三角函数公式大全关系

合集下载

三角函数关系公式大全

三角函数关系公式大全

三角函数关系公式大全一、同角三角函数的基本关系。

1. 平方关系。

- sin^2α+cos^2α = 1- 1+tan^2α=sec^2α(其中secα=(1)/(cosα))- 1 + cot^2α=csc^2α(其中cscα=(1)/(sinα))2. 商数关系。

- tanα=(sinα)/(cosα)- cotα=(cosα)/(sinα)二、诱导公式。

1. 关于α与-α的诱导公式。

- sin(-α)=-sinα- cos(-α)=cosα- tan(-α)=-tanα2. 关于α与π±α的诱导公式。

- sin(π+α)=-sinα- sin(π - α)=sinα- cos(π+α)=-cosα- cos(π-α)=-cosα- tan(π+α)=tanα- tan(π-α)=-tanα3. 关于α与(π)/(2)±α的诱导公式。

- sin((π)/(2)+α)=cosα- sin((π)/(2)-α)=cosα- cos((π)/(2)+α)=-sinα- cos((π)/(2)-α)=sinα- tan((π)/(2)+α)=-cotα- tan((π)/(2)-α)=cotα三、两角和与差的三角函数公式。

1. 两角和的正弦公式。

- sin(A + B)=sin Acos B+cos Asin B2. 两角差的正弦公式。

- sin(A - B)=sin Acos B-cos Asin B3. 两角和的余弦公式。

- cos(A + B)=cos Acos B-sin Asin B4. 两角差的余弦公式。

- cos(A - B)=cos Acos B+sin Asin B5. 两角和的正切公式。

- tan(A + B)=(tan A+tan B)/(1-tan Atan B)6. 两角差的正切公式。

- tan(A - B)=(tan A-tan B)/(1 + tan Atan B)四、二倍角的三角函数公式。

三角函数公式大全及记忆口诀

三角函数公式大全及记忆口诀

三角函数公式大全及记忆口诀一、正弦函数(sine function)公式:1. 正弦函数的定义:在直角三角形中,正弦函数是对边与斜边之比,表示为sinθ。

2. 正弦函数的基本关系式:sinθ = 对边 / 斜边3. 弦函数的平方和恒等式:sin²θ + cos²θ = 1二、余弦函数(cosine function)公式:1. 余弦函数的定义:在直角三角形中,余弦函数是邻边与斜边之比,表示为cosθ。

2. 余弦函数的基本关系式:cosθ = 邻边 / 斜边3. 弦函数与余弦函数的关系:cosθ = sin(90° - θ)三、正切函数(tangent function)公式:1. 正切函数的定义:在直角三角形中,正切函数是对边与邻边之比,表示为tanθ。

2. 正切函数的基本关系式:tanθ = 对边 / 邻边3. 弦函数与正切函数的关系:tanθ = sinθ / cosθ四、余切函数(cotangent function)公式:1. 余切函数的定义:在直角三角形中,余切函数是邻边与对边之比,表示为cotθ。

2. 余切函数的基本关系式:cotθ = 邻边 / 对边3. 弦函数与余切函数的关系:cotθ = 1 / tanθ = cosθ / sinθ五、正割函数(secant function)公式:1. 正割函数的定义:在直角三角形中,正割函数是斜边与邻边之比,表示为secθ。

2. 正割函数的基本关系式:secθ = 斜边 / 邻边= 1 / cosθ六、余割函数(cosecant function)公式:1. 余割函数的定义:在直角三角形中,余割函数是斜边与对边之比,表示为cscθ。

2. 余割函数的基本关系式:cscθ = 斜边 / 对边= 1 / sinθ七、和差公式:1. 正弦函数和差公式:sin(θ±φ) = sinθcosφ ± cosθsinφ2. 余弦函数和差公式:cos(θ±φ) = cosθcosφ ∓ sinθsinφ3. 正切函数和差公式:tan(θ±φ) = (tanθ ± tanφ) / (1 ∓tanθtanφ)八、倍角公式:1. 正弦函数倍角公式:sin2θ = 2sinθcosθ2. 余弦函数倍角公式:cos2θ = cos²θ - sin²θ = 2cos²θ - 1= 1 - 2sin²θ3. 正切函数倍角公式:tan2θ = (2tanθ) / (1 - tan²θ)九、半角公式:1. 正弦函数半角公式:sin(θ/2) = ±√[(1 - cosθ) / 2]2. 余弦函数半角公式:cos(θ/2) = ±√[(1 + cosθ) / 2]3. 正切函数半角公式:tan(θ/2) = ±√[(1 - cosθ) / (1 +cosθ)]十、和差化积公式:1. 正弦函数和差化积公式:sinθ ± sinφ = 2sin[(θ ±φ)/2]cos[(θ ∓ φ)/2]2. 余弦函数和差化积公式:cosθ + cosφ = 2cos[(θ +φ)/2]cos[(θ - φ)/2]3. 正切函数和差化积公式:tanθ ± tanφ = sin(θ ± φ) /cosθcosφ以上是三角函数的常用公式。

三角函数公式大全

三角函数公式大全

三角公式汇总一、任意角的三角函数在角α的终边上任取..一点,记:),(y x P 22y x r +=,正弦:r y =αsin 余弦:r x=αcos 正切:x y =αtan 余切:yx =αcot 正割:xr =αsec 余割:yr =αcsc 注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向..线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线。

