2014届高三一轮数学理复习第4讲函数的解析式及定义域与值域
名师导学高考数学理一轮复习课件2.4函数的概念、解析式及定义域
1.a,b 为实数,集合
b M=a,1,N={a,0},f:
x→2x 表示把集合 M 中的元素 x 映射到集合 N 中为 2x, 则 a+b=( C ) A.-2 C.2 B.0 D.± 2
1×2=a, a=2, 【解析】b ⇒ ⇒a+b=2. b = 0. ×2=0, a
的值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的
值域 .显然{f(x)|x∈A}⊆B. ________
2.映射的概念 设 A,B 是两个集合,如果按照某种对应关系 f, 任何一个 元素,在集合 B 中都 对于集合 A 中的______________ 有 ______________ 的元素和它对应,那么这样的 唯一确定 对应 ____________( 包括集合 A,B,以及集合 A 到集合 B 的对应关系 f)叫做集合 A 到集合 B 的映射,记作: f:A→B ”. “_____________ 3.函数的特点 非空数集 ①函数是一种特殊的映射, 它是由一个__________ 到另一个____________ 非空数集 的映射; ②函数包括定义域 A、值域 B 和对应法则 f,简称 三要素 ; 函数的___________ 对应法则f . ③关键是____________
二、函数的定义域
x 2 2+x 例2 (1) 设 f(x) = lg ,则 f 2 + f x 的定义域为 2-x
( B ) A.(-4,0)∪(0,4) B.(-4,-1)∪(1,4) C.(-2,-1)∪(1,2) D.(-4,-2)∪(2,4)
一、映射与函数的概念 例1(1)已知 f:x→2sin x 是集合 A(A⊆[0,2π])到集 合 B 的一个映射,若 B={0,1,2},则 A 中的元素个 数最多为( A ) A.6 C.4 B.5 D.3
高三数学复习(理):第4讲 二次函数与幂函数
第4讲 二次函数与幂函数[学生用书P23]1.二次函数(1)二次函数解析式的三种形式 ①一般式:f (x )=ax 2+bx +c (a ≠0). ②顶点式:f (x )=a (x -m )2+n (a ≠0). ③零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0). (2)二次函数的图象和性质 解析式f (x )=ax 2+bx +c (a >0)f (x )=ax 2+bx +c (a <0)图象定义域 (-∞,+∞) (-∞,+∞)值域⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞⎝⎛⎦⎥⎤-∞,4ac -b 24a 单调性在⎝ ⎛⎦⎥⎤-∞,-b 2a 上单调递减; 在⎝ ⎛⎭⎪⎫-b 2a ,+∞上单调递增 在⎝ ⎛⎦⎥⎤-∞,-b 2a 上单调递增; 在⎝ ⎛⎭⎪⎫-b 2a ,+∞上单调递减 对称性 函数的图象关于x =-b2a 对称常用结论一元二次不等式恒成立的条件(1)“ax 2+bx +c >0(a ≠0)恒成立”的充要条件是“a >0且Δ<0”;(2)“ax2+bx+c<0(a≠0)恒成立”的充要条件是“a<0且Δ<0”.2.幂函数(1)定义:形如y=xα(α∈R)的函数称为幂函数,其中底数x是自变量,α为常数.常见的五类幂函数为y=x,y=x2,y=x3,y=x 12,y=x-1.(2)五种幂函数的图象(3)性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)函数y=2x 12是幂函数.()(2)如果幂函数的图象与坐标轴相交,则交点一定是原点.()(3)当n<0时,幂函数y=x n是定义域上的减函数.()(4)二次函数y=ax2+bx+c,x∈[a,b]的最值一定是4ac-b24a.()(5)二次函数y=ax2+bx+c,x∈R不可能是偶函数.()(6)在y=ax2+bx+c(a≠0)中,a决定了图象的开口方向和在同一直角坐标系中的开口大小.()答案:(1)×(2)√(3)×(4)×(5)×(6)√二、易错纠偏常见误区|K(1)二次函数图象特征把握不准; (2)二次函数单调性规律掌握不到位;(3)忽视对二次函数的二次项系数的讨论出错; (4)对幂函数的概念理解不到位.1.如图,若a <0,b >0,则函数y =ax 2+bx 的大致图象是________.(填序号)解析:由函数的解析式可知,图象过点(0,0),故④不正确.又a <0,b >0,所以二次函数图象的对称轴为x =-b2a >0,故③正确.答案:③2.若函数y =mx 2+x +2在[3,+∞)上是减函数,则m 的取值范围是________.解析:因为函数y =mx 2+x +2在[3,+∞)上是减函数, 所以⎩⎪⎨⎪⎧m <0,-12m ≤3,即m ≤-16. 答案:⎝ ⎛⎦⎥⎤-∞,-163.已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是________. 解析:因为函数f (x )=ax 2+x +5的图象在x 轴上方,所以⎩⎪⎨⎪⎧a >0,Δ=12-20a <0,解得a >120.答案:⎝ ⎛⎭⎪⎫120,+∞4.当x ∈(0,1)时,函数y =x m 的图象在直线y =x 的上方,则m 的取值范围是________.答案:(-∞,1)[学生用书P24]幂函数的图象及性质(自主练透)1.幂函数y =f (x )的图象经过点(3,33),则f (x )是( ) A .偶函数,且在(0,+∞)上是增函数 B .偶函数,且在(0,+∞)上是减函数 C .奇函数,且在(0,+∞)上是增函数 D .非奇非偶函数,且在(0,+∞)上是减函数解析:选C.设幂函数f (x )=x α,代入点(3,33),得33=3α,解得α=13,所以f (x )=x 13,可知函数为奇函数,在(0,+∞)上单调递增.2.若幂函数y =x -1,y =x m 与y =x n 在第一象限内的图象如图所示,则m 与n 的取值情况为( )A .-1<m <0<n <1B .-1<n <0<mC .-1<m <0<nD .-1<n <0<m <1解析:选D.幂函数y =x α,当α>0时,y =x α在(0,+∞)上为增函数,且0<α<1时,图象上凸,所以0<m <1;当α<0时,y =x α在(0,+∞)上为减函数,不妨令x =2,根据图象可得2-1<2n ,所以-1<n <0,综上所述,选D.3.若a =⎝ ⎛⎭⎪⎫1223,b =⎝ ⎛⎭⎪⎫1523,c =⎝ ⎛⎭⎪⎫1213,则a ,b ,c 的大小关系是( )A .a <b <cB .c <a <bC .b <c <aD .b <a <c解析:选D.因为y =x 23在第一象限内是增函数,所以a =⎝ ⎛⎭⎪⎫1223>b =⎝ ⎛⎭⎪⎫1523,因为y =⎝ ⎛⎭⎪⎫12x是减函数,所以a =⎝ ⎛⎭⎪⎫1223<c =⎝ ⎛⎭⎪⎫1213,所以b <a <c .4.若(a +1)12<(3-2a )12,则实数a 的取值范围是________.解析:易知函数y =x 12的定义域为[0,+∞),在定义域内为增函数, 所以⎩⎪⎨⎪⎧a +1≥0,3-2a ≥0,a +1<3-2a ,解得-1≤a <23.答案:⎣⎢⎡⎭⎪⎫-1,23(1)幂函数的形式是y =x α(α∈R ),其中只有一个参数α,因此只需一个条件即可确定其解析式.(2)在区间(0,1)上,幂函数中指数越大,函数图象越靠近x 轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图象越远离x 轴.(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,准确掌握各个幂函数的图象和性质是解题的关键.二次函数的解析式(师生共研)(一题多解)已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式.【解】 方法一:(利用一般式) 设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.所以所求二次函数的解析式为f (x )=-4x 2+4x +7. 方法二:(利用顶点式) 设f (x )=a (x -m )2+n (a ≠0). 因为f (2)=f (-1),所以抛物线的对称轴为x =2+(-1)2=12.所以m =12.又根据题意函数有最大值8,所以n =8,所以f (x )=a ⎝ ⎛⎭⎪⎫x -122+8.因为f (2)=-1,所以a ⎝ ⎛⎭⎪⎫2-122+8=-1,解得a =-4,所以f (x )=-4⎝ ⎛⎭⎪⎫x -122+8=-4x 2+4x +7.方法三:(利用零点式)由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1), 即f (x )=ax 2-ax -2a -1.又函数有最大值8, 即4a (-2a -1)-a 24a =8.解得a =-4,所以所求函数的解析式为f (x )=-4x 2+4x +7.求二次函数解析式的方法根据已知条件确定二次函数的解析式,一般用待定系数法,但所给条件不同选取的求解方法也不同,选择规律如下:1.已知二次函数f (x )=x 2-bx +c 满足f (0)=3,对∀x ∈R .都有f (1+x )=f (1-x )成立,则f (x )的解析式为____________.解析:由f (0)=3,得c =3, 又f (1+x )=f (1-x ),所以函数f (x )的图象关于直线x =1对称, 所以b2=1,所以b =2, 所以f (x )=x 2-2x +3. 答案:f (x )=x 2-2x +32.已知二次函数y =f (x )的顶点坐标为⎝ ⎛⎭⎪⎫-32,49,且方程f (x )=0的两个实根之差等于7,则此二次函数的解析式是________________.解析:设f (x )=a ⎝ ⎛⎭⎪⎫x +322+49(a ≠0),方程a ⎝ ⎛⎭⎪⎫x +322+49=0的两个根分别为x1,x2,则|x1-x2|=2-49a=7,所以a=-4,所以f(x)=-4x2-12x+40.答案:f(x)=-4x2-12x+40二次函数的图象与性质(多维探究)角度一通过图象识别二次函数如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1.给出下面四个结论:①b2>4ac;②2a-b=1;③a-b+c=0;④5a<b.其中正确的结论是()A.②④B.①④C.②③D.①③【解析】因为二次函数的图象与x轴交于两点,所以b2-4ac>0,即b2>4ac,①正确;对称轴为x=-1,即-b2a=-1,2a-b=0,②错误;结合图象,当x =-1时,y>0,即a-b+c>0,③错误;由对称轴为x=-1知,b=2a,又函数图象开口向下,所以a<0,所以5a<2a,即5a<b,④正确.故选B.【答案】 B确定二次函数图象应关注的三个要点一是看二次项系数的符号,它确定二次函数图象的开口方向.二是看对称轴和最值,它确定二次函数图象的具体位置.三是看函数图象上的一些特殊点,如函数图象与y轴的交点、与x轴的交点,函数图象的最高点或最低点等.从这三个方面入手,能准确地判断出二次函数的图象.反之,也可以从图象中得到如上信息.角度二 二次函数的单调性函数f (x )=ax 2+(a -3)x +1在区间[-1,+∞)上是单调递减的,则实数a 的取值范围是________.【解析】 当a =0时,f (x )=-3x +1在[-1,+∞)上单调递减,满足条件. 当a ≠0时,f (x )的对称轴为x =3-a 2a ,由f (x )在[-1,+∞)上单调递减知⎩⎨⎧a <0,3-a 2a ≤-1,解得-3≤a <0.综上,a 的取值范围为[-3,0]. 【答案】 [-3,0]【迁移探究】 (变条件)若函数f (x )=ax 2+(a -3)x +1的单调递减区间是[-1,+∞),求a 为何值?解:因为函数f (x )=ax 2+(a -3)x +1的单调递减区间为[-1,+∞),所以⎩⎪⎨⎪⎧a <0,a -3-2a=-1,解得a =-3.对于二次函数的单调性,关键是确定其图象的开口方向与对称轴的位置,若开口方向或对称轴的位置不确定,则需要分类讨论求解.角度三 二次函数的最值问题设函数f (x )=x 2-2x +2,x ∈[t ,t +1],t ∈R ,求函数f (x )的最小值. 