∠C )=180°-(45°+105°)=30°.由正弦定理a sin A =b sin B ,得b =a ·sin B sin A =5·sin45°sin30°=5 2.(2)由正弦定理a sin A =b sin B ,得sin B =b sin A a =2sin45°2=12.又∵0°<∠B <180°,且a >b ,∴∠B =30°.【规律方法】 (1)中要注意在△ABC 中,∠A +∠B +∠C =180°的运用,另外sin105°=sin75°=sin(45°+30)=6+24.(2)中要注意运用三角形中大边对大角的性质,判定解的个数.12.在△ABC中,已知sin A=sin B+sin Ccos B+cos C,判断△ABC的形状.【分析】当式子中只有角或只有边时,一般将其一端化为零,另一端化为因式之积,再因式分解,进而判断三角形的形状.【解析】∵sin A=sin B+sin Ccos B+cos C,∴sin A cos B+sin A cos C=sin B+sin C.∵∠A+∠B+∠C=π,∴sin A cos B+sin A cos C=sin(A+C)+sin(A+B).∴sin A cos B+sin A cos C=sin A cos C+cos A sin C+sin A cos B+cos A sin B. ∴cos A sin C+sin B cos A=0.∴cos A(sin B+sin C)=0.∵∠B,∠C∈(0,π),∴sin B+sin C≠0.π∴cos A=0,∴∠A=2,∴△ABC为直角三角形.。

正弦定理(一)(附答案)

正弦定理(一)(附答案)

正弦定理(一)[学习目标] 1.通过对任意三角形边长和角度的关系的探索,掌握正弦定理的内容及其证明方法.2.能运用正弦定理与三角形的内角和定理解决简单的解三角形问题.知识点一 正弦定理 1.正弦定理的表示2.正弦定理的常见变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ,其中R 为△ABC 外接圆的半径. (2)sin A =a 2R ,sin B =b 2R ,sin C =c2R(R 为△ABC 外接圆的半径).(3)三角形的边长之比等于对应角的正弦比,即a ∶b ∶c =sin A ∶sin B ∶sin C . (4)a +b +c sin A +sin B +sin C =a sin A =b sin B =csin C . (5)a sin B =b sin A ,a sin C =c sin A ,b sin C =c sin B . 3.正弦定理的证明(1)在Rt △ABC 中,设C 为直角,如图,由三角函数的定义:sin A =a c ,sin B =bc,∴c =a sin A =b sin B =c sin 90°=csin C ,∴a sin A =b sin B =c sin C. (2)在锐角三角形ABC 中,设AB 边上的高为CD ,如图,CD=a sin_B=b sin_A,∴asin A=bsin B,同理,作AC边上的高BE,可得asin A=csin C,∴asin A=bsin B=csin C.(3)在钝角三角形ABC中,C为钝角,如图,过B作BD⊥AC于D,则BD=a sin(π-C)=a sin_C,BD=c sin_A,故有a sin C=c sin_A,∴asin A=csin C,同理,asin A=bsin B,∴asin A=bsin B=csin C.思考下列有关正弦定理的叙述:①正弦定理只适用于锐角三角形;②正弦定理不适用于直角三角形;③在某一确定的三角形中,各边与它所对角的正弦的比是一定值;④在△ABC中,sin A∶sin B∶sin C=BC∶AC∶AB.其中正确的个数有()A.1B.2C.3D.4答案 B解析正弦定理适用于任意三角形,故①②均不正确;由正弦定理可知,三角形一旦确定,则各边与其所对角的正弦的比值也就确定了,所以③正确;由正弦定理可知④正确.故选B. 知识点二解三角形一般地,把三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.思考正弦定理能解决哪些问题?答案利用正弦定理可以解决以下两类有关三角形的问题:①已知两角和任意一边,求其他两边和第三个角;②已知两边和其中一边的对角,求另一边的对角,从而求出其他的边和角.题型一 对正弦定理的理解例1 在△ABC 中,若角A ,B ,C 对应的三边分别是a ,b ,c ,则下列关于正弦定理的叙述或变形中错误的是( ) A.a ∶b ∶c =sin A ∶sin B ∶sin C B.a =b ⇔sin 2A =sin 2B C.asin A =b +c sin B +sin CD.正弦值较大的角所对的边也较大 答案 B解析 在△ABC 中,由正弦定理得a sin A =b sin B =c sin C=k (k >0),则a =k sin A ,b =k sin B ,c =k sin C ,故a ∶b ∶c =sin A ∶sin B ∶sin C ,故A 正确. 当A =30°,B =60°时,sin 2A =sin 2B ,此时a ≠b ,故B 错误. 根据比例式的性质易得C 正确. 大边对大角,故D 正确.跟踪训练1 在△ABC 中,下列关系一定成立的是( ) A.a >b sin A B.a =b sin A C.a <b sin A D.a ≥b sin A答案 D解析 在△ABC 中,B ∈(0,π),∴sin B ∈(0,1], ∴1sin B≥1, 由正弦定理a sin A =b sin B 得a =b sin Asin B ≥b sin A .题型二 用正弦定理解三角形例2 (1)在△ABC 中,已知c =10,A =45°,C =30°,解这个三角形. (2)在△ABC 中,已知c =6,A =45°,a =2,解这个三角形. 解 (1)∵A =45°,C =30°,∴B =180°-(A +C )=105°, 由a sin A =c sin C 得a =c sin A sin C =10×sin 45°sin 30°=10 2. ∵sin 75°=sin(30°+45°)=sin 30°cos 45°+cos 30°sin 45°=2+64, ∴b =c sin B sin C =c sin (A +C )sin C =10×sin 75°sin 30°=20×2+64=52+5 6.∴B =105°,a =102,b =52+5 6. (2)∵a sin A =csin C, ∴sin C =c sin Aa =6×sin 45°2=32,∵C ∈(0°,180°),∴C =60°或C =120°. 当C =60°时,B =75°,b =c sin B sin C =6sin 75°sin 60°=3+1; 当C =120°时,B =15°,b =c sin B sin C =6sin 15°sin 120°=3-1. ∴b =3+1,B =75°,C =60°或b =3-1,B =15°, C =120°.跟踪训练2 (1)在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A.4 2 B.4 3 C.4 6 D.4(2)在△ABC 中,若a =2,b =2,A =30°,则C =______. 答案 (1)C (2)105°或15°解析 (1)易知A =45°,由a sin A =bsin B 得b =a sin Bsin A =8·3222=4 6.(2)由正弦定理a sin A =bsin B ,得sin B =b sin A a =2sin 30°2=22.∵B ∈(0°,180°),∴B =45°或135°,∴C =180°-45°-30°=105°或C =180°-135°-30°=15°.题型三 判断三角形的形状例3 在△ABC 中,已知a 2tan B =b 2tan A ,试判断三角形的形状. 解 由已知得a 2sin B cos B =b 2sin Acos A ,由正弦定理得sin 2A sin B cos B =sin 2B sin Acos A .∵sin A 、sin B ≠0,∴sin A cos A =sin B cos B . 即sin 2A =sin 2B .∴2A +2B =π或2A =2B . ∴A +B =π2或A =B .∴△ABC 为等腰三角形或直角三角形.跟踪训练3 在△ABC 中,b sin B =c sin C 且sin 2A =sin 2B +sin 2C ,试判断三角形的形状. 解 由b sin B =c sin C ,得b 2=c 2, ∴b =c ,∴△ABC 为等腰三角形, 由sin 2A =sin 2B +sin 2C 得a 2=b 2+c 2, ∴△ABC 为直角三角形, ∴△ABC 为等腰直角三角形.1.在△ABC 中,AB =c ,AC =b ,BC =a ,下列等式中总能成立的是( ) A.a sin A =b sin B B.b sin C =c sin A C.ab sin C =bc sin BD.a sin C =c sin A2.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,已知a =2,b =3,B =60°,那么A 等于( )A.135°B.90°C.45°D.30°3.在锐角三角形ABC 中,角A ,B 所对的边分别为a ,b ,若2a sin B =3b ,则A 等于( ) A.π12 B.π6 C.π4 D.π34.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若sin A a =cos B b =cos C c ,则△ABC是( )A.等边三角形B.直角三角形,且有一个角是30°C.等腰直角三角形D.等腰三角形,且有一个角是30°5.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,已知B =30°,c =150,b =503,则△ABC 的形状是________.6.在△ABC 中,若b =5,B =π4,tan A =2,则sin A =______,a =________.一、选择题1.在△ABC 中,BC =a =5,AC =b =3,则sin A ∶sin B 的值是( ) A.53 B.35 C.37 D.572.在△ABC 中,A >B ,则下列不等式中不一定正确的是( ) A.sin A >sin B B.cos A <cos B C.sin 2A >sin 2BD.cos 2A <cos 2B3.在△ABC 中,A ∶B ∶C =4∶1∶1,则a ∶b ∶c 等于( ) A.4∶1∶1 B.2∶1∶1 C.2∶1∶1D.3∶1∶14.在△ABC 中,a =b sin A ,则△ABC 一定是( ) A.锐角三角形 B.直角三角形 C.钝角三角形D.等腰三角形5.已知△ABC 中,a =4,b =43,A =30°,则B 等于( )A.30°B.30°或150°C.60°D.60°或120° 6.在△ABC 中,A =60°,a =3,则a +b +c sin A +sin B +sin C 等于( )A.833B.2393C.2833D.2 37.在△ABC 中,已知B =60°,最大边与最小边的比为3+12,则三角形的最大角为( ) A.60° B.75° C.90° D.115° 8.在△ABC 中,a =4,b =52,5cos(B +C )+3=0,则角B 的大小为( )A.π6B.π4C.π3D.56π二、填空题9.已知在△ABC 中,A ∶B ∶C =1∶2∶3,a =1,则a -2b +c sin A -2sin B +sin C =________.10.在△ABC 中,A =π3,BC =3,AB =6,则角C =______.11.在△ABC 中,BC =a =15,AC =b =10,A =60°,则cos B =________.三、解答题12.(1)在△ABC中,AB=c,BC=a,AC=b,已知A=45°,B=30°,c=10,解三角形;(2)在△ABC中,BC=a=4,AC=b,AB=c=26,A=45°,求b,B和C.13.在△ABC中,若sin A=2sin B cos C,且sin2A=sin2B+sin2C,试判断△ABC的形状.当堂检测答案1.答案 D解析 由正弦定理a sin A =b sin B =csin C ,得a sin C =c sin A . 2.答案 C解析 由a sin A =b sin B 得sin A =a sin Bb =2×323=22, ∴A =45°或135°.又∵a <b ,∴A <B ,∴A =45°. 3.答案 D解析 在△ABC 中,利用正弦定理得 2sin A sin B =3sin B , 又∵sin B ≠0,∴sin A =32. 又A 为锐角,∴A =π3.4.答案 C解析 由题a cos B =b sin A , 又由正弦定理a sin B =b sin A , ∴sin B =cos B ,又∵B ∈(0°,180°),∴B =45°.同理C =45°.故△ABC 为等腰直角三角形. 5.答案 等腰或直角三角形解析 由b sin B =c sin C 得sin C =c sin B b =150×12503=32,又∵C ∈(0°,180°), ∴C =60°或120°, ∴A =90°或30°,∴△ABC 为等腰或直角三角形. 6.答案255210 解析 由tan A =2,得sin A =2cos A , 由sin 2A +cos 2A =1,得sin A =255,∵b =5,B =π4,由正弦定理a sin A =bsin B ,得a =b sin A sin B =2522=210.错误!课时精练答案一、选择题 1.答案 A 解析sin A sin B =a b =53. 2.答案 C解析 A >B ⇔a >b ⇔sin A >sin B ,A 正确. 由于(0,π)上,y =cos x 单调递减, ∴cos A <cos B ,B 正确. cos 2α=1-2sin 2α.∵sin A >sin B >0,∴sin 2A >sin 2B , ∴cos 2A <cos 2B ,D 正确. 3.答案 D解析 ∵A +B +C =180°,A ∶B ∶C =4∶1∶1, ∴A =120°,B =30°,C =30°.由正弦定理的变形公式得a ∶b ∶c =sin A ∶sin B ∶sin C =sin 120°∶sin 30°∶sin 30°=32∶12∶12=3∶1∶1. 4.答案 B解析 ∵a =b sin A ,∴a b =sin A =sin Asin B ,∴sin B =1,又∵B ∈(0,π),∴B =π2,即△ABC 为直角三角形.5.答案 D解析 由正弦定理a sin A =bsin B 得sin B =b sin A a =43×124=32,又∵B ∈(0°,180°),且b >a ,B >A ,∴B =60°或120°. 6.答案 D解析 利用正弦定理及比例性质,得a +b +c sin A +sin B +sin C =a sin A =3sin 60°=332=2 3.7.答案 B解析 不妨设a 为最大边,c 为最小边,由题意有a c =sin A sin C =3+12,即sin Asin (120°-A )=3+12.整理得(3-3)sin A =(3+3)cos A . ∴tan A =2+3,又∵A ∈(0°,120°),∴A =75°,故选B. 8.答案 A解析 由5cos(B +C )+3=0得cos A =35,∴A ∈(0,π2),∴sin A =45,由正弦定理得445=52sin B ,∴sin B =12.又∵a >b ,∴A >B ,且A ∈(0,π2),∴B 必为锐角,∴B =π6.二、填空题 9.答案 2解析 ∵A ∶B ∶C =1∶2∶3, ∴A =30°,B =60°,C =90°. ∵a sin A =b sin B =c sin C =1sin 30°=2, ∴a =2sin A ,b =2sin B ,c =2sin C , ∴a -2b +csin A -2sin B +sin C=2.10.答案 π4解析 由正弦定理,得sin C =sin A ·AB BC =22. 因为BC >AB ,所以A >C ,则0<C <π3,故C =π4. 11.答案 63解析 由正弦定理得sin B =b a sin A =1015·sin 60°=33, 又b <a ,∴0°<B <60°,∴cos B >0,∴cos B =1-sin 2B = 1-(33)2=63. 三、解答题12.解 (1)因为A +B +C =180°,所以C =105°.所以sin C =sin 105°=sin(60°+45°)=sin 60°cos 45°+cos 60°sin 45°=6+24. 由正弦定理a sin A =b sin B =c sin C, 得a =sin A sin C·c =10(3-1), b =c sin B sin C =10sin 30°sin 105°=5(6-2). 所以C =105°,a =10(3-1),b =5(6-2).(2)由正弦定理a sin A =c sin C得 sin C =c sin A a =26×224=32. ∵C ∈(0°,180°),且c >a ,C >A ,∴C =60°或120°,∴B =75°或15°,∴sin B =6+24或6-24, ∴b =a sin A ·sin B =422×6±24=2(3±1), ∴b =2(3+1),B =75°,C =60°或b =2(3-1),B =15°,C =120°.13.解 方法一 根据正弦定理a sin A =b sin B =c sin C.∵sin2A=sin2B+sin2C,∴a2=b2+c2,∴A是直角,B+C=90°,∴2sin B cos C=2sin B cos(90°-B)=2sin2B=sin A=1,∴sin B=2 2.∵0°<B<90°,∴B=45°,C=45°,∴△ABC是等腰直角三角形.方法二根据正弦定理asin A=bsin B=csin C.∵sin2A=sin2B+sin2C,∴a2=b2+c2,∴A是直角.∵A=180°-(B+C),sin A=2sin B cos C,∴sin(B+C)=sin B cos C+cos B sin C=2sin B cos C,∴sin(B-C)=0.又-90°<B-C<90°,∴B-C=0,∴B=C,∴△ABC是等腰直角三角形.。