二、同角三角函数的基本关系式倒数关系:1csc sin =⋅αα,1sec cos =⋅αα,1cot tan =⋅αα。

商数关系:αααcos sin tan =,αααsin cos cot =。

平方关系:,,。

1cos sin 22=+αααα22sec tan 1=+αα22csc cot 1=+三、诱导公式⑴παk 2+)(Z k ∈、α−、απ+、απ−、απ−2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。

(口诀:函数名不变,符号看象限)⑵απ+2、απ−2、απ+23、απ−23的三角函数值,等于α的异名函数值,前面加上一个把α看成..锐角时原函数值的符号。

(口诀:函数名改变,符号看象限)四、和角公式和差角公式βαβαβαsin cos cos sin )sin(⋅+⋅=+ βαβαβαsin cos cos sin )sin(⋅−⋅=−βαβαβαsin sin cos cos )cos(⋅−⋅=+ βαβαβαsin sin cos cos )cos(⋅+⋅=− βαβαβαtan tan 1tan tan )tan(⋅−+=+βαβαβαtan tan 1tan tan )tan(⋅+−=−五、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos −=−=−=…)(∗ ααα2tan 1tan 22tan −=二倍角的余弦公式)(∗有以下常用变形:(规律:降幂扩角,升幂缩角)αα2cos 22cos 1=+ αα2sin 22cos 1=−2)cos (sin 2sin 1ααα+=+ 2)cos (sin 2sin 1ααα−=−六、万能公式(可以理解为二倍角公式的另一种形式)ααα2tan 1tan 22sin +=,ααα22tan 1tan 12cos +−=,ααα2tan 1tan 22tan −=。

三角函数的基本关系式

三角函数的基本关系式
三角函数的基本关系大全
1. 同角三角函数的基本关系式 tan α ⋅ cot α = 1 sin α ⋅ csc α = 1 cos α ⋅ sec α = 1 2. 倒数关系:
tan α =
sin α sec α = cos α csc α 1 cos α csc α = = tan α sin α sec α
正弦为奇函数 余弦为偶函数 正切为奇函数 sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2+α)=-cosα cos(3π/2+α)= sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中 k∈Z)
3. 商的关系: cot α = 4. 平方关系:
sin 2 α + cos 2 α = 1
1 + tan 2 α = sec2 α =
(对应于勾股定理)
1 (上述公式的扩展) cos 2 α 1 1 + cot 2 α = csc2 α = sin 2 α
5. 诱导公式 单一角公式 sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα

三角函数关系式大全

三角函数关系式大全
tanα
CSCα
SeCα
90°+ α
COSα
-Sinα
-COtα
-ta nα
-CSCα
SeCα
180°-
Sinα
-COSα
-ta nα
-COtα
-SeCα
CSCα
α
180°+
-Sinα
-COSα
tanα
COtα
-SeCα
-CSCα
α
270°-
-COSα
-Sinα
COtα
tanα
-CSCα
-SeCα
α
tanα2cotα =1 Sinα2cscα =1 cosα2secα =1 2商的关系:
Sinα/cosα =tanα =SeCα∕cscα
CoSα∕sinα =Cotα =CSCα/secα直角三角形ABC中,
角A的正弦值就等于角A的对边比斜边,
余弦等于角A的邻边比斜边
正切等于对边比邻边,
2对称性
:
sin(2α)=2Sin
α2cosα=
:2/(tanα+cot
α)
cos(2α)=(cos
α)^2-(sin
α)^2=2(cos
α)^2-1=1-2(sin
α)^2
tan(2α)=2tan
α/(1-tan^2
α)
2三倍角公式
:
Sin(3α)=
3sin
Iα-4sin^3
2积化和差公式:
Sinα2cos
β=
:(1/2)[sin(
α+β)+sin(
α-β)]
cosα2sin
β=
:(1/2)[sin(

