光与物质相互作用的三种基本过程
光纤通信技术与设备习题
第一章概述一:单项选择题1.光纤通信指的是:A 以电波作载波、以光纤为传输媒介的通信方式;B 以光波作载波、以光纤为传输媒介的通信方式;C 以光波作载波、以电缆为传输媒介的通信方式;D 以激光作载波、以导线为传输媒介的通信方式。
2 光纤通信所使用的波段位于电磁波谱中的:A 近红外区B 可见光区C 远红外区D 近紫外区3 目前光纤通信所用光波的波长范围是:A 0.4~2.0B 0.4~1.8C 0.4~1.5D 0.8~1.84 目前光纤通信所用光波的波长有三个,它们是:A 0.85、1.20、1.80;B 0.80、1.51、1.80;C 0.85、1.31、1.55;D 0.80、1.20、1.70。
5 下面说法正确的是:A 光纤的传输频带极宽,通信容量很大;B 光纤的尺寸很小,所以通信容量不大;C 为了提高光纤的通信容量,应加大光纤的尺寸;D 由于光纤的芯径很细,所以无中继传输距离短。
二、简述题1、什么是光纤通信?2、光纤的主要作用是什么?3、与电缆或微波等电通信方式相比,光纤通信有何优点?4、光纤通信所用光波的波长范围是多少?5、光纤通信中常用的三个低损耗窗口的中心波长分别是多少?第二章光纤与光缆工程一、单项选择题1.下面说法正确的是:A 为了使光波在纤芯中传输,包层的折射率必须等于纤芯的折射率;B 为了使光波在纤芯中传输,包层的折射率必须大于纤芯的折射率;C为了使光波在纤芯中传输,包层的折射率必须小于纤芯的折射率;D 为了使光波在纤芯中传输,包层的折射率必须大于涂覆层的折射率。
2下面说法正确的是:A 单模光纤只能传输模式;B 单模光纤只能传输一路信号;C 单模光纤只能传输一种模式;D 单模光纤只能传输模式。
3下面哪一种光纤是色散位移单模光纤?A 光纤;B 光纤;C 光纤;D 光纤。
4.下面说法正确的是:A 光纤的损耗决定光纤通信系统的通信容量;B 光纤的损耗决定光纤通信系统的传输距离;C 光纤的损耗决定光纤通信系统的传输速率;D 光纤的损耗决定光纤通信系统的传输模式。
光网络—综合练习题及答案
北京邮电大学高等函授教育、远程教育 《光网络组网技术》综合练习题及答案一、 填空题:1、光网络是指以光纤为基础传输链路所组成的一种通信体系网络结构。
2. 强度调制直接检波光纤数字通信系统是由电、光发射端机、光中继器、光、电接收端机、光纤、监控系统,备用系统构成的。
3.目前,实用光纤的三个低损耗窗口在0.85μm 、1.31μm 、1.55μm 附近。
色散位移单模光纤是在1.55μm 处,实现 最低损耗 和最低色散 .4.光波在均匀介质里,是以 直线 传播,当光射线遇到两种介质交界面时,将产生全反射或部分反射 。
5.均匀光纤的导光原理为全反射原理 ,它的数值孔径表示了光纤收集光线的能力 ,定义式为 NA=n o Sin φMax ,也可表示为 NA=n 1∆2。
6. 采用非均匀光纤的目的是为了减少光纤的模式色散 ,这样会在光纤中近似产生自聚焦 现象,这需要纤芯折射率服从 平方律型折射指数 分布。
7.单模光纤的色散包括 材料 色散和 波导 色散,此外,系统所使用的光源与光纤色散相互作用,给系统引进了的干扰和噪声主要有三种,即码间干扰、模分配噪声和啁啾声 。
8.一般光纤分为单模光纤和多模光纤,单模光纤的芯径为 4~10μm ,存在材料 色散和波导 色散,传输的基模是 LP 01 。
9.多模光纤的芯径为 50μm ,存在模式 色散、材料 色散和 波导 色散。
10.按照纤芯折射率分布的不同,光纤可分为,阶跃型光纤(均匀光纤)、渐变型光纤(非均匀光纤),按照传输模式的多少来分,可分为单模光纤、多摸光纤。
11. 在非均匀光纤中,其集光能力是用 本地 数值孔径表示,定义式为 222)(θsin n r n NA NA -==。
12.多纵模激光器在高速调制下的输出谱线呈 多纵模 谱线,各谱线功率总合是一定的,但每根谱线的功率 是随机的 ,即各谱线的能量随机分配 。
13.在采用多纵模激光器的光纤通信系统中,激光器的谱线特性和 光纤色散相互作用,产生了一种叫模分配噪声 的现象,它限制了通信距离 和 容量 。
光学考试题——精选推荐