【解】 f (x )=x 2-2x +2=(x -1)2+1,x ∈[t ,t +1],t ∈R ,函数图象的对称轴为x =1.当t +1<1,即t <0时,函数图象如图(1)所示,函数f (x )在区间[t ,t +1]上为减函数,所以最小值为f (t +1)=t 2+1;当t ≤1≤t +1,即0≤t ≤1时,函数图象如图(2)所示,在对称轴x =1处取得最小值,最小值为f (1)=1;当t >1时,函数图象如图(3)所示,函数f (x )在区间[t ,t +1]上为增函数,所以最小值f (t )=t 2-2t +2.综上可知,f (x )min =⎩⎪⎨⎪⎧t 2+1,t <0,1,0≤t ≤1,t 2-2t +2,t >1.二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解题的关键都是对称轴与区间的位置关系,当含有参数时,要依据对称轴与区间的位置关系进行分类讨论.角度四 一元二次不等式恒成立问题(1)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是____________.(2)已知函数f (x )=x 2+2x +1,f (x )>x +k 在区间[-3,-1]上恒成立,则k 的取值范围为____________.【解析】 (1)作出二次函数f (x )的草图,对于任意x ∈[m ,m +1],都有f (x )<0,则有⎩⎪⎨⎪⎧f (m )<0,f (m +1)<0,即⎩⎪⎨⎪⎧m 2+m 2-1<0,(m +1)2+m (m +1)-1<0,解得-22<m <0.(2)由题意得x 2+x +1>k 在区间[-3,-1]上恒成立.设g (x )=x 2+x +1,x ∈[-3,-1],则g (x )在[-3,-1]上递减.所以g (x )min =g (-1)=1.所以k <1.故k 的取值范围为(-∞,1).【答案】 (1)⎝ ⎛⎭⎪⎫-22,0 (2)(-∞,1)由不等式恒成立求参数取值范围一般有两个解题思路:一是分离参数,二是不分离参数.两种思路都是将问题归结为求函数的最值,若不分离参数,则一般需要对参数进行分类讨论求解;若分离参数,则a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min .1.已知abc >0,则二次函数f (x )=ax 2+bx +c 的图象可能是( )解析:选D.A 项,因为a <0,-b 2a <0,所以b <0.又因为abc >0,所以c >0,而f (0)=c <0,故A 错.B 项,因为a <0,-b 2a >0,所以b >0.又因为abc >0,所以c <0,而f (0)=c >0,故B 错.C 项,因为a >0,-b 2a <0,所以b >0.又因为abc >0,所以c >0,而f (0)=c <0,故C 错.D 项,因为a >0,-b 2a >0,所以b <0,因为abc >0,所以c <0,而f (0)=c <0,故选D.2.函数f (x )=ax 2-2x +3在区间[1,3]上为增函数的充要条件是( )A .a =0B .a <0C .0<a ≤13D .a ≥1解析:选D.当a =0时,f (x )为减函数,不符合题意;当a ≠0时,函数f (x )=ax 2-2x +3图象的对称轴为x =1a ,要使f (x )在区间[1,3]上为增函数,则⎩⎪⎨⎪⎧a <0,1a≥3或⎩⎪⎨⎪⎧a >0,1a≤1,解得a ≥1.故选D. 3.已知a 是实数,函数f (x )=2ax 2+2x -3在x ∈[-1,1]上恒小于零,则实数a 的取值范围为________.解析:2ax 2+2x -3<0在[-1,1]上恒成立.当x =0时,-3<0,成立;当x ≠0时,a <32⎝ ⎛⎭⎪⎫1x -132-16, 因为1x ∈(-∞,-1]∪[1,+∞),当x =1时,右边取最小值12,所以a <12.综上,实数a 的取值范围是⎝ ⎛⎭⎪⎫-∞,12. 答案:⎝ ⎛⎭⎪⎫-∞,12[学生用书P26]思想方法系列4 分类讨论思想在二次函数问题中的应用已知函数f (x )=ax 2-2x (0≤x ≤1),求函数f (x )的最小值.【解】 (1)当a =0时,f (x )=-2x 在[0,1]上单调递减,所以f (x )min =f (1)=-2;(2)当a >0时,f (x )=ax 2-2x 的图象开口向上且对称轴为x =1a .①当0<1a ≤1,即a ≥1时, f (x )=ax 2-2x 的对称轴在(0,1]内,所以f (x )在⎣⎢⎡⎦⎥⎤0,1a 上单调递减,在⎝ ⎛⎦⎥⎤1a ,1上单调递增. 所以f (x )min =f ⎝ ⎛⎭⎪⎫1a =1a -2a =-1a ; ②当1a >1,即0<a <1时,f (x )=ax 2-2x 的对称轴在[0,1]的右侧,所以f (x )在[0,1]上单调递减.所以f (x )min =f (1)=a -2;(3)当a <0时,f (x )=ax 2-2x 的图象开口向下且对称轴x =1a <0,在y 轴的左侧,所以f (x )=ax 2-2x 在[0,1]上单调递减,所以f (x )min =f (1)=a -2.综上所述,f (x )min =⎩⎪⎨⎪⎧a -2,a <1且a ≠0,-2,a =0,-1a ,a ≥1.二次函数是单峰函数(在定义域上只有一个最值点的函数),x =-b 2a 为其最值点的横坐标,在其两侧二次函数具有相反的单调性,当已知二次函数在某区间上的最值求参数时,要根据对称轴与已知区间的位置关系进行分类讨论确定各种情况的最值,建立方程求解参数.已知函数f (x )=ax 2+2ax +1在区间[-1,2]上有最大值4,求实数a 的值.解:f (x )=a (x +1)2+1-a .(1)当a =0时,函数f (x )在区间[-1,2]上的值为常数1,不符合题意,舍去;(2)当a >0时,函数f (x )在区间[-1,2]上是增函数,最大值为f (2)=8a +1=4,解得a =38;(3)当a <0时,函数f (x )在区间[-1,2]上是减函数,最大值为f (-1)=1-a =4,解得a =-3.综上可知,a 的值为38或-3.[学生用书P281(单独成册)][A 级 基础练]1.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则a 的值为( )A .-1B .0C .1 D.-2解析:选D.函数f (x )=-x 2+4x +a 的对称轴为直线x =2,开口向下,f (x )=-x 2+4x +a 在[0,1]上单调递增,则当x =0时,f (x )的最小值为f (0)=a =-2.2.设函数f (x )=x 23,若f (a )>f (b ),则( )A .a 2>b 2B .a 2<b 2C .a <bD .a >b解析:选A.函数f (x )=x 23=(x 2)13,令t =x 2,易知y =t 13,在第一象限为单调递增函数.又f (a )>f (b ),所以a 2>b 2.故选A.3.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一直角坐标系中的图象大致是( )解析:选C.若a >0,则一次函数y =ax +b 为增函数,二次函数y =ax 2+bx +c 的图象开口向上,故可排除A ;若a <0,一次函数y =ax +b 为减函数,二次函数y =ax 2+bx +c 的图象开口向下,故可排除D ;对于选项B ,看直线可知a >0,b >0,从而-b 2a <0,而二次函数的对称轴在y 轴的右侧,故可排除B.故选C.4.已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c ,若f (0)=f (4)>f (1),则( )A .a >0,4a +b =0B .a <0,4a +b =0C .a >0,2a +b =0D .a <0,2a +b =0解析:选A.由f (0)=f (4),得f (x )=ax 2+bx +c 图象的对称轴为x =-b 2a =2,所以4a +b =0,又f (0)>f (1),f (4)>f (1),所以f (x )先减后增,于是a >0,故选A.5.若函数y =x 2-3x -4的定义域为[0,m ],值域为⎣⎢⎡⎦⎥⎤-254,-4,则m 的取值范围是( )A .[0,4]B .⎣⎢⎡⎦⎥⎤32,4 C.⎣⎢⎡⎭⎪⎫32,+∞ D.⎣⎢⎡⎦⎥⎤32,3 解析:选D.二次函数图象的对称轴为x =32,且f ⎝ ⎛⎭⎪⎫32=-254,f (3)=f (0)=-4,结合函数图象(如图所示)可得m ∈⎣⎢⎡⎦⎥⎤32,3.6.已知函数f (x )=(m 2-m -1)x m 2-2m -3是幂函数,且在x ∈(0,+∞)上递减,则实数m=________.解析:根据幂函数的定义和性质,得m2-m-1=1.解得m=2或m=-1,当m=2时,f(x)=x-3在(0,+∞)上是减函数,符合题意;当m=-1时,f(x)=x0=1在(0,+∞)上不是减函数,所以m=2.答案:27.已知二次函数的图象与x轴只有一个交点,对称轴为x=3,与y轴交于点(0,3),则它的解析式为________.解析:由题意知,可设二次函数的解析式为y=a(x-3)2,又图象与y轴交于点(0,3),所以3=9a,即a=13.所以y=13(x-3)2=13x2-2x+3.答案:y=13x2-2x+38.已知二次函数f(x)满足f(2+x)=f(2-x),且f(x)在[0,2]上是增函数,若f(a)≥f(0),则实数a的取值范围是________.解析:由f(2+x)=f(2-x)可知,函数f(x)图象的对称轴为x=2+x+2-x2=2,又函数f(x)在[0,2]上单调递增,所以由f(a)≥f(0)可得0≤a≤4.答案:[0,4]9.已知函数f(x)=x2+(2a-1)x-3.(1)当a=2,x∈[-2,3]时,求函数f(x)的值域;(2)若函数f(x)在[-1,3]上的最大值为1,求实数a的值.解:(1)当a=2时,f(x)=x2+3x-3,x∈[-2,3],对称轴x=-32∈[-2,3],所以f (x )min =f ⎝ ⎛⎭⎪⎫-32=94-92-3=-214, f (x )max =f (3)=15,所以函数f (x )的值域为⎣⎢⎡⎦⎥⎤-214,15. (2)对称轴为x =-2a -12.①当-2a -12≤1,即a ≥-12时,f (x )max =f (3)=6a +3,所以6a +3=1,即a =-13满足题意;②当-2a -12>1,即a <-12时,f (x )max =f (-1)=-2a -1,所以-2a -1=1,即a =-1满足题意.综上可知,a =-13或a =-1.10.已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式;(2)当x ∈[-1,1]时,函数y =f (x )的图象恒在函数y =2x +m 的图象的上方,求实数m 的取值范围.解:(1)设f (x )=ax 2+bx +1(a ≠0),由f (x +1)-f (x )=2x ,得2ax +a +b =2x .所以2a =2且a +b =0,解得a =1,b =-1,因此f (x )的解析式为f (x )=x 2-x +1.(2)因为当x ∈[-1,1]时,y =f (x )的图象恒在y =2x +m 的图象上方, 所以在[-1,1]上,x 2-x +1>2x +m 恒成立;即x 2-3x +1>m 在区间[-1,1]上恒成立.所以令g (x )=x 2-3x +1=⎝ ⎛⎭⎪⎫x -322-54, 因为g (x )在[-1,1]上的最小值为g (1)=-1,所以m <-1.故实数m 的取值范围为(-∞,-1).[B 级 综合练]11.若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关解析:选B.f (x )=⎝ ⎛⎭⎪⎫x +a 22-a 24+b ,①当0≤-a 2≤1时,f (x )min =m =f ⎝ ⎛⎭⎪⎫-a 2=-a 24+b ,f (x )max =M =max{f (0),f (1)}=max{b ,1+a +b },所以M -m =max ⎩⎨⎧⎭⎬⎫a 24,1+a +a 24与a 有关,与b 无关;②当-a 2<0时,f (x )在[0,1]上单调递增,所以M -m =f (1)-f (0)=1+a 与a 有关,与b 无关;③当-a 2>1时,f (x )在[0,1]上单调递减,所以M -m =f (0)-f (1)=-1-a 与a 有关,与b 无关.综上所述,M -m 与a 有关,但与b 无关.