三角函数关系式大全

三角函数关系式大全

同角三角函数关系式·平方关系:三角函数sin^2α+cos^2α=1cos^2a=1-sin^2atan^2α+1=1/cos^2α2sin^2a=1-cos2acot^2α+1=1/sin^2a·积的关系:sinα=tanα×cosαcosα=cotα×sinαtanα=sinα×secαcotα=cosα×cscαsecα=tanα×cscαcscα=secα×cotα·倒数关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1·商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα直角三角形ABC中,角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比正切等于对边比邻边,·对称性180度-α的终边和α的终边关于y轴;-α的终边和α的终边关于x;180度+α的终边和α的终边关于对称;180度-α的终边关于y=x对称;·诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:三角函数sin2kπ+α=sinαcos2kπ+α=cosαtan2kπ+α=tanαcot2kπ+α=cotα公式二:设α为任意角,π+α的与α的三角函数值之间的关系:sinπ+α=-sinαcosπ+α=-cosαtanπ+α=tanαcotπ+α=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin-α=-sinαcos-α=cosαtan-α=-tanαcot-α=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sinπ-α=sinαcosπ-α=-cosαtanπ-α=-tanαcotπ-α=-cotα公式五:cosα-β=cosα·cosβ+sinα·sinβsinα±β=sinα·cosβ±cosα·sinβtanα+β=tanα+tanβ/1-tanα·tanβtanα-β=tanα-tanβ/1+tanα·tanβ·公式:sinα+sinβ=2sinα+β/2cosα-β/2sinα-sinβ=2cosα+β/2sinα-β/2c osα+cosβ=2cosα+β/2cosα-β/2cosα-cosβ=-2sinα+β/2sinα-β/2·公式:sinα·cosβ=1/2sinα+β+sinα-βcosα·sinβ=1/2sinα+β-sinα-βcosα·cosβ=1/2cosα+β+cosα-βsinα·sinβ=-1/2cosα+β-cosα-β·:sin2α=2sinα·cosα=2/tanα+cotαcos2α=cosα^2-sinα^2=2cosα^2-1=1-2sinα^2tan2α=2tanα/1-tan^2α·三倍角公式:sin3α = 3sinα-4sin^3α = 4sinα·sin60°+αsin60°-αcos3α = 4cos^3α-3cosα = 4cosα·cos60°+αcos60°-αtan3α = 3tanα-tan^3α/1-3tan^2α = tanαtanπ/3+αtanπ/3-α ·:sinα/2=±√1-cosα/2cosα/2=±√1+cosα/2tanα/2=±√1-cosα/1+cosα=sinα/1+cosα=1-cosα/sinα·辅助角公式:Asinα+Bcosα=√A^2+B^2sinα+φtanφ=B/AAsinα-Bcosα=√A^2+B^2cosα-φtanφ=-A/B·万能公式sina= 2tana/2/1+tan^2a/2cosa= 1-tan^2a/2/1+tan^2a/2tana= 2tana/2/1-tan^2a/2·降幂公式sin^2α=1-cos2α/2=versin2α/2cos^2α=1+cos2α/2=covers2α/2tan^2α=1-cos2α/1+cos2α·万能公式:sinα=2tanα/2/1+tan^2;α/2cosα=1-tan^2;α/2/1+tan^2;α/2tanα=2tanα/2/1-tan^2;α/2·三角和的三角函数:sinα+β+γ=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcosα+β+γ=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtanα+β+γ=tanα+tanβ+tanγ-tanα·tanβ·tanγ/1-tanα·tanβ-tanβ·tanγ-tanγ·tanα·其它公式asina+bcosa=sqrta^2+b^2sina+c 其中,tanc=b/aasina-bcosa=sqrta^2+b^2cosa-c 其中,tanc=a/b1+sina=sina/2+cosa/2^2 1-sina=sina/2-cosa/2^2其他非重点三角函数csca=1/sina seca=1/cosacos30=sin60sin30=cos60·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=sinα/2+cosα/2^2·其他及证明:sinα+sinα+2π/n+sinα+2π2/n+sinα+2π3/n+……+sinα+2πn-1/n= 0cosα+cosα+2π/n+cosα+2π2/n+cosα+2π3/n+……+cosα+2πn-1/n= 0以及sin^2α+sin^2α-2π/3+sin^2α+2π/3=3/2tanAtanBtanA+B+tanA+tanB-tanA+B=0cosx+cos2x+...+cosnx= sinn+1x+sinnx-sinx/2sinx证明:左边=2sinxcosx+cos2x+...+cosnx/2sinx=sin2x-0+sin3x-sinx+sin4x-sin2x+...+sinnx-sinn-2x+sinn+1x-sinn-1x/2sinx 积化和差=sinn+1x+sinnx-sinx/2sinx=右边等式得证sinx+sin2x+...+sinnx= - cosn+1x+cosnx-cosx-1/2sinx证明:左边=-2sinxsinx+sin2x+...+sinnx/-2sinx=cos2x-cos0+cos3x-cosx+...+cosnx-cosn-2x+cosn+1x-cosn-1x/-2sinx =- cosn+1x+cosnx-cosx-1/2sinx=右边等式得证三倍角公式推导sin3a=sin2a+a=sin2acosa+cos2asina=2sina1-sin^2a+1-2sin^2asina=3sina-4sin^3acos3a=cos2a+a=cos2acosa-sin2asina=2cos^2a-1cosa-21-cos^2acosa=4cos^3a-3cosasin3a=3sina-4sin^3a=4sina3/4-sin^2a=4sina√3/2^2-sin^2a=4sinasin^260°-sin^2a=4sinasin60°+sinasin60°-sina=4sina2sin60+a/2cos60°-a/22sin60°-a/2cos60°+a/2=4sinasin60°+asin60°-acos3a=4cos^3a-3cosa=4cosacos^2a-3/4=4cosacos^2a-√3/2^2=4cosacos^2a-cos^230°=4cosacosa+cos30°cosa-cos30°=4cosa2cosa+30°/2cosa-30°/2{-2sina+30°/2sina-30°/2}=-4cosasina+30°sina-30°=-4cosasin90°-60°-asin-90°+60°+a =-4cosacos60°-a-cos60°+a=4cosac os60°-acos60°+a上述两式相比可得tan3a=tanatan60°-atan60°+a。

