材料力学第7章讲解

合集下载

材料力学第七章应力状态和强度理论

材料力学第七章应力状态和强度理论
2
x y 2 a 0 2
x y x y 2
x y
2
) x
2
2
例题1: 已知:单元体各侧面应力 x=60MPa,
求: (1) = - 450斜截面上的应力,(2)主应力和主平面
dA
y

x y
2
sin 2 xy cos2
y
yx
应力圆
y
1 R 2

x
y

2
4 2 xy
x
yx xy x
y
R c

x y
2
2
x
xy

dA
yx

y
x y 1 2 2 2

40

x y
2 0.431MPa
sin( 80 ) xy cos(80 )

C
C

C
例题3:已知梁上的M、Q,试用单元体表示截面上1、2、
3、4点的应力状态。
1
2 0
2
1点 2点
1 2 0 3
3Q = 2A
M x Wz
2 xy
x y
2 20.6 0.69 60 0
17.2
x y
2 (
6.4MPa
2 34.4
max(min)
x
17.20
x y
2
) xy
2
2
x
66.4MPa
60 0 60 0 2 ( ) 20.6 2 2 2 66.4(6.4) MPa

材料力学 第07章 应力状态分析与强度理论

材料力学 第07章 应力状态分析与强度理论
2
sin2a t xy cos2a
18/95
7.2 平面应力状态分析 主应力 7.2.3 主平面的方位及极值正应力 s x s y s x s y sa cos2a t xy sin2a 2 2 s x s y ds a 上式对a 求导 2 sin2a t xy cos2a da 2 s x s y 若a a0时,导数为 0 sin2a 0 t xy cos2a 0 0 2 2t xy tan2a 0 s x s y
7.2.5 应力圆
t
sx
tyx
sy
sx txy sy
D(sx,txy) 1. 确定点 D (s ,t ) x xy
O
D'(sy,tyx)
C
s
2. 确定点D' (sy,tyx) tyx= -txy 3. 连接DD'与s 轴交于点C 4. 以 C 为圆心,CD(CD') 为半径画圆。
26/95
7.2 平面应力状态分析 主应力 7.2.5 应力圆
sx sy sz
sxs1 100 MPas 2
0 MPas 3 120 MPa
11/95
7.1 一点的应力状态的概念 单向、二向(平面)、三向(空间)应力状态 三个主应力中仅有一个主应力不为零 单向应力状态
s1
s1
F
A
F
12/95
7.1 一点的应力状态的概念 单向、二向(平面)、三向(空间)应力状态
O
D'(sy,tyx)
C sx- sx sy/2
s
27/95
7.2 平面应力状态分析 主应力 7.2.5 应力圆 利用应力圆确定角a 斜截面上的正应力和切应力

材料力学第七章知识点总结

材料力学第七章知识点总结

p
σα
α
τα
)
(−
B
各边边长,
d x d y
σ
x
σ
y σ
z
τ
xy
τ
yx
τ
yz
τ
zy
τ
zx
τ
xz
(2) 应力状态的分类
a、单向应力状态:只有一个主应力不等于零,另两个主应力
都等于零的应力状态。

b、二向应力状态:有两个主应力不等于零,另一个主应力
等于零的应力状态。

c、三向应力状态:三向主应力都不等于零的应力状态。

平面应力状态:单向应力状态和二向应力状态的总称。

空间应力状态:三向应力状态
简单应力状态:单向应力状态。

复杂应力状态:二向应力状态和三向应力状态的总称。

纯剪切应力状态:单元体上只存在剪应力无正应力。

y
x
σx
σy
σz
τxy τyx
τyz
τzy τzx
τxz
x
y
σx
σy
τyx
τxy
τ第一个下标表示微面元方向,第二个下标表示面元上力的方向
空间问题简化
为平面问题
α——由o
c
b
σττ
σ
ττ
τ
max τ
min
τα
D
A
H
3040MPa
7.27422
)
7.27(=−−
σ
x
σ
y σ
z
τ
xy
τ
yx
τ
yz
τ
zy
τ
zx
τ
xz
y
x
z。