故选B.12.已知函数f (x )=2ax 2-ax +1(a <0),若x 1<x 2,x 1+x 2=0,则f (x 1)与f (x 2)的大小关系是( )A .f (x 1)=f (x 2)B .f (x 1)>f (x 2)C .f (x 1)<f (x 2)D .与x 的值无关解析:选C.由题知二次函数f (x )的图象开口向下,图象的对称轴为x =14,因为x 1+x 2=0,所以直线x =x 1,x =x 2关于直线x =0对称,由x 1<x 2,结合二次函数的图象可知f (x 1)<f (x 2).13.定义:如果在函数y =f (x )定义域内的给定区间[a ,b ]上存在x 0(a <x 0<b ),满足f (x 0)=f (b )-f (a )b -a,则称函数y =f (x )是[a ,b ]上的“平均值函数”,x 0是它的一个均值点,如y =x 4是[-1,1]上的平均值函数,0就是它的均值点.现有函数f (x )=-x 2+mx +1是[-1,1]上的平均值函数,则实数m 的取值范围是________.解析:因为函数f (x )=-x 2+mx +1是[-1,1]上的平均值函数,设x 0为均值点,所以f (1)-f (-1)1-(-1)=m =f (x 0),即关于x 0的方程-x 20+mx 0+1=m 在(-1,1)内有实数根,解方程得x 0=1或x 0=m -1.所以必有-1<m -1<1,即0<m <2,所以实数m 的取值范围是(0,2).答案:(0,2)14.已知幂函数f (x )=(m -1)2xm 2-4m +3(m ∈R )在(0,+∞)上单调递增.(1)求m 的值及f (x )的解析式;(2)若函数g (x )=-3f 2(x )+2ax +1-a 在[0,2]上的最大值为3,求实数a的值.解:(1)幂函数f (x )=(m -1)2xm 2-4m +3(m ∈R )在(0,+∞)上单调递增,故⎩⎪⎨⎪⎧(m -1)2=1,m 2-4m +3>0,解得m =0,故f (x )=x 3. (2)由f (x )=x 3,得g (x )=-3f (x )2+2ax +1-a =-x 2+2ax +1-a , 函数图象为开口方向向下的抛物线,对称轴为x =a .因为在[0,2]上的最大值为3,所以①当a ≥2时,g (x )在[0,2]上单调递增,故g (x )max =g (2)=3a -3=3,解得a =2.②当a ≤0时,g (x )在[0,2]上单调递减,故g (x )max =g (0)=1-a =3,解得a =-2.③当0<a <2时,g (x )在[0,a ]上单调递增,在[a ,2]上单调递减,故g (x )max =g (a )=a 2+1-a =3,解得a =-1(舍去)或a =2(舍去).综上所述,a =±2.[C 级 提升练]15.已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R ).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎨⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值; (2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围. 解:(1)由已知c =1,a -b +c =0,且-b 2a =-1,解得a =1,b =2,所以f (x )=(x +1)2.所以F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0.所以F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由题意知f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立,即b ≤1x -x 且b ≥-1x -x 在(0,1]上恒成立.又当x ∈(0,1]时,1x -x 的最小值为0,-1x -x 的最大值为-2.所以-2≤b ≤0. 故b 的取值范围是[-2,0].。
2014届高考数学(理)一轮复习知识点逐个击破专题讲座:函数及其表示(人教A版)
2014届数学一轮知识点讲座:函数及其表示一、考纲目标能根据函数的三要素判断两个函数是否为同一函数;理解分段函数的意义.由所给函数表达式正确求出函数的定义域;掌握求函数值域的几种常用方法;能根据函数所具有的某些性质或它所满足的一些关系,求出它的解析式;会进行函数三种表示方法的互化,培养学生思维的严密性、多样性.二、知识梳理1.函数的定义:设A、B是非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A,其中x叫做自变量.x的取值范围A叫做函数的定义域;与x的值相对应的y的值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.2.两个函数的相等:函数的定义含有三个要素,即定义域A、值域C和对应法则f.当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定.因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数.3.映射的定义:一般地,设A、B是两个集合,如果按照某种对应关系f,对于集合A中的任何一个元素,在集合B中都有唯一的元素和它对应,那么,这样的对应(包括集合A、B,以及集合A到集合B的对应关系f)叫做集合A到集合B的映射,记作f:A→B.由映射和函数的定义可知,函数是一类特殊的映射,它要求A、B非空且皆为数集.4.映射的概念中象、原象的理解:(1) A中每一个元素都有象;(2)B中每一个元素不一定都有原象,不一定只一个原象;(3)A中每一个元素的象唯一。
5.分段函数:(举一例)。
6.复合函数:若y=f(u),u=g(x),x∈(a,b),u∈(m,n),那么y=f[g(x)]称为复合函数,u称为中间变量,它的取值范围是g(x)的值域。
7.函数的三种表示法(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式.(2)列表法:就是列出表格来表示两个变量的函数关系.(3)图象法:就是用函数图象表示两个变量之间的关系. 8.求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法; (3)已知函数图像,求函数解析式;(4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式解方程组法;(5)应用题求函数解析式常用方法有待定系数法等. 三、考点逐个突破 1.映射的简单应用例1.设集合{1,0,1}M =-,{2,1,0,1,2}N =--,如果从M 到N 的映射f 满足条件:对M 中的每个元素与它在N 中的象()f x 的和都为奇数,则映射f 的个数是A.8个B.12个C.16个D.18个解:∵()x f x +为奇数,∴当为奇数1-、时,它们在N 中的象只能为偶数2-、0或,由分步计数原理和对应方法有239=种;而当0x =时,它在N 中的象为奇数1-或,共有种对应方法.故映射f 的个数是9218⨯=.故选D.例2. 集合A={3,4},B={5,6,7},那么可建立从A 到B 的映射个数是__________,从B 到A 的映射个数是__________.解:从A 到B 可分两步进行:第一步A 中的元素3可有3种对应方法(可对应5或6或7),第二步A 中的元素4也有这3种对应方法.由乘法原理,不同的映射种数N1=3×3=9.反之从B 到A ,道理相同,有N2=2×2×2=8种不同映射. 答案:9 8 2.函数相等例3. 试判断以下各组函数是否表示同一函数? (1)f (x )=2x ,g (x )=33x ; (2)f (x )=x x ||,g (x )=⎩⎨⎧<-≥;01,01x x(3)f (x )=1212++n n x ,g (x )=(12-n x )2n -1(n ∈N*); (4)f (x )=x1+x ,g (x )=x x +2;(5)f (x )=x2-2x -1,g (t )=t2-2t -1.剖析:对于两个函数y=f (x )和y=g (x ),当且仅当它们的定义域、值域、对应法则都相同时,y=f (x )和y=g (x )才表示同一函数.若两个函数表示同一函数,则它们的图象完全相同,反之亦然.解:(1)由于f (x )=2x =|x|,g (x )=33x =x ,故它们的值域及对应法则都不相同,所以它们不是同一函数. (2)由于函数f (x )=x x ||的定义域为(-∞,0)∪(0,+∞),而g (x )=⎩⎨⎧<-≥;01,01x x 的定义域为R ,所以它们不是同一函数.(3)由于当n ∈N*时,2n ±1为奇数,∴f (x )=1212++n n x =x ,g (x )=(12-n x )2n -1=x ,它们的定义域、值域及对应法则都相同,所以它们是同一函数. (4)由于函数f (x )=x1+x 的定义域为{x|x ≥0},而g (x )=x x +2的定义域为{x|x≤-1或x ≥0},它们的定义域不同,所以它们不是同一函数. (5)函数的定义域、值域和对应法则都相同,所以它们是同一函数.评述:(1)第(5)小题易错判断成它们是不同的函数,原因是对函数的概念理解不透.要知道,在函数的定义域及对应法则f 不变的条件下,自变量变换字母,以至变换成其他字母的表达式,这对于函数本身并无影响,比如f (x )=x2+1,f (t )=t2+1,f (u+1)=(u+1)2+1都可视为同一函数.(2)对于两个函数来讲,只要函数的三要素中有一要素不相同,则这两个函数就不可能是同一函数. 3.函数的表示方法例4.某种细胞分裂时,由1个分裂成2个,2个分裂成4个,…,一直分裂下去. (1) 用列表表示,1个细胞分裂1、2、3、4、5、6、7、8次后,得到的细胞个数; (2)用图像表示1个细胞分裂的次数n(n ∈N +)与得到的细胞个数y 之间的关系; 解:(1) 利用正整指数幂的运算法则,可以算出1个细胞分裂1、2、3、4、5、6、7、8次后,得到的细胞个数,列表如下4.分段函数例5.某厂生产一种仪器,由于受生产能力和技术水平的限制,会产生一些次品.根据经验知道,该厂生产这种仪器,次品率与日产量(件)之间大体满足关系:⎪⎩⎪⎨⎧∈>∈≤≤-=),(32),1(961N x c x N x c x x P (其中c 为小于96的正常数) 注:次品率生产量次品数=P ,如0.1P =表示每生产10件产品,约有1件为次品.其余为合格品.已知每生产一件合格的仪器可以盈利A 元,但每生产一件次品将亏损2A元,故厂方希望定出合适的日产量.(1)试将生产这种仪器每天的盈利额(元)表示为日产量(件)的函数; (2)当日产量为多少时,可获得最大利润? 解:(1)当x c >时,23P =,所以,每天的盈利额120332AT xA x =-⋅=; 当1x c ≤≤时,196P x=-, 所以,每日生产的合格仪器约有1196x x ⎛⎫- ⎪-⎝⎭件,次品约有196x x ⎛⎫⎪-⎝⎭件.故,每天的盈利额()113196962296A x T xA x x A x x x ⎛⎫⎛⎫⎛⎫=--⋅=- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭. 综上,日盈利额(元)与日产量(件)的函数关系为:()3, 12960, xx A x c T x x c⎧⎡⎤-≤≤⎪⎢⎥=-⎨⎣⎦⎪>⎩ (2)由(1)知,当x c >时,每天的盈利额为0.当1x c ≤≤时,()3296xT x A x ⎛⎫=- ⎪ ⎪-⎝⎭. 令96x t -=,则09695c t <-≤≤.故 ()3961144969722t T t A t A t t -⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭114797022A A ⎛≤-=> ⎝. 当且仅当144t t=,即()1288t x ==即时,等号成立. 所以(i )当88c ≥时,max 1472T A =(等号当且仅当88x =时成立). (ii ) 当188c ≤<时,由1x c ≤≤得129695c t <-≤≤, 易证函数()144g t t t=+在(12,)t ∈+∞上单调递增(证明过程略). 所以,()()96g t g c ≥-. 