(完整版)三角函数公式汇总

(完整版)三角函数公式汇总

(完整版)三角函数公式汇总介绍三角函数是数学中重要的概念,可用来描述角的性质和在各个学科中的应用。

三角函数包括正弦(sin)、余弦(cos)、正切(tan)等,它们之间存在一系列的基本关系和公式。

本文档将详细介绍常见的三角函数公式,以帮助读者更好地理解和应用三角函数。

正弦函数(sin)定义正弦函数是一个周期为2π的周期函数,定义域为实数集,值域为[-1, 1]。

公式1. 正弦函数的周期性公式为:sin(x + 2kπ) = sin(x),其中 k ∈ Z。

2. 正弦函数的关系公式有:- 反正弦函数:x = arcsin(y),其中 y ∈ [-1, 1]。

- 正弦函数的平方和公式:sin^2(x) + cos^2(x) = 1。

余弦函数(cos)定义余弦函数是一个周期为2π的周期函数,定义域为实数集,值域为[-1, 1]。

公式1. 余弦函数的周期性公式为:cos(x + 2kπ) = cos(x),其中 k ∈Z。

2. 余弦函数的关系公式有:- 反余弦函数:x = arccos(y),其中 y ∈ [-1, 1]。

- 余弦函数的平方和公式:sin^2(x) + cos^2(x) = 1。

正切函数(tan)定义正切函数是一个周期为π的周期函数,定义域为实数集。

公式1. 正切函数的周期性公式为:tan(x + kπ) = tan(x),其中 k ∈ Z。

2. 正切函数的关系公式有:- 反正切函数:x = arctan(y),其中 y ∈ R。

其他三角函数公式1. 余切函数(cot)与正切函数的关系式:cot(x) = 1/tan(x)。

2. 正割函数(sec)与余弦函数的关系式:sec(x) = 1/cos(x)。

3. 余割函数(csc)与正弦函数的关系式:csc(x) = 1/sin(x)。

应用领域三角函数广泛应用于工程、物理、计算机图形学等领域。

例如,在三角形的计算中,可以利用正弦、余弦、正切等函数来求解各种角度和边长。

三角函数公式大全

三角函数公式大全

三角函数常用公式:(^表示乘方,例如^2表示平方)正弦函数sinθ=y/r余弦函数cosθ=x/r正切函数tanθ=y/x余切函数cotθ=x/y正割函数secθ=r/x余割函数cscθ=r/y以及两个不常用,已趋于被淘汰的函数:正矢函数versinθ=1-cosθ余矢函数vercosθ=1-sinθ同角三角函数间的基本关系式:·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,三角函数恒等变形公式两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=vercos(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]。

三角函数相关所有公式

三角函数相关所有公式

三角函数相关所有公式1.正弦函数公式:正弦函数表示为:y = sin(x)关系:sin(x) = y/r,其中r为单位圆上的点(x, y)到圆心O的距离性质:-定义域:(-∞,+∞)-值域:[-1,1]- 奇偶性:奇函数,即sin(-x) = -sin(x)- 周期性:周期为2π,即sin(x+2π) = sin(x)2.余弦函数公式:余弦函数表示为:y = cos(x)关系:cos(x) = x/r,其中r为单位圆上的点(x, y)到圆心O的距离性质:-定义域:(-∞,+∞)-值域:[-1,1]- 奇偶性:偶函数,即cos(-x) = cos(x)- 周期性:周期为2π,即cos(x+2π) = cos(x)3.正切函数公式:正切函数表示为:y = tan(x)关系:tan(x) = sin(x)/cos(x)性质:- 定义域:(-∞, +∞),且除去一些点使得tan(x)无定义(如x = π/2 + nπ,其中n为整数)-值域:(-∞,+∞)- 奇偶性:奇函数,即tan(-x) = -tan(x)- 周期性:周期为π,即tan(x+π) = tan(x)4.余切函数公式:余切函数表示为:y = cot(x)关系:cot(x) = cos(x)/sin(x)性质:- 定义域:(-∞, +∞),且除去一些点使得cot(x)无定义(如x = nπ,其中n为整数)-值域:(-∞,+∞)- 奇偶性:奇函数,即cot(-x) = -cot(x)- 周期性:周期为π,即cot(x+π) = cot(x)5.正弦函数和余弦函数的和差公式:sin(x ± y) = sin(x)cos(y) ± cos(x)sin(y)cos(x ± y) = cos(x)cos(y) ∓ sin(x)sin(y)tan(x ± y) = (tan(x) ± tan(y))/(1 ∓ tan(x)tan(y))cot(x ± y) = (cot(x)cot(y) ∓ 1)/(cot(y) ± cot(x))6.正弦函数和余弦函数的倍角公式:sin(2x) = 2sin(x)cos(x)cos(2x) = cos^2(x) - sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x) tan(2x) = 2tan(x)/(1 - tan^2(x))7.正弦函数和余弦函数的半角公式:sin(x/2) = ±√((1 - cos(x))/2)cos(x/2) = ±√((1 + cos(x))/2)8.正弦函数和余弦函数的和积公式:sin(x) + sin(y) = 2sin((x + y)/2)cos((x - y)/2)sin(x) - sin(y) = 2cos((x + y)/2)sin((x - y)/2)cos(x) + cos(y) = 2cos((x + y)/2)cos((x - y)/2)cos(x) - cos(y) = -2sin((x + y)/2)sin((x - y)/2)这些是三角函数常见的公式,它们在数学和物理中有广泛的应用。

(史上最全)三角函数公式大全

(史上最全)三角函数公式大全

三角公式汇总一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=, 正弦:r y =αsin 余弦:r x =αcos 正切:x y =αtan 余切:y x =αcot 正割:x r =αsec 余割:yr =αcsc 注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向..线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线。