光学考试题光学习题第⼀部分:填空题1. 光波的相⼲条件是:频率相同;;。
2.位相差和光程差的关系为,实现相长⼲涉的位相差条件为。
3.⽤波长λ的单⾊光⼊射迈克⽿孙⼲涉仪,当可动镜M1移动了0.03164mm 时,发现视场中⼼变化了100个条纹,则⼊射光波长λ=。
4. 在空⽓中⽤波长为λ单⾊光进⾏双缝⼲涉实验时,观察到⼲涉条纹相邻条纹的间距为1.33mm ,当把实验装置放在⽔中时(⽔的折射率n=1.33),则相邻条纹的间距变为_____________5.⽤波长为λ单⾊光垂直照射如图所⽰的折射率为n 2的劈尖薄膜(n 1>n 2 , n 3>n 2),观察反射光⼲涉,从劈尖顶开始,第2条明纹对应的膜厚度d =___ __.6.在单缝夫琅和费衍射⽰意图中,所画出的各条正⼊射光线间距相等,那么光线1与3在幕上P点相遇时的位相差为___ _____,P 点应为___ ______点。
7.波长λ=500nm 的单⾊平⾏光,垂直⼊射半径ρ=1mm 的圆孔,圆孔后轴线上P 点到圆孔的距离r =1m ,对于P 点⽽⾔,圆孔露出的半波带数k= ,P 点为点。
8. N 条狭缝的夫琅和费衍射,衍射的总能流是缝宽相同的单缝夫琅和费衍射光能量的倍,衍射光强中央主极⼤将增⼤为倍。
9.⼈眼瞳孔直径为3mm ,对波长为550nm 的光⽽⾔,⼈眼的最⼩分辨⾓为弧度。
13 510.爱⾥光斑的半⾓宽度θ=。
11.设天空中两颗星对于⼀望远镜的张⾓为2.42×10-6rad,它们都发出波长为550nm的光,为了分辨出这两颗星,望远镜物镜的⼝径⾄少要等于cm。
12.汽车两盏前灯相距L,与观察者相距S=10km。
夜间⼈眼瞳孔直径d=5.0mm,⼈眼敏感波长为550nm。
若只考虑⼈眼的圆孔衍射,则⼈眼可分辨出汽车两前灯的最⼩间距L 是。
13.若星光的波长是550nm,孔径为127cm的⼤型望远镜所能分辨的两颗星的最⼩⾓距离(从地上⼀点看两星的视线间夹⾓)是。
激光原理及应用试卷.
激光原理及应用试卷班级姓名成绩一、填空题(1.5×20=30分)1.光与物质的相互作用有三种不同基本过程,即,及A21称为:B21称为:B12称为:自发辐射的平均寿命τ与A21关系为2.引起谱线增宽的原因主要有三种,即。
它们的线型函数有两种,分别是。
3.光的一个基本性质是具有。
一方面光是电磁波,具有波动性质,有一定的和。
另一方面光是光子流,是具有一定和的物质粒子流。
4.产生激光必须具备的三个条件:,,二、问答题(5×6=30分)1.简要叙述激光器稳定出光的过程。
2.三种谱线增宽形式中哪些是均匀增宽?哪些是非均匀增宽,为什么?3.详细说明对称共焦腔中高斯光束的特点,并图示4.叙述用兰姆凹陷稳频的工作原理。
三、 分析题(40分)1. (10’)如图所示为的1E 和0E (基态)分别为激光上下能级,0n 和1n 分别为上下能级的粒子数密度,谐振腔中传播的单色光能密度为ρ(假设其线宽比介质的线型函数)(v f 的线宽窄得多)。
图中过程①为泵浦速率为R 0的抽运过程,②为自发辐射过程,③和④分别为受激辐射和受激吸收过程,自发辐射系数、受激辐射系数和受激吸收系数分别为A 10、B 10、B 01。
试写出1E 能级在单位时间内粒子数密度的增加量,并说明表达式中每一项的物理意义2. (15分)一染料激光器输出激光的波长为0.63μm ,采用平凹腔,凹面镜的曲率半径为2m ,腔长为1m ,(1)求出它所产生的高斯光束的光腰大小和位置,共焦参数f 以及发散角θ。
(2)如果使用焦距为5cm 的凸透镜聚焦,入射光腰到透镜的距离为1.50m 。
问:离透镜1.0m 处的出射光斑半径为多少?3.(15’)设有三束频率分别为0ν、νν∆+0和νν∆-0、光强为I 0、I 1和I 2的强光沿相同方1E 0E向或相反方向(如图)通过中心频率为0ν的非均匀加宽增益介质(I 0>I 1> I 2)。
试分别分析下列两种情况下反转粒子数按速度z υ的分布,并画出相应的分布曲线,要求在图中标出烧孔位置及烧孔深度。
激光原理考试基本概念
第一章1、激光与普通光源相比有三个主要特点:方向性好,相干性好,亮度高。
2、激光主要是光的受激辐射,普通光源主要光的自发辐射。
3、光的一个基本性质就是具有波粒二象性。