所以,1144972T t A t ⎛⎫=-- ⎪⎝⎭()211441441892979602961922c c c A A c c ⎛⎫+-⎛⎫≤---=>⎪ ⎪--⎝⎭⎝⎭, 即2max14418921922c c T A c ⎛⎫+-= ⎪-⎝⎭.(等号当且仅当x c =时取得) 综上,若8896c ≤<,则当日产量为88件时,可获得最大利润;若188c ≤<,则当日产量为时,可获得最大利润.点评 分段函数是历年高考的热门话题,常考常新,值得我们在复课时认真对待. 5.抽象函数例6. 函数()f x 对一切实数,均有()()(21)f x y f y x y x +-=++成立,且(1)0f =, (1)求(0)f 的值;(2)对任意的11(0,)2x ∈,21(0,)2x ∈,都有12()2log a f x x +<成立时,求的取值范围. 解:(1)由已知等式()()(21)f x y f y x y x +-=++, 令1x =,0y =得(1)(0)2f f -=, 又∵(1)0f =,∴(0)2f =-.(2)由()()(21)f x y f y x y x +-=++, 令0y =得()(0)(1)f x f x x -=+,由(1)知(0)2f =-,∴2()2f x x x +=+. ∵11(0,)2x ∈,∴22111111()2()24f x x x x +=+=+-在11(0,)2x ∈上单调递增, ∴13()2(0,)4f x +∈.要使任意11(0,)2x ∈,21(0,)2x ∈都有12()2log a f x x +<成立,当1a >时,21log log 2a a x <,显然不成立.当01a <<时,21log log 2a a x >,∴0113log 24a a <<⎧⎪⎨≥⎪⎩1a ≤<∴的取值范围是. 6.一些简单函数的求法 例7.(1)已知3311()f x x x x +=+,求()f x ; (2)已知2(1)lg f x x+=,求()f x ;(3)已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x ; (4)已知()f x 满足12()()3f x f x x+=,求()f x . 解:(1)∵3331111()()3()f x x x x x x x x+=+=+-+, ∴3()3f x x x =-(2x ≥或2x ≤-).(2)令21t x +=(1t >), 则21x t =-,∴2()lg 1f t t =-,∴2()lg (1)1f x x x =>-.(3)设()(0)f x ax b a =+≠,则3(1)2(1)333222f x f x ax a b ax a b +--=++-+-5217ax b a x =++=+, ∴2a =,7b =,∴()27f x x =+. (4)12()()3f x f x x+= ①, 把①中的换成1x ,得132()()f f x x x+= ②,①2⨯-②得33()6f x x x =-,∴1()2f x x x=-. 注:第(1)题用配凑法;第(2)题用换元法;第(3)题已知一次函数,可用待定系数法;第(4)题用方程组法. 7.函数的实际应用问题例8. 某市收水费的方法是:水费=基本费+超额费+耗损费,若每月用水量不超过最低限量am3时,只付基本费8元及每户每月的定额耗损费c 元,若用水量超过am3时,除了付同上的基本费和耗损费之外,超过部分每m3付b 元的超额费,已知耗损费不超过5元。
高三数学复习(理):第4讲 第1课时 三角函数的单调性与最值
第4讲 三角函数的图象与性质[学生用书P77]1.用五点法作正弦函数和余弦函数的简图在正弦函数y =sin x ,x ∈[0,2π]的图象上,五个关键点是:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0).在余弦函数y =cos x ,x ∈[0,2π]的图象上,五个关键点是:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1).五点法作图有三步:列表、描点、连线(注意光滑). 2.正弦、余弦、正切函数的图象与性质 函数 y =sin x y =cos x y =tan x图象定义域 R R {x |x ∈R ,且x ≠kπ+π2,k ∈Z }值域 [-1,1] [-1,1] R 奇偶 性奇函数偶函数奇函数单调性在[-π2+2kπ,π2+2kπ](k∈Z)上是递增函数,在[π2+2kπ,3π2+2kπ](k∈Z)上是递减函数在[2kπ-π,2kπ](k∈Z)上是递增函数,在[2kπ,2kπ+π](k∈Z)上是递减函数在(-π2+kπ,π2+kπ)(k∈Z)上是递增函数周期性周期是2kπ(k∈Z且k≠0),最小正周期是2π周期是2kπ(k∈Z且k≠0),最小正周期是2π周期是kπ(k∈Z且k≠0),最小正周期是π对称性对称轴是x=π2+kπ(k∈Z),对称中心是(kπ,0)(k∈Z)对称轴是x=kπ(k∈Z),对称中心是(kπ+π2,0)(k∈Z)对称中心是(kπ2,0)(k∈Z)常用结论(1)函数y=A sin(ωx+φ)和y=A cos(ωx+φ)的最小正周期T=2π|ω|,函数y=tan(ωx+φ)的最小正周期T=π|ω|.(2)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半周期,相邻的对称中心与对称轴之间的距离是14周期.正切曲线相邻两对称中心之间的距离是半周期.(3)三角函数中奇函数一般可化为y=A sin ωx或y=A tan ωx的形式,偶函数一般可化为y=A cos ωx+b的形式.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)y=cos x在第一、二象限内是减函数.()(2)若y=k sin x+1,x∈R,则y的最大值是k+1.()(3)若非零实数T 是函数f (x )的周期,则kT (k 是非零整数)也是函数f (x )的周期.( )(4)函数y =sin x 图象的对称轴方程为x =2k π+π2(k ∈Z ). ( ) (5)函数y =tan x 在整个定义域上是增函数.( ) 答案:(1)× (2)× (3)√ (4)× (5)× 二、易错纠偏常见误区|K(1)忽视y =A sin x (或y =A cos x )中A 对函数单调性的影响; (2)忽视正、余弦函数的有界性; (3)不注意正切函数的定义域.1.函数y =1-2cos x 的单调递减区间是________. 答案:[2k π-π,2k π],k ∈Z2.函数y =-cos 2x +3cos x -1的最大值为________. 答案:13.函数y =cos x tan x 的值域是________. 答案:(-1,1)第1课时 三角函数的单调性与最值[学生用书P78]三角函数的定义域(自主练透) 1.函数f (x )=-2tan ⎝⎛⎭⎪⎫2x +π6的定义域是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π6B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠-π12C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π6(k ∈Z )D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π2+π6(k ∈Z )解析:选D.由2x +π6≠k π+π2,得x ≠k π2+π6(k ∈Z ). 2.函数y =lg sin x +cos x -12的定义域为________.解析:要使函数有意义,则有⎩⎨⎧sin x >0,cos x -12≥0, 即⎩⎨⎧sin x >0,cos x ≥12, 解得⎩⎨⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ),所以2k π<x ≤π3+2k π,k ∈Z .所以函数y 的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π<x ≤π3+2k π,k ∈Z .答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π<x ≤π3+2k π,k ∈Z3.(一题多解)函数y =sin x -cos x 的定义域为________. 解析:方法一:要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]内,满足sin x =cos x 的x 为π4,5π4,再结合正弦、余弦函数的周期是2π,所以原函数的定义域为{x |2k π+π4≤x ≤2k π+5π4,k ∈Z }.方法二:利用三角函数线,画出满足条件的终边范围(如图阴影部分所示).所以定义域为{x |2k π+π4≤x ≤2k π+5π4,k ∈Z }. 方法三:sin x -cos x =2sin(x -π4)≥0,将x -π4视为一个整体,由正弦函数y =sin x 的图象和性质可知2k π≤x -π4≤π+2k π(k ∈Z ),解得2k π+π4≤x ≤2k π+5π4(k ∈Z ).所以函数y 的定义域为{x |2k π+π4≤x ≤2k π+5π4,k ∈Z }. 答案:{x |2k π+π4≤x ≤2k π+5π4,k ∈Z }求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.函数的单调性(多维探究) 角度一 求三角函数的单调区间(1)函数f (x )=sin ⎝⎛⎭⎪⎫-2x +π3的单调递减区间为________.(2)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x +π3的单调递增区间是________.(3)函数y =12sin x +32cos x ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的单调递增区间是________.【解析】 (1)f (x )=sin ⎝ ⎛⎭⎪⎫-2x +π3=sin ⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫2x -π3=-sin ⎝⎛⎭⎪⎫2x -π3,由2k π-π2≤2x -π3≤2k π+π2,k ∈Z , 得k π-π12≤x ≤k π+5π12,k ∈Z . 故所求函数的单调递减区间为 ⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z .(2)由k π-π2<2x +π3<k π+π2(k ∈Z ), 得k π2-5π12<x <k π2+π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x +π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-5π12,k π2+π12(k ∈Z ).(3)因为y =12sin x +32cos x =sin ⎝ ⎛⎭⎪⎫x +π3,由2k π-π2≤x +π3≤2k π+π2(k ∈Z ), 解得2k π-5π6≤x ≤2k π+π6(k ∈Z ).所以函数y =sin ⎝ ⎛⎭⎪⎫x +π3在R 上的单调递增区间为⎣⎢⎡⎦⎥⎤2k π-5π6,2k π+π6(k ∈Z ),又x ∈⎣⎢⎡⎦⎥⎤0,π2,所以函数的单调递增区间为⎣⎢⎡⎦⎥⎤0,π6.【答案】 (1)⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z(2)⎝ ⎛⎭⎪⎫k π2-5π12,k π2+π12(k ∈Z ) (3)⎣⎢⎡⎦⎥⎤0,π6 【迁移探究】 本例(3)中,将x ∈⎣⎢⎡⎦⎥⎤0,π2改为x ∈[-π,π],则函数的单调递减区间是________.解析:因为y =sin ⎝⎛⎭⎪⎫x +π3,由2k π+π2≤x +π3≤2k π+3π2(k ∈Z ), 得2k π+π6≤x ≤2k π+7π6(k ∈Z ),所以函数y =sin ⎝ ⎛⎭⎪⎫x +π3在R 上的单调递减区间为⎣⎢⎡⎦⎥⎤2k π+π6,2k π+7π6(k ∈Z ).又x ∈[-π,π],所以函数的单调递减区间为⎣⎢⎡⎦⎥⎤-π,-5π6,⎣⎢⎡⎦⎥⎤π6,π.