二、同角三角函数的基本关系式倒数关系:1csc sin =⋅αα,1sec cos =⋅αα,1cot tan =⋅αα。

商数关系:αααcos sin tan =,αααsin cos cot =。

平方关系:1cos sin 22=+αα,αα22sec tan 1=+,αα22csc cot 1=+。

三、诱导公式⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。

(口诀:函数名不变,符号看象限) )(tan )2tan(cos )2cos(sin )2sin(.1Z k k k k ∈⎪⎩⎪⎨⎧=+=+=+ααπααπααπ sin()sin 2.cos()cos tan()tan αααααα-=-⎧⎪-=⎨⎪-=-⎩ sin()sin 3.cos()cos tan()tan πααπααπαα+=-⎧⎪+=-⎨⎪+=⎩⎪⎩⎪⎨⎧-=--=-=-ααπααπααπtan )tan(cos )cos(sin )sin(.4 sin(2)sin 5.cos(2)cos tan(2)tan πααπααπαα-=-⎧⎪-=⎨⎪-=-⎩ ⑵απ+2、απ-2、απ+23、απ-23的三角函数值,等于α的异名函数值,前面加上一个把α看.成.锐角时原函数值的符号。

(口诀:函数名改变,符号看象限)sin()cos 26.cos()sin 2tan()cot 2πααπααπαα⎧+=⎪⎪⎪+=-⎨⎪⎪+=-⎪⎩ sin()cos 27.cos()sin 2tan()cot 2πααπααπαα⎧-=⎪⎪⎪-=⎨⎪⎪-=⎪⎩ 3sin()cos 238.cos()sin 23tan()cot 2πααπααπαα⎧+=-⎪⎪⎪+=⎨⎪⎪+=-⎪⎩ 3sin()cos 239.cos()sin 23tan()cot 2πααπααπαα⎧-=-⎪⎪⎪-=-⎨⎪⎪-=⎪⎩ 四、和角公式和差角公式βαβαβαsin cos cos sin )sin(⋅+⋅=+ βαβαβαs i n c o s c o s s i n )s i n (⋅-⋅=- βαβαβαsin sin cos cos )cos(⋅-⋅=+ βαβαβαs i n s i n c o s c o s )c o s (⋅+⋅=- βαβαβαtan tan 1tan tan )tan(⋅-+=+ βαβαβαt a n t a n 1t a n t a n )t a n (⋅+-=- 五、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(*ααα2tan 1tan 22tan -= 二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角)αα2cos 22cos 1=+ ; αα2sin 22cos 1=-;2)cos (sin 2sin 1ααα+=+ ;2)cos (sin 2sin 1ααα-=-;六、万能公式(可以理解为二倍角公式的另一种形式)ααα2tan 1tan 22sin +=;ααα22tan 1tan 12cos +-=;ααα2tan 1tan 22tan -=。

三角函数公式大全(表格分类)

三角函数公式大全(表格分类)

三角函数公式大全(表格分
类)
本页仅作为文档页封面,使用时可以删除
This document is for reference only-rar21year.March
sin sin 2sin
cos
22sin sin 2cos sin
22
cos cos 2cos cos
22cos cos 2sin sin
22
αβ
αβ
αβαβαβ
αβαβαβ
αβαβαβ
αβ+-+=⋅+--=⋅+-+=⋅+--=-⋅
[][]
[]
[]
1
sin cos sin()sin()21
cos sin sin()sin()2
1
cos cos cos()cos()21
sin sin cos()cos()2αβαβαβαβαβαβαβαβαβαβαβαβ⋅=
++-⋅=+--⋅=++-⋅=-+--
化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)
22sin cos sin()a x b x a b x φ±=+±
其中φ角所在的象限由a 、b 的符号确定,φ角的值由tan b
a
φ
=
确定
六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。

”。

三角函数定理公式大全

三角函数定理公式大全

三角函数定理公式大全在数学中,三角函数是一组基本的函数,用于描述角度和边长之间的关系。

三角函数定理是描述三角形中角度和边长之间的关系的公式集合。

三角函数定理被广泛应用于三角形的计算和解决各种实际问题。

在本篇文章中,我们将介绍三角函数的各种定理公式。

1. 正弦定理(Sine Rule):在任意三角形ABC中,边长a,b,c与对应的角A,B,C之间满足以下关系:a/sinA = b/sinB = c/sinC这意味着一个三角形的任意一边的长度与它所对应的角的正弦值成比例。

2. 余弦定理(Cosine Rule):在任意三角形ABC中,边长a,b,c与对应的角A,B,C之间满足以下关系:c² = a² + b² - 2ab*cosCb² = a² + c² - 2ac*cosBa² = b² + c² - 2bc*cosA这意味着一个三角形的任意一边的平方与其他两边的平方以及其夹角的余弦值有关。

3. 正切定理(Tangent Rule):在任意三角形ABC中,边长a,b,c与对应的角A,B,C之间满足以下关系:tanA = a/btanB = b/atanC = c/a这意味着一个三角形的任意一边的长度与其他两边的长度之间的比率与对应的角的正切值成比例。

4. 正割定理(Secant Rule):在任意三角形ABC中,边长a,b,c与对应的角A,B,C之间满足以下关系:secA = 1/cosAsecB = 1/cosBsecC = 1/cosC这意味着一个三角形的任意一边的长度与对应的角的余弦值的倒数成比例。