材料力学第七章知识点总结

材料力学第七章知识点总结

p
σα
α
τα
)
(−
B
各边边长,
d x d y
σ
x
σ
y σ
z
τ
xy
τ
yx
τ
yz
τ
zy
τ
zx
τ
xz
(2) 应力状态的分类
a、单向应力状态:只有一个主应力不等于零,另两个主应力
都等于零的应力状态。

b、二向应力状态:有两个主应力不等于零,另一个主应力
等于零的应力状态。

c、三向应力状态:三向主应力都不等于零的应力状态。

平面应力状态:单向应力状态和二向应力状态的总称。

空间应力状态:三向应力状态
简单应力状态:单向应力状态。

复杂应力状态:二向应力状态和三向应力状态的总称。

纯剪切应力状态:单元体上只存在剪应力无正应力。

y
x
σx
σy
σz
τxy τyx
τyz
τzy τzx
τxz
x
y
σx
σy
τyx
τxy
τ第一个下标表示微面元方向,第二个下标表示面元上力的方向
空间问题简化
为平面问题
α——由o
c
b
σττ
σ
ττ
τ
max τ
min
τα
D
A
H
3040MPa
7.27422
)
7.27(=−−
σ
x
σ
y σ
z
τ
xy
τ
yx
τ
yz
τ
zy
τ
zx
τ
xz
y
x
z。

材料力学第七章 应力状态

材料力学第七章 应力状态

主平面的方位:
tan
2a0
2 xy x
y
主应力与主平面的对应关系: max 与切应力的交点同象限
例题:一点处的平面应力状态如图所示。
已知 x 60MPa, xy 30MPa, y 40MPa, a 30。
试求(1)a 斜面上的应力; (2)主应力、主平面; (3)绘出主应力单元体。
x y cos 2a
2
x sin 2a
x
a
x y sin 2a
2
x cos 2a
300
10 30 2
10 30 cos 60020sin 600
2
2.32 MPa
300
10 30 sin 600 2
20cos 600
1.33 MPa
a
20 MPa
c
30 MPa
b
n1
y xy
a x
解:(1)a 斜面上的应力
y xy
a
x
2
y
x
2
y
cos 2a
xy
sin 2a
60 40 60 40 cos(60 ) 30sin(60 )
2
2
a x 9.02MPa
a
x
y
2
sin
2a
xy
cos
2a
60 40 sin(60 ) 30cos(60 ) 2
58.3MPa
2
1.33 MPa
300 600 x y 40 MPa
在二向应力状态下,任意两个垂直面上,其σ的和为一常数。
在二向应力状态下,任意两个垂直面上,其σ 的和为
一常数。
证明: a
x y

材料力学第七章

材料力学第七章

若应力状态由主应力表示,并且在max 0 和 min 0 的情况下,则式(7-7) 成为
max min
max
min
2
1 3
2
进一步讨论,由式(7-4)和式(7-6)可知
tan
21
1 tan 20
上式表明1 与 0 之间有如下关系:
1
0
4
可见,切应力取得极值的平面与主平面之间的夹角为 45 。
若三个主应力中,只有一个主应力不等于零,这样的应力状态称为 单向应力状态。若三个主应力中有两个不等于零,称为二向应力状态或 平面应力状态。若三个主应力皆不为零,称为三向应力状态或空间应力 状态。
第二节 平面应力状态分析——解析法
一、斜截面上的应力
图 7-1 所示为平面应力状态的最一般情况。已知 x , y , xy 和 yx 。现 在研究图中虚线所示任一斜截面上的应力,设截面上外法向 n 与 x 轴的夹角 为 。
令 d /d 0 ,由式(7-1)可得
x
2
y
sin
2
xy
cos 2
0
解得
(7-3)
tan 20
2 xy x y
通过运算,可以得到斜截面上正应力的极值为
(7-4)
max min
x
y 2
x
2
y
2
2 xy
(7-5)
由式(7-4)可知, 取得极值的角0 有两个,二者相差 90 ,即最大正应 力 max 和最小正应力 min ,二者分别作用在两个相互垂直的截面上。当 0 , 取得极值时,该斜截面上的切应力 0 ,即正应力就是主应力。
(a)
(b) 图7-6
例 7-4 悬臂梁受力如图 7-7(a)所示。试求截面 n n 上 A 点处的主应力 大小和方向,并按主平面画出单元体。