解三角函数:正弦定理习题及详细答案

解三角函数:正弦定理习题及详细答案

1.在△ABC 中,A =60°,a =43,b =42,则( ) A .B =45°或135° B .B =135° C .B =45° D .以上答案都不对.以上答案都不对解析:选C.sin B c =2,b =6,B =120°,则a 等于( ) A.6 B .2 C.3 D.2 解析:选D.由正弦定理6sin 120°=2sin C ⇒sin C =12, 于是C =30°⇒A =30°⇒a =c = 2. 3.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =__________. 解析:在△ABC 中,若tan A =13,C =150°, ∴则根据正弦定理知AB =BC ·sin C sin A =102. 答案:1024.已知△ABC 中,AD 是∠BAC D,求证:BD DC =AB AC. 证明:如图所示,设∠ADB =θ,则∠ADC =π-θ. 在△ABD 中,由正弦定理得: BD sin A 2=AB sin θ,即BDAB =sin A2sin θ;① 在△ACD 中,CD sin A 2=ACsin (π-θ),解三角函数:正弦定理=22,∵a >b ,∴B =45°45°. . 2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若A 为锐角,sin A =110,BC =1,的平分线,交对边BC 于∴CDAC =sinA2 sin θ.②由①②得BDAB=CDAC,∴BDDC=ABAC. 一、选择题1.在△ABC中,a=5,b=3,C=120°,则sin A∶sin B的值是() A.53 B.35C.37 D.5B=ab=53. 2.在△ABC中,若sin Aa=cos Cc,则C的值为() A.30°B.45°C.60°D.90°解析:选B.∵sin Aa=cos Cc,∴sin Acos C=ac,又由正弦定理ac=sin Asin C. ∴cos C=sin C,即C=45°,故选B. 3.15,b=10,A =60°,则cos B=() A.-223 B.223C.-63D.63解析:选D.由正弦定理得15sin 60°=10sin B,∴sin B=10·10·sin 60°sin 60°15=10×3215=33. ∵a>b,A 7解析:选A.根据根据正弦定理正弦定理得sin A sin (2010年高考湖北卷)在△ABC中,a==60°,∴B为锐角.∴cos B=1-sin2B=1-(33)2=63. 4.在△ABC中,a=b sin A,则△ABC一定是() A.锐角三角形.锐角三角形 B.直角三角形C.钝角三角形.钝角三角形 D.等腰三角形解析:选B.由题意有a sin A =b =bsin 3,a =3,b =1,则c =( ) A .1 B .2 C.3-1 D.3 解析:选 B..两解.两解 B .一解.一解 C .无解.无解 D .无穷多解.无穷多解解析:选B.因c sin A =23<4,且a =c ,故有唯一解.二、填空题7.在△ABC 中,已知BC =5,sin C =2sin A ,则AB =________. 解析:AB =sin C sin A BC =2BC=2 5. 答案:25 8.在△ABC 中,B =30°,C =120°,则a ∶b ∶c =________. 解析:A =180°-30°-120°=30°, 由正弦定理得: a ∶b ∶c =sin A ∶sin B ∶sin C =1∶1∶ 3. 答案:1∶1∶3 在△ABC 中,若b =1,c =3,∠C =2π3,则a =________. 解析:由正弦定理,有3sin 2π3=1sin B , B ,则sin B =1,即角B 为直角,故△ABC是直角三角形.5.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知A =π由正弦定理a sin A =b sin B ,可得3sin π3=1sin B ,∴sin B =12,故B =30°或150°150°. . 由a >b ,得A >B ,∴B =30°30°. . 故C =90°,由,由勾股定理勾股定理得c =2. 6.(2011年天津质检)在△ABC 中,如果A =60°,c =4,a =4,则此三角形有( ) A9.(2010年高考北京卷)=6,=. =a2R∶b2R∶c2R=×4A=bsin B,得=a sin Bb=×322=534>=532,所以cos(π-cos(π-cos(π2-cos(π2-a·a2Rcos(π2-cos(π2-2.=π15=根据正弦定理正弦定理asin =b·b2R,。

《正弦定理》教案(含答案)

《正弦定理》教案(含答案)

《正弦定理》教案(含答案)章节一:正弦定理的引入教学目标:1. 让学生理解正弦定理的概念和意义。

2. 让学生掌握正弦定理的数学表达式。

3. 让学生了解正弦定理的应用场景。

教学内容:1. 引入正弦定理的背景和意义。

2. 介绍正弦定理的数学表达式:a/sinA = b/sinB = c/sinC。

3. 解释正弦定理的证明过程。

教学活动:1. 通过实际例子引入正弦定理的概念。

2. 引导学生推导正弦定理的数学表达式。

3. 让学生进行小组讨论,探索正弦定理的应用场景。

练习题:1. 解释正弦定理的概念。

2. 给出一个三角形,让学生计算其各边的比例。

章节二:正弦定理的应用教学目标:1. 让学生掌握正弦定理在三角形中的应用。

2. 让学生能够解决实际问题中涉及的三角形问题。

教学内容:1. 介绍正弦定理在三角形中的应用方法。

2. 讲解正弦定理在实际问题中的应用示例。

教学活动:1. 通过示例讲解正弦定理在三角形中的应用方法。

2. 让学生进行小组讨论,探讨正弦定理在实际问题中的应用。

练习题:1. 使用正弦定理计算一个三角形的面积。

2. 给出一个实际问题,让学生应用正弦定理解决问题。

章节三:正弦定理的证明教学目标:1. 让学生理解正弦定理的证明过程。

2. 让学生掌握正弦定理的证明方法。

教学内容:1. 介绍正弦定理的证明过程。

2. 解释正弦定理的证明方法。

教学活动:1. 通过几何图形的分析,引导学生推导正弦定理的证明过程。

2. 让学生进行小组讨论,理解正弦定理的证明方法。

练习题:1. 解释正弦定理的证明过程。

2. 给出一个三角形,让学生使用正弦定理进行证明。

章节四:正弦定理在实际问题中的应用教学目标:1. 让学生掌握正弦定理在实际问题中的应用。

2. 让学生能够解决实际问题中涉及的三角形问题。

教学内容:1. 介绍正弦定理在实际问题中的应用方法。

2. 讲解正弦定理在实际问题中的应用示例。

教学活动:1. 通过示例讲解正弦定理在实际问题中的应用方法。

2024-2025年人教版必修第四册9.1.1正弦定理(带答案)

2024-2025年人教版必修第四册9.1.1正弦定理(带答案)

