20.极点与极线的性质
高中数学圆锥曲线技巧之极点与极线
高中数学圆锥曲线技巧之极点与极线在高中数学的学习中,圆锥曲线是一个比较复杂但又非常重要的内容。
其中,极点与极线是圆锥曲线中一个较为抽象但又极具深度的概念。
在本文中,我们将深入探讨高中数学中关于极点与极线的技巧,并通过具体的例子来帮助大家更好地理解和运用这一知识。
极点与极线是圆锥曲线中的重要概念,它们的理解和运用可以帮助我们更好地解题和应用数学知识。
在接下来的内容中,我们将从简单到复杂,由浅入深地介绍极点与极线的相关知识,让大家能够更直观地理解这一概念。
让我们从极点的定义和性质入手。
极点是在圆锥曲线上的一个特殊点,它具有一定的性质和特点。
在直角坐标系中,对于椭圆、双曲线和抛物线而言,这些曲线上都存在极点。
具体来说,在椭圆和双曲线上,极点是无限远处的点,而在抛物线上,极点是定点。
通过对极点的性质进行深入了解,我们可以更好地应用这一知识解决问题。
让我们了解极线的概念及其性质。
极线是与极点对应的直线,它们之间存在着一定的几何关系。
在椭圆和双曲线的情况下,极线是通过极点并且与曲线相切的直线,而在抛物线的情况下,极线是通过极点并且与对称轴垂直的直线。
通过对极线的性质进行深入研究,我们可以更好地掌握圆锥曲线相关问题的解题技巧。
接下来,让我们通过实例来详细讨论极点与极线的应用技巧。
以椭圆曲线为例,假设我们需要确定椭圆上关于极点和极线的一些特定问题。
在解题过程中,我们可以先确定椭圆的极点,然后求出与极点相关的极线方程,进而利用极线的性质来解决具体的问题。
通过实例的具体讲解,我们可以更好地理解并掌握极点与极线的运用技巧。
总结回顾一下,极点与极线是圆锥曲线中的重要概念,它们的理解和运用可以帮助我们更好地解题和应用数学知识。
通过对极点与极线的深入讨论和实例分析,我们能够更全面、深刻和灵活地理解这一知识,并运用于实际问题中。
对于我个人来说,极点与极线的学习过程不仅仅是对圆锥曲线知识的掌握,更是对数学思维和解题能力的提升。
极点极线详解-概述说明以及解释
极点极线详解-概述说明以及解释1.引言1.1 概述极点极线是复数函数理论中重要的概念,它们在解析几何和数学物理等领域均有广泛的应用。
极点是函数在复平面上的奇点,它表现为函数在该点处无穷大或无穷小的特性,而极线则是连接这些极点的曲线。
极点和极线的研究不仅有助于深入理解复函数的性质,还在实际问题的求解中发挥着重要作用。
本文将详细介绍极点和极线的定义、特性、关系以及应用,旨在帮助读者更好地理解和应用这一重要的数学概念。
1.2 文章结构文章结构部分的内容可以按照以下方式进行编写:文章结构部分本文将按照以下结构来论述极点极线的相关内容:2. 正文2.1 极点的定义和特性2.2 极线的定义和特性2.3 极点极线的关系2.4 极点极线的应用在正文部分,我们将依次介绍和探讨极点和极线在计算机视觉领域中的重要性以及相关概念、定义和特性。
首先,我们将详细讲解极点的定义和其特性,包括极点在图像处理和计算机视觉中的作用以及其在数学中的定义。
然后,我们将介绍极线的定义和特性,重点关注极线在立体视觉和图像对几何关系解决中的重要性。
接下来,我们将讨论极点和极线的关系,包括如何通过极点和极线之间的投影关系来求解立体视觉和图像重建中的几何关系。
最后,我们将探讨极点极线在实际应用中的具体应用场景,包括目标识别、图像配准和三维重建等领域,并介绍一些相关的案例和算法。
通过以上结构,我们希望能够全面而系统地介绍极点极线的相关内容,使读者对其有一个清晰的认识和理解。
在这个过程中,我们将尽可能地提供详细的解释和示例,以帮助读者更好地理解和应用极点极线的概念和方法。
在接下来的章节中,我们将从极点的定义和特性开始,逐步展开对极点极线的讨论。
让我们一起深入了解极点极线的奥秘吧。
1.3 目的本文的目的在于探讨和详解极点极线的概念、定义、特性以及其在实际应用中的重要性。
通过对极点和极线的定义和特性的介绍,我们将深入了解这一数学概念的内涵和本质。
同时,我们还将研究极点和极线之间的关系以及它们在几何学、计算机视觉和图像处理领域的应用。
圆锥曲线的极点与极线的重要结论_罗碎海
图7
M (x1,y1)、N(x2,y2) ,其中
m > 0,y1 > 0,y2 < 0.
(1)设动点 P 满足 PF2 - PB2 = 4 ,求点 P 的轨迹;
(2)设
x1
=
-2,
x2
=
-
1 3
,求点
T
的坐标;
(3)设 t = 9 ,求证:直线 MN 必过 x 轴上的一定点(其坐标
与 m 无关)。
分析(3):因为点(9,m)关于椭圆的极线为 x+y=1,此极线
2010.(4).
[3]梅向明.高等几何(第二版)[M].高等教育出版社.2000 年 5 月.
[4]梅向明.高等几何(第二版)[M].高等教育出版社.2000 年 5 月.
[5]罗碎海.方程 x0x+y0y=r2与 x2+y2=r2几何背景的探讨[J].中学数学教 学参考.2009.(3).
[6]姜坤崇.圆锥曲线关于极点极线的一个统一性质[J].中学数学教学
1 α
x0
a α (ln
a) =
ln a α
1
a1na
,m
=
(
ln a α
1
aln a )α
,
,从 而
∴当
0
<
m
<(
ln a α
1
aln a )α
时,曲线
y
=
ax
与
y
=
mxα
(m
>
0)
无
公共点;当
m
=
(
ln a α
a
1 ln a
)α
时,曲线
2023全国乙卷理科第20题 极点极线
2023全国乙卷理科第20题极点极线【导读】极点与极线是解析几何中的重要概念,它们在数学领域中有着广泛的应用。
本文将深入探讨极点与极线的定义、性质和应用,并共享对这一主题的个人理解。
【正文】一、极点与极线的定义1. 极点的定义极点是与给定圆的两条切线相交的一个点,这两条切线是从极点到圆上的两个不同点的切线。
在平面直角坐标系中,给定一点 P(x1, y1),以及一个圆 C:(x - a)² + (y - b)² = r²。
点 P 是圆 C 的极点,当且仅当从 P 到圆 C 上的任意一点 Q 的斜率相等。
即∠OPQ为直角,其中O(a, b) 是圆 C 的圆心。
2. 极线的定义过给定点和给定圆的两条切线所确定的交点的轨迹叫做极线。
根据定义,极线是由圆 C 的所有极点所决定。
在平面直角坐标系中,假设圆的方程是(x - a)² + (y - b)² = r²,圆的极线可以表示为下面形式的方程:xx1 + yy1 = a(x + x1) + b(y + y1) + r²。
这里,(x1, y1) 是圆的极点。
二、极点与极线的性质1. 极点的性质(1)极点坐标的性质通过上述定义,可得到极点P(x1, y1) 的坐标对称形式是P′(-x1, -y1)。
意味着,极点 P 关于圆心 O 对称。
(2)极点的存在性对于给定圆 C,如果有直角坐标系中的点 P(x,y)满足OP⊥OQ,那么点 P 就是圆 C 的极点。
2. 极线的性质(1)极线的对称性已知圆 C 关于 X 轴和 Y 轴的极线方程为 a1x + b1y + c1 = 0 和 a2x + b2y + c2 = 0。
易得,关于 X 轴和 Y 轴的两条极线方程互为对称。
(2)极线的交点性质两条极线的交点坐标为(-ab/a1 - a2, -ab/b1 - b2, 非常重要)。
三、极点与极线的应用1. 应用一:极点极线在密码学中的应用极点极线广泛应用于密码学领域,尤其是在椭圆曲线密码学中。
20.极点与极线的性质
20.极点与极线的性质第15讲:极点与极线的性质125第15讲:极点与极线的性质极点与极线是高等几何中的基本且重要的概念,虽然中学数学没有介绍,但以此为背景命制的高考试题经常出现.掌握极点与极线的初步知识,可使我们“登高望远”,抓住问题的本质,确定解题方向,寻找简捷的解题途.定义:已知曲线G:ax 2+bxy+cy 2+dx+ey+f=0,则称点P(x 0,y 0)和直线l:ax 0x+b200y x x y ++cy 0y+d 20x x ++e 2y y ++f=0是曲线G 的一对极点与极线,点P 称为直线l 关于曲线G 的极点;直线l 称为点P 关于曲线G 的极线.称点P 与直线l 有“配极关系”,或“对偶关系”,相互为对方的“配极元素”,或“对偶元素”.特别地,当点P 在曲线G 上时,点P 关于曲线G 的极线是曲线G 在点P 处的切线;圆锥曲线的焦点对应的极线是该焦点对应的准线;圆锥曲线的准线对应的极点是该准线对应的焦点.[位置关系]:已知点P 关于圆锥曲线G 的极线是直线l,则三者的位置关系是:①若点P 在曲线G 上,则直线l 是曲线G 在点P 处的切线;②若点P 在曲线G 外,则直线l 是由点P 向曲线G 引两条切线的切点弦;③若点P 在曲线G 内,则直线l 是经过点P 的曲线G 的弦的两端点处的切线交点轨迹.如图:l l l P M P A D M PN C N B[配极原则]:如果点P 的极线通过点Q,则点Q 的极线也通过点P.证明:设圆锥曲线G:ax 2+bxy+cy 2+2dx+2ey+f=0,点P(x p,y p),Q(x Q,y Q),则点P 、Q 关于曲线G 的极线方程分别为p:ax p x+b 2yx x y p p ++cy p y+d2p x x ++e2p y y ++f=0,q:ax Q x+b2yx x y Q Q ++cy Q y+d2Q x x ++e2Q y y ++f=0,则点P 的极线通过点Q⇔ax p x Q +b 2Qp Q p y x x y ++cy p y Q +d 2pQ x x ++e2pQ y y ++f=0⇔点P(x p ,y p )在直线q:ax Q x+b2y x x y Q Q ++cy Q y+d2Q x x ++e2Q y y ++f=0上⇔点Q 的极线也通过点P.推论1:两点连线的极点是此二点极线的交点,两直线交点的极线是此二直线极点的连线;证明:设两点A 、B 连线的极点是P,即点P 的极线经过点A 、B,由配极原则知点A 、B 的极线均过点P,即点P 是此二点极线的交点;同理可证:两直线交点的极线是此二直线极点的连线.推论2(共点共线):共线点的极线必共点;共点线的极点必共线.证明:设点A 、B 均在直线l 上,直线l 对应的极点为P,由配极原则知点A 、B 的极线均过点P,即点A 、B 的极线必共点;同理可证:共点线的极点必共线.推论3(中点性质):若圆锥曲线G 过点P 的弦AB 平行于点P 的极线,则点P 是弦AB 的中点. 证明:设P(x 0,y 0),曲线G:ax 2+bxy+cy 2+2dx+2ey+f=0,则点P 的极线方程:ax 0x+b200y x x y ++cy 0y+d 20x x ++e 2y y + +f=0,故可设AB:ax 0x+b200y x x y ++cy 0y+d 20x x ++e 20y y ++λ=0,由点P(x 0,y 0)在直线AB 上⇒ax 02+bx 0y 0+cy 02+2dx 0+2ey 0+λ=0⇒λ=-(ax 02+bx 0y 0+cy 02+2dx 0+2ey 0)⇒直线AB:ax 0x+b 200y x x y ++cy 0y+d 20x x ++e 20y y +=ax 02+bx 0y 0+cy 02+2dx 0+2ey 0⇒ ax 0x+b200y x x y ++cy 0y+d 20x x ++e 20y y ++f=ax 02+bx 0y 0+cy 02+2dx 0+2ey 0+f,而该直线为以为P 中点的中点弦方程,即点P 是弦AB 的中点.[比例定理]:若过点P(x 0,y 0)的直线l 与曲线G:ax 2+bxy+cy 2+dx+ey+f=0相交于A 、B 两点,与直线:ax 0x+b200yx x y ++ 126 第15讲:极点与极线的性质cy 0y+d20x x ++e 2y y ++f=0交于点Q,则|PA||QB|=|QA||PB|. 证明:设直线l:⎩⎨⎧+=+=θθsin cos 0t y y t x x (t 为参数),代入ax 0x+b 200y x x y ++cy 0y+d 20xx ++e2y y ++f=0得:(2ax 0cos θ+bx 0sin θ+by 0cos θ+2cy 0sin θ)t+2(ax 02+bx 0y 0+cy 02+dx 0+ey 0+f)=0⇒t 0=-2θθθθsin 2cos sin cos 2000000200020cy by bx ax fey dx cy y bx ax ++++++++;代入ax 2+bxy+ cy 2+2dx+2ey+f=0得:(acos 2θ+bcos θsin θ+csin 2θ)t 2+(2ax 0cos θ+bx 0sin θ+by 0cos θ+2cy 0sinθ)t+(ax 02+bx 0y 0+cy 02+dx 0 +ey 0+f)=0⇒t 1+t 2=-θθθθθθθθ220000sin cos sin cos sin 2cos sin cos 2c b a cy by bx ax +++++,t 1t 2=θθθθ2200200020sin cos sin cos c b a fey dx cy y bx ax +++++++⇒t 0=21212t t t t +;而|PA||QB|=|QA||PB|⇔|t 1||t 2-t 0|=|t 1-t 0||t 2|⇔t 0=21212t t t t +成立. [面积定理]:已知点P 关于圆锥曲线G 的极线为l,过点P 的直线与圆锥曲线G 相交于A 、B 两点,分别过点A 、B 的两条平行线与直线l 交于点D 、C,记△APD 、△CPD 、△BPC 的面积分别为S 1,S 2,S 3,则:S 22=4S 1S 2.证明:以椭圆G:22ax +22by =1(a>b>0)为例,设P(x 0,y 0),则极线l:12020=+b y y ax x .设A(x 1,y 1),B(x 2,y 2),并分别过点A 、B 作l 的垂线,垂足分别为D 1、C 1,则||||11BC AD =|1||1|220220210210-+-+b y y a x x b y y a x x =||||2220220222102102b a y y a x x b b a y y a x x b -+-+(注意到:a 2b 2=b 2x 12+a 2y 12,a 2b 2=b 2x 22+a 2y 2) =||||222222202202212212102102y a x b y y a x x b y a x b y y a x x b --+--+=|)()(||)()(|0222022201120112y y y a x x x b y y y a x x x b -+--+-(注意到:0101x x y y --=0202x x y y --=k)=||||0201x x x x --⋅||||22221212x b ky a x b ky a ++.又因||||BP AP =||||0201x x x x --,以下只需证||||22221212x b ky a x b ky a ++=1,即|a 2ky 1+b 2x 1|=|a 2ky 2+b 2x 2|,由⎪⎩⎪⎨⎧=+=+2222222222212212ba y a xb b a y a x b ⇒b 2(x 1-x 2)(x 1+x 2)+a 2(y 1- y 2)(y 1+y 2)=0⇒b 2(x 1+x 2)+a 2k(y 1+y 2)=0⇒a 2ky 1+b 2x 1=-(a 2ky 2+b 2x 2)⇒|a 2ky 1+b 2x 1|=|a 2ky 2+b 2x 2|⇒||||BP AP =||||11BC AD ,由△ADD 1∽△BCC 1⇒||||BC AD =||||BP AP ,设AC 与BD 交于点Q,由AD ∥BC ⇒||||BC AD =||||QC AQ ⇒||||BP AP =||||QC AQ ⇒PQ ∥BC ∥AD ⇒S △BAC =S △BDC ,两边同减S △BQC 得S △QAB =S △QDC ,又因S △PQA =S △PQD ,S △PQB =S △PQC ⇒S △PCD =S △QCD +S △PQD +S △PQC =S △QCD +S △PQA +S △PQB =S △QCD +S △QAB =2S △QAB ⇒S △QAD =S △PAD =S 1,S△QBC=S △PBC =S 3,S △QAB =21S △PCD =21S 2,注意到:QAB QBC QAB QAD S S S S ∆∆∆∆⋅=||||||||QA QC QB QD ⋅=1⇒2QAB S ∆=S △QAD S △QBC ⇒S 22=4S 1S 2. 例1:极点与极线的位置关系.[始源问题]:(2010年湖北高考试题)已知椭圆C:22x +y 2=1的两焦点为F 1 ,F 2,点P(x 0,y 0)满足0<220x +y 02<1,则|PF 1|+|PF 2|的取值范围为 ,直线20xx +y 0y=1与椭圆C 的公共点个数为 . [解析]:由0<220x +y 02<1知,点P 在椭圆C 内,所以直线20x x +y 0y=1与椭圆C 相离⇒公共点个数为0;2c ≤PF 1|+|PF 2|<2a ⇒2≤PF 1|+|PF 2|<22⇒|PF 1|+|PF 2|的取值范围为[2,22).[原创问题]:已知椭圆C:42x +32y =1,点P(x 0,y 0)满足420x +320y >1(x 0≠0),直线l:40x x +30y y =1. (Ⅰ)求直线l 与椭圆C 的公共点个数;(Ⅱ)若射线OP 与直线l 、椭圆C 分别交于点Q 、M,求证:|OP||OQ|=|OM|2.[解析]:(Ⅰ)因椭圆C:42x +32y =1⇔⎩⎨⎧==θθsin 3cos 2y x ,θ∈[0,2π),所以,直线l 与椭圆C 的公共点个数⇔关于θ的方程第15讲:极点与极线的性质12720x cos θ+330y sin θ=1解的个数⇔直线:20x x+330y y=1与圆:x 2+y 2=1的公共点个数;由圆心O(0,0)到直线:20x x+330y y=1的距离d=3412020y x +<1⇒直线:20x x+330y y=1与圆:x 2+y 2=1的公共点个数=2⇒直线l 与椭圆C 的公共点个数=2;(Ⅱ)因射线OP:y=00x y x(x 与x 0同号),与40x x +30y y =1联立得:40x x +0203x x y =1⇒x=202004312y x x +⇒y=202004312y x y +⇒Q(202004312y x x +,22004312y x y +)⇒|OP||OQ|=2020202043)(12y x y x ++;由y=00x y x 与42x +32y =1联立得:42x +20203x y x 2=1⇒x 2=2020204312y x x +⇒y 2=2020204312y x y +⇒ |OM|2=x 2+y 2=2020204312y x x ++2020204312y x y +=2020202043)(12y x y x ++⇒|OP||OQ|=|OM|2.例2:抛物线中的共线性质.[始源问题]:(2010年大纲卷Ⅰ高考试题)已知抛物线C:y 2=4x 的焦点为F,过点K(-1,0)的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D. (Ⅰ)证明:点F 在直线BD 上; (Ⅱ)设FB FA ⋅=98,求△BDK 的内切圆M 的方程. [解析]:(Ⅰ)设A(x 1,y 1),B(x 2,y 2),直线l:y=k(x+1)(k ≠0),则D(x 1,-y 1),由⎩⎨⎧=+=xy x k y 4)1(2⇒ky 2-4y+4k=0⇒y 1+y 2=k 4,y 1y 2= 4;所以,点F 在直线BD 上⇔FB ∥FD ⇔(x 2-1):(x 1-1)=y 2:(-y 1)⇔y 1(ky 2-2)+y 2(k y1-2)=0⇔y 1y 2-k(y 1+y 2)=0;(Ⅱ)由FB FA ⋅=(x 1-1)(x 2-1)+y 1y 2=(k y 2-2)(k y 1-2)+y 1y 2=(1+21k )y 1y 2-k 2(y 1+y 2)+4=4(1+21k )-28k +4=8-24k=98⇒k=±43;根据对称性,不妨设k=43,则直线AB:3x-4y+3=0,且k KD =43⇒KF 平分∠AKD ⇒圆M 的圆心M 在x 轴上;(x 2-x 1)2=(x 1+x 2)2- 4x 1x 2=7162⇒k BD =1212y y x x +-=73⇒直线BD:3x-7y-3=0;设M(t,0)(-1<t<1),则由点M 到直线AB 与BD 的距离相等⇒5|1|3+t =4|1|3-t ⇒t=91⇒圆M:(x-91)2+y 2=94. [原创问题]:已知抛物线y 2=2px 及定点A(a,b),B(-a,0)(ab ≠0,b 2≠2pa),M 是抛物线上的点,设直线AM,BM与抛物线的另一交点分别为M 1,M 2.求证:当M 点在抛物线上变动时(只要M 1,M 2存在且M 1≠M 2),直线M 1M 2恒过一个定点,并求出这个定点的坐标.