5. 余割定理(Cosecant Rule):在任意三角形ABC中,边长a,b,c与对应的角A,B,C之间满足以下关系:cosecA = 1/sinAcosecB = 1/sinBcosecC = 1/sinC这意味着一个三角形的任意一边的长度与对应的角的正弦值的倒数成比例。

三角函数公式大全

三角函数公式大全

三角函数公式大全三角函数定义函数关系倒数关系:商数关系:平方关系:.诱导公式公式一:设为任意角,终边相同的角的同一三角函数的值相等:公式二:设为任意角,与的三角函数值之间的关系:公式三:任意角与的三角函数值之间的关系:公式四:与的三角函数值之间的关系:公式五:与的三角函数值之间的关系:公式六:及与的三角函数值之间的关系:记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。

形如2k×90°±α,则函数名称不变。

诱导公式口诀“奇变偶不变,符号看象限”意义:k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;(2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。

记忆方法一:奇变偶不变,符号看象限:其中的奇偶是指的奇偶倍数,变余不变试制三角函数的名称变化若变,则是正弦变余弦,正切变余切------------------奇变偶不变根据教的范围以及三角函数在哪个象限的争锋,来判断三角函数的符号-------------符号看象限记忆方法二:无论α是多大的角,都将α看成锐角.以诱导公式二为例:若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得到了诱导公式二.以诱导公式四为例:若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负值.这样,就得到了诱导公式四.诱导公式的应用:运用诱导公式转化三角函数的一般步骤:特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。

常用的三角函数公式大全

常用的三角函数公式大全

常用的三角函数公式大全一、正弦函数的公式:1.弧度和角度关系:在单位圆上,弧度与角度的关系为:1弧度=180°/π2.基本性质:正弦函数的取值范围为[-1,1];正弦函数的周期为2π。

3.正弦函数的基本关系式:sin(π/2 - θ) = cosθ;sin(π/2 + θ) = cosθ;sin(π - θ) = sinθ;sin(-θ) = -sinθ;sin(2θ) = 2sinθcosθ;sin(θ + φ) = sinθcosφ + cosθsinφ;4.余弦函数与正弦函数的关系:cos(π/2 - θ) = sinθ;cos(π/2 + θ) = -sinθ;cos(π - θ) = -cosθ;cos(-θ) = cosθ;cos(2θ) = cos²θ - sin²θ;cos(θ + φ) = cosθcosφ - sinθsinφ;二、余弦函数的公式:1.弧度和角度关系:在单位圆上,弧度与角度的关系为:1弧度=180°/π2.基本性质:余弦函数的取值范围为[-1,1];余弦函数的周期为2π。

3.余弦函数的基本关系式:cos(π/2 - θ) = sinθ;cos(π/2 + θ) = -sinθ;cos(π - θ) = -cosθ;cos(-θ) = cosθ;cos(2θ) = cos²θ - sin²θ;cos(θ + φ) = cosθcosφ - sinθsinφ;4.正弦函数与余弦函数的关系:sin(π/2 - θ) = cosθ;sin(π/2 + θ) = cosθ;sin(π - θ) = sinθ;sin(-θ) = -sinθ;sin(2θ) = 2sinθcosθ;sin(θ + φ) = sinθcosφ + cosθsinφ;三、正切函数的公式:1.弧度和角度关系:在单位圆上,弧度与角度的关系为:1弧度=180°/π2.基本性质:正切函数的取值范围为全体实数;正切函数的周期为π。