9.1.1 正弦定理1.在△ABC 中,a =3,b =5,sin A =13,则sin B =( ) A .15 B .59C .53D .1 2.已知△ABC 中,a =2 ,b =3 ,B =60°,那么A 等于( )A .45°B .60°C .120°或60°D .135°或45°3.已知锐角△ABC 的面积为3,BC =4,AC =3,则角C 的大小为( )A .75°B .60°C .45°D .30°4.在△ABC 中,a =1,b =3 ,A =30°,则c =( )A .1B .2C .1或2D .无解5.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin B =12,A =120°,且b =2,则△ABC 的面积为( )A .3B .23C .3D .436.在△ABC 中,a =7,b =8,cos B =-17. (1)求角A ;(2)求AC 边上的高.7.(多选)在△ABC 中,下列式子可能成立的是A .a >b sin A B .a <b sin AC .a =b sin AD .b <a sin B8.在△ABC 中,若AB → ·AC → =2且∠BAC =30°,则△ABC 的面积为( )A .3B .23C .33D .233 9.(多选)下列关于正弦定理或其变形的叙述正确的是( )A .在△ABC 中,a ∶b ∶c =sin A ∶sinB ∶sin CB .在△ABC 中,sin 2A =sin 2B ,则a =bC .在△ABC 中,若sin A >sin B ,则A >B ;若A >B ,则sin A >sin BD .在△ABC 中,a sin A =b +c sin B +sin C10.(逻辑推理)在△ABC 中,a =b sin A ,则△ABC 一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形11.在△ABC 中,A =60°,a =6 ,b =4,则满足条件的△ABC ( )A .有一个解B .有两个解C .无解D .不能确定12.(多选)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则下列结论成立的是( )A .若A >B ,则sin A >sin BB .若A >B ,则cos A <cos BC .若a cos A =b cos B =c cos C,则a =b =c D .若a cos A =b cos B ,则A =B13.在△ABC 中,已知a 2sin B cos B =b 2sin A cos A,试判断△ABC 的形状.14.在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 所对的边,已知a =3,cos A =63,B =A +π2. (1)求b 的值;(2)求△ABC 的面积.15.已知△ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,且a cos C +32 c =b . (1)求角A 的大小;(2)若a =1,b =3 ,求c 的值.9.1.1 正弦定理必备知识基础练1.答案:B解析:在△ABC 中,由正弦定理a sin A =b sin B ,得sin B =b sin A a =5×133 =59,故选B.2.答案:A解析:在△ABC 中,∵a =2 ,b =3 ,∴a <b ,∴A <B .又∵B =60°,∴A <60°,由正弦定理a sin A =b sin B ,得sin A =a sin B b=2×323 =22 ,则A =45°或135°(舍),故选A. 3.答案:D解析:S =12 BC ·AC ·sin C =12 ×4×3×sin C =3,∴sin C =12,∵三角形为锐角三角形,∴C =30°.4.答案:C 解析:由a sin A =b sin B ,得sin B =b sin A a =32.∵a <b ,∴B >A =30°.∴B 为60°或120°.①当B =60°时,C =180°-60°-30°=90°.此时,c =a 2+b 2 =1+3 =2.②当B =120°时,C =180°-120°-30°=30°.此时,c =a =1.故选C.5.答案:A解析:∵△ABC 中,sin B =12,A =120°,∴B =30°,∴C =30°,又∵b =2,∴c =b =2.∴S △ABC =12 bc sin A =12 ×2×2×32=3 . 6.解析:(1)∵B 是△ABC 的内角,且cos B =-17, ∴B 为钝角,sin B =437. 由正弦定理a sin A =b sin B 得7sin A =8437 , 即sin A =32 ,∴A =π3.(2)由sin C =sin (A +B )=sin A cos B +cos A sin B =32 ×⎝⎛⎭⎫-17 +12 ×437 =3314, 则AC 边上的高=a ·sin C =7×3314 =332. 关键能力综合练7.答案:AC解析:∵a sin A =b sin B ,∴a =b sin A sin B ,b =a sin B sin A,∵sin B ≤1,sin A ≤1,∴a ≥b sin A ,b ≥a sin B ,故选AC.8.答案:C解析:由AB → ·AC → =2得AB ·AC ·cos 30°=2,即AB ·AC =43,所以由三角形面积公式得S =12 AB ·AC ·sin ∠BAC =12 ×43×12 =33 . 9.答案:ACD解析:由正弦定理易知A 、C 、D 正确,对于B ,由sin 2A =sin 2B ,可得A =B 或2A+2B =π,即A =B 或A +B =π2,∴a =b 或a 2+b 2=c 2,故B 错误,故选ACD. 10.答案:B解析:由正弦定理,可设a sin A =b sin B=k ,由a =b sin A 得k sin A =k sin B ·sin A ,所以sin B =1,所以B =π2,故选B. 11.答案:C 解析:由正弦定理得6sin 60° =4sin B.∴sin B =2 >1,∴角B 不存在. 12.答案:ABC解析:对于A :因为A >B ,所以a >b ,由正弦定理可得2R sin A >2R sin B (R 是△ABC 外接圆的半径),所以sin A >sin B ,故正确;对于B :因为y =cos x 在(0,π)上单调递减,A ,B ∈(0,π)且A >B ,所以cos A <cos B ,故正确;对于C :因为a cos A =b cos B =c cos C,由正弦定理化边为角可得tan A =tan B =tan C ,又因为A ,B ,C ∈(0,π),所以A =B =C ,所以a =b =c ,故正确;对于D :利用正弦定理化边为角可得sin A cos A =sin B cos B ,所以sin 2A =sin2B ,所以A =B 或A +B =π2,故错误.故选ABC. 13.解析:∵a 2sin B cos B =b 2sin A cos A,a =2R sin A ,b =2R sin B , ∴4R 2sin 2A sin B cos B =4R 2sin 2B sin A cos A.又∵sin A sin B ≠0,∴sin A cos A =sin B cos B ,即sin 2A =sin 2B ,∴2A =2B 或2A +2B=π,即A =B 或A +B =π2.故△ABC 是等腰三角形或直角三角形. 14.解析:(1)在△ABC 中,由题意知sin A =1-cos 2A =33, 又B =A +π2 ,所以sin B =sin (A +π2 )=cos A =63. 由正弦定理可得b =a sin B sin A =3×6333=32 . (2)由B =A +π2, 得cos B =cos (A +π2 )=-sin A =-33, 由A +B +C =π,得C =π-(A +B ),所以sin C =sin [π-(A +B )]=sin (A +B )=sin A cos B +cos A sin B =33 ×(-33)+63 ×63 =13. 所以△ABC 的面积S =12 ab sin C =12 ×3×32 ×13 =322 . 核心素养升级练 15.解析:(1)由a cos C +32 c =b ,得sin A cos C +32sin C =sin B . 因为sin B =sin (A +C )=sin A cos C +cos A sin C ,所以32sin C =cos A sin C . 因为sin C ≠0,所以cos A =32 . 因为0<A <π,所以A =π6. (2)由正弦定理,得sin B =b sin A a =32 , 所以B =π3 或2π3. ①当B =π3 时,由A =π6 ,得C =π2 ,所以c =2; ②当B =2π3 时,由A =π6 ,得C =π6,所以c =a =1.综上可得c=1或2.。

正弦定理习题课ppt课件

正弦定理习题课ppt课件
1.正弦定理表达了三角形的边和角的关系,是 解三角形的重要工具.利用正弦定理可以解以下两 类三角形:
(1)已知两角和任一边,求未知边和角; (2)已知两边和其中一边的对角,求另一边的对 角,从而进一步求出其他的边和角.此类问题有多 解、一解、无解的情况,需要进行讨论.
返回
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
返回
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
[精解详析] (1)∵A、B、C 为△ABC 的三个内角,且
B=π3,cos A=45,
∴C=23π-A,sin A=35
(3 分)
∴sin
C=sin(23π-A)=
2.在△ABC中,已知a=10,B=75°,C=60°,
试求c及△ABC的外接圆半径R. 解:∵A+B+C=180°,
∴A=180°-75°-60°=45°.
由正弦定理,得sina A=sinc C=2R,
∴c=as·isninAC=10×2
3 2 =5
6.
2
∴2R=sina A=102=10 2. 2
(9 分)
∴△ABC 的面积 S=12absin C=12×65× 3×3+140 3=
36+9 3 50
(12 分)
返回
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
[一点通] 1.求三角形的面积是在已知两边及其夹角的情况 下求得的,所以在解题中要有目的的为具备两边及其 夹角的条件作准备.

2017-2018学年高中数学(人教B版)5名师讲义:第一章1.1 正弦定理和余弦定理含答案

2017-2018学年高中数学(人教B版)5名师讲义:第一章1.1 正弦定理和余弦定理含答案

正弦定理和余弦定理1.1。

1 正弦定理预习课本P3~5,思考并完成以下问题(1)直角三角形中的边角之间有什么关系?(2)正弦定理的内容是什么?利用它可以解哪两类三角形?(3)解三角形的含义是什么?错误!1.正弦定理在一个三角形中,各边的长和它所对角的正弦的比相等,即错误!=错误!=错误!.[点睛]正弦定理的特点(1)适用范围:正弦定理对任意的三角形都成立.(2)结构形式:分子为三角形的边长,分母为相应边所对角的正弦的连等式.(3)刻画规律:正弦定理刻画了三角形中边与角的一种数量关系,可以实现三角形中边角关系的互化.2.解三角形一般地,把三角形的三个角及其对边分别叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.错误!1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)正弦定理适用于任意三角形()(2)在△ABC中,等式b sin A=a sin B总能成立()(3)在△ABC中,已知a,b,A,则此三角形有唯一解( )解析:(1)正确.正弦定理适用于任意三角形.(2)正确.由正弦定理知错误!=错误!,即b sin A=a sin B.(3)错误.在△ABC中,已知a,b,A,此三角形的解有可能是无解、一解、两解的情况,具体情况由a,b,A的值来定.答案:(1)√(2)√(3)×2.在△ABC中,下列式子与错误!的值相等的是( )A。

错误! B.错误!C.sin CcD.错误!解析:选C 由正弦定理得,错误!=错误!,所以sin Aa=错误!.3.在△ABC中,已知A=30°,B=60°,a=10,则b等于()A.5错误! B.10错误!C。

错误! D.5错误!解析:选B 由正弦定理得,b=错误!=错误!=10错误!。

4.在△ABC中,A=30°,a=3,b=2,则这个三角形有( )A.一解 B.两解C.无解 D.无法确定解析:选A ∵b<a,A=30°,∴B〈30°,故三角形有一解.已知两角及一边解三角形[典例] 在△ABC中,已知a=8,B=60°,C=75°,求A,b,c.[解] A=180°-(B+C)=180°-(60°+75°)=45°,由正弦定理错误!=错误!,得b=错误!=错误!=4错误!,由错误!=错误!,得c=错误!=错误!=错误!=4(错误!+1).已知三角形任意两角和一边解三角形的基本思路(1)由三角形的内角和定理求出第三个角.(2)由正弦定理公式的变形,求另外的两条边.[注意]若已知角不是特殊角时,往往先求出其正弦值(这时应注意角的拆并,即将非特殊角转化为特殊角的和或差,如75°=45°+30°),再根据上述思路求解.[活学活用]在△ABC中,若A=60°,B=45°,BC=3错误!,则AC=()A.4错误! B.2错误!C。