答案:⎣⎢⎡⎦⎥⎤-π,-5π6,⎣⎢⎡⎦⎥⎤π6,π求较为复杂的三角函数的单调区间时,首先化简成y =A sin(ωx +φ)形式,再求y =A sin(ωx +φ)的单调区间,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可,注意要先把ω化为正数.角度二 根据单调性求参数(1)(一题多解)若f (x )=cos x -sin x 在[0,a ]是减函数,则a 的最大值是( )A.π4 B .π2 C.3π4D .π(2)(一题多解)若f (x )=2sin ωx (ω>0)在区间[-π2,2π3]上是增函数,则ω的取值范围是________.【解析】 (1)方法一:f (x )=cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4.当x ∈[0,a ]时,x+π4∈⎣⎢⎡⎦⎥⎤π4,a +π4,所以结合题意可知,a +π4≤π,即a ≤3π4,故所求a 的最大值是3π4.故选C.方法二:f ′(x )=-sin x -cos x =-2sin ⎝ ⎛⎭⎪⎫x +π4.于是,由题设得f ′(x )≤0,即sin ⎝ ⎛⎭⎪⎫x +π4≥0在区间[0,a ]上恒成立.当x ∈[0,a ]时,x +π4∈⎣⎢⎡⎦⎥⎤π4,a +π4,所以a +π4≤π,即a ≤3π4,故所求a 的最大值是3π4.故选C.(2)方法一:因为x ∈[-π2,2π3](ω>0), 所以ωx ∈[-ωπ2,2πω3],因为f (x )=2sin ωx 在[-π2,2π3]上是增函数, 所以⎩⎨⎧-πω2≥-π2,2πω3≤π2,ω>0,故0<ω≤34. 方法二:画出函数f (x )=2sin ωx (ω>0)的图象如图所示.要使f (x )在[-π2,2π3]上是增函数,需⎩⎪⎨⎪⎧-π2ω≤-π2,2π3≤π2ω(ω>0),即0<ω≤34.方法三:由-π2+2k π≤ωx ≤π2+2k π(k ∈Z )得 -π2ω+2k πω≤x ≤π2ω+2k πω(k ∈Z ),故f (x )的单调递增区间是[-π2ω+2k πω,π2ω+2k πω](k ∈Z ),由题意知[-π2,2π3]⊆[-π2ω+2k πω,π2ω+2k πω](k ∈Z ,ω>0),从而有⎩⎪⎨⎪⎧-π2ω≤-π2,π2ω≥2π3,即0<ω≤34.【答案】 (1)C (2)(0,34]已知三角函数的单调区间求参数的取值范围的3种方法(1)子集法:求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解;(2)反子集法:由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解;(3)周期法:由所给区间的两个端点到其相应对称中心的距离不超过14周期列不等式(组)求解.1.(2019·高考全国卷Ⅱ)下列函数中,以π2为周期且在区间⎝ ⎛⎭⎪⎫π4,π2单调递增的是( )A .f (x )=|cos 2x |B .f (x )=|sin 2x |C .f (x )=cos|x |D .f (x )=sin|x |解析:选A.A 中,函数f (x )=|cos 2x |的周期为π2,当x ∈⎝ ⎛⎭⎪⎫π4,π2时,2x ∈⎝ ⎛⎭⎪⎫π2,π,函数f (x )单调递增,故A 正确;B 中,函数f (x )=|sin 2x |的周期为π2,当x ∈⎝ ⎛⎭⎪⎫π4,π2时,2x ∈⎝ ⎛⎭⎪⎫π2,π,函数f (x )单调递减,故B 不正确;C 中,函数f (x )=cos|x |=cosx 的周期为2π,故C 不正确;D 中,f (x )=sin|x |=⎩⎪⎨⎪⎧sin x ,x ≥0,-sin x ,x <0,由正弦函数图象知,在x ≥0和x <0时,f (x )均以2π为周期,但在整个定义域上f (x )不是周期函数,故D 不正确.故选A.2.(2020·广东省七校联考)函数f (x )=tan ⎝ ⎛⎭⎪⎫x 2-π6的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤2k π-2π3,2k π+4π3,k ∈Z B.⎝⎛⎭⎪⎫2k π-2π3,2k π+4π3,k ∈Z C.⎣⎢⎡⎦⎥⎤4k π-2π3,4k π+4π3,k ∈Z D.⎝⎛⎭⎪⎫4k π-2π3,4k π+4π3,k ∈Z 解析:选B.由-π2+k π<x 2-π6<π2+k π,k ∈Z ,得2k π-2π3<x <2k π+4π3,k ∈Z ,所以函数f (x )=tan ⎝ ⎛⎭⎪⎫x 2-π6的单调递增区间是⎝ ⎛⎭⎪⎫2k π-2π3,2k π+4π3,k ∈Z ,故选B.3.若函数g (x )=sin ⎝ ⎛⎭⎪⎫2x +π6在区间⎣⎢⎡⎦⎥⎤0,a 3和⎣⎢⎡⎦⎥⎤4a ,7π6上均单调递增,则实数a 的取值范围是________.解析:由2k π-π2≤2x +π6≤2k π+π2(k ∈Z ),可得k π-π3≤x ≤k π+π6(k ∈Z ), 所以g (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ).又因为函数g (x )在区间⎣⎢⎡⎦⎥⎤0,a 3和⎣⎢⎡⎦⎥⎤4a ,7π6上均单调递增,所以⎩⎪⎪⎨⎪⎪⎧a 3≤π6,4a ≥2π3,0<a 3,4a <7π6,解得π6≤a <7π24.答案:⎣⎢⎡⎭⎪⎫π6,7π24三角函数的值域(师生共研)(1)函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为________.(2)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.(3)函数y =sin x -cos x +sin x cos x 的值域为________.【解析】 (1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,所以sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3,所以函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为⎣⎢⎡⎦⎥⎤-32,3. (2)依题意,f (x )=sin 2x +3cos x -34=-cos 2x +3cos x +14=-⎝⎛⎭⎪⎫cos x -322+1,因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以cos x ∈[0,1],因此当cos x =32时,f (x )max =1.(3)设t =sin x -cos x ,则-2≤t ≤2,t 2=sin 2x +cos 2x -2sin x cos x ,则sin x cos x =1-t 22,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2.所以函数的值域为⎣⎢⎡⎦⎥⎤-12-2,1.【答案】 (1)⎣⎢⎡⎦⎥⎤-32,3 (2)1 (3)⎣⎢⎡⎦⎥⎤-12-2,1求三角函数的值域(最值)的4种类型及解法思路(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值).(2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值).(3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).(4)形如y =t +at (a >0,t >0)的可考虑基本不等式.1.若函数f (x )=(1+3tan x )cos x ,-π3≤x ≤π6,则f (x )的最大值为( ) A .1 B .2 C. 3D.3+1解析:选C.f (x )=(1+3tan x )cos x =cos x +3sin x =2sin ⎝ ⎛⎭⎪⎫x +π6.因为-π3≤x≤π6,所以-π6≤x +π6≤π3,故当x =π6时,f (x )取最大值为 3.故选C.2.设x ∈⎝⎛⎭⎪⎫0,π2,则函数y =sin 2x 2sin 2x +1的最大值为________.解析:因为x ∈⎝ ⎛⎭⎪⎫0,π2,所以tan x >0,y =sin 2x 2sin 2x +1=2sin x cos x 3sin 2x +cos 2x =2tan x 3tan 2x +1=23tan x +1tan x≤223=33,当且仅当3tan x =1tan x 时等号成立,故最大值为33. 答案:33[学生用书P80]思想方法系列8 换元法求三角函数的最值(值域)已知函数f (x )=-10sin 2x -10sin x -12,x ∈⎣⎢⎡⎦⎥⎤-π2,m 的值域为⎣⎢⎡⎦⎥⎤-12,2,则实数m 的取值范围是________. 【解析】 记t =sin x ,x ∈⎣⎢⎡⎦⎥⎤-π2,m ,则函数f (x )可转化为g (t )=-10t 2-10t-12=-10⎝ ⎛⎭⎪⎫t +122+2. 因为函数的最大值为2,显然此时t =-12. 令g (t )=-12,得t =-1或t =0,由题意知x ∈⎣⎢⎡⎦⎥⎤-π2,m ,当x =-π2时,t =-1,g (-1)=-12,结合g (t )的图象及函数的值域为⎣⎢⎡⎦⎥⎤-12,2,可得-12≤sin m ≤0,解得-π6≤m ≤0.【答案】 ⎣⎢⎡⎦⎥⎤-π6,0对于函数y =a sin 2(ωx +φ)+b sin(ωx +φ)+c 的最值或值域问题,可通过换元(令t =sin(ωx +φ))转化为y =at 2+bt +c 的最值或值域问题.用换元法求解此类问题时,需注意换元后“元”的取值范围的变化.函数y =(4-3sin x )(4-3cos x )的最小值为________.解析:y =16-12(sin x +cos x )+9sin x cos x , 令t =sin x +cos x , 则t ∈[-2,2], 且sin x cos x =t 2-12,所以y =16-12t +9×t 2-12=12(9t 2-24t +23). 故当t =43时,y min =72. 答案:72[学生用书P377(单独成册)][A 级 基础练]1.函数y =tan ⎝ ⎛⎭⎪⎫π4-x 的定义域是( )A .{x |x ≠π4}B .{x |x ≠-π4}C .{x |x ≠k π+π4(k ∈Z )}D .{x |x ≠k π+3π4(k ∈Z )}解析:选D.y =tan ⎝ ⎛⎭⎪⎫π4-x =-tan ⎝ ⎛⎭⎪⎫x -π4,由x -π4≠π2+k π(k ∈Z ),得x ≠k π+3π4(k ∈Z ).故选D.2.函数y =|cos x |的一个单调增区间是( ) A .[-π2,π2] B .[0,π] C .[π,3π2]D .[3π2,2π]解析:选D.将y =cos x 的图象位于x 轴下方的图象关于x 轴对称翻折到x 轴上方,x 轴上方(或x 轴上)的图象不变,即得y =|cos x |的图象(如图).故选D.3.函数y =tan x +sin x -|tan x -sin x |在区间⎝ ⎛⎭⎪⎫π2,3π2内的图象是( )解析:选 D.y =tan x +sin x -|tan x -sin x |=⎩⎨⎧2tan x ,x ∈⎝ ⎛⎦⎥⎤π2,π,2sin x ,x ∈⎝⎛⎭⎪⎫π,3π2.结合选项中图形知,D 正确.4.(2020·贵阳市第一学期监测考试)已知函数f (x )=cos 2x +3sin 2x ,则f (x )的单调递增区间是( )A .[k π-π3,k π+π6](k ∈Z ) B .[k π,k π+π2](k ∈Z ) C .[k π+π6,k π+2π3](k ∈Z )D .[k π-π2,k π](k ∈Z )解析:选A.f (x )=cos 2x +3sin 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6,则由-π2+2k π≤2x +π6≤π2+2k π(k ∈Z ),得-π3+k π≤x ≤π6+k π(k ∈Z ),即函数f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ),故选A.5.(2020·昆明市三诊一模)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π4(ω>0),x ∈⎣⎢⎡⎦⎥⎤0,π2的值域是⎣⎢⎡⎦⎥⎤-22,1,则ω的取值范围是( )A.⎝ ⎛⎦⎥⎤0,32 B .⎣⎢⎡⎦⎥⎤32,3 C.⎣⎢⎡⎦⎥⎤3,72 D.⎣⎢⎡⎦⎥⎤52,72 解析:选B.