光波是一种电磁波,是一种横波。
4、常用电磁波在可见光或接近可见光的围,波长为0.3~30μm,其相应频率为10^15~10^13。
5、具有单一频率的平面波叫作单色平面波,如果频率宽度Δν<<v 时,这种波叫作准单色波。
6、原子处于最低的能级状态称为基态,能量高于基态的其他能级状态叫作激发态。
7、两个或两个以上的不同运动状态的电子可以具有相同的能级,这样的能级叫作简并能级。
8、同一能级所对应的不同电子运动状态的数目,叫作简并度,用字母g表示。
9、辐射跃迁选择定则(本质:状态一定要改变),原子辐射或吸收光子,不是在任意两能级之间跃迁,能级之间必须满足下述选择定则:a、跃迁必须改变奇偶态;b、ΔJ=0,±1(J=0→J=0除外);对于采用LS耦合的原子还必须满足下列选择定则:c、ΔL=0,±1(L=0→L=0除外);d、ΔS=0,即跃迁时S不能发生改变。
10、大量原子所组成的系统在热平衡状态下,原子数按能级分布服从玻耳兹曼定律。
11、处于高能态的粒子数总是小于处在低能态的粒子数,这是热平衡情况的一般规律。
12、因发射或吸收光子从而使原子造成能级间跃迁的现象叫作辐射跃迁,必须满足辐射跃迁选择定则。
13、光与物质的相互作用有三种不同的基本过程:自发辐射,受激辐射,和受激吸收。
14、普通光源中自发辐射起主要作用,激光工作过程中受激辐射起主要作用。
15、与外界无关的、自发进行的辐射称为自发辐射。
自发辐射的光是非相干光。
16、能级平均寿命等于自发跃迁几率的倒数。
17、受激辐射的特点是:a、只有外来光子的能量hv=E2-E1时,才能引起受激辐射。
b、受激辐射所发出的的光子与外来光子的特性完全相同(频率相同,相位相同,偏振方向相同,传播方向相同)。
《光纤通信基础》习题及答案
光栅技术
第二章部分
2.1、光纤的结构由哪几部分组成?各有什么作用? 答:光纤(Optical Fiber)是由中心的纤芯和外围的包层同轴组成的圆柱形细丝。纤芯的 折射率比包层稍高,损耗比包层更低,光能量主要在纤芯内传输。包层为光的传输提供反射 面和光隔离,并起一定的机械保护作用。 2.2、简述光纤的类型包括哪几种以及各自特点? 解:实用光纤主要有三种基本类型: 1)、突变型多模光纤(Step Index Fiber, SIF), 纤芯折射率为 n1 保持不变,到包层突然 变为 n2。这种光纤一般纤芯直径 2a=50~80 μm,光线以折线形状沿纤芯中心轴线方向传播, 特点是信号畸变大。 2)、渐变型多模光纤(Graded Index Fiber, GIF), 在纤芯中心折射率最大为 n1,沿径向 r 向外围逐渐变小,直到包层变为 n2。这种光纤一般纤芯直径 2a 为 50μm,光线以正弦形 状沿纤芯中心轴线方向传播,特点是信号畸变小。 3)、单模光纤(Single Mode Fiber, SMF),折射率分布和突变型光 纤相似,纤芯直径只有 8~10 μm,光线以直线形状沿纤芯中心轴线方向传播。因为这种光 纤只能传输一个模式(两个偏振态简并),所以称为单模光纤,其信号畸变很小。 2.3、色散的产生以及危害? 答:由于光纤中所传信号的不同频率成分, 或信号能量的各种模式成分,在传输过程中, 因群速度不同互相散开,引起传输信号波形失真,脉冲展宽的物理现象称为色散;光纤色散 的存在使传输的信号脉冲畸变,从而限制了光纤的传输容量和传输带宽。 2.4、光缆的结构分类? 答:(1) 层绞式结构:层绞式光缆的结构类似于传统的电缆结构方式,故又称为古典式光缆。 (2) 骨架式结构:架式光缆中的光纤置放于塑料骨架的槽中,槽的横截面可以是 V 形、U 形 或其他合理的形状,槽的纵向呈螺旋形或正弦形,一个空槽可放置 5~10 根一次涂覆光纤。 (3) 束管式结构:束管式结构的光缆近年来得到了较快的发展。它相当于把松套管扩大为整 个纤芯,成为一个管腔,将光纤集中松放在其中。 (4) 带状式结构:带状式结构的光缆首先将一次涂覆的光纤放入塑料带内做成光纤带,然后 将几层光纤带叠放在一起构成光缆芯。 2.5、光缆的种类? 答:根据光缆的传输性能、距离和用途,光缆可以分为市话光缆、长途光缆、海底光缆和用
(完整word版)光纤通信复习题库(整合版)