工程力学-材料力学-第7章 刚体的基本运动(唐学彬)

工程力学-材料力学-第7章 刚体的基本运动(唐学彬)

=0.2m,O1O2=AB=0.6m,AM=0.2m,如O1A按φ=15πt的规律转动, 其中φ以rad计,t以s计。试求t=0.8s时,M点的速度与加速度。
解: 在运动过程中,杆AB始终与O1O2平行。因此,杆AB为 平移,O1A为定轴转动。根据平移的特点,在同一瞬时M、A两 点具有相同的速度和加速度。A点作圆周运动,它的运动规律为
rB rA rAB
(7-1)
式(7-3)、(7-4)两式表明,在任何瞬时,A、B两点的速 度相同,加速度也相同。由于A、B是任取的两点,于是可推得如 下的定理: 刚体平移时,其内所有各点的轨迹的形状相同。在同一瞬时, 所有各点具有相同的速度和相同的加速度。
既然平动刚体上各点的运动规律相同,因此只须确定出刚体 内任一点的运动,就确定了整个刚体的运动。由此可知刚体平动 的问题,可归结为点的运动问题。若刚体上任一点的轨迹为直线, 则刚体的运动称为直线平移;若刚体上任一点的轨迹为平面曲线 或空间曲线,则刚体的运动称为平面平移或空间平移,或称为曲 线平移。火车沿直线轨道行驶时,其车厢的运动即是直线平动, 其平行杆的运动就是平面运动。
沿逆时针方向量取为正值,反之为负值。当刚体转 动时,位置角φ随时间t变化,是时间t的单值连续函 数,可表示为
t
(7-5)
这就是刚体的定轴转动方程。若转动方程φ(t) 已知,则刚体在任一瞬时的位置即可确定。
转角φ实际上是确定转动刚体位置的“角坐标”。
设由瞬时t到瞬时t+Δt,位置角由φ改变到φ+ Δφ ,位置角的增 量Δφ称为角位移。比值Δφ/Δt称为在时间Δt内的平均角速度。当 Δt→0时, Δφ/Δt的极限称为刚体在瞬时t的角速度,并用字母ω表 示,即
at a sin 40sin 30 m s 20 m s

材料力学-第七章-强度理论

材料力学-第七章-强度理论
脆性断裂,最大拉应力准则
r1 = max= 1 [] 其次确定主应力
ma xx 2y 1 2 xy2 4x 2y 2.2 9 M 8 P
m inx 2y 1 2 xy2 4x 2y 3 .7M 2 P
1=29.28MPa,2=3.72MPa, 3=0
r113M 0 Pa
根据常温静力拉伸和压缩试验,已建立起单向应力状态下的弹 性失效准则;
考虑安全系数后,其强度条件
根据薄壁圆筒扭转实验,可建立起纯剪应力状态下的弹性失 效准则;
考虑安全系数后,强度条件
建立常温静载复杂应力状态下的弹性失效准则: 强度理论的基本思想是:
确认引起材料失效存在共同的力学原因,提出关于这一 共同力学原因的假设;
像铸铁一类脆性材料均具有 bc bt 的性能,
可选择莫尔强度理论。
思考题:把经过冷却的钢质实心球体,放入沸腾的热油锅 中,将引起钢球的爆裂,试分析原因。
答:经过冷却的钢质实心球体,放入沸腾的热油锅中, 钢 球的外部因骤热而迅速膨胀,其内芯受拉且处于三向均 匀拉伸的应力状态因而发生脆性爆裂。
思考题: 水管在寒冬低温条件下,由于管内水结冰引起体 积膨胀,而导致水管爆裂。由作用反作用定律可知,水 管与冰块所受的压力相等,试问为什么冰不破裂,而水管 发生爆裂。
局限性:
1、未考虑 2 的影响,试验证实最大影响达15%。
2、不能解释三向均拉下可能发生断裂的现象, 此准则也称特雷斯卡(Tresca)屈服准则
4. 畸变能密度理论(第四强度理论) 材料发生塑性屈服的主要因素是 畸变能密度;
无论处于什么应力状态,只要危险点处畸变能密度达到 与材料性质有关的某一极限值,材料就发生屈服。
具有屈服极限 s
铸铁拉伸破坏