[解析]:设M(2pt 2,2pt),M 1(2pt 12,2pt 1),M 2(2pt 22,2pt 2),则点B,M,M 2对应的极线分别为:x=a,2ty=x+2pt 2,2t 2y=x+2pt 22,由B,M,M 2三点共线⇒三线x=a,2ty=x+2pt 2,2t 2y=x+2pt 22共点⇒a=2ptt 2⇒t 2=pta2,点A,M 1对应的极线分别为:by=px+ap, 2t 1y=x+2pt 12,由A,M,M 1三点共线⇒三线by=px+ap,2ty=x+2pt 2,2t 1y=x+2pt 12共点⇒bp(t+t 1)=2p 2tt 1+ap ⇒t 1=ptb bta 2--,由⎪⎩⎪⎨⎧+=+=2222112222pt x y t pt x y t ⇒⎩⎨⎧+==)(22121t t p y t pt x ⇒⎪⎪⎩⎪⎪⎨⎧--=--=)2(2)2()2()(2pt b pt t p a b y pt b t bt a a x ⇒x-a=)2(22pt b t t p a --=b a 2y ⇒M 1,M 2对应极线的交点在定直线b p 2y=x+a, 即b p 22y=2p 2a x +上⇒直线M 1M 2恒过一个定点(a,bpa2).128 第15讲:极点与极线的性质例3:抛物线中的比例性质.[始源问题]:(2009年全国高中数学联赛湖北初赛试题)已知抛物线C:y=21x 2与直线l:y=kx-1没有公共点,设点P 为直线l 上的动点,过P 作抛物线C 的两条切线,A 、B 为切点. (Ⅰ)证明:直线AB 恒过定点Q;(Ⅱ)若点P 与(Ⅰ)中的定点Q 的连线交抛物线C 于M 、N 两点.证明:||||PN PM =||||QN QM .[解析]:(Ⅰ)设A(x 1,y 1),B(x 2,y 2),P(x 0,y 0),则抛物线y=21x 2在点A 、B 处的切线方程分别为x 1x=y+y 1、x 2x=y+y 2,由点P(x 0,y 0)在这两切线上得:⎩⎨⎧+=+=02200110y y x x y y x x ⇒直线AB:x 0x=y+y 0(注意到:y 0=kx 0-1)⇒x 0x=y+kx 0-1⇒直线AB 过定点Q(k,1);(Ⅱ)设直线MN:⎩⎨⎧+=+=θθsin cos 00t y y t x x ,代入直线AB:x 0x=y+y 0,得:t Q =θθcos sin 20020x y x --;代入y=21x 2得:t 2cos 2θ+2(x 0cos θ-sinθ)t+x 02-2y 0=0⇒t 1+t 2=2⋅θθθ20cos cos sin x -,t 1t 2=θ2020cos 2y x -⇒21212t t t t +=θθcos sin 20020x y x --⇒t Q =21212t t t t +;所以,||||PN PM =||||QN QM ⇔21t t= QQ t t t t --21⇔t Q =21212t t t t +成立. [原创问题]:已知抛物线C:x 2=4y 与直线l:y=x-2,设点P 为直线l 上的动点,过P 作抛物线C 的两条切线,A 、B 为切点.(Ⅰ)证明:直线AB 恒过定点T;(Ⅱ)若过点P 的直线l 交抛物线C 于M 、N 两点,与直线AB 交于点Q.证明||PM ||PN =||PQ [解析]:(Ⅰ)设A(x 1,y 1),B(x 2,y 2),P(x 0,y 0),则抛物线C:x 2=4y 在点A 、B 处的切线方程分别为x 1x=2(y+y 1)、x 2x=(y+y 2),由点P(x 0,y 0)在这两切线上得:⎩⎨⎧+=+=)(2)(202200110y y x x y y x x ⇒直线AB:x 0x=2(y+y 0)(注意到:y 0=x 0-2)⇒x 0x=2y+2x 0-4⇒直线AB 过定点T(2,2); (Ⅱ)设直线MN:⎩⎨⎧+=+=θθsin cos 00t y y t x x ,代入直线AB:x 0x=2(y+y 0),得:t Q =θθcos sin 240020x y x --;代入x 2=4y 得:t 2cos 2θ+2(x 0cos θ-2sin θ)t+x 02-4y 0=0⇒t 1+t 2=2⋅θθθ20cos cos sin 2x -,t 1t 2=θ2020cos 4y x -⇒21212t t t t +=θθcos sin 240020x y x --⇒t Q =21212t t t t +;所以||PM ||PN ||PQ ⇔11t21t =Q t 2⇔t Q =21212t t tt +成立. 例4:抛物线中的面积关系.[始源问题]:(2009年湖北高考试题)过抛物线y 2=2px(p>0)的对称轴上一点A(a,0)(a>0),的直线与抛物线相交于M 、N 两点,自M 、N 向直线l:x=-a 作垂线,垂足分别为M 1、N 1. (Ⅰ)当a=2p时,求证:AM 1⊥AN 1; (Ⅱ)记△AMM 1、△AM 1N 1、△ANN 1的面积分别为S 1、S 2、S 3,是否存在λ,使得对任意的a>0,都有S 22=λS 1S 3成立.若存在,求出λ的值;若不存在,说明理由.[解析]:(Ⅰ)当a=2p 时,A(2p ,0),设M(2pm 2,2pm),N(2pn 2,2pn),则M 1(-2p ,2pm),N 1(-2p ,2pn),由AM ∥AN ⇒(2pm 2-2p ):(2pn 2-2p )=2pm:2pn ⇒mn=-41⇒1AM ⋅1AN =p 2+4p 2mn=0⇒AM 1⊥AN 1;第15讲:极点与极线的性质129(Ⅱ)由AM ∥AN ⇒(2pm 2-a):(2pn 2-a)=2pm:2pn ⇒2pmn+a=0;因||||11NN MM =2222pn a pm a ++;当MN ⊥/x 轴时,||||AN AM =|2||2|22pn a a pm --=2222pn a a pm --;所以,||||11NN MM =||||AN AM ⇔2222pn a pm a ++=2222pn a a pm --⇔4p 2m 2n 2=a 2成立;当MN ⊥x 轴时,显然有||||11NN MM =||||AN AM ;设MN 1与NM 1交于点Q(点Q 即原点O),由MM 1∥NN 1⇒||||1QN MQ =||||11NN MM =||||AN AM ⇒AQ ∥MM 1∥NN 1;设∠MQM 1=α,则S 1=21|QM||QM 1|sin α,S 3 =21|QN||QN 1|sin α;又S △QMN =11N QM S ∆⇒S 2=11N QM S ∆+(1AQM S ∆+1AQN S ∆)=11N QM S ∆+(S △AQM +S △AQN )=11N QM S ∆+S △QMN =2S △QMN;S 1S 3=21 |QM||QM 1|sin α⋅21|QN||QN 1|sin α=21|QM||QN|sin α⋅21|QM 1||QN 1|sin α=S △QMN 11N QM S ∆=41S 22⇒S 22=4S 1S 3⇒存在λ=4,使得对任意的a>0,都有S 22=λS 1S 3成立.[原创问题]:已知抛物线C:y 2=4x,直线l:y=2x+2,过点P(1,1)的直线与抛物线C 交于A 、B 两点,A 、B 两点在直线l 上的射影点分别为N 、M,记△PAN 、△PMN 、△PBM 的面积分别为S 1、S 2、S 3. (Ⅰ)当AB ∥直线l 时,求证:P 是AB 的中点; (Ⅱ)求证:S 22=4S 1S 3.[解析]:(Ⅰ)设A(x 1,y 1),则y 12=4x 1;由P 是AB 的中点⇒B(2-x 1,2-y 1)⇒(2-y 1)2=4(2-x 1)⇒y 1=2x 1+1⇒点A 在直线y=2x+1上,同理可得点B 也在直线y=2x+1上⇒直线AB:y=2x+1⇒AB ∥直线l;由统一法知,当AB ∥直线l 时, P 是AB 的中点;(Ⅱ)设直线AB:⎩⎨⎧+=+=θθsin 1cos 1t y t x (t 为参数),代入y 2=4x 得:t 2sin 2θ+2(sin θ-2cos θ)t-3=0⇒t 1+t 2=2⋅θθθ2sin sin cos 2-,t 1t 2=-θ2sin 3;点A(1+t 1cos θ,1+t 1sin θ)到直线l 的距离|AN|=5|3sin cos 2|11+-θθt t ,点B(1+t 2cos θ,1+t 2sin θ)到直线l 的距离|BM|=5|3sin cos 2|22+-θθt t ⇒||||BM AN =|3sin cos 2||3sin cos 2|2211+-+-θθθθt t t t (由点A 、B 在直线l 的同侧⇒2t 1cos θ-t 1sin θ+3与t 2cos θ-t 2sin θ+3同号)=3sin cos 23sin cos 22211+-+-θθθθt t t t ;而||||PB PA =||||21t t (点A 、B 在点P 的异侧)=-21t t;所以,||||BM AN =||||PB PA ⇔3sin cos 23sin cos 22211+-+-θθθθt t t t=-21t t ⇔2(2cos θ-sin θ)t 1t 2+3(t 1+t 2)=0⇔2(2cos θ-sin θ)(-θ2sin 3)+3⋅2⋅θθθ2sin sin cos 2-=0成立; 以下同例题可证:S 22=4S 1S 3.例5:椭圆中的共线性质.[始源问题]:(2012年北京高考试题)已知曲线C:(5-m)x 2+(m-2)y 2=8(m ∈R).(Ⅰ)若曲线C 是焦点在x 轴点上的椭圆,求m 的取值范围;(Ⅱ)设m=4,曲线C 与y 轴的交点为A,B(点A 位于点B 的上方),直线y=kx+4与曲线C 交于不同的两点M 、N,直线y=1与直线BM 交于点G.求证:A,G,N 三点共线.[解析]:(Ⅰ)由曲线C 是焦点在x 轴点上的椭圆⇔m-2>5-m>0⇔27<m<5.故m 的取值范围是(27,5); (Ⅱ)当m=4时,曲线C:x 2+2y 2=8⇒A(0,2),B(0,-2);设M(x 1,y 1),N(x 2,y 2),由⎩⎨⎧=++=82422y x kx y ⇒(2k 2+1)x 2+16kx+24=0⇒△= 32(2k 2-3)>0⇒k 2>23;且x 1+x 2=-12162+k k ,x 1x 2=12242+k ;又由直线BM:y=112x y +x-2⇒G(2311+y x ,1),即G(6311+kx x ,1)⇒k AG =-1136x kx +=-3k -12x ,k AN =222x y -=222x kx +=k+22x ⇒k AN -k AG =34k +12x +22x =34k +2⋅2121x x xx +=34k +2⋅2416k -=0⇒A,G,N 三点共线.第(Ⅱ)问是本题的特色与亮点,其实质是共轭点的性质:设点P 与Q 是二次曲线G 的一对共轭点,过点Q 的直线AC 与曲线G 相交于A 、C 两点,AP 与曲线G 相交于另一点B,BQ 与曲线G 相交于另一点D,则P 、C 、D 三点共线.其中共轭点的定义:130 第15讲:极点与极线的性质若直线PQ 与圆锥曲线G 相交于A 、B 两点,且PA ⋅QB +PB ⋅QA =0,则称点P 与Q 是圆锥曲线G 的一对共轭点.[原创问题]:已知椭圆C:2222b y a x +=1(a>b>0)过点D(-1,e),其中,e 是椭圆C 的离心率,椭圆C 的左、右顶点分别为A(-2, 0)、B(2,0).(Ⅰ)求椭圆C 的方程;(Ⅱ)过点E(4,0)的直线l 与椭圆C 交于M 、N 两点,求证:直线AM 与BN 的交点P 在一条定直线上.[解析]:(Ⅰ)由a=2,21a +22b e =1⇒1+22b c =a 2⇒b 2=1⇒椭圆C:42x +y 2=1; (Ⅱ)设M(x 1,y 1),N(x 2,y 2),直线l:y=k(x-4),由⎩⎨⎧=+-=44)4(22y x x k y ⇒(1+4k 2)x 2-32k 2x+64k 2-4=0⇒x 1+x 2=224132k k +,x 1x 2=2241464k k +-⇒k 2=)(4322121x x x x +-+,x 1x 2(1+4k 2)=64k 2-4⇒x 1x 2⋅)(8821x x +-=)(8]8)(5[42121x x x x +--+⇒2x 1x 2=5(x 1+x 2)-8;又由直线AM:y=211+x y (x+2),直线BN:y=222-x y (x-2)⇒直线AM 与BN 的交点P 的横坐标x 满足:211+x y (x+2)=222-x y (x-2)⇒2)4(11+-x x k (x+2)= 2)4(22--x x k (x-2)⇒x=83262122121----x x x x x x =83268)(5122121-----+x x x x x x =1⇒点P 在一条定直线x=1上.例6:椭圆中的中点性质.[始源问题]:(2008年全国高中数学联赛湖南初赛试题)如图,过直线l:5x-7y-70=0上的点P 作椭圆252x +92y =1的两条切线PM 、PN,切点分别为M 、N. (Ⅰ)当点P 在直线l 上运动时,证明:直线MN 恒过定点Q;(Ⅱ)当MN ∥l 时,定点Q 平分线段MN.[解析]:(Ⅰ)设P(7t+7,5t-5),则直线MN 的方程为:2577+t x+955-t y=1⇒(257x+95y)t+(257x-95y-1)=0,由257x+95y=0,且257x-95y-1=0⇒x=1425,y=-109⇒直线MN 恒过定点Q(1425,-109); (Ⅱ)MN ∥l ⇔2577+t :955-t =5:(-7)⇔t=53392⇒直线MN 的方程为:5x-7y-35533=0,代入椭圆方程252x +92y =1得:275332⨯x2 -23753325⨯x+25[(275533⨯)2-9]=0,设M(x 1,y 1),N(x 2,y 2),则x 1+x 2=725⇒定点Q 平分线段MN.[原创问题]:过点Q(1,1)作己知直线l:3x+4y=12的平行线交椭圆C:42x +32y =1于点M 、N.(Ⅰ)分别过点M 、N 作椭圆C 的切线l 1、l 2.证明:三条直线l 1、l 2、l 交于一点; (Ⅱ)证明:点Q 是线段MN 的中点;(Ⅲ)设P 为直线l 上一动点,过点P 作椭圆C 的切线PA 、PB,切点分别为A 、B,证明:点Q 在直线AB 上.[解析]:(Ⅰ)设M(x 1,y 1),N(x 2,y 2),切线l 1、l 2交于点P(x 0,y 0),由切线l 1:41x x+31y y=1,切线l 2:42x x+32y y=1均过点P(x 0, y 0)⇒41x x 0+31y y 0=1,42x x 0+32yy 0=1⇒直线MN:40x x+30y y=1;又由直线MN 过点Q(1,1)⇒40x +30y =1⇒3x 0+4y 0=12⇒点P 在直线l 上⇒三条直线l 1、l 2、l 交于一点; (Ⅱ)由直线MN ∥直线l ⇒40x :30y =41:31,又40x +30y =1⇒x 0=y 0=712⇒直线MN:3x+4y=7⇒点Q 是线段MN 的中点; (Ⅲ)设P(x 0,y 0),则直线AB:3x 0x+4y 0y=12⇒3x 0x+(12-3x 0)y=12⇒点Q 在直线AB 上.第15讲:极点与极线的性质131例7:椭圆中的比例性质.[始源问题]:(2011年山东高考试题)在平面直角坐标系xOy 中,已知椭圆C:32x +y 2=1.如图所示,斜率为k(k>0)且不过原点的直线l 交椭圆C 于A,B 两点,线段AB 的中点为E ,射线OE 交椭圆C 于点G 交直线x=-3于点D(-3,m).(Ⅰ)求m 2+k 2的最小值; D y (Ⅱ)若|OG|2=|OD||OE|. G A (i)求证:直线l 过定点; E(ii)试问点B,G 能否关于x 轴对称?若能,求出 -3 O x 此时△ABG 的外接圆方程;若不能,请说明理由.[解析]:(Ⅰ)设E(-3λ,m λ),A(-3λ+t,m λ+kt),则B(-3λ-t,m λ-kt).由点A 、B 都在椭圆C 上⇒⎪⎩⎪⎨⎧=-+--=+++-3)(3)3(3)(3)3(2222kt m t kt m t λλλλ,两式相减得mk=1⇒m 2+k 2≥2mk=2,当且仅当m=k=1时等号成立,所以m 2+k 2的最小值=2.(Ⅱ)(i)设直线OG 与椭圆C 相交于另一点T,则由椭圆C 关于原点对称得:|OT|=|OG|.所以,|OG|2=|OD||OE|⇔DT EG ⋅+DG ET ⋅=0,由轨迹1知,点E 在直线-x+my=1上,即直线l 的方程为:-x+my=1⇒直线l 过定点(-1,0);(ii)若点B,G 关于x 轴对称⇒点G(-3λ-t,-m λ+kt),由点G 在直线OE 上⇒(-3λ-t):(-3λ)=(-m λ+kt):m λ⇒6m λ+mt=3kt(注意到mk=1)⇒m 2(6λ+t)=3t ⇒t=2236mm -λ,又由点E 在直线l 上⇒3λ+m 2λ=1⇒λ=231m+⇒B(-233m-,-23m m -)⇒31(233m -)2+(23mm -)2=1⇒m=1,k=1,λ=41,t=43⇒A(0,1),B(-23,-21),G(-23,21)⇒△ABG 的外接圆方程:(x+21)2+y 2=45.[原创问题]:已知椭圆C:2222b y a x +=1(a>b>0)内一点P(2,1),射线OP 与椭圆C 交于点N,与直线l 0:x+y-12=0交于点M,满足|OP||OM|=|ON|2,且椭圆C 在N 处的切线平行于直线l 0. (Ⅰ)求椭圆C 的方程;(Ⅱ)过点P 的任意一条直线l 与直线l 0交于点Q,与椭圆C 交于A 、B 两点(A 在P 与Q 之间),求证:|QA||PB|=|QB||PA|.[解析]:(Ⅰ)由射线OP:y=21x(x ≥0),直线l 0:x+y-12=0⇒M(8,4);设N(2t,t)(t>0),由|OP||OM|=|ON|2⇒5⋅80=4t2+t 2⇒t=2⇒N(4,2)⇒216a +24b =1,椭圆C 在N 处的切线:24a x +22by =1;由切线平行于直线l 0⇒24a =22b ⇒a 2=2b 2⇒b 2=12,a2=24⇒椭圆C:242x +122y =1; (Ⅱ)设直线l:⎩⎨⎧+=+=θθsin 1cos 2t y t x (t 为参数),代入242x +122y =1得:(2sin 2θ+cos 2θ)t 2+4(sin θ+cos θ)t-18=0⇒t 1+t 2=-θθθθ22cos sin 2)cos (sin 4++,t 1t 2=-θθ22cos sin 218+;代入x+y-12=0得:(sin θ+cos θ)t-9=0⇒t Q =θθcos sin 9+;而|QA||PB|=|QB||PA|⇔(t Q -t 1)(-t 2)=(t Q -t 2)t 1⇔(t 1+t 2)t Q -2t 1t 2=0⇔-θθθθ22cos sin 2)cos (sin 4++⋅θθcos sin 9+-2(-θθ22cos sin 218+)=0成立. [原创问题]:已知椭圆C:2222b y a x +=1(a>b>0)内一点P(2,1),过点P 且平行于x 轴直线被椭圆C 截得的弦长为46,过点P 且平行于y 轴直线被椭圆C 截得的弦长为210.(Ⅰ)求椭圆C 的方程;(Ⅱ)过点P 的任意一条直线l 与直线l 0:x+y-12=0交于点Q,与椭圆C 交于A 、B 两点,若QA =λAP ,QB =μBP .求证:λ+132 第15讲:极点与极线的性质μ为定值.[解析]:(Ⅰ)由2222by ax +=1,令y=1得:|x|=ba 12-b ;令x=2得:|y|=ab 42-a ;由题知,ba12-b =26,ab 42-a =10⇒a 2=12422-b b ,22a b (a 2-4)=10⇒2412-b (12422-b b -4)=10⇒b 2=12⇒a 2=24⇒椭圆C:242x +122y =1; (Ⅱ)设直线l:⎩⎨⎧+=+=θθsin 1cos 2t y t x (t 为参数),代入242x +122y =1得:(2sin 2θ+cos 2θ)t 2+4(sin θ+cos θ)t-18=0⇒t 1+t 2=-θθθθ22cos sin 2)cos (sin 4++,t 1t 2=-θθ22cos sin 218+;代入x+y-12=0得:(sin θ+cos θ)t-9=0⇒t Q =θθcos sin 9+;由QA =λAP ,QB =μBP⇒λ=11t t t Q -,μ=22t t t Q -⇒λ+μ=2-t Q ⋅2121t t t t +=2-θθcos sin 9+⋅9)cos (sin 2θθ+=0. 例8:椭圆中的共线性质.[始源问题]:(2002年澳大利亚数学奥林匹克试题)己知△ABC 为锐角三角形, R以AB 为直径的⊙K 分别交AC 、BC 于P 、Q,分别过A 和Q 作⊙K 的两条切线交 C 于点R,分别过B 和P 作⊙K 的两条切线交于点S.证明:点C 在线段RS 上. P Q S[解析]:设⊙K:x 2+y 2=r 2,R(-r,a),S(r,b)⇒点R,S 对应的极线分别为:AQ:-rx+ay=r 2,BP:rx+by=r 2⇒Q(2222)(r a r r a +-,2222r a ar +),P(-2222)(r b r r b +-,2222r b br +) A K B⇒AP:y=r b (x+r),BQ:y=-r a (x-r),由⎪⎪⎩⎪⎪⎨⎧+=--=)()(r x r b y r x r a y ⇒⎪⎪⎩⎪⎪⎨⎧+=+-=b a ab y r b a b a x 2⇒C(b a b a +-r,b a ab +2)⇒点C 对应的极线为:(a-b)rx+2aby=(a+b)r 2,由三线:-rx+ay=r 2,BP:rx+by=r 2,(a-b)rx+2aby=(a+b)r 2共点于(ba ba +-r, ba r +22)⇒R,C,S 三点共线⇒点C 在线段RS 上. 该题是平面几何定理:“过非等腰三角形的三个顶点作其外接圆的切线,顶点处的切线与其对边所在直线的交点共线.”的变形,以该定理为始源,取其特殊情况,并把圆压缩为椭圆得:[原创问题]:若对任意θ∈[0,2π),直线l:xcos θ+2ysin θ-2=0与椭圆C:2222b y a x +=1(a>b>0)均只有一个交点M.(Ⅰ)求椭圆C 的方程; (Ⅱ)当θ∈(0,2π)时,若直线l 与x 轴交于点N,椭圆C 的左、右顶点分别为A 、B,直线BM 上的点Q 满足QA ⊥x 轴,直线AM 与NQ 交于点P,求点P 的轨迹方程.[解析]:(Ⅰ)由⎩⎨⎧=-+=-+002sin 2cos 222222b a y a x b y x θθ⇒(a 2cos 2θ+4b 2sin 2θ)y 2-8b 2ysin θ+4b 2-a 2b 2cos 2θ=0⇒△=64b 4sin 2θ-4(a 2cos 2θ+4b 2sin 2θ)(4b 2-a 2b 2cos 2θ)=0⇒a 2-4+(4b 2-a 2)sin 2θ=0恒成立⇒a 2-4=0,4b 2-a 2=0⇒a 2=4,b 2=1⇒椭圆C:42x +y 2=1; (Ⅱ)由xcos θ+2ysin θ-2=0⇒N(θcos 2,0);(Ⅰ)知,M(2cos θ,sin θ)⇒直线AM:y=2cos 2sin +θθ(x+2),BM:y=2cos 2sin -θθ(x-2)⇒Q(-2,θθcos 1sin 2-)⇒直线NQ:y=-cot θ(x-θcos 2);令2cos 2sin +θθ(x+2)=-cot θ(x-θcos 2)⇒(2cos 2sin +θθ+θθcos sin )x=θsin 2-1cos sin +θθ⇒x=2⇒点P 的轨迹方程x=2(0<y<2).。