光纤通信复习题库(整合版)一、填空题1.有规律地破坏长连“0”和长连“1”的码流,以便时产生信号的提取,称_扰码电路 __ 。
2.PIN光电二极管是在P型材料和N型材料之间加一层_ _I___型材料,称为__耗尽层。
3.APD中促使其电流猛增的是__倍增效应。
碰撞电离4.在半导体激光器的P—I 曲线上,当I>It 时,激光器发出的是激光,反之为荧光5. EDFA在光纤通信系统中主要的应用形式主要有作前置放大器使用、作功率放大器使用和作_线路放大器使用。
6. SDH网有一套标准化的信息结构等级,称为_同步传送模块STM-N_。
7.从波动理论的观点看,光波作为一种电磁波来处理。
8.目前光纤通信的长波波长低损耗工作窗口是 1.31μm和1.55um 。
9.光纤主要由纤芯和包层两部分构成。
10.LED适用于模拟的光纤传输系统。
11.光纤中的传输信号由于受到光纤的损耗和色散的影响,使得信号的幅度受到衰减,波形出现失真。
12.光纤数值孔径的物理意义是表示光纤端面_ 集光 _的能力。
接受和传输光13.准同步数字体系的帧结构中,如果没有足够的开销字节,就不能适应网络管理、运行和维护。
14.SDH中STM—1的速率是 155Mb/s 。
15. 按照泵浦方式的不同,EDFA可分为正向泵浦结构、反向泵浦结构和双向泵浦结构等三种形式。
16.响应度和量子效率都是描述光电检测器光电转换能力的一种物理量。
17.目前光纤通信三个实用的低损耗工作窗口是0.85um ,1.55um 和__1.31um_。
18.PDH复用成SDH信号必须经过映射、定位、复用三个步骤。
19.受激辐射过程中发射出来的光子与外来光子不仅频率相同,而且相位、偏振方向、传播方向都相同,因此,称它们是_相干光 ___。
20. SDH中STM—4的速率是 622 Mb/s 。
21.常用的SDH设备有:终端复用器、__再生器_和数字交叉连接设备等。
22.在光接收机中,与___光检测器__紧相连的放大器称为前置放大器。
光电子技术题库
1: 色温是指在规定的两波长处,具有与热辐射光源的辐射比率相同的黑体的温度。
1.自发跃迁是指处于高能级的一个原子自发的向低能级跃迁并发出一个光子的过程。
受激跃迁是指处于高能级态的一个原子在一定的辐射场的作用下,跃迁到低能级态并辐射出一个与入射光子相同的光子的过程。
2.按照声波频率的高低以及声波和光波作用的长度不同,声光相互作用可以分为:拉曼纳斯衍射和布喇格衍射。
3.磁光效应是指外加磁场作用引起材料光学各向异性的现象。
法拉第磁光效应的规律:a:对于给定的介质,光振动面的旋转角与样品的长度外加的磁感应强度成正比。
B:光的传播方向反转时,法拉第旋转的左右互换。
4.光束调制按其调制的性质可分为:调幅,调频,调相,强度调制。
要实现脉冲编码调制,必须进行三个过程:抽样,量化,编码。
5.光热效应是指探测元件吸收光辐射能量后,并不直接引起内部电子状态的变化,而是把吸收的光能变为晶格的热运动能量引起探测元件温度上升,温度上升的结果又使探测元件电学性质或其他物理性质发生变化。
6.本征型光敏电阻一般在室温下工作,适用于可见光和近红外辐射探测,非本征型光敏电阻通常在低温条件下工作,常用于中远红外辐射探测。
7.CCD的基本功能为电荷存储和电荷转移。
CCD按结构可分为线阵CCD和面阵CCD。
8.LCD可分为两大类:溶致液晶和热致液晶。
作为显示技术应用的LCD是热致液晶。
9.附加:光栅传感器反射的波长叫布喇格波长。
10.受激辐射下光谱宽度的类型分为均匀展宽和非均匀展宽,其中均匀展宽主要有自然展宽,碰撞展宽,热振动展宽,非均匀展宽有多普勒展宽,残余应力展宽。
11.常见的固体激光器有红宝石,钕,钛宝石,气体激光器主要有氦氖和CO2. 12.电致折射率变化是指晶体介质的介电系数与晶体中的电荷分布有关,当晶体被施加电场后,将引起束缚电荷的重新分布并导致离子晶格的微小变形,从而引起介电系数的变化,并最终导致晶体折射率的变化。
13.光纤色散的主要危害是使脉冲信号展宽,限制了光纤的带宽或传输容量。
光与物质的相互作用