新人教A版高中数学【必修5】 第一章 1.1.1正弦定理(二)课时作业练习含答案解析

新人教A版高中数学【必修5】 第一章 1.1.1正弦定理(二)课时作业练习含答案解析

1.1.1 正弦定理(二) 课时目标1.熟记正弦定理的有关变形公式;2.能够运用正弦定理进行简单的推理与证明.1.正弦定理:a sin A =b sin B =c sin C =2R 的常见变形:(1)sin A ∶sin B ∶sin C =a ∶b ∶c ;(2)a sin A =b sin B =c sin C =a +b +csin A +sin B +sin C =2R ;(3)a =2Rsin_A ,b =2Rsin_B ,c =2Rsin_C ;(4)sin A =a 2R ,sin B =b 2R ,sin C =c 2R .2.三角形面积公式:S =12absin C =12bcsin A =12casin B.一、选择题1.在△ABC 中,sin A =sin B ,则△ABC 是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形答案 D2.在△ABC 中,若a cos A =b cos B =c cos C ,则△ABC 是( )A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形答案 B解析 由正弦定理知:sin A cos A =sin B cos B =sin C cos C ,∴tan A =tan B =tan C ,∴A =B =C.3.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是() A.⎝ ⎛⎭⎪⎫152,+∞ B .(10,+∞)C .(0,10) D.⎝ ⎛⎦⎥⎤0,403答案 D解析 ∵c sin C =a sin A =403,∴c =403sin C.∴0<c≤403.4.在△ABC 中,a =2bcos C ,则这个三角形一定是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形答案 A解析 由a =2bcos C 得,sin A =2sin Bcos C ,∴sin(B +C)=2sin Bcos C ,∴sin Bcos C +cos Bsin C =2sin Bcos C ,∴sin(B -C)=0,∴B =C.5.在△ABC 中,已知(b +c)∶(c +a)∶(a +b)=4∶5∶6,则sin A ∶sin B ∶sin C 等于() A .6∶5∶4 B .7∶5∶3C .3∶5∶7D .4∶5∶6答案 B解析 ∵(b +c)∶(c +a)∶(a +b)=4∶5∶6,∴b +c 4=c +a 5=a +b 6.令b +c 4=c +a 5=a +b 6=k (k>0),则⎩⎨⎧ b +c =4k c +a =5k a +b =6k ,解得⎩⎪⎨⎪⎧ a =72kb =52kc =32k .∴sin A ∶sin B ∶sin C =a ∶b ∶c =7∶5∶3.6.已知三角形面积为14,外接圆面积为π,则这个三角形的三边之积为( )A .1B .2C.12 D .4答案 A解析 设三角形外接圆半径为R ,则由πR2=π,得R =1,由S △=12absin C =abc 4R =abc 4=14,∴abc =1.二、填空题7.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.答案 2 3解析 ∵cos C =13,∴sin C =223,∴12absin C =43,∴b =2 3.8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知A =60°,a =3,b =1,则c =________. 答案 2解析 由正弦定理a sin A =b sin B ,得3sin 60°=1sin B ,∴sin B =12,故B =30°或150°.由a>b ,得A>B ,∴B =30°,故C =90°,由勾股定理得c =2.9.在单位圆上有三点A ,B ,C ,设△ABC 三边长分别为a ,b ,c ,则a sin A +b 2sin B +2c sin C =________.答案 7解析 ∵△ABC 的外接圆直径为2R =2,∴a sin A =b sin B =c sin C =2R =2,∴a sin A +b 2sin B +2c sin C =2+1+4=7.10.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +c sin A +sin B +sin C=________,c =________.答案 12 6解析 a +b +c sin A +sin B +sin C =a sin A =6332=12.∵S △ABC =12absin C =12×63×12sin C =183,∴sin C =12,∴c sin C =a sin A =12,∴c =6.三、解答题11.在△ABC 中,求证:a -ccos Bb -ccos A =sin B sin A .证明 因为在△ABC 中,a sin A =b sin B =c sin C =2R ,所以左边=2Rsin A -2Rsin Ccos B2Rsin B -2Rsin Ccos A =+-sin Ccos B +-sin Ccos A =sin Bcos C sin Acos C =sin B sin A =右边.所以等式成立,即a -ccos B b -ccos A =sin B sin A .12.在△ABC 中,已知a2tan B =b2tan A ,试判断△ABC 的形状.解 设三角形外接圆半径为R ,则a2tan B =b2tan A⇔a2sin B cos B =b2sin A cos A⇔4R2sin2 Asin B cos B =4R2sin2 Bsin A cos A⇔sin Acos A =sin Bcos B⇔sin 2A =sin 2B⇔2A =2B 或2A +2B =π⇔A =B 或A +B =π2.∴△ABC 为等腰三角形或直角三角形. 能力提升13.在△ABC 中,B =60°,最大边与最小边之比为(3+1)∶2,则最大角为() A .45° B .60° C .75° D .90°答案 C解析 设C 为最大角,则A 为最小角,则A +C =120°,∴sin C sin A =sin ()120°-A sin A=sin 120° cos A -cos 120°sin A sin A=32tan A +12=3+12=32+12,∴tan A =1,A =45°,C =75°.14.在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S.解 cos B =2cos2 B 2-1=35,故B 为锐角,sin B =45.所以sin A =sin(π-B -C)=sin ⎝ ⎛⎭⎪⎫3π4-B =7210. 由正弦定理得c =asin C sin A =107,所以S △ABC =12acsin B =12×2×107×45=87.1.在△ABC 中,有以下结论:(1)A +B +C =π;(2)sin(A +B)=sin C ,cos(A +B)=-cos C ;(3)A +B 2+C 2=π2;(4)sin A +B 2=cos C 2,cos A +B 2=sin C 2,tan A +B 2=1tan C 2.2.借助正弦定理可以进行三角形中边角关系的互化,从而进行三角形形状的判断、三角恒等式的证明.。

正弦定理练习题典型题(含答案)

正弦定理练习题典型题(含答案)

正弦定理一1、在ABC ∆中,060A ∠=,6a =,3b =,则ABC ∆解的情况( )A .无解B .有一解C .有两解D .不能确定2、在△ABC 中,若b=2,A=120°,三角形的面积S=,则三角形外接圆的半径为( ) A .B .2C .2D .43、在ABC △中,,,a b c 分别是角A,B,C 的对边,已知1,2a b ==,3cos 2A =,求角C .4、在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知acosC +ccosA =2bcosA .(1)求角A 的值;(2)求sinB +sinC 的取值范围.5、在锐角△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a=2csinA .(1)求角C 的值;(2)若c=,且S △ABC =,求a+b 的值.参考答案1、【答案】A2、【答案】B3、【答案】解:在ABC △中,3cos 2A =,得6A π=, 又1,2a b ==,由正弦定理得sin sin a b A B=, ∴sin 2sin 2b A B a ==, 又b a >,得4B π=或4B 3π=, 当4B π=时,6412C ππ7π=π--=; 当4B 3π=时,6412C π3ππ=π--=, ∴角C 为127π或12π. 4、【答案】(1)A =;(2)(,].试题分析:(1)要求解,已知条件中有角有边,一般情况下我们可以利用正弦定理把边化为角的关系,本题acosC +ccosA =2bcosA ,由正弦定理可化为sin cos sin cos 2sin cos A C C A B A +=,于是有sin()2sin cos A C B A +=,即sin 2sin cos B B A =,而sin 0B ≠,于是1cos 2A =,3A π=;(2)由(1)23CB π=-,且203B π<<,2sin sin sin sin()3B C B B π+=+-,由两角和与差的正弦公式可转化为3sin()6B π+,再由正弦函数的性质可得取值范围. 试题解析:(1)因为acosC +ccosA =2bcosA ,所以sinAcosC +sinCcosA =2sinBcosA ,即sin(A +C)=2sinBcosA .因为A +B +C =π,所以sin(A +C)=sinB .从而sinB =2sinBcosA .因为sinB ≠0,所以cosA =.因为0<A <π,所以A =.(2)sinB +sinC =sinB +sin(-B)=sinB +sincosB -cos sinB =sinB +cosB =sin(B +).因为0<B <,所以<B +<.所以sinB +sinC 的取值范围为(,].考点:正弦定理,两角和与差的正(余)弦公式,正弦函数的性质.5、【答案】试题分析:(1)由a=2csinA 及正弦定理得sinA=2sinCsinA ,又sinA≠0,可sinC=.又△ABC 是锐角三角形,即可求C .(2)由面积公式,可解得ab=6,由余弦定理,可解得a 2+b 2﹣ab=7,联立方程即可解得a+b 的值的值.试题解析:解:(1)由a=2csinA 及正弦定理,得sinA=2sinCsinA ,∵sinA≠0,∴sinC=.又∵△ABC 是锐角三角形,∴C=.(2)∵c=,C=, ∴由面积公式,得absin =,即ab=6.①由余弦定理,得a 2+b 2﹣2abcos=7, 即a 2+b 2﹣ab=7.②由②变形得(a+b )2=3ab+7.③将①代入③得(a+b )2=25,故a+b=5.考点:正弦定理.点评:本题主要考查了正弦定理,余弦定理,三角形面积公式的应用,考查了转化思想和计算能力,属于中档题.正弦定理二1、在ABC ∆中,o 60A =,3a =2b =B 等于 ( )A. o 45B.o 135C. o 45或o 135D. 以上答案都不对2、在ABC ∆中,若ab c b a 2222+=+,则C =( )A .030B .0150C .045D .01353、在△ABC 中,若30A =,8a =,b =ABC S ∆等于( )A ....4、设ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c ,若cos cos sin b C c B a A +=,则ABC ∆的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定5、已知,,a b c 是ABC ∆的三边长,且222a b c ab +-=(1)求角C(2)若3a c ==,求角A 的大小。

高中数学正弦定理与余弦定理【教师讲义及试卷与参考答案】

高中数学正弦定理与余弦定理【教师讲义及试卷与参考答案】
利用余弦定理,可以解决以下三类问题: (1)已知三边,求三个角(三边); (2)已知两边和它们的夹角, 求第三边和其它两个角 (两边夹角); (3)已知两边和其中一边的对角, 求第三边和其它两 个角(两边对角). 3.在 △ABC 中,有
A B C (内角和定理);
sin A B sin C ,
2
2 2
ABC

1 xv yu . 2
第二形式:
记忆:绝对“平行”的一半 9.解三角形(按边分三类) (1)一边两角 解数: 一解 定理: 正弦定理 (2)两边一角 ①两边夹角 解数: 一解 定理: 余弦定理 ②两边对角 解数: 讨论 定理: 正、余弦定理
b2 c2 a 2 . cos A 2bc
c
ab
① a b sin A : 两解 ② a b sin A : 一解 ③ a b sin A : 无解
a b : 一解
a b : 一解
【答案】B 【解析】 ∵a、b、c 成等比数列, ∴b =ac. 又 c=2a, ∴b2=2a2. ∴cosB= = a2+c2-b2 2ac
正弦定理、余弦定理 一、高考要求 1.掌握正、余弦定理; 2.能够应用正、 余弦定理进行边角关系的相互转化; 3.能够利用正、 余弦定理判断三角形的形状(抓最大 角); 4.能够利用正、余弦定理证明三角形中的三角恒等 式. 二、知识与技能 1.正弦定理 在一个三角形中,各边和它所对角的正弦值的比相 等,且比值等于外接圆的直径,即
a b : 无解 a b : 无解 a b : 一解
(2)角 A 直角
C b A a B
12 A. 13 【解析】
B.
5 13
C.-