圆锥曲线的极点与极线问题
圆锥曲线的极点与极线问题(原创版)目录一、引言二、圆锥曲线的极点与极线的定义与性质1.极点的定义与性质2.极线的定义与性质三、圆锥曲线中极点极线的应用1.极点极线在解析几何中的基础性应用2.极点极线与其他知识点的交集四、如何证明圆锥曲线中极点极线的性质1.极线的几何定义与方程推导2.极点极线的证明方法五、总结正文一、引言圆锥曲线是高中数学中一个重要的知识点,而极点与极线是圆锥曲线中一个非常有特色的概念。
本文将从极点与极线的定义与性质出发,探讨他们在圆锥曲线中的应用以及如何证明他们的性质。
二、圆锥曲线的极点与极线的定义与性质1.极点的定义与性质极点是指圆锥曲线上的某一点,该点到圆锥曲线的两个焦点的距离之和等于常数。
对于椭圆和双曲线,该常数为两焦点之间的距离;对于抛物线,该常数为焦点到准线的距离。
极点具有以下性质:在椭圆和双曲线上,极点是曲线上离两个焦点最远的点;在抛物线上,极点是曲线上离焦点最近的点。
2.极线的定义与性质极线是指过圆锥曲线上一点,且与该点到两个焦点连线垂直的直线。
极线具有以下性质:在椭圆和双曲线上,极线与焦点的连线平分极点;在抛物线上,极线通过焦点且与准线垂直。
三、圆锥曲线中极点极线的应用1.极点极线在解析几何中的基础性应用极点极线在解析几何中有广泛的应用,例如可以用极点极线求解圆锥曲线上的切线,切点弦方程,圆系方程以及二次曲线系等问题。
2.极点极线与其他知识点的交集极点极线与泰勒公式,切线,切点弦方程,圆系方程以及二次曲线系等知识点都有交集,深入理解极点极线的性质可以帮助我们更好地把握解析几何的整体知识结构。
四、如何证明圆锥曲线中极点极线的性质1.极线的几何定义与方程推导极线的几何定义较为直观,可以通过画图理解。
而极线的方程推导则需要运用到射影几何的知识,通过极线的几何定义,我们可以得到极线的方程。
2.极点极线的证明方法极点极线的证明方法通常采用代数方法,需要运用到一些高中数学的初等知识,如代数运算,方程求解等。
数学复习:极点与极线
数学复习:极点与极线知识与方法极点极线是射影几何中的重要内容,在中学教材中并未提及,但纵观历年高考的解析几何大题,可以发现诸多试题都有极点极线的背景,所以了解极点极线,可以让我们站在更高处来看待问题.这一小节我们先介绍极点极线的几何定义、代数定义和一些常用的性质,再辅以若干典型的高考真题的极点极线观点,来加深大家的理解.1.极点极线的几何定义:以椭圆为例,如图1所示,设P 为椭圆外一点,过P 作椭圆的两条割线分别与椭圆相交于A 、B 和C 、D 四点,AC 与BD 交于点M ,AD 与BC 交于点N ,则称点P 为直线MN 关于椭圆的极点,直线MN 为点P 关于椭圆的极线.另一方面,图1也可以这么来看,从椭圆外的点N 作椭圆的两条割线分别交椭圆于A 、D 和B 、C 四点,AC 与BD 交于点M ,AB 与CD 交于点P ,所以点N 和直线PM 也是一对极点极线,事实上,点M 和直线PN 也是一对极点极线,因此在PMN 中,以其中一个顶点作为极点,那么该顶点的对边所在的直线就是对应的极线,从而我们将PMN 称为“自极三角形”,为了加以区分,图中画成了虚线.这个图形有两种特殊情况:(1)如图2所示,当四边形ABCD 有一组对边平行时,如∥AD BC ,此时我们看成AD 和BC 的交点N 在无穷远处,那么以M 为极点,对应的极线是图2中的PN 2,其中∥PN BC 2;以P 为极点,那么极线是MN 1,其中∥MN BC 1;(2)如图3所示,当其中一条割线变成切线时,此时D 、M 、N 几个点就都与切点C 重合,从而点C 和切线PC 是一对极点极线.2.极点极线的代数定义:在平面直角坐标系xOy 中,设有圆锥曲线C (圆、椭圆、双曲线、抛物线均可)和不与C 的对称中心重合的点P x y ,00)(,在圆锥曲线C 的方程中,用x x 0替换x 2,y y 0替换y 2,+x x 20替换x ,+y y20替换y ,得到的方程即为以P 作为极点的极线l 的方程.例如,设椭圆C 的方程为+=y x 2122,极点为P 2,4)(,则与P 对应的极线为+=y x 2412,即+−=x y 410;又如,设抛物线C 的方程为=y x 22,极点为P 2,4)(,则与P 对应的极线为=⋅+y x2422,即−+=x y 420.可以看到,极点与极线是一个成对的概念,且若给定极点,求极线的规则是统一的,与圆锥曲线的类型无关,与极点P 的位置无关,下面以椭圆为例,说明极点P 在不同位置时,极线l 的情形:(1)当点P 在椭圆C 上时,极线l 为椭圆C 在P 处的切线,如图4所示;(2)当点P 在椭圆C 外部时,极线l 为点P 对椭圆C 的切点弦所在直线,如图5所示;(3)当点P 在椭圆C 内部时,过点P 任作椭圆C 的一条割线交C 于A 、B 两点,椭圆C 在A 、B 两点处的切线交于点Q ,则当割线AB 绕着点P 旋转时,点Q 的轨迹就是极线l ,如图6所示.3.极点极线的常用性质:(下面以椭圆为例)(1)如图7所示,O 为椭圆中心,点P 在椭圆内,延长OP 交椭圆于点Q ,交椭圆与点P 对应的极线l 于点M ,则OP 、OQ 、OM 成等比数列;当P 恰好为弦AB 的中点时,直线AB 的方程为+=+a b a bx x y y x y 2222000022,且极线l 和椭圆在点Q 处的切线均与AB 平行.(2)调和分割性:如图8所示,设极点P 的极线是直线l ,过P 作椭圆的一条割线交椭圆于A 、B 两点,交极线l 于点Q ,则P 、A 、Q 、B 成调和点列,即=PBQBPA QA (或写成=+PQ PA PB211) (3)配极原理:若点P 关于椭圆的极线过点Q ,则点Q 关于椭圆的极线也过点P .由此出发,我们可以得出共线点的极线必然共点,共点极线的极点必然共线,如图9所示,极点P 1、P 2、P 3的极线分别为l 1、l 2、l 3,则P 1、P 2、P 3共线⇔l 1、l 2、l 3共点.提醒:极点极线的分析方法只能让我们在看到问题时能够迅速“窥得天机”,不能作为正式的作答,我们在学习时,仍然应该以基本方法为主,技巧偏方为辅,不能本末倒置.典型例题【例1】(2021·新高考Ⅱ卷·多选)已知直线+−=l ax by r :02与圆+=C x y r :222,点A a b ,)(则下列说法正确的是( )A.若点A 在圆C 上,则直线l 与圆C 相切B.若点A 在圆C 内,则直线l 与圆C 相离C.若点A 在圆C 外,则直线l 与圆C 相离D.若点A 在直线l 上,则直线l 与圆C 相切【解析】解法1:A 项,若点A 在圆C 上,则+=a b r 222,圆心C 到直线l 的距离=d r ,所以直线l 与圆C 相切,故A 项正确;B 项,若点A 在圆C 内,则+<a b r 222,圆心C 到直线l 的距离==>d r 2,所以直线l 与圆C 相离,故B 项正确;C 项,若点A 在圆C 外,则+>a b r 222,圆心C 到直线l 的距离==d r 2,所以直线l 与圆C 相交,故C 项错误;D 项,若点A 在直线l 上,则+−=a b r 0222,即+=a b r 222,圆心C 到直线l 的距离==d r ,所以直线l 与圆C 相切,故D 项正确.解法2:显然对于圆C ,以A a b ,)(作为极点,那么极线就是+−=l ax by r :02A 项,若极点A 在圆C 上,则极线l 是圆C 的切线,故A 项正确;B 项,若极点A 在圆C 内,则极线l 与圆C 相离,故B 项正确;C 项,若极点A 在圆C 外,则极线l 是圆C 的切点弦,应与圆C 相交,故C 项错误;D 项,若极点A 在直线l 上,这是极线恰好为切线,极点为切点的情形,故D 项正确. 【答案】ABD【例2】(2011·四川)椭圆有两个顶点−A 1,0)(,B 1,0)(,过其焦点F 0,1)(的直线l 与椭圆交于C 、D 两点,并与x 轴交于点P ,直线AC 与BD 交于点Q .(1)当=CD 时,求直线l 的方程; (2)当P 点异于A 、B 两点时,证明:⋅OP OQ 为定值.【解析】(1)由题意,椭圆的短半轴长=b 1,半焦距=c 1,所以长半轴长=a ,故椭圆的方程为+=x y 2122,当=CD 2时,易得直线l 与x 轴垂直,故可设l 的方程为=+y kx 1≠≠±k k 0,1)(, 设C x y ,11)(,D x y ,22)(,联立⎩⎪+=⎨⎪⎧=+x y y kx 21122消去y 整理得:++−=k x kx 221022)(, 判别式∆=+>k 8102)(,由韦达定理,②①⎩+⎪=−⎪⎨+⎪⎪+=−⎧k x x k x x k 2122212212,所以=−==CD x x 12=k 所以直线l的方程为=+y 1.(2)极点极线看问题:设P m ,0)(,以P 为极点,则对应的极线为=mx 1,即=mx 1, 显然点Q 在极线上,所以=m x Q 1,不难发现⋅=⋅+⋅=mOP OQ m y Q 011. 注意:上面的过程不能作为正式的作答,卷面上可以按下面两个解法来写.解法1:直线AC 的斜率为+=x k y AC 111,其方程为+=+x y x y1111)(③,直线BD 的斜率为−=x k y BD 122,其方程为−=−x y x y1122)(④,用式③除以式④整理得:−−=++x y x x y x 11111221)()(,即−−=++x y x y x x Q Q 11111221)()(, 而−+−−+−==++++++y x kx x kx x kx x kx x kx x y x kx x 111111111212121212212121)()()()()()(,所以−−+−=++++x kx x kx x kx x kx x x Q Q 111112121221,由①知+=−−k x x k22212, 故⎝⎭+++ ⎪++−−−−+−⎛⎫−+−+===+++−+−+−−++−−−k k k k x k x x x k k k k k k k k k x kx x k x k kk k Q Q 222111121212221111212222222222222)()()()()()(,解得:=−x k Q ,易得⎝⎭⎪−⎛⎫k P ,01,故⋅==−⋅−=k OP OQ x x k P Q 11)(,即⋅OP OQ 为定值1.解法2:直线AC 的斜率为+=x k y AC 111,其方程为+=+x y x y1111)(③,直线BD 的斜率为−=x k y BD 122,其方程为−=−x y x y1122)(④,用式③除以式④整理得:−−=++x y x x y x 11111221)()(,即−−=++x y x y x x Q Q 11111221)()(⑤ 所以⎝⎭−−−−−−−++ ⎪ ⎪====+++++++⎛⎫−+y x x x x x x x x x x y x x x x x x x x x x Q Q 121111111111121112121212122222212112122122222)()()()()()()()()()()()( ++−++⎝⎭+ ⎪=++⎛⎫−−−+k k k k k k k k22111222111222222, 因为x 1,∈−x 1,12)(,所以−<+x x 10121,结合⑤可得−+x x Q Q 11与y y 12异号, 又++++=++=+++=−−+==−+−k k k k y y kx kx k x x k x x k k k k k 222211112222112222121212122222)()()()()(++=−⋅−+k k k k 2112122)(, 所以y y 12与+−k k 11异号,即y y 12与+−k k 11异号,从而−+x x Q Q 11与+−k k 11同号,所以−+=−+x k k x Q Q 1111,解得:=−x k Q ,易得⎝⎭⎪−⎛⎫k P ,01,故⋅==−⋅−=k OP OQ x x k P Q 11)(,即⋅OP OQ 为定值1.【例3】(2020·新课标Ⅰ卷)已知A 、B 分别为椭圆+=>aE y a x :11222)(的左、右顶点,G为E 的上顶点,⋅=AG GB 8,P 为直线=x 6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.【解析】(1)由题意,−A a ,0)(,B a ,0)(,G 0,1)(,故=AG a ,1)(,=−GB a ,1)(, 所以⋅=−=AG GB a 182,解得:=a 3或−3(舍去),故E 的方程为+=y x 9122.(2)极点极线看问题:如图1,设AB 和CD 交于点Q ,AD 和CB 交于点M ,则PQM 为自极三角形,所以点Q 和直线PM 是一对极点极线,设Q m ,0)(,则极线PM 的方程为=mx91,即=m x 9,又点P 在直线=x 6上,所以=m 69,从而=m 23,故⎝⎭⎪⎛⎫Q 2,03,这样就得到了直线CD 过定点⎝⎭⎪⎛⎫2,03.注意:上面的过程不能作为正式的作答,卷面上可以按下面两个解法来写. 解法1:由(1)知−A 3,0)(,B 3,0)(,设P t 6,)(,C x y ,11)(,D x y ,22)(,当≠t 0时,直线PA 的方程为=−t x y 39,代入+=y x 9122消去x 化简得:⎝⎭⎪+−=⎛⎫t t y y 90815422, 解得:=y 0或+t t 962,所以+=t y tC 962,故+=−=−t t x y t C C 93927322,从而⎝⎭++ ⎪−⎛⎫t t C t t 99,2736222,直线PB 的方程为=+t x y 33,代入+=y x 9122消去x 化简得:⎝⎭⎪++=⎛⎫t t y y 9091822,解得:=y 0或+−t t 122,所以+=−t y t D 122,从而+=+=−t t x y t D D 1333322,故⎝⎭++ ⎪−−⎛⎫t t D t t 11,332222,设⎝⎭ ⎪⎛⎫T 2,03,则⎝⎭++ ⎪= ⎪−⎛⎫t t TC t t 299,2796222)(,⎝⎭++ ⎪=− ⎪−⎛⎫t t TD t t 211,392222)(,即+=−+t TC TD t 93122)(,故∥TC TD ,所以T 、C 、D 三点共线,从而直线CD 过定点⎝⎭⎪⎛⎫T 2,03,当=t 0时,易得C 、D 分别与B 、A 重合,所以直线CD 即为x 轴,显然直线CD 也过点T ,综上所述,直线CD 过定点⎝⎭⎪⎛⎫T 2,03解法2:由(1)知−A 3,0)(,B 3,0)(,设C x y ,11)(,D x y ,22)(,P y 6,0)(当≠y 00时,由图2可知点C 不与点B 重合,因为+=y x 911122,所以=−y x 9911122)(,故CA 、CB 的斜率之积为+−−⋅=⋅==−x x x k k y y y CA CB 3399111121112① 又PA 的斜率==k k y PA CA 90,PB 的斜率==k k y PB BD 30,所以=k k CA BD 31, 代入式①化简得:BC 、BD 的斜率之积⋅=−k k BC BD 31,显然CD 不与y 轴垂直,否则AC 与BD 的交点在y 轴上,故可直线CD 的方程为=+x my t ,联立⎩⎪=++=⎨⎪⎧x my y tx 9122消去x 整理得:+++−=m y mty t 9290222)(, 判别式∆=−+−>m t m t 449902222)()(,所以+−>m t 9022, 由韦达定理,++=−m y y mt 92212,+=−m y y t 992122,所以++=++=m x x m y y t t 921821212)(,+=+++=−m x x m y y mt y y t t m 99921212122222)(,−−−++⋅=⋅==−x x x x x x k k y y y y BC BD 3339311212121212)(,故−=−++y y x x x x 339121212)(,即+++−⋅=−⋅+−−m m m t t m t 99933999918222222,整理得:−+=t t 29902,解得:=t 23或3,若=t 3,则C 、D 中有一个点与B 重合,不合题意,所以=t 23,满足∆>0,即直线CD 过定点⎝⎭ ⎪⎛⎫2,03,当=y 00时,易得C 、D 分别与B 、A 重合,所以直线CD 即为x 轴,也过点⎝⎭ ⎪⎛⎫2,03,综上所述,直线CD 过定点⎝⎭⎪⎛⎫2,03【例4】(2018·新课标Ⅰ卷)设椭圆+=C y x 2:122的右焦点为F ,过F 的直线l 与C 交于A 、B 两点,点M 的坐标为2,0)(.(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠=∠OMA OMB .【解析】(1)由题意,F 1,0)(,当l 与x 轴垂直时,其方程为=x 1, 由⎩⎪+=⎨⎪⎧=y x x 21122解得:=y ,即点A的坐标为⎝⎭ ⎪ ⎪⎛⎫21,, 当点A的坐标为⎝⎭ ⎛2时,直线AM的方程为=y x 2, 当点A的坐标为⎝⎭⎛1,时,直线AM的方程为=−y . (2)极点极线看问题:如图,设'A 、'B 分别为A 、B 关于x 轴的对称点, 则显然四边形''AA BB 构成等腰梯形,其对角线的交点为F ,以F 1,0)(为极点, 则对应的极线为+⋅=⋅y x2011,即=x 2,而'BA 和'B A 的交点应该在极线上, 从而M 2,0)(就是'BA 和'B A 的交点, 由图形的对称性不难发现∠=∠OMA OMB . 且这一结论还可以推广,若F 不是焦点, 而是椭圆内x 轴正半轴上的一个一般的点, 比如可设为t ,0)(,那么它的极线为+⋅=y tx201,即=t x 2,所以点⎝⎭⎪⎛⎫t M ,02必定也能使∠=∠OMA OMB注意:上面的过程不能作为正式的作答,卷面上可以按下面的解法来写. 解:当⊥l y 轴时,易得∠=∠=︒OMA OMB 0当l 不与y 轴垂直时,可设其方程为=+x my 1,设A x y ,11)(,B x y ,22)(, 联立⎩⎪+=⎨⎪⎧=+y x x my 21122消去x 整理得:++−=m y my 221022)(,易得判别式∆>0, 由韦达定理,++=−m y y m 22212,+=−m y y 21212, −−−−−−+=+==−+−+−+x x x x x x k k y y y x y x x y x y y y AM BM 222222222121212121221122112)()()()()()()( 而+−+x y x y y y 2122112)(=+++−+=−+my y my y y y my y y y 11221221121212)()()()( ⎝⎭⎝⎭++ ⎪ ⎪=⋅−−−=⎛⎫⎛⎫m m m m 22201222,所以+=k k AM BM 0,从而∠=∠OMA OMB , 综上所述,∠=∠OMA OMB .【例5】(2008·安徽)设椭圆+=>>a bC a b x y :102222)(过点M),且左焦点为F 1)(.(1)求椭圆C 的方程;(2)当过点P 4,1)(的动直线l 与椭圆C 相交于两个不同的点A 、B 时,在线段AB上取点Q ,满足⋅=⋅AP QB AQ PB ,求证:点Q 在某定直线上.