射都是 自发 地、 独立地进行 的, 因而各个 原子发 出来的光子在 发射方向和初位相都是不相同的。除激光器光源外 , 普通光源 的发光都属于 自发辐射 。例如霓虹灯 , 当灯管内的低气压氖原
子。 由于加上 了高 电压而放 电时 , 分氖原子被激发到各个激 部 发态能级 。当它们从激发态跃迁 回到基态时, 便发出多种频率
的。
是可写成
n1 n ∞ l F l 2
二、 自发辐射
从经典力学的观点讲 , —个物体如果势能很高 , 他将是不稳
定的。与此相类似 。 处于激发态的原子也是不稳定 的, 它的激发
可见光的波长范 围在 40 m 7 O m之间 。其长波是接 近 0n  ̄On 红颜色 的, 即低频 部分 ; 而短波是接 近紫颜 色的 , 即高频部分。 我们看到的红色就是接近于红颜色那部分的低频光 ; 而蓝色就 是接近于紫颜色那部分的高频光。 红色的物体看上去之所以是 红色的 。 是因为红色物体将照到它上面的红色成份的光反射 了 出来 。 使我们能够看 到它 。那么物体对光的这种反射作用是否 就像乒乓球 碰到墙壁上被反弹 回来一样简单呢? 了解了物质 的 微观机制后 , 我们会清楚 , 并不是那么简单 。 为 了说 明发光的机制 , 尔作 了一个假定 。 玻 他认为, 当电子 在某一个固定的有序轨道 上运动时 。 并不发射光子 。而只有 当
这里 , 应特别注意 自发辐射与受激辐射的区别 。同时要注 意 ,只有 当外来 光子的能量 砌 正好满足 h: — v。 E 关系式 =
时, 才能引起受激辐射。而且受激辐射发 出来的光 子与外来光
n B 2l ) 1 lu n
子具有相同的频率 , 同的发射方 向, 相 相同的偏振态 , 同的位 相
激光原理-概念复习
1、光子的概念及特点。
2、概述光和物质相互作用的三个过程。
画出其作用示意图,并且对比自发辐射和受激辐射的特点。
(30. 光与物质的相互作用有哪几种基本过程?分别解释它们的具体表现。
)3、由跃迁概率导出爱因斯坦系数关系。
4、光放大的概念、实现光放大的条件(集居粒子数反转)。
5、增益饱和现象及其物理机制(当外界光场强度增加,介质增益系数下降;大量消耗反转粒子数导致增益系数下降直至损耗系数)6、简述自激振荡形成的过程。
激光器振荡的条件(P18)。
7、增益系数的定义式及意义。
8、激光器的特点。
(激光与普通光源的区别是什么?激光具有什么特性?试列举激光的某一个特性在工业或其他领域中的应用。
答:激光的相干性。
由于激光是一种受激辐射光。
因此具有单色性、方向性、相干性和高强度这四个特性。
如氦氖激光器具有很好的方向性,可以在工业中用于准直;二氧化碳激光器具有很好的强度,可以用于金属材料的切割、焊接、打孔等。
)CH21、激光器的基本结构包括三个部分,简述这三个部分的作用。
激光工作物质,激励能源(泵浦)和光学谐振腔。
2、试列举三种激光振荡腔模式的分析方法,讨论这些分析方法的特点和应用范围。
答:激光振荡腔模式分析方法有几何光学理论、波动光学理论和费聂耳-基尔霍夫衍射积分方程等三种理论。
透镜波导可以认为是几何光学理论中的一种;波动方程理论主要是从麦克斯韦方程出发,结合光学谐振腔的具体特性。
采取适当的近似,从而达到对腔模的振幅分布、相位分布、谢振频率和衍射损耗等。
但是只有对称共焦腔才能求解出衍射积分方程的近似解析解。
但是,通过建立一般稳定球面腔与对称共焦腔之间的等价性。
可以将对称共焦腔模式解析理论结果推广到一般的稳定球面腔。
3、开腔的概念、模式的基本特征、开腔的谐振条件。
光腔的损耗。
27.什么是对称共焦腔与一般稳定球面腔的等价性。
4、自再现模的起因及特点CH41. 根据引起谱线增宽的原因不同以及谱线增宽的特点不同,分别描述谱线增宽的类型及物理机制、2、讨论均匀加宽和非均匀加宽的区别。
光纤通信技术(第2版)答案
(2) NA n12 n22 n1 2
代入(1)中的 可得: NA 0.3873
16.已知阶跃光纤纤芯的折射指数为n1=1.5,相对折
射指数差 0.01、纤芯半径a=25μm,若
引起脉冲波形的形状发生变化。从波形在时间上展宽的角度去理解,也就是光脉冲在光纤中传输,随
着传输距离的加大,脉冲波形在时间上发生了展宽,这种现象称为光纤的色散
10.什么是模式色散?材料色散?波导色散?