方法一:因为x ∈⎣⎢⎡⎦⎥⎤0,π2,ω>0,所以ωx -π4∈⎣⎢⎡⎦⎥⎤-π4,ωπ2-π4.又当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )∈⎣⎢⎡⎦⎥⎤-22,1,所以π2≤ωπ2-π4≤5π4,解得32≤ω≤3,故选B.方法二:当ω=2时,f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4.因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4, 所以sin ⎝ ⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1,满足题意,故排除A ,C ,D ,故选B.6.比较大小:sin ⎝ ⎛⎭⎪⎫-π18________sin ⎝ ⎛⎭⎪⎫-π10.解析:因为y =sin x 在⎣⎢⎡⎦⎥⎤-π2,0上为增函数且-π18>-π10>-π2,故sin ⎝ ⎛⎭⎪⎫-π18>sin ⎝ ⎛⎭⎪⎫-π10.答案:>7.设函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx -π6(ω>0).若f (x )≤f ⎝ ⎛⎭⎪⎫π4对任意的实数x 都成立,则ω的最小值为________.解析:由于对任意的实数都有f (x )≤f ⎝ ⎛⎭⎪⎫π4成立,故当x =π4时,函数f (x )有最大值,故f ⎝ ⎛⎭⎪⎫π4=1,πω4-π6=2k π(k ∈Z ),所以ω=8k +23(k ∈Z ),又ω>0,所以ωmin=23.答案:238.若函数f (x )=3sin ⎝ ⎛⎭⎪⎫x +π10-2在区间⎣⎢⎡⎦⎥⎤π2,a 上单调,则实数a 的最大值是________.解析:方法一:令2k π+π2≤x +π10≤2k π+3π2,k ∈Z ,即2k π+2π5≤x ≤2k π+7π5,k ∈Z ,所以函数f (x )在区间⎣⎢⎡⎦⎥⎤2π5,7π5上单调递减,所以a 的最大值为7π5.方法二:因为π2≤x ≤a ,所以π2+π10≤x +π10≤a +π10, 而f (x )在⎣⎢⎡⎦⎥⎤π2,a 上单调,所以a +π10≤3π2,即a ≤7π5,所以a 的最大值为7π5. 答案:7π59.已知f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4.(1)求f (x )的单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,求函数f (x )的最大值和最小值.解:(1)令2k π-π2≤2x +π4≤2k π+π2,k ∈Z , 则k π-3π8≤x ≤k π+π8,k ∈Z .故f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z .(2)当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,3π4≤2x +π4≤7π4,所以-1≤sin ⎝ ⎛⎭⎪⎫2x +π4≤22,所以-2≤f (x )≤1,所以当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,函数f (x )的最大值为1,最小值为- 2.10.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6.讨论函数f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π2上的单调性并求出其值域.解:令-π2≤2x -π6≤π2,则-π6≤x ≤π3. 令π2≤2x -π6≤3π2,则π3≤x ≤5π6.因为-π12≤x ≤π2,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤-π12,π3上单调递增,在区间⎝ ⎛⎦⎥⎤π3,π2上单调递减. 当x =π3时,f (x )取得最大值为1.因为f ⎝ ⎛⎭⎪⎫-π12=-32<f ⎝ ⎛⎭⎪⎫π2=12,所以当x =-π12时,f (x )min =-32. 所以f (x )的值域为⎣⎢⎡⎦⎥⎤-32,1.[B 级 综合练]11.(2020·贵阳市第一学期监测考试)已知函数f (x )=sin(2x +φ),其中φ∈(0,2π),若f (x )≤f ⎝ ⎛⎭⎪⎫π6对于一切x ∈R 恒成立,则f (x )的单调递增区间是( )A .[k π,k π+π2](k ∈Z )B .[k π-π3,k π+π6](k ∈Z )C .[k π+π6,k π+2π3](k ∈Z )D .[k π-π2,k π](k ∈Z )解析:选B.因为f (x )≤f ⎝ ⎛⎭⎪⎫π6对于x ∈R 恒成立,则f ⎝ ⎛⎭⎪⎫π6为函数f (x )的最大值,即2×π6+φ=2k π+π2(k ∈Z ),则φ=2k π+π6(k ∈Z ),又φ∈(0,2π),所以φ=π6,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x + π6.令2x +π6∈⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ),则x ∈⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ).故选B.12.(2020·沈阳市教学质量监测(一))已知函数f (x )=3sin 2x -2cos 2x +1,则下列选项正确的是( )A .当x =π6时,f (x )取得最大值B .f (x )在区间⎣⎢⎡⎦⎥⎤-π3,0上单调递增C .f (x )在区间⎣⎢⎡⎦⎥⎤π3,5π6上单调递减D .f (x )的图象的一条对称轴为直线x =π12解析:选C.由题意可知f (x )=3sin 2x -cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π6.对于选项A ,当x =π6时,f ⎝ ⎛⎭⎪⎫π6=1,不是最大值,选项A 错误;对于选项B ,当2k π-π2≤2x-π6≤2k π+π2,k ∈Z ,即k π-π6≤x ≤k π+π3,k ∈Z 时,f (x )单调递增,可知⎣⎢⎡⎦⎥⎤-π3,0不是f (x )的单调递增区间,选项B 错误;对于选项C ,当2k π+π2≤2x -π6≤2k π+3π2,k ∈Z ,即k π+π3≤x ≤k π+5π6,k ∈Z 时,f (x )单调递减,可知⎣⎢⎡⎦⎥⎤π3,5π6是f (x )的单调递减区间,选项C 正确;对于选项D ,由2x -π6=k π+π2,k ∈Z ,得x =k π2+π3,k ∈Z ,所以直线x =π12不是f (x )的图象的一条对称轴,选项D 错误.故选C.13.(2021·沈阳市教学质量监测(一))设函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π5(ω>0),已知f (x )在[0,2π]有且仅有5个零点,则ω的取值范围是________.解析:当x ∈[0,2π]时,ωx +π5∈⎣⎢⎡⎦⎥⎤π5,2πω+π5,因为f (x )=[0,2π]有且仅有5个零点,所以5π≤2πω+π5<6π,所以125≤ω<2910.答案:⎣⎢⎡⎭⎪⎫125,291014.已知f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+a +1.(1)求f (x )的单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )的最大值为4,求a 的值;(3)在(2)的条件下,求满足f (x )=1且x ∈[-π,π]的x 的取值集合. 解:(1)f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+a +1,由2k π-π2≤2x +π6≤2k π+π2,k ∈Z , 可得k π-π3≤x ≤k π+π6,k ∈Z ,所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6,k ∈Z .(2)当x =π6时,f (x )取得最大值4, 即f ⎝ ⎛⎭⎪⎫π6=2sin π2+a +1=a +3=4,所以a =1.(3)由f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+2=1,可得sin ⎝⎛⎭⎪⎫2x +π6=-12,则2x +π6=7π6+2k π,k ∈Z 或2x +π6=116π+2k π,k ∈Z , 即x =π2+k π,k ∈Z 或x =5π6+k π,k ∈Z , 又x ∈[-π,π],解得x =-π2,-π6,π2,5π6,所以x 的取值集合为⎩⎨⎧⎭⎬⎫-π2,-π6,π2,5π6.[C 级 提升练]15.(2021·湖北八校第一次联考)若函数f (x )=sin x +3cos x 在区间[a ,b ]上是减函数,且f (a )=2,f (b )=-2,则函数g (x )=cos x -3sin x 在区间[a ,b ]上( )A .是增函数B .是减函数C .可以取得最大值2D .可以取得最小值-2解析:选 D.f (x )=sin x +3cos x =2sin ⎝⎛⎭⎪⎫x +π3,g (x )=cos x -3sin x =2cos ⎝ ⎛⎭⎪⎫x +π3=2sin ⎝⎛⎭⎪⎫x +π2+π3.f (x )在区间[a ,b ]上是减函数,且f (a )=2,f (b )=-2,不妨令a +π3=π2,b +π3=3π2,则a +π2+π3=π,b +π2+π3=2π,故g (x )在[a ,b ]上既不是增函数,也不是减函数,g (x )在[a ,b ]上可以取得最小值-2,故选D.16.已知函数f (x )=(x -a )k ,角A ,B ,C 为锐角三角形ABC 的三个内角,则下列判断正确的是( )A .当k =1,a =2时,f (sin A )<f (cosB )B .当k =1,a =2时,f (cos A )>f (sin B )C .当k =2,a =1时,f (sin A )>f (cos B )D .当k =2,a =1时,f (cos A )>f (sin B )解析:选D.A ,B ,C 为锐角三角形ABC 的三个内角,因为A +B >π2,所以π2>A >π2-B >0,所以sin A >sin ⎝ ⎛⎭⎪⎫π2-B =cos B ,cos A <cos ⎝ ⎛⎭⎪⎫π2-B =sin B ,且sin A ,sin B ,cos A ,cos B ∈(0,1).当k =1,a =2时,函数f (x )=x -2单调递增,所以f (sin A )>f (cos B ),f (cos A )<f (sin B ),故A ,B 错误;当k =2,a =1时,函数f (x )=(x -1)2在(0,1)上单调递减,所以f (sin A )<f (cosB ),f (cos A )>f (sin B ),故C 错误,D 正确.。
高考数学总复习考点知识专题讲解4---函数的定义域与值域
(4)(判别式法)观察函数式,将已知的函数式变形为 yx2+2yx+3y=2x2+4x-7, 整理得(y-2)x2+2(y-2)x+3y+7=0. 显然y≠2(运用判别式法之前,应先讨论x2的系数). 将上式看作关于x的一元二次方程. 易知原函数的定义域为R,则上述关于x的一元二次方
程有实根,所以Δ=[2(y-2)]2-4(y-2)(3y+7)≥0. 解不等式得-92≤y≤2. 又y≠2,∴原函数的值域为-92,2.
1.(2019·广东广州六中模拟)函数y= x ln(1-x)的定义
域为( B )
A.(0,1)
B.[0,1)
C.(0,1]
D.[0,1]
[解析] 由题意得1x≥-0x>,0, ∴0≤x<1,∴选B.
2.(2019·湖南衡阳第一中学第一次月考)已知函数f(2x-
1)的定义域为(-1,2),则f(2-3x)的定义域为__-__13_,__53___.
高考数学总复习考点知识专题讲解 函数的定义域与值域
最新考纲:1.会求一些简单函数的定义域;2.了解求函 数值域的方法,会求一些简单函数的值域.
基础
知识回顾
1.函数的定义域
(1)求定义域的步骤 ①写出使函数式有意义的不等式(组); ②解不等式(组); ③写出函数定义域.(注意用区间或集合的形式写出)
2x-1,x>2 当x<-1时,y>3;当x>2时,y>3,故函数的值域为[3, +∞).