【解析】(1)由题意,⎩⎪+=⎨⎪−=⎧ab a b 12122222,解得:=a 42,=b 22,所以椭圆C 的方程为+=x y 42122. (2)极点极线看问题:因为⋅=⋅AP QB AQ PB ,所以=PBQBAP AQ ,故P 、A 、Q 、B 是一组调和点列,从而点Q 必定在点P 的极线上,因为点P 的坐标为4,1)(,所以它的极线为+=⋅x y42141,化简得:+−=x y 220,从而点O 在定直线+−=x y 220上. 注意:上面的过程不能作为正式的作答,卷面上可以按下面的定比点差法来写. 解:设Q x y ,)(,A x y ,11)(,B x y ,22)( 因为⋅=⋅AP QB AQ PB ,所以=PBQBAP AQ ,设==λPBQBAP AQ >≠λλ0,1)(,则=λPA PB ,=λAQ QB ,而=−−PA x y 4,111)(,=−−PB x y 4,122)(,=−−AQ x x y y ,11)(,=−−QB x x y y ,22)(所以⎩⎪−=−⎨⎪⎧−=−λλy y x x 11441212)()(,且⎩⎪−=−⎨⎪⎧−=−λλy y y y x x x x 1212)()(,从而②①⎩−⎪=⎪−⎨−⎪⎪=⎧−λλλλy y x x 11141212,且④③⎩+⎪=⎪+⎨+⎪⎪=⎧+λλλλy y y x x x 111212,①×③得:−=−λλx x x 14212222,②×④得:−=−λλy y y 1212222,所以−−+⋅=+−−λλλλx yx x y y 11242221212222222,即−=++−+λλx y x y x y 142222112222222)(⑤ 又A 、B 在椭圆C 上,所以⎩⎪+=⎪⎨⎪⎪+=⎧x y x y 42142122221122, 从而⎩⎪+=⎨⎪+=⎧x y x y 242422221122,代入⑤的:−=+−λλx y 1424422, 化简得:+−=x y 220,即点Q 始终在直线+−=x y 220上.强化训练1.(★★★)对于抛物线=C y x :22,设点P x y ,00)(满足<y x 2002,则直线=+l y y x x :00与抛物线C ( ) A.恰有1个交点B.恰有2个交点C.没有交点D.有1个或2个交点【解析】显然直线l 是点P 对应的极线,因为<y x 2002,所以点P 在抛物线内部,从而直线l 与抛物线C 没有交点. 【答案】C2.(★★★)已知椭圆+=C y x 2:122的右焦点为F ,过点A 2,2)(的直线与椭圆C 在x 轴上方相切于点B ,则直线BF 的方程为______.【解析】由题意,F 1,0)(,以F 为极点,则极线为=x21,即=x 2,所以点A 在极线上,根据配极原理,以A 为极点的极线过点F ,所以该极线就是BF ,其方程为+=y x2212,即+=x y 21【答案】+=x y 213.(★★★)过点P 2,1)(的直线l 与椭圆+=y x 4122相交于点A 和B ,且=λAP PB ,点Q 满足=−λAQ QB ,若O 为原点,则OQ 的最小值为________.【解析】由题意,==λPBQAPA QA所以点Q 是对应极点P 的极线与直线l 的交点,如图,易求得极线l 的方程为+=y x412,即+−=x y 220,所以点Q在该极线上,从而==OQ 5min .【答案】54.(★★★★)设椭圆+=>>a bC a b x y :102222)(的左、右顶点分别为A 、B ,上顶点为D ,点P 是椭圆C 上异于顶点的动点,已知椭圆C的离心率=e ,短轴长为2. (1)求椭圆C 的方程; (2)如下图所示,直线AD 与直线BP 交于点M ,直线DP 与x 轴交于点N ,证明:直线MN 过定点,并求出该定点.【解析】(1)由题意,=b 22,所以=b 1,椭圆C的离心率=e ,所以=a 2,故椭圆C 的方程为+=y x 4122.(2)极点极线看问题:如图,连接AP 、BD 交于点Q ,显然点Q 的极线是直线MN , 当P 在椭圆上运动的过程中,点Q 会在直线BD 上运动,根据共线极点的极线必然共点不难发现直线MN 是过定点的直线,易求得直线BD 的方程为+=x y 22,所以可设−Q t t 22,)(,那么极线MN 的方程为+=−ty t x4122)(,整理得:−−−=x t x y 220)(,所以直线MN 过的定点是2,1)(.下面给出规范的作答过程.解:由(1)可得D 0,1)(,B 2,0)(,−A 2,0)(,可设直线BP 的方程为=+x my 2≠≠±m m 0,2)(, 联立⎩⎪+=⎨⎪⎧=+y x x my 41222消去x 整理得:++=m y my 44022)(,解得:=y 0或+−m m 442,所以+=−m y m p 442,从而+=+=−m x my m p p 428222,故⎝⎭++ ⎪−−⎛⎫m m P m m 44,824222,从而直线DP 的斜率为+−−−===+−−−+−−m m m m k m m m m mDP 482228244421422222)(故直线DP 的方程为−=++m y x m 2212)(,联立⎩−⎪=+⎨+⎪⎧=m y x m y 2212)(解得:+=−m x m 222)(,所以⎝⎭+ ⎪⎛⎫−m N m 2,022)(, 直线AD 的方程为−+=x y 211,即−+=x y 220,联立⎩=+⎨⎧−+=x my x y 2220,解得:⎩−⎪=−⎪⎨−⎪⎪=−⎧+m y m x m 24224,所以点M 的坐标为⎝⎭−− ⎪−−⎛⎫+m m m 22,244,设G 2,1)(, 则⎝⎭−− ⎪=−−⎛⎫+m m GM mm 22,42,⎝⎭+ ⎪=−−⎛⎫m GN m 2,14, 从而−=+m GM GN m 22,故G 、M 、N 三点共线, 即直线MN 过定点G 2,1)(.【反思】求解这道题时,可以先在草稿纸上用极点极线的知识去找到定点G 2,1)(,那么在严格求解时,心中就有答案了,可以通过证明GM 与GN 共线,从而得出直线MN 过定点G . 5.(★★★★)如下图所示,椭圆+=E x y 43:122的左、右顶点分别为A 、B ,左焦点为F ,过F 的直线与椭圆E 交于不与A 、B 重合的C 、D 两点,记直线AC 和BD 的斜率分别k 1,k 2,证明:k k 21为定值.【解析】极点极线看问题:由题意,−F 1,0)(,椭圆E 的极点F 对应的极线为+=−⋅⋅x y43110,即=−x 4,如图,AC 与BD 的交点P 应在极线上,所以可设−P y 4,0)(,显然−A 2,0)(,B 2,0)(,所以直线AC 的斜率==−k k y PA 210,直线BD 的斜率==−k k yPB 620, 从而=k k 321.下面给出严格求解过程. 解:由题意,−F 1,0)(,直线CD 不与y 轴垂直,可设其方程为=−x my 1,设C x y ,11)(,D x y ,22)(,联立⎩⎪⎨⎪⎧−+==x my x y 143122消去x 整理得:+−−=m y my 3469022)(, 易得判别式∆>0, 由韦达定理,++=m y y m 346212,+=−m y y 349212, 所以=−+my y y y 231212)( 显然−A 2,0)(,B 2,0)(,所以直线AC 的斜率+=x k y 2111, 直线BD 的斜率−=x k y 2222, 从而−++−−+++======−−−−+−−−y y y y y k x y my y my y y k my y y y x y my y y y y y 222213313222323339312212212121221121121212112)()()()()()(.6.(★★★★)已知椭圆+=>>a b C a b x y :102222)(的上、下顶点分别为A 和B ,左焦点为F , 原点O 到直线FA的距离为2. (1)求椭圆C 的离心率; (2)设=b 2,直线=+y kx l :4与椭圆C 交于不同的两点M 、N ,证明:直线BM 与直线AN 的交点G 在定直线上.【解析】(1)由题意,原点O 到直线FA的距离===⋅AFa d bc OA OF , 所以椭圆C的离心率==a e c 2. (2)极点极线看问题:由题意,直线l 与y 轴交于定点P 0,4)(,显然点G 在点P 对应的极线上,当=b 2时,易求得椭圆C 的方程为+=x y 84122,从而该极线的方程为+=⋅x y 84104,即=y 1,所以点G 在定直线=y 1上.下面给出严格求解过程.解:由题意,A 0,2)(,−B 0,2)(,设M x y ,11)(,N x y ,22)(, 联立⎩⎪+=⎨⎪⎧=+x y y kx 841422消去y 整理得:+++=k x kx 121624022)(,判别式∆=−+⨯>k k 1641224022)()(所以<k 2或>k 2,由韦达定理,②①⎩+⎪=⎪⎨+⎪⎪+=−⎧k x x k x x k 12241216212212直线BM 的方程为+=+x y x y 2211,直线AN 的方程为−=−x y x y 2222,联立⎩⎪−=⎪−⎨⎪⎪+=⎧+x y xy x y x y 22222211消去x 可得:−−=++y y x y y x 22222112)()(,从而−−++===++++y y x kx x kx x x kx x x y y x kx x G G 2222622621211211221212)()()()(③, 接下来给出以下两种计算非对称结构++kx x x kx x x 26121122的方法:法1:由①②知=−+kx x x x 231212)(, 代入式③得:−++−+===−+−++−+x x x x x kx x x kx x x x x x x x 222223133222663391211212112212212)()(, 从而−=+y y G G 232,解得:=y G 1,所以点G 在定直线=y 1上. 法2:由①知+=−−k x x k1216212代入式③得:⎝⎭+++ ⎪+−−−−⎛⎫+===−+++++k k k x x kx x x k k k k k kx x x x x k k12121222224168312126662424222221211222222从而−=−+y y G G 232,解得:=y G 1,所以点G 在定直线=y 1上.。
圆锥曲线的极点极线
圆锥曲线的极点极线圆锥曲线是数学中的重要内容,涉及到许多重要的数学概念和方法。
其中,极点极线是圆锥曲线的一个重要性质,也是解决圆锥曲线问题的重要方法之一。
本文将介绍圆锥曲线的极点极线的定义、性质以及应用。
一、极点极线的定义极点极线是圆锥曲线的一种特殊关系,它描述了曲线上的点与曲线上的其他点之间的关系。
具体来说,如果一条直线与圆锥曲线的交点为A,而另一个交点B与A关于极线对称,那么这条直线就称为该点的极线。
同样地,如果一个点A在圆锥曲线上,那么通过A点的极线就是与A点对称的直线。
二、极点极线的性质极点极线具有以下性质:圆锥曲线上的任意一点都有且只有一条极线。
如果两条直线都是某个点的极线,那么它们一定相交于这个点的对称点。
如果一个点在圆锥曲线上,那么它关于该点的极线一定是该曲线的切线。
如果一条直线与圆锥曲线相交于两个点,那么这两点关于该直线的极线对称于直线本身。
这些性质是解决圆锥曲线问题的重要工具之一。
三、极点极线的应用极点极线在解决圆锥曲线问题中有着广泛的应用,以下是一些应用示例:求解圆锥曲线的交点如果两条圆锥曲线有交点,那么它们的交点一定在对称轴上。
因此,可以通过求出两条圆锥曲线的对称轴,再求出它们的交点来求解圆锥曲线的交点。
求解圆锥曲线的切线如果一个点在圆锥曲线上,那么它的极线就是该曲线的切线。
因此,可以通过求出该点的极线来求解圆锥曲线的切线。
求解圆锥曲线的弦长如果一条直线与圆锥曲线相交于两个点,那么这两点关于该直线的极线对称于直线本身。
因此,可以通过求出这两点的对称轴,再根据对称轴的性质求出这两点之间的距离,从而得到圆锥曲线的弦长。
求解圆锥曲线的面积和体积利用极点极线的性质,可以通过将圆锥曲线分割为若干个小的区域,每个区域的面积或体积可以计算出来,从而得到整个圆锥曲线的面积或体积。
求解圆锥曲线的问题中的最值在一些圆锥曲线的问题中,需要求解某个量的最值。
利用极点极线的性质,可以将问题转化为在某些约束条件下求解函数的最大或最小值问题,从而得到所求的最值。
圆锥曲线极点与极线的一组性质
上 ,所 以有 + Cy +2Dx。+2Ey。+F一 0,代
入 切 线 方 程 ,化 简 得 切 线 方 程 为 。z+ Cy。 +
D(x+ 。)+E(y+y。)+ F一 0,极线 z就是 曲线
C 在 点 P 处 的 切 线 ;
(2)设 M( ,Y )、N(x2,Y2),由(1)得 曲线在点
b> 0)、抛物线 Y 一 2px(P> 0))的一个极 点 ,
它对 应 的极 线为 L. (1)若 r为椭 圆或双 曲线 ,OP(0为中心 )或
0P 的 延 长 线 交 r 于 R,交 L 于 点 Q,则 l(_)P l·l∞ l— l OR l ;
(2)若 I1为抛 物线 ,l是 r在顶 点 0处 的切 线 (即 Y轴 ),过 点 P 作 f的 垂 线 ,交 L于 Q,交 r于 R,则 l PR l— l QR 1.
一 0,又 点 Q( ,Y )在 直 线 z上 ,所 以 Ax。z +
Cy 0Yl+ D(xl 4-z。)+ E(yl+ Y。)+ F 一 0,由 以
上两 式 知 点 Q( ,y )在 直 线 MN 上 ,即 直 线
MN 必 过 极 点 P.
例 1 已 知 圆 + Y 一 1和 圆 外 一 点 P(2,
直 线 MN 过 点 P,所 以 有 Alnx。+ Cny o十 D(xo+
)+E(Y。+ )+F— O,故 曲线 C在 M 、N 两 点
处 的 两 条 切 线 的 交 点 Q 在 极 线 z上 .
(4)设 点 Q( ,Y ),由 (2)知 直 线 MN 的 方
程 为 Axl + CylY+ D( + 1)+ E(y+ y1)+ F
(4)若 过极 线 上一点 Q 可作 C的两条 切线 , M 、.N 为切点 ,则直线 MN 必过 极点 P.
极点与极线的性质
.极点与极线的性质————————————————————————————————作者:————————————————————————————————日期:第15讲:极点与极线的性质 125第15讲:极点与极线的性质极点与极线是高等几何中的基本且重要的概念,虽然中学数学没有介绍,但以此为背景命制的高考试题经常出现.掌握极点与极线的初步知识,可使我们“登高望远”,抓住问题的本质,确定解题方向,寻找简捷的解题途.定义:已知曲线G:ax 2+bxy+cy 2+dx+ey+f=0,则称点P(x 0,y 0)和直线l:ax 0x+b200y x x y ++cy 0y+d 20x x ++e 2y y ++f=0是曲线G 的一对极点与极线,点P 称为直线l 关于曲线G 的极点;直线l 称为点P 关于曲线G 的极线.称点P 与直线l 有“配极关系”,或“对偶关系”,相互为对方的“配极元素”,或“对偶元素”.特别地,当点P 在曲线G 上时,点P 关于曲线G 的极线是曲线G 在点P 处的切线;圆锥曲线的焦点对应的极线是该焦点对应的准线;圆锥曲线的准线对应的极点是该准线对应的焦点.[位置关系]:已知点P 关于圆锥曲线G 的极线是直线l,则三者的位置关系是:①若点P 在曲线G 上,则直线l 是曲线G 在点P 处的切线;②若点P 在曲线G 外,则直线l 是由点P 向曲线G 引两条切线的切点弦;③若点P 在曲线G 内,则直线l 是经过点P 的曲线G 的弦的两端点处的切线交点轨迹.如图:l l l P M P A D M PN C N B[配极原则]:如果点P 的极线通过点Q,则点Q 的极线也通过点P.证明:设圆锥曲线G:ax 2+bxy+cy 2+2dx+2ey+f=0,点P(x p ,y p ),Q(x Q ,y Q ),则点P 、Q 关于曲线G 的极线方程分别为p:ax p x+b2yx x y p p ++cy p y+d2p x x ++e2p y y ++f=0,q:ax Q x+b2yx x y Q Q ++cy Q y+d2Q x x ++e2Q y y ++f=0,则点P 的极线通过点Q ⇔ax p x Q +b2Qp Q p y x x y ++cy p y Q +d2pQ x x ++e 2pQ y y ++f=0⇔点P(x p ,y p )在直线q:ax Q x+b2y x x y Q Q ++cy Q y+d2Q x x ++e2Q y y ++f=0上⇔点Q 的极线也通过点P.推论1:两点连线的极点是此二点极线的交点,两直线交点的极线是此二直线极点的连线;证明:设两点A 、B 连线的极点是P,即点P 的极线经过点A 、B,由配极原则知点A 、B 的极线均过点P,即点P 是此二点极线的交点;同理可证:两直线交点的极线是此二直线极点的连线.推论2(共点共线):共线点的极线必共点;共点线的极点必共线.证明:设点A 、B 均在直线l 上,直线l 对应的极点为P,由配极原则知点A 、B 的极线均过点P,即点A 、B 的极线必共点;同理可证:共点线的极点必共线.推论3(中点性质):若圆锥曲线G 过点P 的弦AB 平行于点P 的极线,则点P 是弦AB 的中点.证明:设P(x 0,y 0),曲线G:ax 2+bxy+cy 2+2dx+2ey+f=0,则点P 的极线方程:ax 0x+b200y x x y ++cy 0y+d 20x x ++e 2y y + +f=0,故可设AB:ax 0x+b200y x x y ++cy 0y+d 20x x ++e 20y y ++λ=0,由点P(x 0,y 0)在直线AB 上⇒ax 02+bx 0y 0+cy 02+2dx 0+2ey 0+λ=0⇒λ=-(ax 02+bx 0y 0+cy 02+2dx 0+2ey 0)⇒直线AB:ax 0x+b 200y x x y ++cy 0y+d 20x x ++e 20y y +=ax 02+bx 0y 0+cy 02+2dx 0+2ey 0⇒ ax 0x+b200y x x y ++cy 0y+d 20x x ++e 20y y ++f=ax 02+bx 0y 0+cy 02+2dx 0+2ey 0+f,而该直线为以为P 中点的中点弦方程,即点P 是弦AB 的中点.[比例定理]:若过点P(x 0,y 0)的直线l 与曲线G:ax 2+bxy+cy 2+dx+ey+f=0相交于A 、B 两点,与直线:ax 0x+b200yx x y ++ 126 第15讲:极点与极线的性质cy 0y+d20x x ++e 2y y ++f=0交于点Q,则|PA||QB|=|QA||PB|. 证明:设直线l:⎩⎨⎧+=+=θθsin cos 00t y y t x x (t 为参数),代入ax 0x+b 200y x x y ++cy 0y+d 20x x ++e 20y y ++f=0得:(2ax 0cos θ+bx 0sin θ+by 0cos θ+2cy 0sin θ)t+2(ax 02+bx 0y 0+cy 02+dx 0+ey 0+f)=0⇒t 0=-2θθθθsin 2cos sin cos 2000000200020cy by bx ax f ey dx cy y bx ax ++++++++;代入ax 2+bxy+cy 2+2dx+2ey+f=0得:(acos 2θ+bcos θsin θ+csin 2θ)t 2+(2ax 0cos θ+bx 0sin θ+by 0cos θ+2cy 0sin θ)t+(ax 02+bx 0y 0+cy 02+dx 0 +ey 0+f)=0⇒t 1+t 2=-θθθθθθθθ220000sin cos sin cos sin 2cos sin cos 2c b a cy by bx ax +++++,t 1t 2=θθθθ2200200020sin cos sin cos c b a fey dx cy y bx ax +++++++⇒t 0=21212t t t t +;而|PA||QB|= |QA||PB|⇔|t 1||t 2-t 0|=|t 1-t 0||t 2|⇔t 0=21212t t t t +成立. [面积定理]:已知点P 关于圆锥曲线G 的极线为l,过点P 的直线与圆锥曲线G 相交于A 、B 两点,分别过点A 、B 的两条平行线与直线l 交于点D 、C,记△APD 、△CPD 、△BPC 的面积分别为S 1,S 2,S 3,则:S 22=4S 1S 2.证明:以椭圆G:22a x +22b y =1(a>b>0)为例,设P(x 0,y 0),则极线l:12020=+b y y a x x .设A(x 1,y 1),B(x 2,y 2),并分别过点A 、B作l 的垂线,垂足分别为D 1、C 1,则||||11BC AD =|1||1|220220210210-+-+by y a x x b y y a x x =||||2220220222102102b a y y a x x b b a y y a x x b -+-+(注意到:a 2b 2=b 2x 12+a 2y 12,a 2b 2=b 2x 22+a 2y 2) =||||222222202202212212102102y a x b y y a x x b y a x b y y a x x b --+--+=|)()(||)()(|0222022201120112y y y a x x x b y y y a x x x b -+--+-(注意到:0101x x y y --=0202x x y y --=k)=||||0201x x x x --⋅||||22221212x b ky a x b ky a ++.