答:模式色散:光纤中的不同模式,在同一波长下传输,各自的相位常数βmn不同所引起的色散
材料色散:由于光纤材料本身的折射指数n和波长λ呈非线性关系,从而使光的传播速度随波长 而变化所引起的色散
18.渐变型光纤的折射指数分布为 1
n(r
)
n(0)
1
2(
r a
)
a
2
求出光纤的本地数值孔径
解: NA(r) n2 (r) n2 (a)
得: NA(r)
n
2
(0)
1
2(
a r
)
n
2
(0)
1
2(
a r
)a
12.什么是受激拉曼散射和受激布里渊散射? 答:如设入射光的频率为f0,介质分子振动频率为fv,则散射光的频率为:fs=f0士fv,这种现象称为 受激拉曼散射
受激布里渊散射与受激拉曼散射相比较物理过程很相似,都是在散射过程中通过相互作用,光波 与介质发生能量交换,但受激布里渊散射所产生的斯托克斯波在声频范围,其波的方向和泵浦光波方 向相反,而受激拉曼散射所产生的斯托克斯波在光频范围,其波的方向和泵浦光波方向一致
激光原理与技术期末知识点总结
辐射跃迁和非辐射跃迁
1. 辐射跃迁:发射或吸收光子从而使原子造成能级间跃迁的现象。它必须
满足辐射跃迁选择定则。
如果原子的两个能级满足辐射跃迁选择定则,则有可能出现下述情况:
1) 一个处于高能级E2的原子,发射一个能量为 = h = E2 − E1
的光子,结果这个原子回到低能级E1。
2)一个处于低能级E1原子,从外界吸收一个能量为 = h = E2 − E1
➢当 ⋅ = 或 ⋅ = 时,共轴球面谐振腔为临界腔
三能级系统和四能级系统的受激发光过程
1. 三能级系统:如图(2-4a),下能级E1是基态能级,上能级E2 是
亚稳态能级,E3为抽运高能级。其主要特征是激光的下能级为基
态,发光过程中下能级的粒子数一直保存有相当的数量。
=
h
2
h
=
mc
c2
h
h
h 2
h
n0 = n0 =
n0 =
k
c
2
2
式(1-17)和式(1-18)把表征粒子性的能量ε和动量P与表征波动性的
频率ν和波长λ联系起来,体现了光的波粒二象性的内在联系。
原子能级示意图
原子能级和简并度
En
微观粒子(电子)只能处于一系列本征状态
E2
每一状态具有分立的能量值——能级
2 kT ν0
1/2
2 ln 2
f D (v0 ) =
vD
0.939
vD
ν − ν0
2 ln 2 1 2 −[4ln 2( νD ) ]
f D (ν ) =
( ) e
简述外光电效应,内光电效应,光生伏特效应
光电效应是指物质在光照射下发生的电子的发射或者电子和正空穴对的形成现象。
光电效应是由于光子能量的吸收而产生的电子激发现象,是一种光与物质相互作用的基本过程。
光电效应主要有外光电效应、内光电效应和光生伏特效应三种。
一、外光电效应1. 外光电效应是指当光线照射在金属或其他导体的表面上,使得金属表面电子呈现出逸出的现象。
外光电效应是由光子能量将金属表面电子激发出金属而引起的。
2. 外光电效应的条件是光子的能量大于金属的功函数值,才能将金属内的电子激发出来。
外光电效应不受外界电场的影响,而且随着光强的增大,逸出的电子速度也会增大。
二、内光电效应1. 内光电效应是指当光线射入半导体或绝缘体时,在其内部也会出现一些电子空穴对,这种现象称为内光电效应。
2. 内光电效应的条件是光子能量大于材料的带隙宽度,才能发生内光电效应。
内光电效应的特点是光子能量小于带隙宽度时,材料内部产生的电子空穴对会很少。
3. 内光电效应的影响是可以通过内光电效应来传输信息和能量,因而在半导体光电器件中有着重要的应用。
三、光生伏特效应1. 光生伏特效应是指当光线穿过PN结时,使PN结两侧出现电势差和电场分布的变化,这种现象称为光生伏特效应。
2. 光生伏特效应的主要原因是光生载流子因电场的影响而发生漂移或扩散,从而在PN结两侧产生电势差。
光生伏特效应是光电二极管和太阳能电池等器件的工作原理基础。
3. 光生伏特效应对于太阳能电池来说具有重要的意义,可以充分利用光能转化为电能的效应,是太阳能电池高效率能源转换的重要物理基础。
在总结一下:- 外光电效应主要发生在金属或导体表面,是光子能量将金属表面电子激发出金属而引起的。
- 内光电效应主要发生在半导体或绝缘体中,是光子能量激发材料内部电子空穴对的现象。
- 光生伏特效应主要发生在PN结中,是光生载流子因电场的影响而产生电势差的现象。
通过对光电效应三种形式的了解,可以更深入地了解光与物质之间的相互作用,为相关器件与技术的研发和应用提供了重要的理论基础。
激光原理期末复习基本概念
激光原理期末复习前言1、(1960)年美国加利福尼亚州休斯航空公司实验室的研究员梅曼(Maiman)制成世界上第一台激光器—红宝石激光器。
2、激光是利用(光能)、热能、电能、化学能或核能等外部能量来激励物质,使其发生受激辐射而产生的一种特殊的光。