正弦定理基础训练题(有详解)

正弦定理基础训练题(有详解)

○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________○…………内…………○…………装…………○…………订…………○…………线…………○…………正弦定理基础训练题(有详解)一、单选题1.在△ABC 中,4a =,52b =,5cos(B C)30++=,则角B 的大小为( ) A .6π B .4π C .3π D .6π或56π 2.在△ABC 中,若2sin b a B =,则A =( )A .π6或5π6 B .π3或2π3C .π4或π3D .π4或3π4 3.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知22a =,4b =,45B =,则A =( ) A .30B .60C .30或150D .60或1204.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin b C c B a A +=,则ABC △的形状为( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .不确定5.ABC ∆中,若sin cos cos a b cA B C==,则ABC ∆中最长的边是( ) A .aB .bC .cD .b 或c6.ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知 26a b ==,,A 4π=,则B =( ) A .6πB .3π C .6π或56πD .3π或23π7.在中,,,,则的面积是( )A .B .C .或D .或8.已知ABC 中,满足3,2,30a b B ==∠=︒,则这样的三角形有 A .0个B .1个C .2个D .无数个9.在△ABC 中,6A π=,4B π=,a=1,则b=( )A .1B .2C .2D .310.在△ABC 中,所对的边为a ,b ,c ,a=8,B=60°,A=45°,则b=()○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………○…………A .B .C .D .11.在中,所对的边分别为,若,,,则等于( ) A .B .C .D . 12.在中,若,,则A .B .C .D .二、填空题13.ABC ∆的内角A B C 、、的对边分别为a b c 、、,若4cos 5A =,5cos 13C =,13a =,则b =____.14.已知ABC ∆的三个内角、、A B C 成等差数列,且 2AB =, 3AC =,则cos C 的值是__________. 15.在中,角A 、B 、C 的对边分别为a ,b ,c ,且,,,则的面积_____.16.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若a b >,且22sin a b A =,则B =_____.17.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若A :B :C =1:2:3,则a :b :c =______.18.在ABC ∆中,43,22,33C c b π===,那么A =__________. 19.在ABC ∆中, 若13,cos 2a A ==-,则ABC ∆的外接圆的半径为 _____.20.在中,已知,那么的形状______三角形.参考答案1.A 【解析】 【分析】首先根据三角形内角和为π,即可算出角A 的正弦、余弦值,再根据正弦定理即可算出角B 【详解】在△ABC 中有A B C π++=,所以B C A +=π-,所以()35cos(B C)305cos 30cos 5A A π++=⇒-+=⇒=,又因为0A π<<,所以02A π<<,所以4sin 5A ==,因为4a =,52b =,所以由正弦定理得sin 1sin 2b A B a ==,因为a b A B >⇒>,所以6B π=。

《正弦定理》教案(含答案)

《正弦定理》教案(含答案)

《正弦定理》教案(含答案)第一章:正弦定理的引入1.1 实物的直观引入利用直角三角形和平行四边形模型,引导学生直观感受正弦定理的概念。

让学生通过观察和实验,发现正弦定理在几何图形中的普遍性。

1.2 数学定义与公式给出正弦定理的数学表达式:a/sinA = b/sinB = c/sinC,其中a, b, c分别为三角形的边长,A, B, C分别为对应的角度。

解释正弦定理的内涵,让学生理解各个参数之间的关系。

1.3 例题讲解选择具有代表性的例题,讲解正弦定理的应用方法。

引导学生通过正弦定理解决问题,培养学生的解题能力。

第二章:正弦定理的应用2.1 三角形内角和定理的推导利用正弦定理推导三角形内角和定理:A + B + C = 180°。

解释推导过程,让学生理解正弦定理与三角形内角和定理之间的关系。

2.2 三角形形状的判断利用正弦定理判断三角形的形状(直角三角形、锐角三角形、钝角三角形)。

引导学生通过正弦定理判断给定三角形的形状。

2.3 实际问题应用选择与生活实际相关的问题,引导学生利用正弦定理解决问题。

培养学生的实际问题解决能力,提高学生对正弦定理的应用意识。

第三章:正弦定理在测量中的运用3.1 角度测量讲解利用正弦定理进行角度测量的方法。

引导学生通过正弦定理进行角度测量,提高学生的实际操作能力。

3.2 距离测量讲解利用正弦定理进行距离测量的方法。

引导学生通过正弦定理进行距离测量,提高学生的实际操作能力。

3.3 实际测量案例提供实际测量案例,让学生利用正弦定理进行测量。

培养学生的实际测量能力,提高学生对正弦定理在测量中应用的理解。

第四章:正弦定理在三角函数中的应用4.1 三角函数的定义与关系讲解正弦定理与三角函数之间的关系。

引导学生理解正弦定理在三角函数中的应用。

4.2 三角函数图像的绘制利用正弦定理绘制三角函数图像。

培养学生的图像绘制能力,提高学生对正弦定理在三角函数中应用的理解。

4.3 三角函数问题的解决利用正弦定理解决三角函数问题。

正弦定理(一)(附答案)

正弦定理(一)(附答案)