又因||||BP AP =||||0201x x x x --,以下只需证||||22221212x b ky a x b ky a ++=1,即|a 2ky 1+b 2x 1|=|a 2ky 2+b 2x 2|,由⎪⎩⎪⎨⎧=+=+2222222222212212ba y a xb b a y a x b ⇒b 2(x 1-x 2)(x 1+x 2)+a 2(y 1- y 2)(y 1+y 2)=0⇒b 2(x 1+x 2)+a 2k(y 1+y 2)=0⇒a 2ky 1+b 2x 1=-(a 2ky 2+b 2x 2)⇒|a 2ky 1+b 2x 1|=|a 2ky 2+b 2x 2|⇒||||BP AP =||||11BC AD ,由△ADD 1∽△BCC 1⇒||||BC AD =||||BP AP ,设AC 与BD 交于点Q,由AD ∥BC ⇒||||BC AD =||||QC AQ ⇒||||BP AP =||||QC AQ ⇒PQ ∥BC ∥AD ⇒S △BAC =S △BDC ,两边同减S △BQC 得S △QAB =S △QDC ,又因S △PQA =S △PQD ,S △PQB =S △PQC ⇒S △PCD =S △QCD +S △PQD +S △PQC =S △QCD +S △PQA +S △PQB =S △QCD +S △QAB =2S △QAB ⇒S △QAD =S △PAD =S 1,S△QBC=S △PBC =S 3,S △QAB =21S △PCD =21S 2,注意到:QAB QBC QAB QAD S S S S ∆∆∆∆⋅=||||||||QA QC QB QD ⋅=1⇒2QAB S ∆=S △QAD S △QBC ⇒S 22=4S 1S 2. 例1:极点与极线的位置关系.[始源问题]:(2010年湖北高考试题)已知椭圆C:22x +y 2=1的两焦点为F 1 ,F 2,点P(x 0,y 0)满足0<220x +y 02<1,则|PF 1|+|PF 2|的取值范围为 ,直线20xx +y 0y=1与椭圆C 的公共点个数为 . [解析]:由0<220x +y 02<1知,点P 在椭圆C 内,所以直线20x x +y 0y=1与椭圆C 相离⇒公共点个数为0;2c ≤PF 1|+|PF 2|<2a ⇒ 2≤PF 1|+|PF 2|<22⇒|PF 1|+|PF 2|的取值范围为[2,22).[原创问题]:已知椭圆C:42x +32y =1,点P(x 0,y 0)满足42x +320y >1(x 0≠0),直线l:40x x +30y y =1.(Ⅰ)求直线l 与椭圆C 的公共点个数;(Ⅱ)若射线OP 与直线l 、椭圆C 分别交于点Q 、M,求证:|OP||OQ|=|OM|2.[解析]:(Ⅰ)因椭圆C:42x +32y =1⇔⎩⎨⎧==θθsin 3cos 2y x ,θ∈[0,2π),所以,直线l 与椭圆C 的公共点个数⇔关于θ的方程第15讲:极点与极线的性质 12720x cos θ+330y sin θ=1解的个数⇔直线:20x x+330y y=1与圆:x 2+y 2=1的公共点个数;由圆心O(0,0)到直线:20x x+330y y=1的距离d=341220y x +<1⇒直线:20x x+330y y=1与圆:x 2+y 2=1的公共点个数=2⇒直线l 与椭圆C 的公共点个数=2;(Ⅱ)因射线OP:y=00x y x(x 与x 0同号),与40x x +30y y =1联立得:40x x +0203x x y =1⇒x=202004312y x x +⇒y=202004312y x y +⇒Q(202004312y x x +,22004312y x y +)⇒|OP||OQ|=2020202043)(12y x y x ++;由y=00x y x 与42x +32y =1联立得:42x +20203x y x 2=1⇒x 2=2020204312y x x +⇒y 2=2020204312y x y +⇒|OM|2=x 2+y 2=2020204312y x x ++2020204312y x y +=2020202043)(12y x y x ++⇒|OP||OQ|=|OM|2.例2:抛物线中的共线性质.[始源问题]:(2010年大纲卷Ⅰ高考试题)已知抛物线C:y 2=4x 的焦点为F,过点K(-1,0)的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D. (Ⅰ)证明:点F 在直线BD 上; (Ⅱ)设FB FA ⋅=98,求△BDK 的内切圆M 的方程. [解析]:(Ⅰ)设A(x 1,y 1),B(x 2,y 2),直线l:y=k(x+1)(k ≠0),则D(x 1,-y 1),由⎩⎨⎧=+=xy x k y 4)1(2⇒ky 2-4y+4k=0⇒y 1+y 2=k 4,y 1y 2= 4;所以,点F 在直线BD 上⇔FB ∥FD ⇔(x 2-1):(x 1-1)=y 2:(-y 1)⇔y 1(ky 2-2)+y 2(k y1-2)=0⇔y 1y 2-k(y 1+y 2)=0;(Ⅱ)由FB FA ⋅=(x 1-1)(x 2-1)+y 1y 2=(k y 2-2)(k y 1-2)+y 1y 2=(1+21k )y 1y 2-k 2(y 1+y 2)+4=4(1+21k )-28k +4=8-24k=98⇒k=±43;根据对称性,不妨设k=43,则直线AB:3x-4y+3=0,且k KD =43⇒KF 平分∠AKD ⇒圆M 的圆心M 在x 轴上;(x 2-x 1)2=(x 1+x 2)2- 4x 1x 2=7162⇒k BD =1212y y x x +-=73⇒直线BD:3x-7y-3=0;设M(t,0)(-1<t<1),则由点M 到直线AB 与BD 的距离相等⇒5|1|3+t=4|1|3-t ⇒t=91⇒圆M:(x-91)2+y 2=94. [原创问题]:已知抛物线y 2=2px 及定点A(a,b),B(-a,0)(ab ≠0,b 2≠2pa),M 是抛物线上的点,设直线AM,BM 与抛物线的另一交点分别为M 1,M 2.求证:当M 点在抛物线上变动时(只要M 1,M 2存在且M 1≠M 2),直线M 1M 2恒过一个定点,并求出这个定点的坐标.[解析]:设M(2pt 2,2pt),M 1(2pt 12,2pt 1),M 2(2pt 22,2pt 2),则点B,M,M 2对应的极线分别为:x=a,2ty=x+2pt 2,2t 2y=x+2pt 22,由B,M,M 2三点共线⇒三线x=a,2ty=x+2pt 2,2t 2y=x+2pt 22共点⇒a=2ptt 2⇒t 2=pta2,点A,M 1对应的极线分别为:by=px+ap, 2t 1y=x+2pt 12,由A,M,M 1三点共线⇒三线by=px+ap,2ty=x+2pt 2,2t 1y=x+2pt 12共点⇒bp(t+t 1)=2p 2tt 1+ap ⇒t 1=ptb bta 2--,由⎪⎩⎪⎨⎧+=+=2222112222pt x y t pt x y t ⇒⎩⎨⎧+==)(22121t t p y t pt x ⇒⎪⎪⎩⎪⎪⎨⎧--=--=)2(2)2()2()(2pt b pt t p a b y pt b t bt a a x ⇒x-a=)2(22pt b t t p a --=b a 2y ⇒M 1,M 2对应极线的交点在定直线b p 2y=x+a, 即b p 22y=2p 2a x +上⇒直线M 1M 2恒过一个定点(a,bpa2). 128 第15讲:极点与极线的性质例3:抛物线中的比例性质.[始源问题]:(2009年全国高中数学联赛湖北初赛试题)已知抛物线C:y=21x 2与直线l:y=kx-1没有公共点,设点P 为直线l 上的动点,过P 作抛物线C 的两条切线,A 、B 为切点. (Ⅰ)证明:直线AB 恒过定点Q;(Ⅱ)若点P 与(Ⅰ)中的定点Q 的连线交抛物线C 于M 、N 两点.证明:||||PN PM =||||QN QM . [解析]:(Ⅰ)设A(x 1,y 1),B(x 2,y 2),P(x 0,y 0),则抛物线y=21x 2在点A 、B 处的切线方程分别为x 1x=y+y 1、x 2x=y+y 2,由点P(x 0,y 0)在这两切线上得:⎩⎨⎧+=+=02200110y y x x y y x x ⇒直线AB:x 0x=y+y 0(注意到:y 0=kx 0-1)⇒x 0x=y+kx 0-1⇒直线AB 过定点Q(k,1);(Ⅱ)设直线MN:⎩⎨⎧+=+=θθsin cos 00t y y t x x ,代入直线AB:x 0x=y+y 0,得:t Q =θθcos sin 20020x y x --;代入y=21x 2得:t 2cos 2θ+2(x 0cos θ-sinθ)t+x 02-2y 0=0⇒t 1+t 2=2⋅θθθ20cos cos sin x -,t 1t 2=θ2020cos 2y x -⇒21212t t t t +=θθcos sin 20020x y x --⇒t Q =21212t t t t +;所以,||||PN PM =||||QN QM ⇔21t t= QQ t t t t --21⇔t Q =21212t t t t +成立. [原创问题]:已知抛物线C:x 2=4y 与直线l:y=x-2,设点P 为直线l 上的动点,过P 作抛物线C 的两条切线,A 、B 为切点.(Ⅰ)证明:直线AB 恒过定点T;(Ⅱ)若过点P 的直线l 交抛物线C 于M 、N 两点,与直线AB 交于点Q.证明:||1PM +||1PN =||2PQ .[解析]:(Ⅰ)设A(x 1,y 1),B(x 2,y 2),P(x 0,y 0),则抛物线C:x 2=4y 在点A 、B 处的切线方程分别为x 1x=2(y+y 1)、x 2x=(y+y 2),由点P(x 0,y 0)在这两切线上得:⎩⎨⎧+=+=)(2)(202200110y y x x y y x x ⇒直线AB:x 0x=2(y+y 0)(注意到:y 0=x 0-2)⇒x 0x=2y+2x 0-4⇒直线AB 过定点T(2,2);(Ⅱ)设直线MN:⎩⎨⎧+=+=θθsin cos 00t y y t x x ,代入直线AB:x 0x=2(y+y 0),得:t Q =θθcos sin 240020x y x --;代入x 2=4y 得:t 2cos 2θ+2(x 0cos θ-2sin θ)t+x 02-4y 0=0⇒t 1+t 2=2⋅θθθ20cos cos sin 2x -,t 1t 2=θ2020cos 4y x -⇒21212t t t t +=θθcos sin 240020x y x --⇒t Q =21212t t t t +;所以,||1PM +||1PN =||2PQ ⇔11t21t =Q t 2⇔t Q =21212t t tt +成立. 例4:抛物线中的面积关系.[始源问题]:(2009年湖北高考试题)过抛物线y 2=2px(p>0)的对称轴上一点A(a,0)(a>0),的直线与抛物线相交于M 、N两点,自M 、N 向直线l:x=-a 作垂线,垂足分别为M 1、N 1. (Ⅰ)当a=2p时,求证:AM 1⊥AN 1; (Ⅱ)记△AMM 1、△AM 1N 1、△ANN 1的面积分别为S 1、S 2、S 3,是否存在λ,使得对任意的a>0,都有S 22=λS 1S 3成立.若存在,求出λ的值;若不存在,说明理由.[解析]:(Ⅰ)当a=2p 时,A(2p ,0),设M(2pm 2,2pm),N(2pn 2,2pn),则M 1(-2p ,2pm),N 1(-2p ,2pn),由AM ∥AN ⇒(2pm 2- 2p ):(2pn 2-2p )=2pm:2pn ⇒mn=-41⇒1AM ⋅1AN =p 2+4p 2mn=0⇒AM 1⊥AN 1;第15讲:极点与极线的性质 129(Ⅱ)由AM ∥AN ⇒(2pm 2-a):(2pn 2-a)=2pm:2pn ⇒2pmn+a=0;因||||11NN MM =2222pn a pm a ++;当MN ⊥/x 轴时,||||AN AM =|2||2|22pn a a pm --=2222pn a a pm --;所以,||||11NN MM =||||AN AM ⇔2222pn a pm a ++=2222pn a a pm --⇔4p 2m 2n 2=a 2成立;当MN ⊥x 轴时,显然有||||11NN MM =||||AN AM ;设MN 1与NM 1交于点Q(点Q 即原点O),由MM 1∥NN 1⇒||||1QN MQ =||||11NN MM =||||AN AM ⇒AQ ∥MM 1∥NN 1;设∠MQM 1=α,则S 1=21|QM||QM 1|sin α,S 3 =21|QN||QN 1|sin α;又S △QMN =11N QM S ∆⇒S 2=11N QM S ∆+(1AQM S ∆+1AQN S ∆)=11N QM S ∆+(S △AQM +S △AQN )=11N QM S ∆+S △QMN =2S △QMN ;S 1S 3=21|QM||QM 1|sin α⋅21|QN||QN 1|sin α=21|QM||QN|sin α⋅21|QM 1||QN 1|sin α=S △QMN 11N QM S ∆=41S 22⇒S 22=4S 1S 3⇒存在λ=4,使得对任意的a>0,都有S 22=λS 1S 3成立.[原创问题]:已知抛物线C:y 2=4x,直线l:y=2x+2,过点P(1,1)的直线与抛物线C 交于A 、B 两点,A 、B 两点在直线l 上的射影点分别为N 、M,记△PAN 、△PMN 、△PBM 的面积分别为S 1、S 2、S 3. (Ⅰ)当AB ∥直线l 时,求证:P 是AB 的中点; (Ⅱ)求证:S 22=4S 1S 3.[解析]:(Ⅰ)设A(x 1,y 1),则y 12=4x 1;由P 是AB 的中点⇒B(2-x 1,2-y 1)⇒(2-y 1)2=4(2-x 1)⇒y 1=2x 1+1⇒点A 在直线y=2x+1上,同理可得点B 也在直线y=2x+1上⇒直线AB:y=2x+1⇒AB ∥直线l;由统一法知,当AB ∥直线l 时, P 是AB 的中点;(Ⅱ)设直线AB:⎩⎨⎧+=+=θθsin 1cos 1t y t x (t 为参数),代入y 2=4x 得:t 2sin 2θ+2(sin θ-2cos θ)t-3=0⇒t 1+t 2=2⋅θθθ2sin sin cos 2-,t 1t 2=-θ2sin 3;点A(1+t 1cos θ,1+t 1sin θ)到直线l 的距离|AN|=5|3sin cos 2|11+-θθt t ,点B(1+t 2cos θ,1+t 2sin θ)到直线l 的距离|BM|=5|3sin cos 2|22+-θθt t ⇒||||BM AN =|3sin cos 2||3sin cos 2|2211+-+-θθθθt t t t (由点A 、B 在直线l 的同侧⇒2t 1cos θ-t 1sin θ+3与t 2cos θ-t 2sin θ+3同号)=3sin cos 23sin cos 22211+-+-θθθθt t t t ;而||||PB PA =||||21t t (点A 、B 在点P 的异侧)=-21t t;所以,||||BM AN =||||PB PA ⇔3sin cos 23sin cos 22211+-+-θθθθt t t t=-21t t ⇔2(2cos θ-sin θ)t 1t 2+3(t 1+t 2)=0⇔2(2cos θ-sin θ)(-θ2sin 3)+3⋅2⋅θθθ2sin sin cos 2-=0成立; 以下同例题可证:S 22=4S 1S 3.例5:椭圆中的共线性质.[始源问题]:(2012年北京高考试题)已知曲线C:(5-m)x 2+(m-2)y 2=8(m ∈R).(Ⅰ)若曲线C 是焦点在x 轴点上的椭圆,求m 的取值范围;(Ⅱ)设m=4,曲线C 与y 轴的交点为A,B(点A 位于点B 的上方),直线y=kx+4与曲线C 交于不同的两点M 、N,直线y=1与直线BM 交于点G.求证:A,G,N 三点共线.[解析]:(Ⅰ)由曲线C 是焦点在x 轴点上的椭圆⇔m-2>5-m>0⇔27<m<5.故m 的取值范围是(27,5); (Ⅱ)当m=4时,曲线C:x 2+2y 2=8⇒A(0,2),B(0,-2);设M(x 1,y 1),N(x 2,y 2),由⎩⎨⎧=++=82422y x kx y ⇒(2k 2+1)x 2+16kx+24=0⇒△= 32(2k 2-3)>0⇒k 2>23;且x 1+x 2=-12162+k k ,x 1x 2=12242+k ;又由直线BM:y=112x y +x-2⇒G(2311+y x ,1),即G(6311+kx x ,1)⇒k AG =-1136x kx +=-3k -12x ,k AN =222x y -=222x kx +=k+22x ⇒k AN -k AG =34k +12x +22x =34k +2⋅2121x x xx +=34k +2⋅2416k -=0⇒A,G,N 三点共线.第(Ⅱ)问是本题的特色与亮点,其实质是共轭点的性质:设点P 与Q 是二次曲线G 的一对共轭点,过点Q 的直线AC 与曲线G 相交于A 、C 两点,AP 与曲线G 相交于另一点B,BQ 与曲线G 相交于另一点D,则P 、C 、D 三点共线.其中共轭点的定义:130 第15讲:极点与极线的性质若直线PQ 与圆锥曲线G 相交于A 、B 两点,且PA ⋅QB +PB ⋅QA =0,则称点P 与Q 是圆锥曲线G 的一对共轭点.[原创问题]:已知椭圆C:2222b y a x +=1(a>b>0)过点D(-1,e),其中,e 是椭圆C 的离心率,椭圆C 的左、右顶点分别为A(-2,0)、B(2,0). (Ⅰ)求椭圆C 的方程;(Ⅱ)过点E(4,0)的直线l 与椭圆C 交于M 、N 两点,求证:直线AM 与BN 的交点P 在一条定直线上.[解析]:(Ⅰ)由a=2,21a +22b e =1⇒1+22b c =a 2⇒b 2=1⇒椭圆C:42x +y 2=1; (Ⅱ)设M(x 1,y 1),N(x 2,y 2),直线l:y=k(x-4),由⎩⎨⎧=+-=44)4(22y x x k y ⇒(1+4k 2)x 2-32k 2x+64k 2-4=0⇒x 1+x 2=224132k k +,x 1x 2=2241464k k +- ⇒k 2=)(4322121x x x x +-+,x 1x 2(1+4k 2)=64k 2-4⇒x 1x 2⋅)(8821x x +-=)(8]8)(5[42121x x x x +--+⇒2x 1x 2=5(x 1+x 2)-8;又由直线AM:y=211+x y (x+2),直线BN:y=222-x y (x-2)⇒直线AM 与BN 的交点P 的横坐标x 满足:211+x y (x+2)=222-x y (x-2)⇒2)4(11+-x x k (x+2)= 2)4(22--x x k (x-2)⇒x=83262122121----x x x x x x =83268)(5122121-----+x x x x x x =1⇒点P 在一条定直线x=1上.例6:椭圆中的中点性质.[始源问题]:(2008年全国高中数学联赛湖南初赛试题)如图,过直线l:5x-7y-70=0上的点P 作椭圆252x +92y =1的两条切线PM 、PN,切点分别为M 、N.(Ⅰ)当点P 在直线l 上运动时,证明:直线MN 恒过定点Q; (Ⅱ)当MN ∥l 时,定点Q 平分线段MN.[解析]:(Ⅰ)设P(7t+7,5t-5),则直线MN 的方程为:2577+t x+955-t y=1⇒(257x+95y)t+(257x-95y-1)=0,由257x+95y=0,且257x-95y-1=0⇒x=1425,y=-109⇒直线MN 恒过定点Q(1425,-109); (Ⅱ)MN ∥l ⇔2577+t :955-t =5:(-7)⇔t=53392⇒直线MN 的方程为:5x-7y-35533=0,代入椭圆方程252x +92y =1得:275332⨯x2 -23753325⨯x+25[(275533⨯)2-9]=0,设M(x 1,y 1),N(x 2,y 2),则x 1+x 2=725⇒定点Q 平分线段MN. [原创问题]:过点Q(1,1)作己知直线l:3x+4y=12的平行线交椭圆C:42x +32y =1于点M 、N. (Ⅰ)分别过点M 、N 作椭圆C 的切线l 1、l 2.证明:三条直线l 1、l 2、l 交于一点; (Ⅱ)证明:点Q 是线段MN 的中点;(Ⅲ)设P 为直线l 上一动点,过点P 作椭圆C 的切线PA 、PB,切点分别为A 、B,证明:点Q 在直线AB 上.[解析]:(Ⅰ)设M(x 1,y 1),N(x 2,y 2),切线l 1、l 2交于点P(x 0,y 0),由切线l 1:41x x+31y y=1,切线l 2:42x x+32yy=1均过点P(x 0, y 0)⇒41x x 0+31y y 0=1,42x x 0+32yy 0=1⇒直线MN:40x x+30y y=1;又由直线MN 过点Q(1,1)⇒40x +30y =1⇒3x 0+4y 0=12⇒点P 在直线l 上⇒三条直线l 1、l 2、l 交于一点; (Ⅱ)由直线MN ∥直线l ⇒40x :30y =41:31,又40x +30y =1⇒x 0=y 0=712⇒直线MN:3x+4y=7⇒点Q 是线段MN 的中点; (Ⅲ)设P(x 0,y 0),则直线AB:3x 0x+4y 0y=12⇒3x 0x+(12-3x 0)y=12⇒点Q 在直线AB 上.