3、根据激光器工作物质分类有:固体激光器;(气体激光器);液体激光器;染料激光器;半导体激光器等。
4、按激光器运转方式分类有:连续激光器;单次脉冲激光器;(重复脉冲激光器);调Q 激光器;锁模激光器;单模和稳频激光器;可调谐激光器等。
5、按激光激励方式分类有:光泵式激光器;(电激励式激光器);化学激励激光器(又称化学激光器);核泵激光器。
6、按激光器输出激光的波段范围分类有:远红外激光器;(中红外激光器);近红外激光器;可见激光器;近紫外激光器;真空紫外激光器;X射线激光器等。
7、激光最突出的特性是:能量集中,(高方向性);高亮度;单色性好;相干性强。
8、激光的方向性表示可以用平面角和(立体角)表示。
9、具有单一频率的光波称为单色光。
单色性:用(/λ或)表示。
10、激光的辐射范围在1×10-3rad(0.06º)左右。
氦-氖激光器输出的红色激光谱线宽度只有(10-8 ) nm 。
11、激光的单色性越好,相干长度越(长);激光的相干长度可达105千米。
第1章辐射理论概要1、电磁辐射同物质相互作用产生吸收和发射现象时,电磁辐射以(光子或光量子)不连续的形式交换能量。
2、光量子能量E与波长成反比:E ∝1/λ;波长越长;光量子能量E越小;(频率越低) ;波长越短;光量子能量E越大;(频率越高)。
3、原子处于最低的能级状态称为(基态)。
能量高于基态的其它能级状态称为激发态。
4、能级有两个或两个以上的不同运动状态称为简并能级。
同一能级所对应的不同电子运动状态的数目称为(简并度)。
5、在热平衡条件下,原子数按能级分布服从(波尔兹曼定律)。
6、原子能级间跃迁发射或吸收光子的现象称为辐射跃迁。
光与物质相互作用的基本原理与应用
光与物质相互作用的基本原理与应用在我们日常生活中,光和物质的相互作用是无处不在的。
无论是我们所见的景象还是科技发展中的各种应用,都离不开光与物质之间的关系。
本文将探讨光与物质相互作用的基本原理与应用,并从光的电磁波性质、光的吸收、传播和散射等方面进行分析和阐述。
光是一种电磁辐射,具有特定的波长和频率。
光的波动特性决定了它在与物质作用时的行为。
在物质的表面上,光会发生折射和反射。
当光通过透明介质表面时,会发生折射现象,即光线改变传播方向。
根据斯涅尔定律,光的折射角度与入射角度以及介质的折射率有关。
这一原理在玻璃透镜、光纤通信等领域得到了广泛的应用。
与折射不同,反射是光在物体表面发生的现象。
光无法透过金属等非透明介质,而是被完全反射。
反射光被用于制造镜子、反光片和反射式望远镜等。
反射现象还被广泛应用于光学传感技术,例如激光雷达和光电测距仪。
除了折射和反射,还存在着光在物质中被吸收、传播和散射的现象。
吸收是指光传播到物质内部后,部分或全部能量被物质所吸收。
不同物质对不同波长的光的吸收程度不同,这为光谱分析技术提供了基础。
根据物质对不同波长光的吸收情况,可以获得物质的成分信息。
传播是指光在物质中的传递过程。
不同物质对光的传播速度有所差异,这一点在光纤通信中得到了广泛应用。
光纤中的光信号能够穿过长距离而不损失太多能量,从而实现了高速数据传输。
散射是光与物质相互作用后改变方向的现象。
与反射不同的是,散射是非定向的。
散射过程中,光与物质中的微粒进行相互作用,使得光的传播方向发生变化。
散射现象在大气中的发生导致了天空的蓝色,也被广泛用于分析物质微粒的分布和测量。
除了基本原理的应用外,光和物质的相互作用还存在着其他领域的应用。
例如,激光切割技术利用激光和物质之间的相互作用,使得物质在特定位置发生熔化或汽化,从而实现材料切割的目的。
激光切割具有高精度、高效率的特点,被广泛应用于金属加工、电子制造等领域。
在医学领域,光与物质相互作用也有着重要的应用。
光场与物质相互作用
光场与物质相互作用在自然界中,光场与物质之间的相互作用是一种普遍而且重要的现象。
无论是我们日常生活中的光与物体的相互作用,还是科学研究中的光谱分析、光电磁学等领域,光场与物质之间的相互作用都起着重要的作用。
本文将探讨光场与物质相互作用的原理和应用。
第一部分:光的本质与光场的特性光是一种电磁波,具有波粒二象性。
在光场中,光波的传播方式具有一定的特性,如干涉、衍射、偏振等现象。
这些现象都表明光场在传播过程中与物质发生了相互作用,从而产生了种种有趣的现象。
第二部分:物质对光的吸收、散射和透射物质对光的吸收、散射和透射是光场与物质相互作用的重要表现形式。
当光照射到物质表面时,部分光被物质吸收,部分光被散射,部分光通过物质透射。
这种相互作用是由物质的分子和原子结构决定的,并且与光场的频率和强度密切相关。
第三部分:光场与物质的相互作用对物质的影响光场与物质的相互作用对物质的性质和行为产生了重要影响。
例如,透过某些特定物质的光场会改变其颜色、折射率和透明度,从而产生独特的光学效应。