考点三 函数的定义域与值域的应用
【例3】
(1)若函数y=
mx-1 mx2+4mx+3
的定义域为R,则
实数m的取值范围是( D )
A.0,34
B.0,34
专题2.2 函数的定义域、值域及函数的解析式(预测)-2014年高考数学(理)一轮复习精品资料(解析版)
名师预测1.函数y =(13)x 2的值域是( )A .(0,+∞)B .(0,1)C .(0,1]D .[1,+∞)2.函数f (x )=log 2(3x -1)的定义域为( ) A .(0,+∞) B .[0,+∞) C .(1,+∞)D .[1,+∞)3.函数y =x x -1-lg 1x 的定义域为( )A .{x |x >0}B .{x |x ≥1}C .{x |x ≥1或x <0}D .{x |0<x ≤1}4.下列函数中值域为正实数集的是( ) A .y =-5xB .y =(13)1-xC .y =12x-1D .y =1-2x5.已知函数f (x )=a x -1(a >0,a ≠1)的定义域和值域都是[1,2],则a 的值为( ) A.22B .2 C. 2D.136.设f (x )=⎩⎪⎨⎪⎧x 2, |x |≥1,x , |x |<1,g (x )是二次函数,若f (g (x ))的值域是[0,+∞),则g (x )的值域是( )A .(-∞,-1]∪[1,+∞)B .(-∞,-1]∪[0,+∞)C .[0,+∞)D .[1,+∞)7.已知等腰△ABC 周长为10,则底边长y 关于腰长x 的函数关系为y =10-2x ,则函数的定义域为( )A .RB .{x |x >0}C .{x |0<x <5}D.⎩⎨⎧⎭⎬⎫x |52<x <58.函数y =2x -1的定义域是(-∞,1)∪[2,5),则其值域是( )A .(-∞,0)∪⎝⎛⎦⎤12,2 B .(-∞,2] C.⎝⎛⎭⎫-∞,12∪[2,+∞)D .(0,+∞)9.函数y =2--x 2+4x 的值域是( ) A .[-2,2] B .[1,2] C .[0,2]D .[-2,2] 10.定义区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1,已知函数f (x )=|log 12x |的定义域为[a ,b ],值域为[0,2],则区间[a ,b ]的长度的最大值与最小值的差为________.11.函数y =16-x -x 2的定义域是________.12.函数f (x )=x +x x -2的定义域是________. 13.设函数f (x )=12(x +|x |),则函数f [f (x )]的值域为________.14.函数y =x +1+x -10lg 2-x 的定义域是________.15.函数y =x -x (x ≥0)的最大值为________.16.已知函数f (x )的定义域为[0,1],值域为[1,2],则函数f (x +2)的定义域为____________,值域为__________.17.求下列函数的值域.(1)y =1-x 2x +5;(2)y =2x -1-13-4x .18.若函数f (x )=12x 2-x +a 的定义域和值域均为[1,b ](b >1),求a 、b 的值.19.已知函数g (x )=x +1, h (x )=1x +3,x ∈(-3,a ],其中a 为常数且a >0,令函数f (x )=g (x )·h (x ). (1)求函数f (x )的表达式,并求其定义域; (2)当a =14时,求函数f (x )的值域.20.求下列函数的定义域: (1)y =25-x 2+lgcos x ; (2)y =log 2(-x 2+2x ).21.设O 为坐标原点,给定一个定点A (4,3),而点B (x,0)在x 轴的正半轴上移动,l (x )表示AB 的长,求函数y =xl x的值域.22.已知函数f (x )=x 2+4ax +2a +6. (1)若函数f (x )的值域为[0,+∞),求a 的值;(2)若函数f (x )的函数值均为非负数,求g (a )=2-a |a +3|的值域.23.运货卡车以每小时x 千米的速度匀速行驶130千米(50≤x ≤100)(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油⎝⎛⎭⎫2+x2360升,司机的工资是每小时14元. (1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.答案:B13.解析:先去绝对值,当x≥0时,f(x)=x,故f[f(x)]=f(x)=x,当x<0时,f(x)=0,故f[f(x)]=f(0)=0,即f [f (x )]=⎩⎨⎧xx ≥00x <0,易知其值域为[0,+∞).答案:[0,+∞)(2)法一:(换元法)设13-4x =t ,则t ≥0,x =13-t 24,于是y =g (t )=2·13-t 24-1-t ,=-12t 2-t +112=-12(t +1)2+6,显然函数g (t )在[0,+∞)上是单调递减函数,又t ∈⎣⎡⎦⎤1,32时,t +4t 单调递减, F (t )单调递增,F (t )∈⎣⎡⎦⎤13,613.即函数f (x )的值域为⎣⎡⎦⎤13,613.∴g (a )=2-a |a +3|=-a 2-3a +2 =-⎝⎛⎭⎫a +322+174⎝⎛⎭⎫a ∈⎣⎡⎦⎤-1,32. ∵二次函数g (a )在⎣⎡⎦⎤-1,32上单调递减,。
高考数学一轮专题复习 函数的定义域,解析式课件
元a与 素元 b对素 ,那 应么b 把 叫元 做 a的 素 元 ,元 象 素 素
a叫b的 做原 . 象
原象组成 M 称 的为 集原 合象 ,则 M 的 与 A 集 的合 关系
是 MA,所有的象组 C称 成为 的,象 则 集 C与 集 B 合
的关C 系 B 是 .
ppt精选
1
A f:AB B
2 1
4
3
2
3
2
1
(1)则f[g(1)]_________;
(2)当g[f(x)]2时,x______;
ppt精选
5
例1:集合P{x|0 x4},Q{y|0 y2}, 下列从 P到Q的对应法f不 则能构成映射(的)是 .
A. f : xy1x 2
C. f : xy2x 3
B. f : xy1x 3
D. f : xy1x 8
6.已知 f[g函 (x)的 ]数 定D 义 ,求域 函 f(x)为 的 数
定义 ,只x 域 需 {y|yg(x)}即 ,g(x)的值 . 域
ppt精选
8
例: 求下列函数的定义域
x2 (1)y
x2 4
(2)y x2 3x2 | x|x
1
(3 )y lo x(x g 1 )
(4)y log2(x1)
2 6
3
8
ppt精选
2
A
B
A
B
1
2 1
2
4
4
2
6
2
6
3
8
3
8
A
B
A
B
2
2
1
1
4
4
2
6
2
2014届高三数学一轮复习 (基础知识+小题全取+考点通关+课时检测)2.2函数的定义域和值域课件 新人教A版
答案:[10,+∞)
2.判别式法 a1x2+b1x+c1 对于形如 y= 2 (a ,a 不同时为零)的函数 a2x +b2x+c2 1 2 求值域,通常把其转化成关于 x 的一元二次方程,由判别 式 Δ≥0,求得 y 的取值范围,即为原函数的值域.
x2-x [典例 2] 函数 y= 2 的值域为________. x -x+1
[知识能否忆起]
一、常见基本初等函数的定义域
1.分式函数中分母 不等于零 .
2.偶次根式函数被开方式大于或等于0 . 3.一次函数、二次函数的定义域均为 R . 4.y=ax(a>0且a≠1),y=sin x,y=cos x,定义域均为 R.
5.y=logax(a>0且a≠1)的定义域为 (0,+∞). 6.y=tan
4-x2的定义域 ( )
A.[-2,0)∪(0,2] C.[-2,2]
B.(-1,0)∪(0,2]
D.(-1,2] x+1>0, x>-1, 解析: x 满足x+1≠1, 即x≠0, 4-x2≥0, -2≤x≤2.
解得-1<x<0 或 0<x≤2.
答案:B
函数的最值与值域的关系 函数的最值与函数的值域是关联的,求出了函数的 值域也就能确定函数的最值情况,但பைடு நூலகம்确定了函数的最
(1)配方法,多适用于二次型或可转化为二次型的函 数.(如本例(1)) (2)换元法.(如本例(4)) (3)基本不等式法.(如本例(3)) (4)单调性法.(如本例(1)) (5)分离常数法.(如本例(2))
[注意] 求值域时一定要注意到定义域的使用,同时
求值域的方法多种多样,要适当选择.
x-3 2.(1)函数 y= 的值域为________. x+1 (2)(2012· 海口模拟)在实数的原有运算中,我们定义
【优化方案】2014届高考数学(文科,大纲版)一轮复习配套课件:2.2 函数的定义域、值域
1
) ln x B. y= x
sin x C. y=xe D. x 1 解析:选 D.函数 y= 3 的定义域为 {x|x≠0},选项 A 中由 sin
x x≠0⇒x≠kπ,k∈ Z,故 A 不对;选项 B 中 x> 0,故 B 不对; 选项 C 中 x∈ R,故 C 不对;选项 D 中由正弦函数及分式型函 数的定义域确定方法可知定义域为{x|x≠ 0},故选 D.
{y|y∈ R, y≠0} (0,+∞ ) R [- 1,1] [- 1,1] R
目录
思考探究 1.函数为整式、分式、根式、指数或对数函数时,定义域有 什么特点? 提示:(1)整式的定义域是实数集R;分式的分母不为零; (2)偶次方根的被开方数不小于零,零取零次方没有意义; (3)对数函数的真数必须大于零; (4)指数函数和对数函数的底数必须大于零且不等于1. 2.函数的最值与值域有何联系? 提示:函数的最值与函数的值域是关联的,求出了函数的值 域也就能确定函数的最值情况,但有了函数的最大(小)值,未
目录
【领悟归纳】
本例中的题目有本质的区别
(1)已知f(x)的定义域,求f[g(x)]的定义域.
(2)已知f[g(x)]的定义域,求f(x)的定义域.
两个题目中都要视g(x)为一整体,g(x)是复合函数的
中间变量.
目录
跟踪训练 1.本例(2)中题设条件不变,求y=f(lg x)的定义域. 解:由上述解答可知f(x)的定义域为[5,9], ∴5≤lg x≤9,∴105≤x≤109,
定义域.
【思路分析】 定义域. (2)中x+5的取值与f(x)的定义域是相同的. (1)中视“2x”与“5-x”为一整体适合f(x)的
目录
【解】
2014高考数学(理)一轮复习学案课件 第2编 函数的定义域与值域
返回
返回
误区警示
返回
规律探究
返回
即时巩固
返回
返回
课后拔高
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
学案2 函数的定义域与值域
考纲解读 考向预测 课前热身
考点突破
即时巩固 课后拔高
考点 三 考点 二 考点 一
真题再现 误区警示 规律探究
考纲解读
返回
考向预测
返回
课前热身
返回
考点 一
考点突破
返回
返回
返回
返回
返回
考点 二
返回
返回
返回
返回
返回
返回
返回
考点 三
Байду номын сангаас
返回
返回
真题再现
【名师导学】(新课标)高考数学一轮巩固 第4讲 函数的概念、解析式与定义域配套课件 文
x→2x 表示把集合 M 中的元素 x 映射到集合 N 中为 2x, 则 a + b= ( C ) A.-2 B.0 C.2 D.± 2 b 【解析】由于 M 中元素a只能对应 0,1 只能对应 2b a.所以 a =0,a=2,即 b=0,a=2,因此 a+b=2,故 选 C.
2.下列各组函数是同一函数的是( C ) ①f(x)= -2x3与 g(x)=x -2x; ②f(x)=|x|与 g(x)= x2; ③f(x)=x0 与 g(x)=1; ④f(x)=x2-2x-1 与 g(t)=t2-2t-1. A.①② B.①③ C.②④ D.③④
4.分段函数
若函数在定义域的不同子集上对应法则不同, 可用几个式子表示函数,这种形式的函数叫
分段函数 .注意:不要把分段函数误认为是 多个函数,它是一个整体,分段处理后,最后 写成一个函数表达式.分段函数的定义域等于 各段函数的定义域的 并集 ,其值域等于各段 函数的值域的 并集 .分段函数虽由几个部 一 个函数. 分组成,但它表示的是____
【解析】∵y=-x2+2x, ∴y∈(-∞,1]. 由二次函数图象可知: 当 k<1 时, 直线 y=k 与 y=-x2+2x 有两个不同的 交点; 当 k=1 时,直线 y=1 与 y=-x2+2x 有且仅有一 个交点; 当 k>1 时,直线 y=k 与 y=-x2+2x 无交点. 故应填 k∈(-∞,1).