第15讲:极点与极线的性质 131例7:椭圆中的比例性质.[始源问题]:(2011年山东高考试题)在平面直角坐标系xOy 中,已知椭圆C:32x +y 2=1.如图所示,斜率为k(k>0)且不过原点的直线l 交椭圆C 于A,B 两点,线段AB 的中点为E ,射线OE 交椭圆C 于点G ,交直线x=-3于点D(-3,m). (Ⅰ)求m 2+k 2的最小值; D y (Ⅱ)若|OG|2=|OD||OE|. G A (i)求证:直线l 过定点; E(ii)试问点B,G 能否关于x 轴对称?若能,求出 -3 O x 此时△ABG 的外接圆方程;若不能,请说明理由.[解析]:(Ⅰ)设E(-3λ,m λ),A(-3λ+t,m λ+kt),则B(-3λ-t,m λ-kt).由点A 、B 都在椭圆C 上⇒⎪⎩⎪⎨⎧=-+--=+++-3)(3)3(3)(3)3(2222kt m t kt m t λλλλ,两式相减得mk=1⇒m 2+k 2≥2mk=2,当且仅当m=k=1时等号成立,所以m 2+k 2的最小值=2.(Ⅱ)(i)设直线OG 与椭圆C 相交于另一点T,则由椭圆C 关于原点对称得:|OT|=|OG|.所以,|OG|2=|OD||OE|⇔DT EG ⋅+DG ET ⋅=0,由轨迹1知,点E 在直线-x+my=1上,即直线l 的方程为:-x+my=1⇒直线l 过定点(-1,0);(ii)若点B,G 关于x 轴对称⇒点G(-3λ-t,-m λ+kt),由点G 在直线OE 上⇒(-3λ-t):(-3λ)=(-m λ+kt):m λ⇒6m λ+mt =3kt(注意到mk=1)⇒m 2(6λ+t)=3t ⇒t=2236mm -λ,又由点E 在直线l 上⇒3λ+m 2λ=1⇒λ=231m +⇒B(-233m -,-23m m -)⇒31(233m -)2+(23mm -)2=1⇒m=1,k=1,λ=41,t=43⇒A(0,1),B(-23,-21),G(-23,21)⇒△ABG 的外接圆方程:(x+21)2+y 2=45. [原创问题]:已知椭圆C:2222b y a x +=1(a>b>0)内一点P(2,1),射线OP 与椭圆C 交于点N,与直线l 0:x+y-12=0交于点M,满足|OP||OM|=|ON|2,且椭圆C 在N 处的切线平行于直线l 0. (Ⅰ)求椭圆C 的方程;(Ⅱ)过点P 的任意一条直线l 与直线l 0交于点Q,与椭圆C 交于A 、B 两点(A 在P 与Q 之间),求证:|QA||PB|=|QB||PA|.[解析]:(Ⅰ)由射线OP:y=21x(x ≥0),直线l 0:x+y-12=0⇒M(8,4);设N(2t,t)(t>0),由|OP||OM|=|ON|2⇒5⋅80=4t2+t 2⇒t=2⇒N(4,2)⇒216a+24b=1,椭圆C 在N 处的切线:24ax +22by =1;由切线平行于直线l 0⇒24a=22b⇒a 2=2b 2⇒b 2=12,a2=24⇒椭圆C:242x +122y =1; (Ⅱ)设直线l:⎩⎨⎧+=+=θθsin 1cos 2t y t x (t 为参数),代入242x +122y =1得:(2sin 2θ+cos 2θ)t 2+4(sin θ+cos θ)t-18=0⇒t 1+t 2=-θθθθ22cos sin 2)cos (sin 4++,t 1t 2=-θθ22cos sin 218+;代入x+y-12=0得:(sin θ+cos θ)t-9=0⇒t Q =θθcos sin 9+;而|QA||PB|=|QB||PA|⇔(t Q -t 1)(-t 2)=(t Q -t 2)t 1⇔(t 1+t 2)t Q -2t 1t 2=0⇔-θθθθ22cos sin 2)cos (sin 4++⋅θθcos sin 9+-2(-θθ22cos sin 218+)=0成立. [原创问题]:已知椭圆C:2222b y a x +=1(a>b>0)内一点P(2,1),过点P 且平行于x 轴直线被椭圆C 截得的弦长为46,过点P 且平行于y 轴直线被椭圆C 截得的弦长为210. (Ⅰ)求椭圆C 的方程;(Ⅱ)过点P 的任意一条直线l 与直线l 0:x+y-12=0交于点Q,与椭圆C 交于A 、B 两点,若QA =λAP ,QB =μBP .求证:λ+132 第15讲:极点与极线的性质μ为定值.[解析]:(Ⅰ)由2222by ax +=1,令y=1得:|x|=ba12-b ;令x=2得:|y|=ab 42-a ;由题知,ba 12-b =26,ab 42-a =10⇒a 2=12422-b b ,22a b (a 2-4)=10⇒2412-b (12422-b b -4)=10⇒b 2=12⇒a 2=24⇒椭圆C:242x +122y =1;(Ⅱ)设直线l:⎩⎨⎧+=+=θθsin 1cos 2t y t x (t 为参数),代入242x +122y =1得:(2sin 2θ+cos 2θ)t 2+4(sin θ+cos θ)t-18=0⇒t 1+t 2=-11 θθθθ22cos sin 2)cos (sin 4++,t 1t 2=-θθ22cos sin 218+;代入x+y-12=0得:(sin θ+cos θ)t-9=0⇒t Q =θθcos sin 9+;由QA =λAP ,QB =μBP ⇒λ=11t t t Q -,μ=22t t t Q -⇒λ+μ=2-t Q ⋅2121t t t t +=2-θθcos sin 9+⋅9)cos (sin 2θθ+=0. 例8:椭圆中的共线性质.[始源问题]:(2002年澳大利亚数学奥林匹克试题)己知△ABC 为锐角三角形, R以AB 为直径的⊙K 分别交AC 、BC 于P 、Q,分别过A 和Q 作⊙K 的两条切线交 C于点R,分别过B 和P 作⊙K 的两条切线交于点S.证明:点C 在线段RS 上. P Q S[解析]:设⊙K:x 2+y 2=r 2,R(-r,a),S(r,b)⇒点R,S 对应的极线分别为:AQ:-rx+ay=r 2,BP:rx+by=r 2⇒Q(2222)(r a rr a +-,2222r a ar +),P(-2222)(r b rr b +-,2222r b br +) A K B⇒AP:y=r b (x+r),BQ:y=-r a (x-r),由⎪⎪⎩⎪⎪⎨⎧+=--=)()(r x r b y r x r a y ⇒⎪⎪⎩⎪⎪⎨⎧+=+-=b a ab y r b a b a x 2⇒C(b a b a +-r,b a ab +2) ⇒点C 对应的极线为:(a-b)rx+2aby=(a+b)r 2,由三线:-rx+ay=r 2,BP:rx+by=r 2,(a-b)rx+2aby=(a+b)r 2共点于(b a b a +-r, ba r +22)⇒R,C,S 三点共线⇒点C 在线段RS 上. 该题是平面几何定理:“过非等腰三角形的三个顶点作其外接圆的切线,顶点处的切线与其对边所在直线的交点共线.”的变形,以该定理为始源,取其特殊情况,并把圆压缩为椭圆得:[原创问题]:若对任意θ∈[0,2π),直线l:xcos θ+2ysin θ-2=0与椭圆C:2222b y a x +=1(a>b>0)均只有一个交点M. (Ⅰ)求椭圆C 的方程;(Ⅱ)当θ∈(0,2π)时,若直线l 与x 轴交于点N,椭圆C 的左、右顶点分别为A 、B,直线BM 上的点Q 满足QA ⊥x 轴,直线AM 与NQ 交于点P,求点P 的轨迹方程.[解析]:(Ⅰ)由⎩⎨⎧=-+=-+002sin 2cos 222222b a y a x b y x θθ⇒(a 2cos 2θ+4b 2sin 2θ)y 2-8b 2ysin θ+4b 2-a 2b 2cos 2θ=0⇒△=64b 4sin 2θ-4(a 2cos 2θ +4b 2sin 2θ)(4b 2-a 2b 2cos 2θ)=0⇒a 2-4+(4b 2-a 2)sin 2θ=0恒成立⇒a 2-4=0,4b 2-a 2=0⇒a 2=4,b 2=1⇒椭圆C:42x +y 2=1; (Ⅱ)由xcos θ+2ysin θ-2=0⇒N(θcos 2,0);(Ⅰ)知,M(2cos θ,sin θ)⇒直线AM:y=2cos 2sin +θθ(x+2),BM:y=2cos 2sin -θθ(x-2) ⇒Q(-2,θθcos 1sin 2-)⇒直线NQ:y=-cot θ(x-θcos 2);令2cos 2sin +θθ(x+2)=-cot θ(x-θcos 2)⇒(2cos 2sin +θθ+θθcos sin )x=θsin 2-1cos sin +θθ ⇒x=2⇒点P 的轨迹方程x=2(0<y<2).。
圆锥曲线极点极线定理
圆锥曲线极点极线定理圆锥曲线极点极线定理1. 引言圆锥曲线是平面解析几何中的重要概念之一,它包括椭圆、双曲线和抛物线三种类型。
在研究圆锥曲线的性质时,极点和极线是不可避免的概念。
本文将介绍圆锥曲线的极点极线定理,该定理是描述圆锥曲线中极点和极线之间关系的重要结论。
2. 极点和极线的定义在平面直角坐标系中,设有一条直线L和一个点P(x0,y0)。
若从P到L上每一点所引的直线与L垂直,则称P为L的极点,L为P的极线。
3. 圆锥曲线的定义设有一个平面内固定点F(称为焦点)和一条固定直线d(称为准线)。
对于任意一点P,分别以PF和PD(D为d上任意一点)为半径作两个圆,并将这两个圆相切于P处。
则所有这样的P所构成的集合称为圆锥曲线。
4. 圆锥曲线中极点与极轴间关系对于任意一条圆锥曲线,设其焦点为F,准线为d,P为任意一点,则有以下结论:(1)若P在焦点F上,则其极线为准线d;(2)若P在准线d上,则其极线为过该点且垂直于准线的直线;(3)若P不在焦点F和准线d上,则其极轴为PF的中垂线。
5. 圆锥曲线中极轴与极径间关系对于任意一条圆锥曲线,设其焦点为F,准线为d,O为坐标系原点,则有以下结论:(1)若O在焦点F上,则其极径是任意一条过O的直线;(2)若O在准线d上,则其极径是与准线垂直且经过O的直线;(3)若O不在焦点F和准线d上,则其极径是从O出发经过圆锥曲线上任意一点P的直线。
6. 圆锥曲线中两个互异的定理对于任意一条圆锥曲线,设其焦点为F,准线为d,P(x,y)为任意一点。
则有以下两个互异的定理:(1)以FP和PD分别为半径的两个圆相交于点P,则P在圆锥曲线上;(2)以FP和PD分别为半径的两个圆相切于点P,则P在圆锥曲线上。
7. 结论综上所述,圆锥曲线极点极线定理是描述圆锥曲线中极点和极线之间关系的重要结论。
在研究圆锥曲线的性质时,该定理具有重要意义。
极点极线基础知识
极点极线基础知识嘿,朋友们!今天咱来聊聊极点极线这玩意儿,可有意思啦!你说这极点极线啊,就像是数学世界里的一对好伙伴。
极点呢,就像是个带头大哥,而极线呢,就是那紧跟其后的小弟。
它们之间有着一种特别的联系,就好像是心有灵犀一点通。
咱可以把它想象成一场奇妙的追逐游戏。
极点在前面跑,极线在后面追,怎么都甩不掉。
比如说,给定一个圆锥曲线,那极点在外面溜达,它对应的极线就会乖乖地在那儿等着。
这关系,多铁呀!你看啊,在生活中我们也有这样类似的关系呢。
就好比你和你最好的朋友,你去哪儿,他就跟着去哪儿,不离不弃的。
极点极线不也是这样嘛!而且哦,这极点极线还有很多神奇的性质呢!它们能帮我们解决好多数学问题,就像是一把神奇的钥匙,能打开好多难题的大门。
比如说,当我们遇到一些关于圆锥曲线的题目,感觉无从下手的时候,嘿,极点极线就派上用场啦!它能给我们指引方向,就像黑暗中的一盏明灯。
再想想,我们的生活不也是这样嘛。
有时候我们会遇到一些困难,感觉前路迷茫,但是只要我们找到那个关键的点,或者那条关键的线索,不就可以顺利解决问题啦?还有啊,极点极线之间的这种对应关系,是不是让你想到了什么?对呀,就像我们和我们的影子,形影不离呀!你说数学怎么就这么神奇呢?这么一个小小的极点极线,里面居然蕴含着这么多的奥秘。
我们就像是探险家,一点点地去挖掘,去发现。
哎呀,真的是越想越觉得有趣呢!我们在数学的海洋里遨游,发现一个又一个的宝藏。
极点极线就是其中一个闪闪发光的宝贝呀!所以呀,大家可别小瞧了这极点极线哦,它虽然看起来不起眼,但用处可大着呢!我们要好好去研究它,去感受它的魅力。
让我们一起在数学的世界里尽情玩耍吧!。
圆锥曲线极点极线知识篇
圆锥曲线极点极线知识篇圆锥曲线是数学中重要的一部分,它以其独特的形态和性质而引起人们的兴趣和研究。
在圆锥曲线中,极点和极线是其中两个重要概念,本文将介绍圆锥曲线极点极线的相关知识,并对其在几何学中的应用进行探讨。
首先,我们来了解一下什么是圆锥曲线。
圆锥曲线是由一个固定点(焦点)和一个固定直线(准线)决定的曲线。
根据焦点和准线的位置关系,圆锥曲线可分为三种类型:椭圆、双曲线和抛物线。
这些曲线在数学和实际问题中都有着广泛的应用,因此对它们的研究具有重要的意义。
在圆锥曲线中,极点和极线起着至关重要的作用。
极点是指圆锥曲线上的一个特殊点,它与直线准线的夹角为直角。
极线则是通过极点并与准线相交的直线。
极点极线的性质对于研究圆锥曲线的形态和性质具有重要的指导意义。
首先,我们来研究极点的性质。
对于椭圆和双曲线,极点位于无穷远处,与曲线无交点;而对于抛物线,极点则位于抛物线的顶点处。
这些性质使得极点成为了圆锥曲线的一个特殊点,通过它可以确定圆锥曲线的离心率和焦距等重要参数。
其次,我们来研究极线的性质。
极线通过极点并与准线相交,其性质与准线的位置关系密切相关。
对于椭圆和双曲线,准线位于极点的外侧,因此极线是一条有限长的直线段;而对于抛物线,准线位于极点的内侧,因此极线是一条无穷直线。
极线也可以用来确定圆锥曲线的方程和焦点等重要参数。
在几何学中,圆锥曲线极点极线的应用非常广泛。
首先,它们可以用来确定圆锥曲线的形状和性质,帮助我们更好地理解和研究它们。
其次,极点极线还可以用来解决几何问题,如确定直线和曲线的交点、切线等。
此外,极点极线还在计算机图形学中有着广泛的应用,用来表示和绘制各种形态的曲线和曲面。
总之,圆锥曲线极点极线是圆锥曲线研究中不可忽视的重要概念。
它们的性质和应用对于我们理解和应用圆锥曲线具有重要的指导意义。
通过深入研究和应用,我们可以更好地理解和利用圆锥曲线的性质,丰富数学知识,拓展应用领域。
极点与极线
极点与极线对于高考而言,在全国卷大一统的形势下,纵观历年全国卷的解析几何试题,以极点极线为背景的题目,不断出现,不过基本上也是基础类型.所以,极点极线,我们还是按照一些题型来进入分类总结.极点极线的定义1.二次曲线的替换法则对于一般式的二次曲线22Ax Bxy Cy Dx ϕ+++:0Ey F ++=,用0xx 代2x ,用0yy 代2y ,用002x y xy +代xy ,用02x x +代x ,用02y y +代y ,常数项不变,可得方程:0000022x y xy x x Axx B Cyy D ++++++ 002y y E F ++= .2.极点极线的代数定义高中阶段,常见的二次曲线的极点极线的方程如下:(1)圆:①极点00()P x y ,关于圆222x y r +=的极线方程是200xx yy r +=;②极点00()P x y ,关于圆222()()x a y b r -+-=的极线方程是200()()()()x a x a y b y b r --+--=;③极点00()P x y ,关于圆220x y Dx Ey F ++++=的极线方程是:0000022x x y y xx yy D E F ++++++= .(2)椭圆:极点00(,)P x y 关于椭圆22221x y a b +=的极线方程是:00221xx yy a b +=.(3)双曲线:极点00(,)P x y 关于双曲线22221x y a b -=的极线方程是:00221xx yy a b-=.(4)抛物线极点00(,)P x y 关于抛物线22y px =的极线方程是:00()y y p x x =+.注:①极点极线是成对出现的;②焦点和焦点对应的准线就是最常见的极点极线;③已知定比分点,则其调和分点一定位于其对应极线上!3.极点极线的几何意义(1)若极点P 在二次曲线上,则极线是过点P 的切线方程.(2)若极点P 在二次曲线内部,则极线是过点P 的弦两端端点的切线交点的轨迹.如图所示,过点P 的弦AB 、CD 的两端端点作切线,得到的直线MN 即为点P 对应的极线轨迹.【极线和二次曲线必定相离】(3)若极点P 在二次曲线外部,分成两种情况:①极线在二次曲线内的部分是点P 对二次曲线的切点弦;【极线和二次曲线必定相交】②极线在二次曲线外的部分是过点P 的弦两端端点的切线交点的轨迹.4.极点极线的配极性质①点P 关于二次曲线C 的极线p 经过点Q ⇔点Q 关于二次曲线C 的极线q 经过点P .②直线p 关于二次曲线C 的极点P 在直线q 上⇔直线q 关于二次曲线C 的极点Q 在直线p 上.①②表达点P 和点Q 是二次曲线的一组调和共轭点,也是定比点差常说到的定比分点和调和分点.极点极线的综合模型——自极三角形极点极线的几何意义:(1)若点P 是圆锥曲线上的点,则过点P 的切线即为极点p 对应的极线.(2)如图所示(以椭圆图形为例),若点P 是不在圆锥曲线上的点,且不为原点O ,过点P 作割线P AB 、PCD 依次交圆锥曲线于A 、B 、C 、D 四点,连结直线AD 、BC 交于点M ,连结直线AC 、BD 交于点N ,则直线MN l 为极点P 对应的极线.类似的,也可得到极点N 对应的极线为直线PM l ,极点M 对应的极线为直线PN l ,因此,我们把PMN △称为自极三角形.【即PMN △的任一顶点作为极点,则顶点对应的边即为对应的极线,“补全自极三角形”这个技巧很常用,后面结合例题了解!】如图所示,如果我们连结直线NM 交圆锥曲线于点E 、F ,则直线PE 、PF 恰好为圆锥曲线的两条切线,此时,直线EF l 不仅是极点P 的极线,我们也称直线EF l 为渐切线.下面的共轭点模型,实际都是极点在坐标轴上的特例模型的应用,也是高考题常见.自极三角形的定点定值我们先来尝试一下抛物线的极点极线证明:如图,A 、B 、C 、D 分别为抛物线px y 22=上四点,且AB 与CD 交于)0(,m M ,则AC 与BD 的交点N 一定在定直线m x -=上.令MB AM λ=,MD CM μ=,所以m x A λ=,λpm y A 2=,λmx B =,λpmy B 2-=,m x c μ=,μpm y C 2=,μmx D =,μpmy D 2-=.三点共线:)()(D N D B D B D C N C A C A C N x x x x y y y x x x x y y y y ---+=---+=,)(2)(2D N DB DC N C A C N x x y y p y x x y y p y y -++=-++=所以)(2)(21(2μλμμμ+--=+=-pm m x p pm y y N D C )(2)(2μλλμμ+--+pm m x p N ,所以=+++)1(μλμλμm μλλμμm x x m N N +--,所以=+)1(λμm )1(λμ+-N x ,所以m x N -=.接下来我们来参考2020年的全国1卷,也是一种常见的自极三角形.【例17】(2020•新课标Ⅰ)已知A ,B 分别为椭圆222:1(1)x E y a a +=>的左、右顶点,G 为E 的上顶点,8AG GB = .P 为直线6x =上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.模型总结已知极点在长(短)轴上,证明极线相对简单,只需要利用定比设点法表达出来再联立,消掉变量即可,但是在已知极线反推极点的时候,就要将引入的比例系数λ消除,构造0+0=0λ⨯模型,此类型题目均可以快速拿满分(曲线系处理最快);抛物线通常利用对称的定比设点法,证明极点极线非常轻松,大家可以试试手.【训练18】(2021•金华模拟)如图,已知抛物线24y x =,过点(11)P -,的直线l 斜率为k ,与抛物线交于A ,B 两点.(1)求斜率k 的取值范围;(2)直线l 与x 轴交于点M ,过点M 且斜率为2k -的直线与抛物线交于C ,D 两点,设直线AC 与直线BD 的交点N 的横坐标为0x ,是否存在这样的k ,使05x =-,若存在,求出k 的值,若不存在,请说明理由.【训练19】(2021•湖南模拟)已知椭圆C :22221(0)x y a b a b +=>>的左右焦点分别为1F ,2F ,点3(1)2P ,在C 上,且221PF F F ⊥.(1)求C 的标准方程;(2)设C 的左右顶点分别为A ,B ,O 为坐标原点,直线l 过右焦点2F 且不与坐标轴垂直,l 与C 交于M ,N 两点,直线AM 与直线BN 相交于点Q ,证明点Q 在定直线上.【例18】已知椭圆134:22=+y x C ,斜率为1的直线l 与椭圆交于A 、B 两点,点)04(,M ,直线AM 与椭圆交于点1A ,直线BM 与椭圆交于1B ,求证:直线11B A 过定点.模型总结若过)0(,m P 交椭圆于1AA ,1BB 两条线,若①t k AB=,②11B A 过定点)22(22t m m a m a m -+,,两者互为充要条件.大家可以自行证明.本章节到此告一段落,关于极点极线的其它性质,比如等角定理、比如斜率等差模型、斜率比值模型、焦准距的平方和共圆模型、椭圆的平行弦模型、蝴蝶定理初步,会在《高考数学满分突破》之秒杀压轴题系列2(2022年新版本)中详细阐述,二轮复习在于以题型入手的思维巩固,在于以不变应万变,秒系列在于思维深挖拓展,对一个问题的看法更加立体,也是数学爱好者的江湖情怀!【训练20】(2018•北京文)已知椭圆2222:1x y M a b+=(0)a b >>的离心率为36,焦距为22.斜率为k 的直线l 与椭圆M 有两个不同的交点A 、B .(1)求椭圆M 的方程;(2)若1=k ,求AB 的最大值;(3)设)0,2(-P ,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点41,47(-Q 共线,求k .【训练21】(2021•广东七校联考)已知椭圆2222:1x yCa b+=(0)a b>>的左顶点为(20)A-,,两个焦点与短轴的一个顶点构成等腰直角三角形,过点(10)P,且与x轴不重合的直线l与椭圆交于M、N不同两点.(1)求椭圆方程;(2)若过点P且平行于AM的直线交直线52x=于点Q,求证:直线NQ过定点.【训练22】(2020•北京)已知椭圆2222:1x yCa b+=过点(21)A--,,且2a b=.(1)求椭圆C的方程;(2)过点(40)B-,的直线l交椭圆C于点M,N,直线MA,NA分别交直线4x=-于点P,Q.求|| || PB BQ的值.。