正弦定理(一)[学习目标] 1.通过对任意三角形边长和角度的关系的探索,掌握正弦定理的内容及其证明方法.2.能运用正弦定理与三角形的内角和定理解决简单的解三角形问题.知识点一正弦定理1.正弦定理的表示2.正弦定理的常见变形(1)a=2R sin A,b=2R sin B,c=2R sin C,其中R为△ABC外接圆的半径.(2)sin A=a2R,sin B=b2R,sin C=c2R(R为△ABC外接圆的半径).(3)三角形的边长之比等于对应角的正弦比,即a∶b∶c=sin A∶sin B∶sin C.(4)a+b+csin A+sin B+sin C =asin A=bsin B=csin C.(5)a sin B=b sin A,a sin C=c sin A,b sin C=c sin B.3.正弦定理的证明(1)在Rt△ABC中,设C为直角,如图,由三角函数的定义:sin A =a c ,sin B =b c,∴c =asin A =b sin B =c sin 90°=csin C ,∴a sin A =b sin B =csin C. (2)在锐角三角形ABC 中,设AB 边上的高为CD ,如图,CD =a sin_B =b sin_A ,∴a sin A =bsin B, 同理,作AC 边上的高BE ,可得a sin A =csin C ,∴a sin A =b sin B =csin C.(3)在钝角三角形ABC 中,C 为钝角,如图,过B 作BD ⊥AC 于D ,则BD =a sin(π-C )=a sin_C ,BD =c sin_A ,故有a sin C =c sin_A ,∴a sin A =csin C, 同理,a sin A =b sin B ,∴a sin A =b sin B =csin C.思考 下列有关正弦定理的叙述:①正弦定理只适用于锐角三角形;②正弦定理不适用于直角三角形;③在某一确定的三角形中,各边与它所对角的正弦的比是一定值;④在△ABC 中,sin A ∶sin B ∶sin C =BC ∶AC ∶AB .其中正确的个数有( ) A.1 B.2 C.3 D.4 答案 B解析 正弦定理适用于任意三角形,故①②均不正确;由正弦定理可知,三角形一旦确定,则各边与其所对角的正弦的比值也就确定了,所以③正确;由正弦定理可知④正确.故选B. 知识点二 解三角形一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形. 思考 正弦定理能解决哪些问题?答案 利用正弦定理可以解决以下两类有关三角形的问题: ①已知两角和任意一边,求其他两边和第三个角;②已知两边和其中一边的对角,求另一边的对角,从而求出其他的边和角.题型一 对正弦定理的理解例1 在△ABC 中,若角A ,B ,C 对应的三边分别是a ,b ,c ,则下列关于正弦定理的叙述或变形中错误的是( )A.a ∶b ∶c =sin A ∶sin B ∶sin CB.a =b ⇔sin 2A =sin 2BC.asin A =b +c sin B +sin CD.正弦值较大的角所对的边也较大 答案 B解析 在△ABC 中,由正弦定理得a sin A =b sin B =csin C=k (k >0),则a =k sin A ,b =k sin B ,c =k sin C ,故a ∶b ∶c =sin A ∶sin B ∶sin C ,故A 正确.当A =30°,B =60°时,sin 2A =sin 2B ,此时a ≠b ,故B 错误. 根据比例式的性质易得C 正确. 大边对大角,故D 正确.跟踪训练1 在△ABC 中,下列关系一定成立的是( ) A.a >b sin A B.a =b sin A C.a <b sin A D.a ≥b sin A答案 D解析 在△ABC 中,B ∈(0,π),∴sin B ∈(0,1], ∴1sin B≥1, 由正弦定理a sin A =b sin B 得a =b sin Asin B≥b sin A .题型二 用正弦定理解三角形例2 (1)在△ABC 中,已知c =10,A =45°,C =30°,解这个三角形. (2)在△ABC 中,已知c =6,A =45°,a =2,解这个三角形. 解 (1)∵A =45°,C =30°,∴B =180°-(A +C )=105°, 由asin A =c sin C 得a =c sin A sin C =10×sin 45°sin 30°=10 2. ∵sin 75°=sin(30°+45°)=sin 30°cos 45°+cos 30°sin 45°=2+64, ∴b =c sin B sin C =c sin (A +C )sin C =10×sin 75°sin 30°=20×2+64=52+5 6.∴B =105°,a =102,b =52+5 6. (2)∵a sin A =csin C , ∴sin C =c sin A a =6×sin 45°2=32, ∵C ∈(0°,180°),∴C =60°或C =120°. 当C =60°时,B =75°,b =c sin B sin C =6sin 75°sin 60°=3+1; 当C =120°时,B =15°,b =c sin B sin C =6sin 15°sin 120°=3-1. ∴b =3+1,B =75°,C =60°或b =3-1,B =15°,C =120°.跟踪训练2 (1)在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A.4 2 B.4 3 C.4 6 D.4(2)在△ABC 中,若a =2,b =2,A =30°,则C =______. 答案 (1)C (2)105°或15°解析 (1)易知A =45°,由a sin A =bsin B 得 b =a sin Bsin A =8·3222=4 6.(2)由正弦定理a sin A =bsin B,得sin B =b sin A a =2sin 30°2=22. ∵B ∈(0°,180°),∴B =45°或135°,∴C =180°-45°-30°=105°或C =180°-135°-30°=15°.题型三 判断三角形的形状例3 在△ABC 中,已知a 2tan B =b 2tan A ,试判断三角形的形状.解 由已知得a 2sin B cos B =b 2sin Acos A,由正弦定理得sin 2A sinB cos B =sin 2B sin Acos A.∵sin A 、sin B ≠0,∴sin A cos A =sin B cos B . 即sin 2A =sin 2B . ∴2A +2B =π或2A =2B . ∴A +B =π2或A =B .∴△ABC 为等腰三角形或直角三角形.跟踪训练3 在△ABC 中,b sin B =c sin C 且sin 2A =sin 2B +sin 2C ,试判断三角形的形状. 解 由b sin B =c sin C ,得b 2=c 2, ∴b =c ,∴△ABC 为等腰三角形, 由sin 2A =sin 2B +sin 2C 得a 2=b 2+c 2, ∴△ABC 为直角三角形, ∴△ABC 为等腰直角三角形.1.在△ABC 中,AB =c ,AC =b ,BC =a ,下列等式中总能成立的是( ) A.a sin A =b sin B B.b sin C =c sin A C.ab sin C =bc sin BD.a sin C =c sin A2.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,已知a =2,b =3,B =60°,那么A 等于( )A.135°B.90°C.45°D.30°3.在锐角三角形ABC 中,角A ,B 所对的边分别为a ,b ,若2a sin B =3b ,则A 等于( ) A.π12 B.π6 C.π4 D.π34.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若sin A a =cos B b =cos C c,则△ABC是( )A.等边三角形B.直角三角形,且有一个角是30°C.等腰直角三角形D.等腰三角形,且有一个角是30°5.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,已知B =30°,c =150,b =503,则△ABC 的形状是________.6.在△ABC 中,若b =5,B =π4,tan A =2,则sin A =______,a =________.一、选择题1.在△ABC 中,BC =a =5,AC =b =3,则sin A ∶sin B 的值是( ) A.53 B.35 C.37 D.572.在△ABC 中,A >B ,则下列不等式中不一定正确的是( ) A.sin A >sin B B.cos A <cos B C.sin 2A >sin 2BD.cos 2A <cos 2B3.在△ABC 中,A ∶B ∶C =4∶1∶1,则a ∶b ∶c 等于( ) A.4∶1∶1 B.2∶1∶1 C.2∶1∶1D.3∶1∶14.在△ABC 中,a =b sin A ,则△ABC 一定是( ) A.锐角三角形 B.直角三角形 C.钝角三角形D.等腰三角形5.已知△ABC 中,a =4,b =43,A =30°,则B 等于( )A.30°B.30°或150°C.60°D.60°或120°6.在△ABC 中,A =60°,a =3,则a +b +c sin A +sin B +sin C等于( )A.833 B.2393 C.2833D.2 3 7.在△ABC 中,已知B =60°,最大边与最小边的比为3+12,则三角形的最大角为( ) A.60° B.75° C.90° D.115°8.在△ABC 中,a =4,b =52,5cos(B +C )+3=0,则角B 的大小为( )A.π6B.π4C.π3 D.56π二、填空题9.已知在△ABC 中,A ∶B ∶C =1∶2∶3,a =1,则a -2b +c sin A -2sin B +sin C=________.10.在△ABC 中,A =π3,BC =3,AB =6,则角C =______.11.在△ABC 中,BC =a =15,AC =b =10,A =60°,则cos B =________.三、解答题12.(1)在△ABC 中,AB =c ,BC =a ,AC =b ,已知A =45°,B =30°,c =10,解三角形; (2)在△ABC 中,BC =a =4,AC =b ,AB =c =26,A =45°,求b ,B 和C .13.在△ABC 中,若sin A =2sin B cos C ,且sin 2A =sin 2B +sin 2C ,试判断△ABC 的形状.当堂检测答案1.答案 D解析 由正弦定理a sin A =b sin B =csin C ,得a sin C =c sin A . 2.答案 C解析 由a sin A =bsin B 得sin A =a sin Bb=2×323=22, ∴A =45°或135°.又∵a <b ,∴A <B ,∴A =45°. 3.答案 D解析 在△ABC 中,利用正弦定理得 2sin A sin B =3sin B , 又∵sin B ≠0,∴sin A =32. 又A 为锐角,∴A =π3.4.答案 C解析 由题a cos B =b sin A ,又由正弦定理a sin B =b sin A ,∴sin B =cos B ,又∵B ∈(0°,180°),∴B =45°.同理C =45°.故△ABC 为等腰直角三角形.5.答案 等腰或直角三角形解析 由b sin B =c sin C 得sin C =c sin B b =150×12503=32, 又∵C ∈(0°,180°),∴C =60°或120°,∴A =90°或30°,∴△ABC 为等腰或直角三角形.6.答案 255 210解析 由tan A =2,得sin A =2cos A ,由sin 2A +cos 2A =1,得sin A =255,∵b =5,B =π4,由正弦定理a sin A =bsin B ,得a =b sin Asin B =2522=210.课时精练答案一、选择题1.答案 A解析 sin A sin B =a b =53. 2.答案 C解析 A >B ⇔a >b ⇔sin A >sin B ,A 正确.由于(0,π)上,y =cos x 单调递减,∴cos A <cos B ,B 正确.cos 2α=1-2sin 2α.∵sin A >sin B >0,∴sin 2A >sin 2B ,∴cos 2A <cos 2B ,D 正确.3.答案 D解析 ∵A +B +C =180°,A ∶B ∶C =4∶1∶1,∴A =120°,B =30°,C =30°.由正弦定理的变形公式得a ∶b ∶c =sin A ∶sin B ∶sin C =sin 120°∶sin 30°∶sin 30°=32∶12∶12=3∶1∶1. 4.答案 B 解析 ∵a =b sin A ,∴a b =sin A =sin A sin B,∴sin B =1, 又∵B ∈(0,π),∴B =π2,即△ABC 为直角三角形. 5.答案 D解析 由正弦定理a sin A =b sin B得 sin B =b sin A a =43×124=32, 又∵B ∈(0°,180°),且b >a ,B >A ,∴B =60°或120°.6.答案 D解析 利用正弦定理及比例性质,得 a +b +c sin A +sin B +sin C =a sin A =3sin 60°=332=2 3. 7.答案 B解析 不妨设a 为最大边,c 为最小边,由题意有a c =sin A sin C =3+12,即sin A sin (120°-A )=3+12. 整理得(3-3)sin A =(3+3)cos A .∴tan A =2+3,又∵A ∈(0°,120°),∴A =75°,故选B.8.答案 A解析 由5cos(B +C )+3=0得cos A =35, ∴A ∈(0,π2),∴sin A =45, 由正弦定理得445=52sin B ,∴sin B =12. 又∵a >b ,∴A >B ,且A ∈(0,π2), ∴B 必为锐角,∴B =π6. 二、填空题9.答案 2解析 ∵A ∶B ∶C =1∶2∶3,∴A =30°,B =60°,C =90°.∵asin A =b sin B =c sin C =1sin 30°=2, ∴a =2sin A ,b =2sin B ,c =2sin C ,∴a -2b +c sin A -2sin B +sin C=2.10.答案 π4解析 由正弦定理,得sin C =sin A ·AB BC =22. 因为BC >AB ,所以A >C ,则0<C <π3,故C =π4. 11.答案 63解析 由正弦定理得sin B =b a sin A =1015·sin 60°=33, 又b <a ,∴0°<B <60°,∴cos B >0,∴cos B =1-sin 2B =1-(33)2=63. 三、解答题12.解 (1)因为A +B +C =180°,所以C =105°.所以sin C =sin 105°=sin(60°+45°)=sin 60°cos 45°+cos 60°sin 45°=6+24. 由正弦定理a sin A =b sin B =csin C, 得a =sin A sin C ·c =10(3-1), b =c sin B sin C =10sin 30°sin 105°=5(6-2). 所以C =105°,a =10(3-1),b =5(6-2).(2)由正弦定理a sin A =csin C得 sin C =c sin A a =26×224=32. ∵C ∈(0°,180°),且c >a ,C >A ,∴C =60°或120°,∴B =75°或15°,∴sin B =6+24或6-24, ∴b =a sin A ·sin B =422×6±24=2(3±1), ∴b =2(3+1),B =75°,C =60°或b =2(3-1),B =15°,C =120°.13.解 方法一 根据正弦定理a sin A =b sin B =c sin C. ∵sin 2A =sin 2B +sin 2C ,∴a 2=b 2+c 2,∴A 是直角,B +C =90°,∴2sin B cos C =2sin B cos(90°-B )=2sin 2B =sin A =1, ∴sin B =22. ∵0°<B <90°,∴B =45°,C =45°,∴△ABC 是等腰直角三角形.方法二 根据正弦定理a sin A =b sin B =csin C. ∵sin 2A =sin 2B +sin 2C ,∴a 2=b 2+c 2,∴A 是直角.∵A =180°-(B +C ),sin A =2sin B cos C ,∴sin(B +C )=sin B cos C +cos B sin C =2sin B cos C , ∴sin(B -C )=0.又-90°<B -C <90°,∴B -C =0,∴B =C ,∴△ABC 是等腰直角三角形.感谢下载!欢迎您的下载,资料仅供参考。

正弦定理练习题(含答案)

正弦定理练习题(含答案)