三角函数变换公式汇总

三角函数变换公式汇总

三角函数变换公式汇总三角函数是数学中一种重要的函数,经常在几何、物理和工程问题中使用。

三角函数的变换公式是指通过对角函数的各个值进行一系列代数操作,得到新的角度和幅度值的公式。

这些变换公式在解决各种三角函数问题时非常有效。

以下是三角函数变换公式的汇总:1.同角三角函数之间的关系:正弦和余弦的关系:$\sin(\theta) = \cos\left(\frac{\pi}{2} - \theta\right)$正弦和正切的关系:$\sin(\theta) =\frac{\tan(\theta)}{\sqrt{1 + \tan^2(\theta)}}$余弦和正切的关系:$\cos(\theta) = \frac{1}{\sqrt{1 +\tan^2(\theta)}}$正弦和余切的关系:$\sin(\theta) = \frac{1}{\sqrt{1 +\cot^2(\theta)}}$余弦和余切的关系:$\cos(\theta) =\frac{\cot(\theta)}{\sqrt{1 + \cot^2(\theta)}}$正切和余切的关系:$\tan(\theta) = \frac{1}{\cot(\theta)}$ 2.正负角变换:正角和负角的关系:$\sin(-\theta) = -\sin(\theta)$,$\cos(-\theta) = \cos(\theta)$,$\tan(-\theta) = -\tan(\theta)$幅角和负幅角的关系:$\sin(\theta + 2\pi) = \sin(\theta)$,$\cos(\theta + 2\pi) = \cos(\theta)$,$\tan(\theta + \pi) =\tan(\theta)$正角和二倍角的关系:$2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\ri ght) = \sin(\theta)$,$2\cos^2\left(\frac{\theta}{2}\right) - 1 = \cos(\theta)$,$\frac{2\tan\left(\frac{\theta}{2}\right)}{1 - \tan^2\left(\frac{\theta}{2}\right)} = \tan(\theta)$3.母子角公式:$\sin(A + B) = \sin(A)\cos(B) + \cos(A)\sin(B)$$\cos(A + B) = \cos(A)\cos(B) - \sin(A)\sin(B)$$\tan(A + B) = \frac{\tan(A) + \tan(B)}{1 - \tan(A)\tan(B)}$ $\sin(A - B) = \sin(A)\cos(B) - \cos(A)\sin(B)$$\cos(A - B) = \cos(A)\cos(B) + \sin(A)\sin(B)$$\tan(A - B) = \frac{\tan(A) - \tan(B)}{1 + \tan(A)\tan(B)}$ 4.和差化积公式:$\sin(A + B) = \sin(A)\cos(B) + \cos(A)\sin(B)$$\cos(A + B) = \cos(A)\cos(B) - \sin(A)\sin(B)$$\sin(A - B) = \sin(A)\cos(B) - \cos(A)\sin(B)$$\cos(A - B) = \cos(A)\cos(B) + \sin(A)\sin(B)$5.半角公式:$\sin\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1-\cos(\theta)}{2}}$$\cos\left(\frac{\theta}{2}\right) =\pm\sqrt{\frac{1+\cos(\theta)}{2}}$$\tan\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1-\cos(\theta)}{1+\cos(\theta)}}$6.其他常用公式:$\sin^2(\theta) + \cos^2(\theta) = 1$$1 + \tan^2(\theta) = \sec^2(\theta)$$1 + \cot^2(\theta) = \csc^2(\theta)$这些是常用的三角函数变换公式的汇总,可以在解决三角函数相关的问题时进行运用。

三角函数间的基本关系

三角函数间的基本关系

三角函数间的基本关系一、三角函数间的基本关系1、平方和关系:1cos sin 22=+αα αα22s e c t a n 1=+ αα22c s c c o t 1=+ 2、倒数关系:ααcot 1tan = ααc o s 1s e c = ααsin 1csc =3、商数关系:αααtan cos sin = 二、诱导公式1、ααsin )360sin(=+︒⨯k ααcos )360cos(=+︒⨯k ααt a n )360t a n(=+︒⨯k 2、ααsin )360sin(-=-︒⨯k ααcos )360cos(=-︒⨯k ααtan )360tan(-=-︒⨯k 3、ααsin )180sin(-=+︒ ααcos )180cos(-=+︒ ααt a n )180tan(=+︒ 4、ααsin )180sin(=-︒ ααc o s )180c o s(-=-︒ ααt a n )180tan(-=-︒ 5、ααcos )90sin(=+︒ ααs i n)90cos(-=+ ααc o t )90tan(-=+ 6、ααcos )90sin(=-︒ ααs i n)90cos(=- ααc o t )90tan(=- 7、ααcos )270sin(-=+︒ ααsin )270cos(=+︒ ααc o t )270t a n(-=+︒ 8、ααcos )270sin(-=-︒ ααsin )270cos(-=-︒ ααc o t )270tan(=-︒ 9、ααsin )sin(-=- ααc o s )c o s(=- ααtan )tan(-=- 三、和、差公式1、βαβαβαsin cos cos sin )sin(+=+ βαβαβαs i n c o s c o s s i n )s i n (-=- 2、βαβαβαsin sin cos cos )cos(-=+ βαβαβαsin sin cos cos )cos(+=-3、βαβαβαtan tan 1tan tan )tan(-+=+ βαβαβαtan tan 1tan tan )tan(+-=-四、倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-= ααα2tan 1tan 22tan -=五、半角公式2cos 12sinαα-±= 2c o s 12c o s αα+±= αααc o s1c o s12t a n +-±= 六、和、差化积公式2cos2sin2sin sin ϕθϕθϕθ-∙+=+2sin 2cos 2sin sin ϕθϕθϕθ-∙+=-2cos 2cos 2cos cos ϕθϕθϕθ-∙+=+2sin 2sin 2cos cos ϕθϕθϕθ-∙+-=-七、积化和、差公式)]sin()[sin(21cos sin βαβαβα-++=∙)]sin()[sin(21sin cos βαβαβα--+=∙)]cos()[cos(21cos cos βαβαβα-++=∙)]cos()[cos(21sin sin βαβαβα--+=∙八、其他公式1、 弦化切公式α2tan 11+αα2tan 1tan +=αcos =αsinα2tan 11+-αα2tan 1tan +-αααα2tan 1tan cos sin +=2、 两点间距离公式 21221221)()(y y x x p p -+-=3、 万能公式2tan 12tan2sin 2αα+= 2t a n 12t a n1c o s 22ααα+-= 2t a n 12t a n2t a n 2αα-= 4、 线性和公式)sin(sin sin 22ϕβα++=+x b a b a (a,b)定ϕ的象限,ba =ϕtan 5、 升降次角公式 ⑴次降角升a )22sin cos sin ααα= b )22cos 1sin 2αα-=c )22cos 1cos 2αα+=⑵次升角降 a )2)2cos 2(sin sin 1ααα+=+ b )2)2cos2(sinsin 1ααα-=-c )2cos 2cos 12αα=+ d )2sin 2cos 12αα=-6、加减乘除公式 ⑴加减法公式a )]tan tan 1)[tan(tan tan βαβαβα +=± ⑵乘除法公式7、其他公式 1. αααααsin cos 1cos 1sin 2tan-=+=2. ααα2tan 2tan 1tan -=-3. αααααcos sin cos sin 2sin 1+=++4. ααααcos 2sin )2cos 1(sin =+5.ααα2cos )4sin(4sin(2=-+π)π6. ααααααtan 1tan 1sin cos cos sin 2122-+=-+ 7.αααααtan 2cos 2sin 12cos 2sin 1=++-+。