极点极线证明过定点
极点极线证明过定点在几何学中,极点极线(polar)是针对一个给定的圆而定义的一种特殊线性关系。
在本文中,我们将讨论极点极线的一个重要性质,即证明极点极线过定点的问题。
极点极线的定义首先,让我们回顾一下极点极线的定义。
给定一个圆,圆上的每一点都对应一个唯一的极线。
而对于圆外的点P,其极线是通过连接P和与圆上与P垂直的切线的交点构成的。
反过来,对于圆上任意一点Q,其极线是连接Q和圆心O的线段。
极点极线的性质定理:极点极线过定点。
证明:我们以平面直角坐标系为基础进行证明,设圆心O位于原点O(0,0),圆的半径为r。
首先,我们取圆上一点A(x,y),并求出其对应的极线方程。
根据圆的性质可知,点A到圆心O的距离等于r,即√(x^2 + y^2) = r,整理可得 x^2 + y^2 = r^2。
根据极线的定义,我们需要找到点A关于圆的极线方程。
我们可以设点A关于圆的极线方程为l:y = kx + b,其中k为斜率,b为截距。
由于点A(x,y)在极线l上,因此需满足点A(x,y)的坐标满足极线方程,即y = kx + b。
我们将圆方程代入极线方程中得到:x^2 + (kx + b)^2 = r^2,展开并整理得到x^2 (k^2 + 1) + 2b k x + b^2 - r^2 = 0。
这是一个关于x的二次方程,而点A(x,y)位于圆上,因此该二次方程有两个实数解,设为x1和x2。
根据二次方程的解的性质可知,x1 + x2 = -2b k / (k^2 + 1),x1 * x2 = (b^2 -r^2) / (k^2 + 1)。
因此,当x1 + x2 = -2b k / (k^2 + 1)等于0时,可得到 k = 0,即极线的斜率k为0。
代入极线方程l:y = kx + b中,我们得到y = b。
这表明极线l是与y轴平行的直线,即该极线过定点P(0,b)。
由此可证明极点极线过定点。
综上所述,极点极线一定过定点P(0,b)。
极线极点定义
极线极点定义1. 什么是极线和极点?在计算机视觉领域中,极线和极点是一种用于描述两张图像之间对应点关系的概念。
当我们有两张视角不同的图像时,比如来自不同相机或者同一个相机在不同的位置和朝向下拍摄的图像,我们希望能够找到它们之间的对应点,以便进行立体视觉、图像匹配或者SLAM等计算机视觉任务。
极线表示的是在一副图像上的一个像素对应于另一副图像上的一条线。
而极点则是在另一副图像上的一个像素,它恰好属于极线。
简单来说,极线是一种几何约束,它定义了对应点必须在哪些位置上寻找,而极点则是在另一张图像上的一个确定位置。
2. 极线和极点的计算方法计算极线和极点的方法有很多种,下面我们将介绍一些常用的方法。
2.1 极线的计算给定两张图像,我们可以通过基础矩阵或本质矩阵来计算它们之间的极线。
A. 基础矩阵基础矩阵是描述了两个图像间的对应关系的一个重要矩阵。
给定一对对应点,我们可以利用这些点来计算基础矩阵。
基础矩阵F满足以下条件:•对于每一对对应点(x1, x2),我们有 x2^T * F * x1 = 0•F的秩为2通过计算基础矩阵,我们可以得到每个像素在另一张图像上的极线。
B. 本质矩阵本质矩阵是描述了两个图像间相对运动的一个重要矩阵。
给定相机的内参矩阵,我们可以通过本质矩阵来计算相机的旋转和平移。
本质矩阵E满足以下条件:•对于每一对对应点(x1, x2),我们有 x2^T * E * x1 = 0•E的秩为2通过计算本质矩阵,我们可以得到每个像素在另一张图像上的极线。
2.2 极点的计算在得到了极线之后,我们可以通过极线来计算极点。
对于一条极线,它可以由两个像素点确定:在第一张图像上的一个像素点和在第二张图像上的一个像素点。
这两个像素点分别属于极线,它们共同决定了极线的位置。
假设给定了一条极线和一个像素点,我们可以通过求解极线与像素点的交点来得到极点。
交点的坐标即为极点的坐标。
2.3 其他计算方法除了上述介绍的基于基础矩阵和本质矩阵的计算方法,还有其他一些方法可以计算极线和极点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第15讲:极点与极线的性质 125第15讲:极点与极线的性质极点与极线是高等几何中的基本且重要的概念,虽然中学数学没有介绍,但以此为背景命制的高考试题经常出现.掌握极点与极线的初步知识,可使我们“登高望远”,抓住问题的本质,确定解题方向,寻找简捷的解题途.定义:已知曲线G:ax 2+bxy+cy 2+dx+ey+f=0,则称点P(x 0,y 0)和直线l:ax 0x+b200y x x y ++cy 0y+d 20x x ++e 2y y ++f=0是曲线G 的一对极点与极线,点P 称为直线l 关于曲线G 的极点;直线l 称为点P 关于曲线G 的极线.称点P 与直线l 有“配极关系”,或“对偶关系”,相互为对方的“配极元素”,或“对偶元素”.特别地,当点P 在曲线G 上时,点P 关于曲线G 的极线是曲线G 在点P 处的切线;圆锥曲线的焦点对应的极线是该焦点对应的准线;圆锥曲线的准线对应的极点是该准线对应的焦点.[位置关系]:已知点P 关于圆锥曲线G 的极线是直线l,则三者的位置关系是:①若点P 在曲线G 上,则直线l 是曲线G 在点P 处的切线;②若点P 在曲线G 外,则直线l 是由点P 向曲线G 引两条切线的切点弦;③若点P 在曲线G 内,则直线l 是经过点P 的曲线G 的弦的两端点处的切线交点轨迹.如图:l l l P M P A D M PN C N B[配极原则]:如果点P 的极线通过点Q,则点Q 的极线也通过点P.证明:设圆锥曲线G:ax 2+bxy+cy 2+2dx+2ey+f=0,点P(x p ,y p ),Q(x Q ,y Q ),则点P 、Q 关于曲线G 的极线方程分别为p:ax p x+b2yx x y p p ++cy p y+d2p x x ++e2p y y ++f=0,q:ax Q x+b2yx x y Q Q ++cy Q y+d2Q x x ++e2Q y y ++f=0,则点P 的极线通过点Q ⇔ax p x Q +b2Qp Q p y x x y ++cy p y Q +d2pQ x x ++e 2pQ y y ++f=0⇔点P(x p ,y p )在直线q:ax Q x+b2y x x y Q Q ++cy Q y+d2Q x x ++e2Q y y ++f=0上⇔点Q 的极线也通过点P.推论1:两点连线的极点是此二点极线的交点,两直线交点的极线是此二直线极点的连线;证明:设两点A 、B 连线的极点是P,即点P 的极线经过点A 、B,由配极原则知点A 、B 的极线均过点P,即点P 是此二点极线的交点;同理可证:两直线交点的极线是此二直线极点的连线.推论2(共点共线):共线点的极线必共点;共点线的极点必共线.证明:设点A 、B 均在直线l 上,直线l 对应的极点为P,由配极原则知点A 、B 的极线均过点P,即点A 、B 的极线必共点;同理可证:共点线的极点必共线.推论3(中点性质):若圆锥曲线G 过点P 的弦AB 平行于点P 的极线,则点P 是弦AB 的中点.证明:设P(x 0,y 0),曲线G:ax 2+bxy+cy 2+2dx+2ey+f=0,则点P 的极线方程:ax 0x+b200y x x y ++cy 0y+d 20x x ++e 2y y + +f=0,故可设AB:ax 0x+b200y x x y ++cy 0y+d 20x x ++e 20y y ++λ=0,由点P(x 0,y 0)在直线AB 上⇒ax 02+bx 0y 0+cy 02+2dx 0+2ey 0+λ=0⇒λ=-(ax 02+bx 0y 0+cy 02+2dx 0+2ey 0)⇒直线AB:ax 0x+b 200y x x y ++cy 0y+d 20x x ++e 20y y +=ax 02+bx 0y 0+cy 02+2dx 0+2ey 0⇒ ax 0x+b200y x x y ++cy 0y+d 20x x ++e 20y y ++f=ax 02+bx 0y 0+cy 02+2dx 0+2ey 0+f,而该直线为以为P 中点的中点弦方程,即点P 是弦AB 的中点.[比例定理]:若过点P(x 0,y 0)的直线l 与曲线G:ax 2+bxy+cy 2+dx+ey+f=0相交于A 、B 两点,与直线:ax 0x+b200yx x y ++ 126 第15讲:极点与极线的性质cy 0y+d20x x ++e 2y y ++f=0交于点Q,则|PA||QB|=|QA||PB|. 证明:设直线l:⎩⎨⎧+=+=θθsin cos 00t y y t x x (t 为参数),代入ax 0x+b 200y x x y ++cy 0y+d 20x x ++e 20y y ++f=0得:(2ax 0cos θ+bx 0sin θ+by 0cos θ+2cy 0sin θ)t+2(ax 02+bx 0y 0+cy 02+dx 0+ey 0+f)=0⇒t 0=-2θθθθsin 2cos sin cos 2000000200020cy by bx ax f ey dx cy y bx ax ++++++++;代入ax 2+bxy+cy 2+2dx+2ey+f=0得:(acos 2θ+bcos θsin θ+csin 2θ)t 2+(2ax 0cos θ+bx 0sin θ+by 0cos θ+2cy 0sin θ)t+(ax 02+bx 0y 0+cy 02+dx 0 +ey 0+f)=0⇒t 1+t 2=-θθθθθθθθ220000sin cos sin cos sin 2cos sin cos 2c b a cy by bx ax +++++,t 1t 2=θθθθ2200200020sin cos sin cos c b a fey dx cy y bx ax +++++++⇒t 0=21212t t t t +;而|PA||QB|= |QA||PB|⇔|t 1||t 2-t 0|=|t 1-t 0||t 2|⇔t 0=21212t t t t +成立. [面积定理]:已知点P 关于圆锥曲线G 的极线为l,过点P 的直线与圆锥曲线G 相交于A 、B 两点,分别过点A 、B 的两条平行线与直线l 交于点D 、C,记△APD 、△CPD 、△BPC 的面积分别为S 1,S 2,S 3,则:S 22=4S 1S 2.证明:以椭圆G:22a x +22b y =1(a>b>0)为例,设P(x 0,y 0),则极线l:12020=+b y y a x x .设A(x 1,y 1),B(x 2,y 2),并分别过点A 、B作l 的垂线,垂足分别为D 1、C 1,则||||11BC AD =|1||1|220220210210-+-+by y a x x b y y a x x =||||2220220222102102b a y y a x x b b a y y a x x b -+-+(注意到:a 2b 2=b 2x 12+a 2y 12,a 2b 2=b 2x 22+a 2y 2) =||||222222202202212212102102y a x b y y a x x b y a x b y y a x x b --+--+=|)()(||)()(|0222022201120112y y y a x x x b y y y a x x x b -+--+-(注意到:0101x x y y --=0202x x y y --=k)=||||0201x x x x --⋅||||22221212x b ky a x b ky a ++.又因||||BP AP =||||0201x x x x --,以下只需证||||22221212x b ky a x b ky a ++=1,即|a 2ky 1+b 2x 1|=|a 2ky 2+b 2x 2|,由⎪⎩⎪⎨⎧=+=+2222222222212212ba y a xb b a y a x b ⇒b 2(x 1-x 2)(x 1+x 2)+a 2(y 1- y 2)(y 1+y 2)=0⇒b 2(x 1+x 2)+a 2k(y 1+y 2)=0⇒a 2ky 1+b 2x 1=-(a 2ky 2+b 2x 2)⇒|a 2ky 1+b 2x 1|=|a 2ky 2+b 2x 2|⇒||||BP AP =||||11BC AD ,由△ADD 1∽△BCC 1⇒||||BC AD =||||BP AP ,设AC 与BD 交于点Q,由AD ∥BC ⇒||||BC AD =||||QC AQ ⇒||||BP AP =||||QC AQ ⇒PQ ∥BC ∥AD ⇒S △BAC =S △BDC ,两边同减S △BQC 得S △QAB =S △QDC ,又因S △PQA =S △PQD ,S △PQB =S △PQC ⇒S △PCD =S △QCD +S △PQD +S △PQC =S △QCD +S △PQA +S △PQB =S △QCD +S △QAB =2S △QAB ⇒S △QAD =S △PAD =S 1,S△QBC=S △PBC =S 3,S △QAB =21S △PCD =21S 2,注意到:QAB QBC QAB QAD S S S S ∆∆∆∆⋅=||||||||QA QC QB QD ⋅=1⇒2QAB S ∆=S △QAD S △QBC ⇒S 22=4S 1S 2. 例1:极点与极线的位置关系.[始源问题]:(2010年湖北高考试题)已知椭圆C:22x +y 2=1的两焦点为F 1 ,F 2,点P(x 0,y 0)满足0<220x +y 02<1,则|PF 1|+|PF 2|的取值范围为 ,直线20xx +y 0y=1与椭圆C 的公共点个数为 . [解析]:由0<220x +y 02<1知,点P 在椭圆C 内,所以直线20x x +y 0y=1与椭圆C 相离⇒公共点个数为0;2c ≤PF 1|+|PF 2|<2a ⇒ 2≤PF 1|+|PF 2|<22⇒|PF 1|+|PF 2|的取值范围为[2,22).[原创问题]:已知椭圆C:42x +32y =1,点P(x 0,y 0)满足42x +320y >1(x 0≠0),直线l:40x x +30y y =1.(Ⅰ)求直线l 与椭圆C 的公共点个数;(Ⅱ)若射线OP 与直线l 、椭圆C 分别交于点Q 、M,求证:|OP||OQ|=|OM|2.[解析]:(Ⅰ)因椭圆C:42x +32y =1⇔⎩⎨⎧==θθsin 3cos 2y x ,θ∈[0,2π),所以,直线l 与椭圆C 的公共点个数⇔关于θ的方程第15讲:极点与极线的性质 12720x cos θ+330y sin θ=1解的个数⇔直线:20x x+330y y=1与圆:x 2+y 2=1的公共点个数;由圆心O(0,0)到直线:20x x+330y y=1的距离d=341220y x +<1⇒直线:20x x+330y y=1与圆:x 2+y 2=1的公共点个数=2⇒直线l 与椭圆C 的公共点个数=2;(Ⅱ)因射线OP:y=00x y x(x 与x 0同号),与40x x +30y y =1联立得:40x x +0203x x y =1⇒x=202004312y x x +⇒y=202004312y x y +⇒Q(202004312y x x +,22004312y x y +)⇒|OP||OQ|=2020202043)(12y x y x ++;由y=00x y x 与42x +32y =1联立得:42x +20203x y x 2=1⇒x 2=2020204312y x x +⇒y 2=2020204312y x y +⇒|OM|2=x 2+y 2=2020204312y x x ++2020204312y x y +=2020202043)(12y x y x ++⇒|OP||OQ|=|OM|2.例2:抛物线中的共线性质.[始源问题]:(2010年大纲卷Ⅰ高考试题)已知抛物线C:y 2=4x 的焦点为F,过点K(-1,0)的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D. (Ⅰ)证明:点F 在直线BD 上; (Ⅱ)设FB FA ⋅=98,求△BDK 的内切圆M 的方程. [解析]:(Ⅰ)设A(x 1,y 1),B(x 2,y 2),直线l:y=k(x+1)(k ≠0),则D(x 1,-y 1),由⎩⎨⎧=+=xy x k y 4)1(2⇒ky 2-4y+4k=0⇒y 1+y 2=k 4,y 1y 2= 4;所以,点F 在直线BD 上⇔FB ∥FD ⇔(x 2-1):(x 1-1)=y 2:(-y 1)⇔y 1(k y 2-2)+y 2(ky1-2)=0⇔y 1y 2-k(y 1+y 2)=0; (Ⅱ)由FB FA ⋅=(x 1-1)(x 2-1)+y 1y 2=(k y 2-2)(k y 1-2)+y 1y 2=(1+21k )y 1y 2-k 2(y 1+y 2)+4=4(1+21k )-28k +4=8-24k=98⇒k=±43; 根据对称性,不妨设k=43,则直线AB:3x-4y+3=0,且k KD =43⇒KF 平分∠AKD ⇒圆M 的圆心M 在x 轴上;(x 2-x 1)2=(x 1+x 2)2- 4x 1x 2=7162⇒k BD =1212y y x x +-=73⇒直线BD:3x-7y-3=0;设M(t,0)(-1<t<1),则由点M 到直线AB 与BD 的距离相等⇒5|1|3+t=4|1|3-t ⇒t=91⇒圆M:(x-91)2+y 2=94. [原创问题]:已知抛物线y 2=2px 及定点A(a,b),B(-a,0)(ab ≠0,b 2≠2pa),M 是抛物线上的点,设直线AM,BM 与抛物线的另一交点分别为M 1,M 2.求证:当M 点在抛物线上变动时(只要M 1,M 2存在且M 1≠M 2),直线M 1M 2恒过一个定点,并求出这个定点的坐标.[解析]:设M(2pt 2,2pt),M 1(2pt 12,2pt 1),M 2(2pt 22,2pt 2),则点B,M,M 2对应的极线分别为:x=a,2ty=x+2pt 2,2t 2y=x+2pt 22,由B,M,M 2三点共线⇒三线x=a,2ty=x+2pt 2,2t 2y=x+2pt 22共点⇒a=2ptt 2⇒t 2=pta2,点A,M 1对应的极线分别为:by=px+ap, 2t 1y=x+2pt 12,由A,M,M 1三点共线⇒三线by=px+ap,2ty=x+2pt 2,2t 1y=x+2pt 12共点⇒bp(t+t 1)=2p 2tt 1+ap ⇒t 1=ptb bta 2--,由⎪⎩⎪⎨⎧+=+=2222112222pt x y t pt x y t ⇒⎩⎨⎧+==)(22121t t p y t pt x ⇒⎪⎪⎩⎪⎪⎨⎧--=--=)2(2)2()2()(2pt b pt t p a b y pt b t bt a a x ⇒x-a=)2(22pt b t t p a --=b a 2y ⇒M 1,M 2对应极线的交点在定直线b p 2y=x+a, 即b p 22y=2p 2a x +上⇒直线M 1M 2恒过一个定点(a,bpa2). 128 第15讲:极点与极线的性质例3:抛物线中的比例性质.[始源问题]:(2009年全国高中数学联赛湖北初赛试题)已知抛物线C:y=21x 2与直线l:y=kx-1没有公共点,设点P 为直线l 上的动点,过P 作抛物线C 的两条切线,A 、B 为切点. (Ⅰ)证明:直线AB 恒过定点Q;(Ⅱ)若点P 与(Ⅰ)中的定点Q 的连线交抛物线C 于M 、N 两点.