正弦定理 复习1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( ) A.6 B. 2 C. 3 D .2 6解析:选A.应用正弦定理得:a sin A =b sin B ,求得b =a sin B sin A = 6. 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323解析:选C.A =45°,由正弦定理得b =a sin B sin A=4 6. 3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A .45°或135°B .135°C .45°D .以上答案都不对解析:选C.由正弦定理a sin A =b sin B 得:sin B =b sin A a =22,又∵a >b ,∴B <60°,∴B =45°. 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6.5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 B.12 C .2 D.14解析:选A.C =180°-105°-45°=30°,由b sin B =c sin C 得c =2×sin 30°sin45°=1. 6.在△ABC 中,若cos A cos B =b a ,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形解析:选D.∵b a =sin B sin A ,∴cos A cos B =sin B sin A, sin A cos A =sin B cos B ,∴sin2A =sin2B即2A =2B 或2A +2B =π,即A =B ,或A +B =π2. 7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( )A.32B.34C.32或 3D.34或32解析:选D.AB sin C =AC sin B ,求出sin C =32,∵AB >AC , ∴∠C 有两解,即∠C =60°或120°,∴∠A =90°或30°.再由S △ABC =12AB ·AC sin A 可求面积. 8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( )A. 6 B .2C. 3D. 2解析:选D.由正弦定理得6sin120°=2sin C, ∴sin C =12. 又∵C 为锐角,则C =30°,∴A =30°,△ABC 为等腰三角形,a =c = 2.9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________. 解析:由正弦定理得:a sin A =c sin C, 所以sin A =a ·sin C c =12. 又∵a <c ,∴A <C =π3,∴A =π6. 答案:π610.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________. 解析:由正弦定理得a sin A =b sin B⇒sin B =b sin A a =4×12433=32. 答案:3211.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.解析:C =180°-120°-30°=30°,∴a =c ,由a sin A =b sin B 得,a =12×sin30°sin120°=43, ∴a +c =8 3.答案:8 312.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.解析:由正弦定理,得a =2R ·sin A ,b =2R ·sin B ,代入式子a =2b cos C ,得2R sin A =2·2R ·sin B ·cos C ,所以sin A =2sin B ·cos C ,即sin B ·cos C +cos B ·sin C =2sin B ·cos C ,化简,整理,得sin(B -C )=0.∵0°<B <180°,0°<C <180°,∴-180°<B -C <180°,∴B -C =0°,B =C .答案:等腰三角形13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +c sin A +sin B +sin C=________,c =________. 解析:由正弦定理得a +b +c sin A +sin B +sin C =a sin A =63sin60°=12,又S △ABC =12bc sin A ,∴12×12×sin60°×c =183,∴c =6.答案:12 614.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +c sin A -2sin B +sin C=________. 解析:由∠A ∶∠B ∶∠C =1∶2∶3得,∠A =30°,∠B =60°,∠C =90°, ∴2R =a sin A =1sin30°=2, 又∵a =2R sin A ,b =2R sin B ,c =2R sin C ,∴a -2b +c sin A -2sin B +sin C =2R sin A -2sin B +sin C sin A -2sin B +sin C=2R =2. 答案:215.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________. 解析:依题意,sin C =223,S △ABC =12ab sin C =43, 解得b =2 3.答案:2 316.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.解析:∵b sin C =43×12=23且c =2, ∴c <b sin C ,∴此三角形无解.答案:017.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?解:在△ABC 中,BC =40×12=20, ∠ABC =140°-110°=30°,∠ACB =(180°-140°)+65°=105°,所以∠A =180°-(30°+105°)=45°,由正弦定理得AC =BC ·sin ∠ABC sin A=20sin30°sin45°=102(km). 即货轮到达C 点时,与灯塔A 的距离是10 2 km.18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A 2,求A 、B 及b 、c .解:由sin C 2cos C 2=14,得sin C =12, 又C ∈(0,π),所以C =π6或C =5π6. 由sin B sin C =cos 2A 2,得 sin B sin C =12[1-cos(B +C )], 即2sin B sin C =1-cos(B +C ),即2sin B sin C +cos(B +C )=1,变形得cos B cos C +sin B sin C =1,即cos(B -C )=1,所以B =C =π6,B =C =5π6(舍去), A =π-(B +C )=2π3. 由正弦定理a sin A =b sin B =c sin C ,得b =c =a sin B sin A =23×1232=2. 故A =2π3,B =π6,b =c =2. 19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值. 解:(1)∵A 、B 为锐角,sin B =1010, ∴cos B =1-sin 2B =31010. 又cos 2A =1-2sin 2A =35,∴sin A =55,cos A =255, ∴cos(A +B )=cos A cos B -sin A sin B=255×31010-55×1010=22. 又0<A +B <π,∴A +B =π4. (2)由(1)知,C =3π4,∴sin C =22. 由正弦定理:a sin A =b sin B =c sin C 得 5a =10b =2c ,即a =2b ,c =5b . ∵a -b =2-1,∴2b -b =2-1,∴b =1.∴a =2,c = 5.20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.解:由S =12ab sin C 得,153=12×603×sin C , ∴sin C =12,∴∠C =30°或150°. 又sin B =sin C ,故∠B =∠C .当∠C =30°时,∠B =30°,∠A =120°.又∵ab =603,a sin A =b sin B,∴b =215. 当∠C =150°时,∠B =150°(舍去).故边b 的长为215.。

人教A版必修二6.4.3正弦定理 课堂、课后练习题(含答案)

人教A版必修二6.4.3正弦定理 课堂、课后练习题(含答案)

6.4.3正弦定理课堂练习1、在ABC ∆中,c C A b 求,75,45,200===2、在ABC ∆中,c a b B A ,,3,3,54cos 求===π3、在ABC ∆中,0120,332,2===A c a ,求C b 和4、在ABC ∆中,求证:⎪⎩⎪⎨⎧+=+=+=B c C b a C a A c b A b B a c cos cos ,cos cos ,cos cos (射影定理)5、在ABC ∆中,角A,B,C 的对边分别为a,b,c,且A a B c C b sin cos cos =+,判断ABC ∆的形状?答案1. 00060,75,45=∴==B C A 3623326234262sin sin +=+=+⨯==B C b c2. 5623533sin sin ,53sin ,54cos =⨯====B A b a A A ()1034323542153cos sin cos sin sin sin +=⨯+⨯=+=+=A B B A B A C 534323103433sin sin +=+⨯==B C b c 3.21223332sin sin =⨯==a A c C ,所以030=C 33223212sin sin =⨯==A B a b 4利用正弦定理()c R B A R A B B A R A b B a ==+=+=+sinC 2sin 2)cos sin cos (sin 2cos cos 同理可证:B c C b a C a A c b cos cos ,cos cos +=+= 5由正弦定理()A C B A C B C B 22sin sin sin sin cos cos sin =+∴=+ 0290,1sin sin sin ==∴=A A A AABC ∆是直角三角形6.4.3正弦定理课后练习1. 在ABC ∆中,”“B A >是”“B A sin sin >的 A. 充分非必要条件 B .必要非充分体条件C.充要条件 D 既不充分又不必要条件2. 在ABC ∆中,====b a B A 则,2,45,3000A 2B 1C 36 D 6 3.在中,====b c C A 则,2,45,10500 A 1 B 2 C 3 D 24.在ABC ∆中,3,4,34π===A b a ,则B A 6π B 3π C 2π D 32π 5. 在ABC ∆中,====B A b a 则,30,3,10A 0012060或B 0005103或C 060D 01206. 在ABC ∆中,若cC b B a A cos cos sin ==,则ABC ∆ A 等腰直角三角形 B 有一个角是030的直角三角形C 等边三角形D 有一个角是030的等腰三角形7. 在ABC ∆中,====B A b a 则,45,2,208. 在====∆a B c b ABC 则,,30,33,309. 在ABC ∆中,045,2,3===B b a ,解这个三角形10. 在ABC ∆中,内角A,B,C 的对边分别为a,b,c,且22tan tan b a B A = 试判断ABC ∆的形状()11*20193sin sin 2A C ABC a b A +∆=年全国文科在中, ()1B 求角()21,ABC c ABC ∆=∆若是锐角三角形,且求的面积的取值范围答案1 C;2 A;3 A;4 A ;5 A;6 A;7. 030; 8. 3或6 9.由正弦定理:232223sin sin =⨯==bB a A 0018045<<A ,0012060或=A(1)0075,60==C A (2)226224262sin sin +=+⨯==B C b c 0015,120==C A226224262sin sin -=-⨯==B C b c 10.由正弦定理:BA AB B A B A B A sin sin cos cos sin sin sin cos cos sin 22=∴= B A B B A A 2sin 2sin cos sin cos sin =∴= 01802222=+=B A B A 或即090=+=B A B A 或 ABC ∆是等腰三角形或者直角三角形11()1sin sinsin sin sin sin 22A C A C AB A B ++=∴=解利用正弦定理1cos 2sin cos cos 0sin ,60222222B B B B B B =≠==,()12sin 24ABC S ac B a ∆==()01sin sin 120sin 122sin sin sin 2C C c C c A a C C C +-====+0000090,090ABC A C ∆<<<<是锐角三角形,00011203090tan 22A C C C a +=∴<<><<所以1sin 2ABCS ac B ∆∴==∈⎝⎭。

(完整word版)正弦定理练习题(含答案),推荐文档

(完整word版)正弦定理练习题(含答案),推荐文档

正弦定理 复习1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( ) A.6 B. 2 C. 3 D .2 6解析:选A.应用正弦定理得:a sin A =b sin B ,求得b =a sin B sin A = 6. 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323解析:选C.A =45°,由正弦定理得b =a sin B sin A=4 6. 3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A .45°或135°B .135°C .45°D .以上答案都不对解析:选C.由正弦定理a sin A =b sin B 得:sin B =b sin A a =22,又∵a >b ,∴B <60°,∴B =45°. 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6.5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 B.12 C .2 D.14解析:选A.C =180°-105°-45°=30°,由b sin B =c sin C 得c =2×sin 30°sin45°=1. 6.在△ABC 中,若cos A cos B =b a ,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形解析:选D.∵b a =sin B sin A ,∴cos A cos B =sin B sin A, sin A cos A =sin B cos B ,∴sin2A =sin2B即2A =2B 或2A +2B =π,即A =B ,或A +B =π2. 7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( )A.32B.34C.32或 3D.34或32解析:选D.AB sin C =AC sin B ,求出sin C =32,∵AB >AC , ∴∠C 有两解,即∠C =60°或120°,∴∠A =90°或30°.再由S △ABC =12AB ·AC sin A 可求面积. 8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( )A. 6 B .2C. 3D. 2解析:选D.由正弦定理得6sin120°=2sin C, ∴sin C =12. 又∵C 为锐角,则C =30°,∴A =30°,△ABC 为等腰三角形,a =c = 2.9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________.解析:由正弦定理得:a sin A =c sin C , 所以sin A =a ·sin C c =12. 又∵a <c ,∴A <C =π3,∴A =π6. 答案:π610.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________. 解析:由正弦定理得a sin A =b sin B⇒sin B =b sin A a =4×12433=32. 答案:3211.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.解析:C =180°-120°-30°=30°,∴a =c ,由a sin A =b sin B 得,a =12×sin30°sin120°=43, ∴a +c =8 3.答案:8 312.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.解析:由正弦定理,得a =2R ·sin A ,b =2R ·sin B ,代入式子a =2b cos C ,得2R sin A =2·2R ·sin B ·cos C ,所以sin A =2sin B ·cos C ,即sin B ·cos C +cos B ·sin C =2sin B ·cos C ,化简,整理,得sin(B -C )=0.∵0°<B <180°,0°<C <180°,∴-180°<B -C <180°,∴B -C =0°,B =C .答案:等腰三角形13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +c sin A +sin B +sin C=________,c =________. 解析:由正弦定理得a +b +c sin A +sin B +sin C =a sin A =63sin60°=12,又S △ABC =12bc sin A ,∴12×12×sin60°×c =183, ∴c =6.答案:12 614.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +c sin A -2sin B +sin C=________. 解析:由∠A ∶∠B ∶∠C =1∶2∶3得,∠A =30°,∠B =60°,∠C =90°,∴2R =a sin A =1sin30°=2, 又∵a =2R sin A ,b =2R sin B ,c =2R sin C ,∴a -2b +c sin A -2sin B +sin C =2R sin A -2sin B +sin C sin A -2sin B +sin C=2R =2. 答案:215.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.解析:依题意,sin C =223,S △ABC =12ab sin C =43, 解得b =2 3. 答案:2 3 16.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.解析:∵b sin C =43×12=23且c =2, ∴c <b sin C ,∴此三角形无解.答案:017.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?解:在△ABC 中,BC =40×12=20, ∠ABC =140°-110°=30°,∠ACB =(180°-140°)+65°=105°,所以∠A =180°-(30°+105°)=45°,由正弦定理得AC =BC ·sin ∠ABC sin A=20sin30°sin45°=102(km). 即货轮到达C 点时,与灯塔A 的距离是10 2 km.18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A 2,求A 、B 及b 、c .解:由sin C 2cos C 2=14,得sin C =12, 又C ∈(0,π),所以C =π6或C =5π6. 由sin B sin C =cos 2A 2,得 sin B sin C =12[1-cos(B +C )], 即2sin B sin C =1-cos(B +C ),即2sin B sin C +cos(B +C )=1,变形得cos B cos C +sin B sin C =1,即cos(B -C )=1,所以B =C =π6,B =C =5π6(舍去), A =π-(B +C )=2π3. 由正弦定理a sin A =b sin B =c sin C,得 b =c =a sin B sin A =23×1232=2. 故A =2π3,B =π6,b =c =2. 19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值.解:(1)∵A 、B 为锐角,sin B =1010, ∴cos B =1-sin 2B =31010. 又cos 2A =1-2sin 2A =35,∴sin A =55,cos A =255, ∴cos(A +B )=cos A cos B -sin A sin B =255×31010-55×1010=22. 又0<A +B <π,∴A +B =π4. (2)由(1)知,C =3π4,∴sin C =22. 由正弦定理:a sin A =b sin B =c sin C得 5a =10b =2c ,即a =2b ,c =5b .∵a -b =2-1,∴2b -b =2-1,∴b =1.∴a =2,c = 5.20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.解:由S =12ab sin C 得,153=12×603×sin C , ∴sin C =12,∴∠C =30°或150°. 又sin B =sin C ,故∠B =∠C .当∠C =30°时,∠B =30°,∠A =120°.又∵ab =603,a sin A =b sin B,∴b =215. 当∠C =150°时,∠B =150°(舍去).故边b 的长为215.。