【解析】①两函数的定义域相同,对应关系不同, ①不符合;②两函数的定义域和对应关系均相同,②符 合;③两函数的定义域不同,③不符合;④两函数定义 域和对应关系均相同,④符合.故选 C.
3. 若 f(x)=
1 A.-2,0 1 C.-2,+∞
, 则 f(x)的定义域为( A ) 1 log (2x+1) 2 1 B.-2,0 D.(0,+∞)
(新人教)高三数学第一轮复习教案2.2.4函数(4)解析式
一.课题:函数(4)——函数解析式二.教学目的:1.掌握求函数表达式的几种常见方法,如待定系数法、换元法、配凑法等。
三.教学重点:函数表达式的常用求法四.教学过程:(一)新课讲解:1.函数的表示法(1)解析法:把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式。
例如:260s t =,2A r π=,2y ax bx c =++(0)a ≠. 说明:①解析式法的优点是:函数关系清楚,容易从自变量的值求出其对应的函数值,便于用解析式来研究函数的性质;②中学里研究的主要是用解析式表示的函数。
(2)列表法:列出表格来表示两个变量的函数关系式。
例如:数学用表中的平方表、平方根表、三角函数表,以及银行里常用的“利息表”。
(见课本P52页表1 国民生产总值表)说明:列表法的优点是:不必通过计算就知道当自变量取某些值时函数的对应值。
(3)图象法:用函数图象表示两个变量之间的关系。
例如:气象台应用自动记录器,描绘温度随时间变化的曲线就是用图象法表示函数关系的。
(见课本P53页图2-3 我国人口出生变化曲线)说明:图象法的优点是能直观形象地表示出函数的变化情况。
2.求函数解析式(1).待定系数法例1.(1)已知一次函数()f x 满足(0)5f =,图象过点(2,1)-,求()f x ;(2)已知二次函数()g x 满足(1)1g =,(1)5g -=,图象过原点,求()g x ;(3)已知二次函数()h x 与x 轴的两交点为(2,0)-,(3,0),且(0)3h =-,求()h x ;(4)已知二次函数()F x ,其图象的顶点是(1,2)-,且经过原点,()F x .解:(1)由题意设 ()f x ax b =+,∵(0)5f = 且图象过点(2,1)-,∴521b a b =⎧⎨-+=⎩⇒25a b =⎧⎨=⎩ ∴()25f x x =+. (2)由题意设 2()g x ax bx c =++,∵(1)1g =,(1)5g -=,且图象过原点,∴150a b c a b c c ++=⎧⎪-+=-⎨⎪=⎩ ∴320a b c =⎧⎪=-⎨⎪=⎩∴2()32g x x x =-.(3)由题意设 ()(2)(3)h x a x x =+-,又∵(0)3h =-,∴63a -=- 得12a =∴211()322h x x x =--. (4)由题意设 2()(1)2F x a x =++, 又∵图象经过原点,∴(0)0F =,∴20a += 得2a =-,∴2()24F x x x =--.说明:①已知函数类型,求函数解析式,常用待定系数法;②基本步骤:设出函数的一般式(或顶点式等),代入已知条件,通过解方程(组)确定未知系数。
高三数学复习讲义函数的解析式和定义域
芯衣州星海市涌泉学校二函数与导数6.函数的解析式和定义域一、考纲要求二、命题规律1.函数的性质是每年的必考内容,其中定义域是最根本的性质,它是研究其他函数性质的根底,在解决函数问题时,必须树立起“定义域优先〞观点;2.函数定义域的考察可能会结合不等式进展,难度不会太大,通常是容易题或者者中档题。
三、要点回忆1.解析式:2.求函数解析式的方法:3.确定定义域的的原那么〔1〕当函数()y f x=用表格给同时,函数的定义域是指表格中的集合;〔2〕当函数()y f x=用图象给出时,函数的定义域是指图象在上投影所覆盖的集合;〔3〕当函数()y f x=用解析式给出时,函数的定义域是指的集合;〔4〕当函数()y f x=由实际问题给出时,函数的定义域由实际问题的意义确定.4.确定定义域的根据〔1〕假设()f x是整式,那么定义域是;〔2〕假设()f x是分式,那么定义域是指的全体实数;〔3〕假设()f x是偶次方根,那么定义域是的全体实数;〔4〕函数0()f x x =的定义域为;〔5〕模型函数的定义域是与之对应的函数的定义域模型,例如:log (01)a y x a a =>≠且的定义域为,tan y x =的定义域为;〔6〕复合函数定义域:f(x)的定义域为[]b a x ,∈,其复合函数[])(x g f 的定义域应由不等式解出。
三、课前练习苏大教学与测试P12根底训练1-6四、例题分析苏大教学与测试例1—例4五、例题拓展1.〔1〕函数()f x 在R 上满足2()2(2)88f x f x x x =--+-,求函数的解析式。
〔2〕[]221()12,()x g x x f g x x -=-=(x 0),求)(x f ; 〔3〕函数)(x f 是定义在R 上的奇函数,且当),0(+∞∈x 时,)1()(3x x x f +=,求当)0,(-∞∈x 时,)(x f 的函数解析式。
2.假设函数345)(23++-=kx kx x x f 的定义域为R ,务实数k 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
?0≤x+1≤4
?-1≤x≤3
(3)由??0≤x2-3x≤4 ? ??-1≤x≤0或3≤x≤4
? -1≤x≤0 或 x=3. 所以函数 y=f(x+1)+f(x2-3x)的定义域
是{x|-1≤x≤0 或 x=3}.
【拓展演练 1】 (1)(2012·济南一中 10 月)函数 f(x)= 31x-2 x+lg(3x+1)的定
第4讲 函数的解析式及定义域与值域
1.设 A={x|0≤x≤6},B={y|0≤y≤2},则 f:A→B 不
是函数的是( A )
A.f:x→y=12x
B.f:x→y=13x
C.f:x→y=14x
D.f:x→y=16x
解析:因为 x∈A,y=12x∈[0,3] B. 由函数定义可知,对于 6∈A,在集合 B 中找不到对应 元素,故 f:x→y=12x 不是函数.
下面的函数关系中,能表达这种关系的是( C )
A.y= 8x-7 B.y=2x-1 C.y=32x2-52x+2 D.y=5-32x
解析:由表格对应关系知能表达这种关系的函数图象必 须过三点 (1,1),(2,3),(3,8),易验证知只有 y=32x2-52x+2 适合.
5.(改编)已知映射 f:A→B,其中集合
2.(2012·郑州市第一次质量预测)函数 f(x)=2lox-g2x1的定义
域为( D )
A.(0,+∞)
B.(1,+∞)
C.(0,1)
D.(0,1)∪(1,+∞)
解析:由 log2x≠0,得 0<x<1 或 x>1,故选 D.
3.(2012·四川省眉山市第一次诊断 )下列各组中两个函数
是同一函数的是( B )
(3)因为-2≤x<3,所以-1≤x+1<4. 由-1≤2x-1<4,得 0≤x<52, 故 f(2x-1)的定义域为[0,52).
二 函数的解析式
【例 2】(1)已知 f(x)是一次函数,并且满足 3f(x+1)-2f(x-1)=2x+17,求函数 f(x)的解析式; (2)已知函数 f(x)满足 f(3x+1)=9x2-6x+5,求函数 f(x) 的解析式; (3)已知 2f(x)+f(-x)=3x+2,求 f(x).
解析:(1)设 f(x)=kx+b(k≠0), 则 3f(x+1)-2f(x-1)=3k(x+1)+3b-2k(x-1)-2b =kx+5k+b=2x+17, 所以 k=2,5k+b=17,所以 b=7, 故 f(x)=2x+7.
(2)(方法一)配凑法 因为 f(3x+1)=9x2-6x+5 =(3x+1)2-6x-1-6x+5 =(3x+1)2-4(3x+1)+8. 所以 f(x)=x2-4x+8.
(2)若函数 y=2x2+1kx+1的定义域为 R,则实数 k 的取 值范围是__________.
(3)已知函数 y=f(x)的定义域是[0,4], 则 y=f(x+1)+f(x2-3x)的定义域是______________.
?x2-2x-3≥0
解析:(1)由??x+2>0
,
得{x|-2<x≤-1 或 x≥3},即为所求. (2)由已知 2x2+kx+1≠0 对 x∈R 恒成立, 所以 Δ=k2-8<0,解得-2 2<k<2 2.
【拓展演练 2】 (1)(改编)二次函数 f(x)满足 f(x+1)-f(x)=2x,且 f(0)=1, 则 f(x)的解析式为 x2-x+1 ; (2)已知 f(ex)=2x-3,则 f(x)的解析式为 2ln x-3(x>0) . (3)已知 f(x)满足 2f(x)+f(1x)=3x,求 f(x)的解析式.
A.f(x)=x,g(x)= x2 B.f(x)=x2-2x+4,g(t)=(t-1)2+3 C.f(x)=sin x,g(x)=cos x·tan x D.f(x)=2log2x,g(x)=log2x2
解析:A 中两函数值域不同,C,D 中各自的两对函数 的定义域均不同,故选 B.
4.某种植物生长发育的数量 y 与时间 x 的关系如下表:
(方法二)换元法 令 3x+1=t,则 x=t-3 1, 所以 f(t)=9·(t-3 1)2-6·t-3 1+5 =t2-2t+1-2t+2+5 =t2-4t+8. 所以 f(x)=x2-4x+8.
(3)直接列方程组求解. 由 2f(x)+f(-x)=3x+2,用-x 代换上式中的 x, 得 2f(-x)+f(x)=-3x+2. 解方程组???22ff??-x?+x?f+?-f?xx??==3-x+3x+2 2 , 得 f(x)=3x+23.
A={-9,-4,-1,1,4,9,16},集合 B 中的元素都是 A
中元素在映射 f 下的象,且对于任意的 a∈A,在 B 中和它对应
的元素是 |a|,则集合 B 中元素的个数是( A )
A.4
B.5
C.6
D.7
解析:B={4,3,2,1}.
一 函数的定义域
【例 1】(1)函数 y= x2-2x-3+log2(x+2)的定义域 是__________;
义域是(
)
A.(-13,+∞)
B.(-13,1)
C.(-13,13)
D.(-∞,-13)
(2)若函数 f(x)=ex-1x+m的定义域为 R,则实数 m 的取值
范围是
;
(3)若 f(x+1)的定义域为 [-2,3),则 f(2x-1)的定义域
为
.
?1-x>0 解析:(1)由??3x+1>0
,得-13<x<1,故选 B.
(2)由已知 ex-x+m≠0 对 x∈R 恒成立,
即 m≠x-ex 对 x∈R 恒成立.
令 g(x)=x-ex,则 g′(x)=1-ex.
由 g′(x)=0,得 x=0,
故函数 g(x)在 x=0 处取得最大值,
即 g(x)≤g(0)=-1,
所以要使 m≠x-ex 对 x∈R (1)由 f(0)=1,可设 f(x)=ax2+bx+1(a≠0), 故 f(x+1)-f(x)=a(x+1)2+b(x+1)+1-(ax2+bx+1) =2ax+a+b, 由题意得???2aa+=b2=0 ,解得???ab==-1 1 . 故 f(x)=x2-x+1. (2)设 t=ex,则 x=ln t,有 f(t)=2ln t-3, 所以 f(x)=2ln x-3(x>0).