证明:||||PN PM =||||QN QM . [解析]:(Ⅰ)设A(x 1,y 1),B(x 2,y 2),P(x 0,y 0),则抛物线y=21x 2在点A 、B 处的切线方程分别为x 1x=y+y 1、x 2x=y+y 2,由点P(x 0,y 0)在这两切线上得:⎩⎨⎧+=+=02200110y y x x y y x x ⇒直线AB:x 0x=y+y 0(注意到:y 0=kx 0-1)⇒x 0x=y+kx 0-1⇒直线AB 过定点Q(k,1);(Ⅱ)设直线MN:⎩⎨⎧+=+=θθsin cos 00t y y t x x ,代入直线AB:x 0x=y+y 0,得:t Q =θθcos sin 20020x y x --;代入y=21x 2得:t 2cos 2θ+2(x 0cos θ-sinθ)t+x 02-2y 0=0⇒t 1+t 2=2⋅θθθ20cos cos sin x -,t 1t 2=θ2020cos 2y x -⇒21212t t t t +=θθcos sin 20020x y x --⇒t Q =21212t t t t +;所以,||||PN PM =||||QN QM ⇔21t t= QQ t t t t --21⇔t Q =21212t t t t +成立. [原创问题]:已知抛物线C:x 2=4y 与直线l:y=x-2,设点P 为直线l 上的动点,过P 作抛物线C 的两条切线,A 、B 为切点.(Ⅰ)证明:直线AB 恒过定点T;(Ⅱ)若过点P 的直线l 交抛物线C 于M 、N 两点,与直线AB 交于点Q.证明||PM ||PN ||PQ [解析]:(Ⅰ)设A(x 1,y 1),B(x 2,y 2),P(x 0,y 0),则抛物线C:x 2=4y 在点A 、B 处的切线方程分别为x 1x=2(y+y 1)、x 2x=(y+y 2),由点P(x 0,y 0)在这两切线上得:⎩⎨⎧+=+=)(2)(202200110y y x x y y x x ⇒直线AB:x 0x=2(y+y 0)(注意到:y 0=x 0-2)⇒x 0x=2y+2x 0-4⇒直线AB 过定点T(2,2);(Ⅱ)设直线MN:⎩⎨⎧+=+=θθsin cos 00t y y t x x ,代入直线AB:x 0x=2(y+y 0),得:t Q =θθcos sin 240020x y x --;代入x 2=4y 得:t 2cos 2θ+2(x 0cos θ-2sin θ)t+x 02-4y 0=0⇒t 1+t 2=2⋅θθθ20cos cos sin 2x -,t 1t 2=θ2020cos 4y x -⇒21212t t t t +=θθcos sin 240020x y x --⇒t Q =21212t t t t +;所以||PM ||PN ||PQ ⇔11t21t =Q t 2⇔t Q =21212t t tt +成立. 例4:抛物线中的面积关系.[始源问题]:(2009年湖北高考试题)过抛物线y 2=2px(p>0)的对称轴上一点A(a,0)(a>0),的直线与抛物线相交于M 、N两点,自M 、N 向直线l:x=-a 作垂线,垂足分别为M 1、N 1. (Ⅰ)当a=2p时,求证:AM 1⊥AN 1; (Ⅱ)记△AMM 1、△AM 1N 1、△ANN 1的面积分别为S 1、S 2、S 3,是否存在λ,使得对任意的a>0,都有S 22=λS 1S 3成立.若存在,求出λ的值;若不存在,说明理由.[解析]:(Ⅰ)当a=2p 时,A(2p ,0),设M(2pm 2,2pm),N(2pn 2,2pn),则M 1(-2p ,2pm),N 1(-2p ,2pn),由AM ∥AN ⇒(2pm 2- 2p ):(2pn 2-2p )=2pm:2pn ⇒mn=-41⇒1AM ⋅1AN =p 2+4p 2mn=0⇒AM 1⊥AN 1;第15讲:极点与极线的性质 129(Ⅱ)由AM ∥AN ⇒(2pm 2-a):(2pn 2-a)=2pm:2pn ⇒2pmn+a=0;因||||11NN MM =2222pn a pm a ++;当MN ⊥/x 轴时,||||AN AM =|2||2|22pn a a pm --=2222pn a a pm --;所以,||||11NN MM =||||AN AM ⇔2222pn a pm a ++=2222pn a a pm --⇔4p 2m 2n 2=a 2成立;当MN ⊥x 轴时,显然有||||11NN MM =||||AN AM ;设MN 1与NM 1交于点Q(点Q 即原点O),由MM 1∥NN 1⇒||||1QN MQ =||||11NN MM =||||AN AM ⇒AQ ∥MM 1∥NN 1;设∠MQM 1=α,则S 1=21|QM||QM 1|sin α,S 3 =21|QN||QN 1|sin α;又S △QMN =11N QM S ∆⇒S 2=11N QM S ∆+(1AQM S ∆+1AQN S ∆)=11N QM S ∆+(S △AQM +S △AQN )=11N QM S ∆+S △QMN =2S △QMN ;S 1S 3=21|QM||QM 1|sin α⋅21|QN||QN 1|sin α=21|QM||QN|sin α⋅21|QM 1||QN 1|sin α=S △QMN 11N QM S ∆=41S 22⇒S 22=4S 1S 3⇒存在λ=4,使得对任意的a>0,都有S 22=λS 1S 3成立.[原创问题]:已知抛物线C:y 2=4x,直线l:y=2x+2,过点P(1,1)的直线与抛物线C 交于A 、B 两点,A 、B 两点在直线l 上的射影点分别为N 、M,记△PAN 、△PMN 、△PBM 的面积分别为S 1、S 2、S 3. (Ⅰ)当AB ∥直线l 时,求证:P 是AB 的中点; (Ⅱ)求证:S 22=4S 1S 3.[解析]:(Ⅰ)设A(x 1,y 1),则y 12=4x 1;由P 是AB 的中点⇒B(2-x 1,2-y 1)⇒(2-y 1)2=4(2-x 1)⇒y 1=2x 1+1⇒点A 在直线y=2x+1上,同理可得点B 也在直线y=2x+1上⇒直线AB:y=2x+1⇒AB ∥直线l;由统一法知,当AB ∥直线l 时, P 是AB 的中点;(Ⅱ)设直线AB:⎩⎨⎧+=+=θθsin 1cos 1t y t x (t 为参数),代入y 2=4x 得:t 2sin 2θ+2(sin θ-2cos θ)t-3=0⇒t 1+t 2=2⋅θθθ2sin sin cos 2-,t 1t 2=-θ2sin 3;点A(1+t 1cos θ,1+t 1sin θ)到直线l 的距离|AN|=5|3sin cos 2|11+-θθt t ,点B(1+t 2cos θ,1+t 2sin θ)到直线l 的距离|BM|=5|3sin cos 2|22+-θθt t ⇒||||BM AN =|3sin cos 2||3sin cos 2|2211+-+-θθθθt t t t (由点A 、B 在直线l 的同侧⇒2t 1cos θ-t 1sin θ+3与t 2cos θ-t 2sin θ+3同号)=3sin cos 23sin cos 22211+-+-θθθθt t t t ;而||||PB PA =||||21t t (点A 、B 在点P 的异侧)=-21t t;所以,||||BM AN =||||PB PA ⇔3sin cos 23sin cos 22211+-+-θθθθt t t t=-21t t ⇔2(2cos θ-sin θ)t 1t 2+3(t 1+t 2)=0⇔2(2cos θ-sin θ)(-θ2sin 3)+3⋅2⋅θθθ2sin sin cos 2-=0成立; 以下同例题可证:S 22=4S 1S 3.例5:椭圆中的共线性质.[始源问题]:(2012年北京高考试题)已知曲线C:(5-m)x 2+(m-2)y 2=8(m ∈R).(Ⅰ)若曲线C 是焦点在x 轴点上的椭圆,求m 的取值范围;(Ⅱ)设m=4,曲线C 与y 轴的交点为A,B(点A 位于点B 的上方),直线y=kx+4与曲线C 交于不同的两点M 、N,直线y=1与直线BM 交于点G.求证:A,G,N 三点共线.[解析]:(Ⅰ)由曲线C 是焦点在x 轴点上的椭圆⇔m-2>5-m>0⇔27<m<5.故m 的取值范围是(27,5); (Ⅱ)当m=4时,曲线C:x 2+2y 2=8⇒A(0,2),B(0,-2);设M(x 1,y 1),N(x 2,y 2),由⎩⎨⎧=++=82422y x kx y ⇒(2k 2+1)x 2+16kx+24=0⇒△= 32(2k 2-3)>0⇒k 2>23;且x 1+x 2=-12162+k k ,x 1x 2=12242+k ;又由直线BM:y=112x y +x-2⇒G(2311+y x ,1),即G(6311+kx x ,1)⇒k AG =-1136x kx +=-3k -12x ,k AN =222x y -=222x kx +=k+22x ⇒k AN -k AG =34k +12x +22x =34k +2⋅2121x x xx +=34k +2⋅2416k -=0⇒A,G,N 三点共线.第(Ⅱ)问是本题的特色与亮点,其实质是共轭点的性质:设点P 与Q 是二次曲线G 的一对共轭点,过点Q 的直线AC 与曲线G 相交于A 、C 两点,AP 与曲线G 相交于另一点B,BQ 与曲线G 相交于另一点D,则P 、C 、D 三点共线.其中共轭点的定义:130 第15讲:极点与极线的性质若直线PQ 与圆锥曲线G 相交于A 、B 两点,且PA ⋅QB +PB ⋅QA =0,则称点P 与Q 是圆锥曲线G 的一对共轭点.[原创问题]:已知椭圆C:2222b y a x +=1(a>b>0)过点D(-1,e),其中,e 是椭圆C 的离心率,椭圆C 的左、右顶点分别为A(-2,0)、B(2,0). (Ⅰ)求椭圆C 的方程;(Ⅱ)过点E(4,0)的直线l 与椭圆C 交于M 、N 两点,求证:直线AM 与BN 的交点P 在一条定直线上.[解析]:(Ⅰ)由a=2,21a +22b e =1⇒1+22b c =a 2⇒b 2=1⇒椭圆C:42x +y 2=1; (Ⅱ)设M(x 1,y 1),N(x 2,y 2),直线l:y=k(x-4),由⎩⎨⎧=+-=44)4(22y x x k y ⇒(1+4k 2)x 2-32k 2x+64k 2-4=0⇒x 1+x 2=224132k k +,x 1x 2=2241464k k +- ⇒k 2=)(4322121x x x x +-+,x 1x 2(1+4k 2)=64k 2-4⇒x 1x 2⋅)(8821x x +-=)(8]8)(5[42121x x x x +--+⇒2x 1x 2=5(x 1+x 2)-8;又由直线AM:y=211+x y (x+2),直线BN:y=222-x y (x-2)⇒直线AM 与BN 的交点P 的横坐标x 满足:211+x y (x+2)=222-x y (x-2)⇒2)4(11+-x x k (x+2)= 2)4(22--x x k (x-2)⇒x=83262122121----x x x x x x =83268)(5122121-----+x x x x x x =1⇒点P 在一条定直线x=1上.例6:椭圆中的中点性质.[始源问题]:(2008年全国高中数学联赛湖南初赛试题)如图,过直线l:5x-7y-70=0上的点P 作椭圆252x +92y =1的两条切线PM 、PN,切点分别为M 、N.(Ⅰ)当点P 在直线l 上运动时,证明:直线MN 恒过定点Q; (Ⅱ)当MN ∥l 时,定点Q 平分线段MN.[解析]:(Ⅰ)设P(7t+7,5t-5),则直线MN 的方程为:2577+t x+955-t y=1⇒(257x+95y)t+(257x-95y-1)=0,由257x+95y=0,且257x-95y-1=0⇒x=1425,y=-109⇒直线MN 恒过定点Q(1425,-109);(Ⅱ)MN ∥l ⇔2577+t :955-t =5:(-7)⇔t=53392⇒直线MN 的方程为:5x-7y-35533=0,代入椭圆方程252x +92y =1得:275332⨯x2 -23753325⨯x+25[(275533⨯)2-9]=0,设M(x 1,y 1),N(x 2,y 2),则x 1+x 2=725⇒定点Q 平分线段MN. [原创问题]:过点Q(1,1)作己知直线l:3x+4y=12的平行线交椭圆C:42x +32y =1于点M 、N. (Ⅰ)分别过点M 、N 作椭圆C 的切线l 1、l 2.证明:三条直线l 1、l 2、l 交于一点; (Ⅱ)证明:点Q 是线段MN 的中点;(Ⅲ)设P 为直线l 上一动点,过点P 作椭圆C 的切线PA 、PB,切点分别为A 、B,证明:点Q 在直线AB 上.[解析]:(Ⅰ)设M(x 1,y 1),N(x 2,y 2),切线l 1、l 2交于点P(x 0,y 0),由切线l 1:41x x+31y y=1,切线l 2:42x x+32yy=1均过点P(x 0, y 0)⇒41x x 0+31y y 0=1,42x x 0+32yy 0=1⇒直线MN:40x x+30y y=1;又由直线MN 过点Q(1,1)⇒40x +30y =1⇒3x 0+4y 0=12⇒点P 在直线l 上⇒三条直线l 1、l 2、l 交于一点; (Ⅱ)由直线MN ∥直线l ⇒40x :30y =41:31,又40x +30y =1⇒x 0=y 0=712⇒直线MN:3x+4y=7⇒点Q 是线段MN 的中点; (Ⅲ)设P(x 0,y 0),则直线AB:3x 0x+4y 0y=12⇒3x 0x+(12-3x 0)y=12⇒点Q 在直线AB 上.第15讲:极点与极线的性质 131例7:椭圆中的比例性质.[始源问题]:(2011年山东高考试题)在平面直角坐标系xOy 中,已知椭圆C:32x +y 2=1.如图所示,斜率为k(k>0)且不过原点的直线l 交椭圆C 于A,B 两点,线段AB 的中点为E ,射线OE 交椭圆C 于点G 交直线x=-3于点D(-3,m).(Ⅰ)求m 2+k 2的最小值(Ⅱ)若|OG|2(i)求证:直线l 过定点(ii)试问点B,G 能否关于x 轴对称?若能,求出此时△ABG 的外接圆方程;若不能,请说明理由.[解析]:(Ⅰ)设E(-3λ,m λ),A(-3λ+t,m λ+kt),则B(-3λ-t,m λ-kt).由点A 、B 都在椭圆C 上⇒⎪⎩⎪⎨⎧=-+--=+++-3)(3)3(3)(3)3(2222kt m t kt m t λλλλ,两式相减得mk=1⇒m 2+k 2≥2mk=2,当且仅当m=k=1时等号成立,所以m 2+k 2的最小值=2.(Ⅱ)(i)设直线OG 与椭圆C 相交于另一点T,则由椭圆C 关于原点对称得:|OT|=|OG|.所以,|OG|2=|OD||OE|⇔DT EG ⋅+DG ET ⋅=0,由轨迹1知,点E 在直线-x+my=1上,即直线l 的方程为:-x+my=1⇒直线l 过定点(-1,0);(ii)若点B,G 关于x 轴对称⇒点G(-3λ-t,-m λ+kt),由点G 在直线OE 上⇒(-3λ-t):(-3λ)=(-m λ+kt):m λ⇒6m λ+mt =3kt(注意到mk=1)⇒m 2(6λ+t)=3t ⇒t=2236mm -λ,又由点E 在直线l 上⇒3λ+m 2λ=1⇒λ=231m +⇒B(-233m -,-23m m -)⇒31(233m -)2+(23mm -)2=1⇒m=1,k=1,λ=41,t=43⇒A(0,1),B(-23,-21),G(-23,21)⇒△ABG 的外接圆方程:(x+21)2+y 2=45. [原创问题]:已知椭圆C:2222b y a x +=1(a>b>0)内一点P(2,1),射线OP 与椭圆C 交于点N,与直线l 0:x+y-12=0交于点M,满足|OP||OM|=|ON|2,且椭圆C 在N 处的切线平行于直线l 0. (Ⅰ)求椭圆C 的方程;(Ⅱ)过点P 的任意一条直线l 与直线l 0交于点Q,与椭圆C 交于A 、B 两点(A 在P 与Q 之间),求证:|QA||PB|=|QB||PA|.[解析]:(Ⅰ)由射线OP:y=21x(x ≥0),直线l 0:x+y-12=0⇒M(8,4);设N(2t,t)(t>0),由|OP||OM|=|ON|2⇒5⋅80=4t2+t 2⇒t=2⇒N(4,2)⇒216a+24b=1,椭圆C 在N 处的切线:24ax +22by =1;由切线平行于直线l 0⇒24a=22b⇒a 2=2b 2⇒b 2=12,a2=24⇒椭圆C:242x +122y =1; (Ⅱ)设直线l:⎩⎨⎧+=+=θθsin 1cos 2t y t x (t 为参数),代入242x +122y =1得:(2sin 2θ+cos 2θ)t 2+4(sin θ+cos θ)t-18=0⇒t 1+t 2=-θθθθ22cos sin 2)cos (sin 4++,t 1t 2=-θθ22cos sin 218+;代入x+y-12=0得:(sin θ+cos θ)t-9=0⇒t Q =θθcos sin 9+;而|QA||PB|=|QB||PA|⇔(t Q -t 1)(-t 2)=(t Q -t 2)t 1⇔(t 1+t 2)t Q -2t 1t 2=0⇔-θθθθ22cos sin 2)cos (sin 4++⋅θθcos sin 9+-2(-θθ22cos sin 218+)=0成立. [原创问题]:已知椭圆C:2222b y a x +=1(a>b>0)内一点P(2,1),过点P 且平行于x 轴直线被椭圆C 截得的弦长为46,过点P 且平行于y 轴直线被椭圆C 截得的弦长为210. (Ⅰ)求椭圆C 的方程;(Ⅱ)过点P 的任意一条直线l 与直线l 0:x+y-12=0交于点Q,与椭圆C 交于A 、B 两点,若QA =λAP ,QB =μBP .求证:λ+132 第15讲:极点与极线的性质μ为定值.[解析]:(Ⅰ)由2222by ax +=1,令y=1得:|x|=ba12-b ;令x=2得:|y|=ab 42-a ;由题知,ba 12-b =26,ab 42-a =10⇒a 2=12422-b b ,22a b (a 2-4)=10⇒2412-b (12422-b b -4)=10⇒b 2=12⇒a 2=24⇒椭圆C:242x +122y =1;(Ⅱ)设直线l:⎩⎨⎧+=+=θθsin 1cos 2t y t x (t 为参数),代入242x +122y =1得:(2sin 2θ+cos 2θ)t 2+4(sin θ+cos θ)t-18=0⇒t 1+t 2=-θθθθ22cos sin 2)cos (sin 4++,t 1t 2=-θθ22cos sin 218+;代入x+y-12=0得:(sin θ+cos θ)t-9=0⇒t Q =θθcos sin 9+;由QA =λAP ,QB =μBP⇒λ=11t t t Q -,μ=22t t t Q -⇒λ+μ=2-t Q ⋅2121t t t t +=2-θθcos sin 9+⋅9)cos (sin 2θθ+=0. 例8:椭圆中的共线性质.[始源问题]:(2002年澳大利亚数学奥林匹克试题)己知△ABC 为锐角三角形以AB 为直径的⊙K 分别交AC 、BC 于P 、Q,分别过A 和Q 作⊙K 的两条切线交于点R,分别过B 和P 作⊙K 的两条切线交于点S.证明:点C 在线段RS 上[解析]:设⊙K:x 2+y 2=r 2,R(-r,a),S(r,b)⇒点R,S 对应的极线分别为:AQ:-rx+ay=r 2,BP:rx+by=r 2⇒Q(2222)(r a r r a +-,2222r a ar +),P(-2222)(r b r r b +-,2222r b br +⇒AP:y=r b (x+r),BQ:y=-r a (x-r),由⎪⎪⎩⎪⎪⎨⎧+=--=)()(r x r b y r x r a y ⇒⎪⎪⎩⎪⎪⎨⎧+=+-=b a ab y r b a b a x 2⇒C(b a b a +-r,b a ab +2)⇒点C 对应的极线为:(a-b)rx+2aby=(a+b)r 2,由三线:-rx+ay=r 2,BP:rx+by=r 2,(a-b)rx+2aby=(a+b)r 2共点于(ba ba +-r, ba r +22)⇒R,C,S 三点共线⇒点C 在线段RS 上. 该题是平面几何定理:“过非等腰三角形的三个顶点作其外接圆的切线,顶点处的切线与其对边所在直线的交点共线.”的变形,以该定理为始源,取其特殊情况,并把圆压缩为椭圆得:[原创问题]:若对任意θ∈[0,2π),直线l:xcos θ+2ysin θ-2=0与椭圆C:2222b y a x +=1(a>b>0)均只有一个交点M.(Ⅰ)求椭圆C 的方程; (Ⅱ)当θ∈(0,2π)时,若直线l 与x 轴交于点N,椭圆C 的左、右顶点分别为A 、B,直线BM 上的点Q 满足QA ⊥x 轴,直线AM 与NQ 交于点P,求点P 的轨迹方程.[解析]:(Ⅰ)由⎩⎨⎧=-+=-+002sin 2cos 222222b a y a x b y x θθ⇒(a 2cos 2θ+4b 2sin 2θ)y 2-8b 2ysin θ+4b 2-a 2b 2cos 2θ=0⇒△=64b 4sin 2θ-4(a 2cos 2θ +4b 2sin 2θ)(4b 2-a 2b 2cos 2θ)=0⇒a 2-4+(4b 2-a 2)sin 2θ=0恒成立⇒a 2-4=0,4b 2-a 2=0⇒a 2=4,b 2=1⇒椭圆C:42x +y 2=1; (Ⅱ)由xcos θ+2ysin θ-2=0⇒N(θcos 2,0);(Ⅰ)知,M(2cos θ,sin θ)⇒直线AM:y=2cos 2sin +θθ(x+2),BM:y=2cos 2sin -θθ(x-2)⇒Q(-2,θθcos 1sin 2-)⇒直线NQ:y=-cot θ(x-θcos 2);令2cos 2sin +θθ(x+2)=-cot θ(x-θcos 2)⇒(2cos 2sin +θθ+θθcos sin )x=θsin 2-1cos sin +θθ⇒x=2⇒点P 的轨迹方程x=2(0<y<2).。