高二正弦定理练习题及讲解

高二正弦定理练习题及讲解

高二正弦定理练习题及讲解1. 题目:已知直角三角形ABC,其中∠C = 90°,AC = 5 cm,∠A = 30°,求BC的长度。

解析:根据正弦定理,我们可以得到以下关系式:sin∠A/AB = sin∠C/BC代入已知条件,得到:sin30°/AB = sin90°/BCsin30°/AB = 1/BCAB = BC/2 (①)又根据三角形ABC的直角性质,我们可以得到以下关系式:AB^2 + BC^2 = AC^2 (②)代入已知条件,得到:(BC/2)^2 + BC^2 = 5^2BC^2/4 + BC^2 = 255BC^2/4 = 25BC^2 = 100BC = 10因此,BC的长度为10 cm。

2. 题目:已知直角三角形ABC,其中∠B = 90°,AC = 8 cm,∠A = 45°,求BC的长度。

解析:根据正弦定理,我们可以得到以下关系式:sin∠A/AB = sin∠B/BC代入已知条件,得到:sin45°/AB = sin90°/BCsin45°/AB = 1/BCAB = B C/√2 (①)又根据三角形ABC的直角性质,我们可以得到以下关系式:AB^2 + BC^2 = AC^2 (②)代入已知条件,得到:(BC/√2)^2 + BC^2 = 8^2BC^2/2 + BC^2 = 643BC^2/2 = 64BC^2 = 128/3BC ≈ 7.21因此,BC的长度约为7.21 cm。

3. 题目:已知三角形ABC,其中∠C = 90°,AC = 10 cm,BC = 8 cm,求∠A的大小。

解析:根据正弦定理,我们可以得到以下关系式:sin∠A/AB = sin∠C/BC代入已知条件,得到:sin∠A/AB = sin90°/8sin∠A/AB = 1/8AB = 8sin∠A (①)又根据三角形ABC的直角性质,我们可以得到以下关系式:AB^2 + BC^2 = AC^2 (②)代入已知条件,得到:(8sin∠A)^2 + 8^2 = 10^264sin^2∠A + 64 = 10064sin^2∠A = 36sin^2∠A = 36/64sin∠A = √(36/64)sin∠A = 3/4由此得到:∠A = arcsin(3/4)使用计算器计算得:∠A ≈ 48.59°因此,∠A的大小约为48.59°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正弦定理练习含答案课时作业1 正弦定理时间:45分钟 满分:100分课堂训练1.(2013·湖南理,3)在锐角△ABC 中,角A ,B 所对的边长分别为a ,b .若2a sin B =3b ,则角A 等于( )A.π12 B.π6 C.π4 D.π3【答案】 D【解析】 本题考查了正弦定理由a sin A =b sin B ,得sin A =32, ∴∠A =π3.2.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知∠A =π3,a =3,b =1,则c 等于( )A .1B .2 C.3-1 D. 3 【答案】 B【解析】 由正弦定理a sin A =bsin B , 可得3sin π3=1sin B ,sin B =12,故∠B =30°或150°,由a >b ,得∠A >∠B . ∴∠B =30°,故∠C =90°, 由勾股定理得c =2,故选B.3.在△ABC 中,若tan A =13,C =56π,BC =1,则AB =________.【答案】102【解析】 ∵tan A =13,且A 为△ABC 的内角,∴sin A =1010.由正弦定理得AB =BC sin C sin A =1×sin 56π1010=102.4.在△ABC 中,若∠B =30°,AB =23,AC =2,求△ABC 的周长.【分析】 本题是已知两边及其一边所对的角,要求其周长,自然要考虑去寻求第三边BC ,但BC 的对角∠A 未知,只知道∠B ,可结合条件由正弦定理先求出∠C ,再由三角形内角和定理求出∠A .【解析】 由正弦定理,得sin C =AB sin B AC =32. ∵AB >AC ,∴∠C >∠B ,又∵0°<∠C <180°,∴∠C =60°或120°.(1)如图(1),当∠C =60°时,∠A =90°,BC =4,△ABC 的周长为6+23;(2)如图(2),当∠C=120°时,∠A=30°,∠A=∠B,BC=AC=2,△ABC的周长为4+2 3.综上,△ABC的周长为6+23或4+2 3.【规律方法】已知三角形两边和其中一边的对角时,应先由正弦定理求出正弦值,再判定这个角是否最大,若最大,则有两角,分别为一个锐角、一个钝角,且两角互补,否则只有一解,且为锐角.课后作业一、选择题(每小题5分,共40分)1.在△ABC中,sin A=sin C,则△ABC是()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形【答案】 B【解析】∵sin A=sin C,∴由正弦定理得a=c,∴△ABC为等腰三角形,故选B.2.已知△ABC的三个内角之比为A:B:C=1:2:3,那么a b c =()A.1:2:3 B.1:2: 3C.1: 2 : 3 D.1: 3 :2【答案】 D【解析】 设∠A =k ,∠B =2k ,∠C =3k ,由∠A +∠B +∠C =180°得,k +2k +3k =180°,∴k =30°,故∠A =30°,∠B =60°,∠C =90°.由正弦定理得a :b :c =sin A :sin B :sin C =sin30°:sin60°:sin90°=1: 3 :2.3.在△ABC 中,已知a =8,∠B =60°,∠C =75°,则( ) A .b =4 2 B .b =4 3 C .b =4 6 D .b =323【答案】 C【解析】 ∠A =180°-60°-75°=45°,由a sin A =bsin B 可得b =a sin B sin A =8sin60°sin45°=4 6.4.已知△ABC 中,a =1,b =3,A =π6,则B =( ) A.π3 B.23π C.π3或23π D.56π或π6 【答案】 C【解析】 由a sin A =b sin B 得sin B =b sin Aa , ∴sin B =3·sin30°1=32,∴B =π3或23π.5.在△ABC 中,已知∠A =30°,a =8,b =83,则△ABC 的面积S 等于( )A .32 3B .16C .326或16D .323或16 3【答案】 D【解析】 由正弦定理,知 sin B =b sin A a =83sin30°8=32, 又b >a ,∴∠B >∠A ,∴∠B =60°或120°. ∴∠C =90°或30°.∴S =12ab sin C 的值有两个,即323或16 3.6.在△ABC 中,cos A cos B =b a =85,则△ABC 的形状为( ) A .钝角三角形 B .锐角三角形 C .等腰三角形 D .直角三角形【答案】 D【解析】 ∵cos A cos B =b a =sin Bsin A ,即sin2A =sin2B ,∴∠A =∠B 或∠A +∠B =π2,又cos A ≠cos B ,∴∠A ≠∠B ,∴∠A +∠B =π2,∴△ABC 为直角三角形.7.已知△ABC 中,2sin B -3sin A =0,∠C =π6,S △ABC =6,则a =( )A .2B .4C .6D .8【答案】 B【解析】 由正弦定理得a sin A =bsin B ,故由2sin B -3sin A =0, 得2b =3a .①又S △ABC =12ab sin C =12ab sin π6=6, ∴ab =24.②解①②组成的方程组得a =4,b =6.故选B.8.在△ABC 中,∠A =60°,a =13,则a +b +csin A +sin B +sin C 等于( )A.833B.2393C.2633 D .2 3 【答案】 B【解析】 由a =2R sin A ,b =2R sin B ,c =2R sin C 得 a +b +csin A +sin B +sin C =2R =a sin A =13sin60°=2393.二、填空题(每小题10分,共20分)9.在△ABC 中,b 2-c 2a 2sin 2A +c 2-a 2b 2sin 2B +a 2-b 2c 2sin 2C 的值为________.【答案】 0【解析】 可利用正弦定理的变形形式a =2R sin A ,b =2R sin B ,c =2R sin C 代入原式即可.10.在锐角三角形ABC 中,若∠A =2∠B ,则ab 的取值范围是________.【答案】 (2,3)【解析】 ∵△ABC 为锐角三角形,且∠A =2∠B , ∴⎩⎪⎨⎪⎧0<2∠B <π2,0<π-3∠B <π2,∴π6<∠B <π4.∵∠A =2∠B ,∴sin A =sin2B =2sin B cos B ,∴a b =sin Asin B =2cos B ∈(2,3).三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.(1)在△ABC 中,已知a =5,∠B =45°,∠C =105°,求b . (2)在△ABC 中,已知∠A =45°,a =2,b =2,求B .【解析】 (1)∵∠A +∠B +∠C =180°,∴∠A =180°-(∠B +∠C )=180°-(45°+105°)=30°.由正弦定理a sin A =b sin B ,得b =a ·sin B sin A =5·sin45°sin30°=5 2. (2)由正弦定理a sin A =b sin B ,得sin B =b sin A a =2sin45°2=12. 又∵0°<∠B <180°,且a >b ,∴∠B =30°.【规律方法】 (1)中要注意在△ABC 中,∠A +∠B +∠C =180°的运用,另外sin105°=sin75°=sin(45°+30)=6+24.(2)中要注意运用三角形中大边对大角的性质,判定解的个数.12.在△ABC中,已知sin A=sin B+sin Ccos B+cos C,判断△ABC的形状.【分析】当式子中只有角或只有边时,一般将其一端化为零,另一端化为因式之积,再因式分解,进而判断三角形的形状.【解析】∵sin A=sin B+sin Ccos B+cos C,∴sin A cos B+sin A cos C=sin B+sin C.∵∠A+∠B+∠C=π,∴sin A cos B+sin A cos C=sin(A+C)+sin(A+B).∴sin A cos B+sin A cos C=sin A cos C+cos A sin C+sin A cos B+cos A sin B. ∴cos A sin C+sin B cos A=0.∴cos A(sin B+sin C)=0.∵∠B,∠C∈(0,π),∴sin B+sin C≠0.∴cos A=0,∴∠A=π2,∴△ABC为直角三角形.。

相关文档
最新文档