另外,在光场的作用下,物质的电子结构也会发生变化,导致光电子发射和光化学反应等现象的发生。
第四部分:光场与物质相互作用在科学研究和技术应用中的意义光场与物质相互作用在科学研究和技术应用中具有广泛的应用价值。
光谱分析是通过物质对不同波长光的吸收、发射和散射特性来研究物质结构和性质的重要手段。
此外,光场与物质相互作用也在光电磁学、激光技术、光储存等领域发挥了重要作用。
结语无论是大自然中的彩虹、闪电,还是现代科技中的光纤通信、光电子器件,光场与物质相互作用的影响随处可见。
对于我们来说,理解和掌握光场与物质相互作用的原理和规律,不仅可以增进对世界的认识,还可以推动科学技术的进步。
希望本文能为读者提供一些启示,进一步探索光场与物质相互作用的奥秘。
镜面脉冲的原理
镜面脉冲的原理镜面脉冲是一种利用光与物质相互作用的现象,其原理涉及到光的传播、反射和折射等基本光学概念,以及光与物质相互作用的微观机制。
下面将详细介绍镜面脉冲的原理。
首先,我们需要理解光的特性。
光是电磁波,具有波粒二象性,同时表现出粒子性和波动性。
当光遇到一个物体表面时,会发生三种基本的光与物质相互作用:反射、折射和吸收。
反射是指光线遇到物体表面时,一部分光发生反射,按照入射角等于反射角的定律,沿着与入射光相同的方向反射出去。
反射光的强弱与物体表面的特性有关,例如表面的光滑程度和材料的折射率等。
折射是指光线从一个介质传播到另一个介质时,由于介质的折射率不同,光线会发生折射,即改变传播方向。
根据斯涅尔定律,入射光线、折射光线和法线三者在同一平面上,并满足折射定律可以描述折射的行为。
吸收是指光线能量被物体吸收而转化为其他形式的能量,例如热能。
物体的吸收特性与其材料的光学性质有关。
在镜面脉冲中,我们关注光线在一个平面镜(即镜面)上的反射过程。
当光线照射到镜面上时,根据光的波动性,光的电磁波会与镜面表面的原子或分子发生相互作用。
这种相互作用会导致光的能量部分被吸收,而另一部分则被反射出去。
在镜面反射中,假设光线入射到镜面上的入射光线称为I,反射光线称为R。
根据反射定律,入射光线I与法线的夹角等于反射光线R与法线的夹角。
具体而言,假设入射光线I和法线之间的夹角为θ_i,反射光线R和法线之间的夹角为θ_r,则有θ_i = θ_r。
这就是反射定律。
镜面反射不仅与入射角有关,还与镜面表面的光滑程度有关。
在一个完全光滑的镜面上,光线的反射是按照规则的,即入射光线、反射光线和法线三者在同一平面上。
此时,我们所看到的反射图像是清晰直立的。
而在一个粗糙的镜面上,光线的反射是发生散射的,即入射光线、散射光线和法线不在同一平面上。
此时,我们所看到的反射图像是模糊或扭曲的。
回到镜面脉冲的原理,当一个脉冲光线照射到镜面上时,由于光的波动性质,脉冲光线可以看作是一系列波峰和波谷连续排列形成的光束。
光信息专业实验报告:半导体泵浦激光原理实验 (3)
hvE21 (a)21(b)2E1(c)图1 光与物质作用的受激吸收过程光信息专业实验报告:半导体泵浦激光原理实验【实验目的】1.了解与掌握半导体泵浦激光的原理及调节光路的方法2.掌握腔内倍频技术,并了解倍频技术的意义3.掌握测量阈值、相位匹配等基本参数的方法【实验仪器】1.808nm半导体激光器P≤500mW2.半导体激光器可调电源电流0~500mA3.Nd:YVO4晶体3×3×1mm4.KTP倍频晶体2×2×5mm5.输出镜(前腔片)φ6 R=50mm6.光功率指示仪2μW~200mW 6挡【实验原理】一、光与物质的相互作用光与物质的相互作用可以归结为光子与物质原子的相互作用,有三种过程:受激吸收、自发辐射和受激辐射。
1.受激吸收如果一个原子,开始时处于基态,在没有外来光子的情况下,它将保持不变。
如果一个能量为hv21的光子接近,则它吸收这个光子,跃迁上激发态E2。
在此过程中不是所有的光子都能被原子吸收,只有当光子的能量正好等于原子的能级间隔E1-E2时才能被吸收。
2.自发辐射处于激发态的原子寿命很短(一般为10-8~10-9秒),在不受外界影响时,它们会自发地返回到基态,并释放出光子,辐射光子能量为hv=E2-E1。
自发辐射过程与外界作用无关,是一个随机过程,各个原子的辐射都是自发的、独立进行的,因而不同原子发出来的光子的发射方向和初相位是不相同的。
由于激发能级有一个宽度,所以发射光的频率也不是单一的,而有一个范围。
3.受激辐射处于激发态的原子,在外界光场的作用下,会吸收能量为E 2-E 1的光子,从而由高能态向低能态跃迁,并向外辐射出两个光子。
只有当外来光子的能量正好等于激发态与基态的能级差时,才能引起受激辐射,且受激辐射发出的光子与外来光子的频率、发射方向、偏振态和相位完全相同。
激光的产生主要依赖受激辐射过程。
二、激光器的组成激光器主要由工作物质、泵浦源、谐振腔三部分组成,如果要实现激光倍频,还需要在谐振腔内部加入倍频晶体。