三角函数公式大全

三角函数公式大全

三角函数公式大全一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=, 正弦:r y =αsin 余弦:r x =αcos 正切:x y =αtan 余切:yx =αcot 正割:x r =αsec 余割:yr =αcsc 注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向..线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线。

二、同角三角函数的基本关系式倒数关系:1csc sin =⋅αα,1sec cos =⋅αα,1cot tan =⋅αα。

商数关系:αααcos sin tan =,αααsin cos cot =。

平方关系:1cos sin 22=+αα,αα22sec tan 1=+,αα22csc cot 1=+。

三、诱导公式⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。

(口诀:函数名不变,符号看象限) ⑵απ+2、απ-2、απ+23、απ-23的三角函数值,等于α的异名函数值,前面加上一个把α看.成.锐角时原函数值的符号。

(口诀:函数名改变,符号看象限) 四、和角公式和差角公式βαβαβαsin cos cos sin )sin(⋅+⋅=+βαβαβαsin cos cos sin )sin(⋅-⋅=-βαβαβαsin sin cos cos )cos(⋅-⋅=+βαβαβαsin sin cos cos )cos(⋅+⋅=-βαβαβαtan tan 1tan tan )tan(⋅-+=+ βαβαβαtan tan 1tan tan )tan(⋅+-=- 五、二倍角公式 αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(*ααα2tan 1tan 22tan -= 二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角) αα2cos 22cos 1=+ αα2sin 22cos 1=- 2)cos (sin 2sin 1ααα+=+2)cos (sin 2sin 1ααα-=-六、万能公式(可以理解为二倍角公式的另一种形式)ααα2tan 1tan 22sin +=,ααα22tan 1tan 12cos +-=,ααα2tan 1tan 22tan -=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数公式大全关系:倒数tanα·cotα=1sinα·cscα=1cosα·secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系:sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)平常针对不同条件的常用的两个公式sin^2(α)+cos^2(α)=1tan α *cot α=1一个特殊公式(sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ)坡度公式我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比),用字母i表示,即i=h / l, 坡度的一般形式写成l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作a(叫做坡角),那么i=h/l=tan a.锐角三角函数公式正弦:sin α=∠α的对边/∠α的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的对边二倍角公式正弦sin2A=2sinA·cosA余弦1.Cos2a=Cos^2(a)-Sin^2(a)2.Cos2a=1-2Sin^2(a)3.Cos2a=2Cos^2(a)-1即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a) 正切tan2A=(2tanA)/(1-tan^2(A))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)三倍角公式推导sin(3a)=sin(a+2a)=sin2acosa+cos2asina=2sina(1-sin²a)+(1-2sin²a)sina=3sina-4sin^3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos²a-1)cosa-2(1-cos^a)cosa=4cos^3a-3cosasin3a=3sina-4sin^3a=4sina(3/4-sin²a)=4sina[(√3/2)²-sin²a]=4sina(sin²60°-sin²a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos^3a-3cosa=4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2)^2]=4cosa(cos²a-cos²30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)现列出公式如下: sin2α=2sinαcosα tan2α=2tanα/(1-tan^2(α))cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) 可别轻视这些字符,它们在数学学习中会起到重要作用。

包括一些图像问题和函数问题中三倍角公式sin3α=3sinα-4sin^3(α)=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cos^3(α)-3cosα=4cosα·cos(π/3+α)cos(π/3-α)tan3α=tan(α)*(-3+tan(α)^2)/(-1+3*tan(α)^2)=tan a · tan(π/3+a)· tan(π/3-a)半角公式sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα万能公式sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]其他sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0四倍角公式sin4A=-4*(cosA*sinA*(2*sinA^2-1)) cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角公式sin5A=16sinA^5-20sinA^3+5sinA cos5A=16cosA^5-20cosA^3+5cosAtan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍角公式sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)七倍角公式sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6) 八倍角公式sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+t anA^8)九倍角公式sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-8 4*tanA^6+9*tanA^8)十倍角公式sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4)) cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*ta nA^4+210*tanA^6-45*tanA^8+tanA^10)N倍角公式根据棣美弗定理,(cosθ+ i sinθ)^n = cos(nθ)+ i sin(nθ) 为方便描述,令sinθ=s,cosθ=c 考虑n为正整数的情形:cos(nθ)+ i sin(nθ) = (c+ i s)^n = C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n-4)*(i s)^4 + ... +C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... =>比较两边的实部与虚部实部:cos(nθ)=C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n-4)*(i s)^4 + ... i*(虚部):i*sin(nθ)=C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... 对所有的自然数n,1. cos(nθ):公式中出现的s都是偶次方,而s^2=1-c^2(平方关系),因此全部都可以改成以c(也就是cosθ)表示。

2. sin(nθ):(1)当n是奇数时:公式中出现的c 都是偶次方,而c^2=1-s^2(平方关系),因此全部都可以改成以s(也就是sinθ)表示。

相关文档
最新文档