材料力学第七章知识点总结

材料力学第七章知识点总结
研究应力状态的目的:找出一点处沿不同方向应力的变化
规律,确定出最大应力,从而全面考虑构件破坏的原因,建 立适当的强度条件。
材料力学
3、一点的应力状态的描述
研究一点的应力状态,可对一个 包围该点的微小正六面体——单 元体进行分析
在单元体各面上标上应力 各边边长 dx , dy , dz
——应力单元体
三、几个对应关系
点面对应——应力圆上某一点的坐标值对应着单元体某一截面
上的正应力和切应力;
y
σy
n
τ
H (σα ,τα )
τ yxHτ xy来自αxσx
(σy ,Dτyx)
2α A (σx ,τxy)
c
σ
σx +σ y
2
转向对应——半径旋转方向与截面法线的旋转方向一致; 二倍角对应——半径转过的角度是截面法线旋转角度的两倍。
α =α0
=
−2⎢⎡σ x

−σ y
2
sin 2α0
+τ xy
cos

0
⎤ ⎥

=0
=
−2τ α 0
τα0 = 0
tg
2α 0
=
− 2τ xy σx −σ y
可以确定出两个相互垂直的平面——主平面,分别为
最大正应力和最小正应力所在平面。
主平面的方位
(α0 ; α0′ = α0 ± 900 )
主应力的大小
材料力学
四、在应力圆上标出极值应力
τ
τ max
x
R
O σ min
2α12α0A(σx ,τxy)
c
σ
σ
max
(σy ,τyx) D

建筑力学之材料力学第7章(华南理工)

建筑力学之材料力学第7章(华南理工)

例7-2 求图示梁的最大挠度和 B截面的转角。 1 ql 解: 取坐标系如图.



例7-2 求图示梁的最大挠度和 B截面的转角。 由于梁和梁上的荷载是 1 ql 对称的, 所以最大挠度发生 2 在跨中: q
5ql4 l 2l l l3 l = ymax = y x l = 24 EIz 2 2 2 384 EIz 2
M ( x) y= EIz
EIz =Flx 1 Fx2 2 1 Flx2 1 Fx3 EIz ) EIz 2 y = 1 1 Flx2 1 Fx3 (挠度方程) EIz 2 6



将x=l 代入上述二式, 即得自由端截面的转角和挠度:
D1 =D2 D2 =0 由条件(4)有: Fb a3 C1a D1 = Fb a3 +C2a +D2 6l 6l 由条件(1)得: D1 =0 由条件(2)得: F (l a )3 Fb l3 +C2l =0 6 6l Fb (l2 b2 ) C2 = 6l 2 2 =EIz1 = Fb x1 C1 EIz y2 = F ( x2 a )2 Fb x2 C2 EIz y1 2 2l 2l 3 3 EIz y1 = Fb x1 C1 x1 D1 EIz y2 = F ( x2 a )3 Fb x2 +C2 x2 +D2 6l 6 6l 边界条件: 变形连续条件: x1 =x2 =a , y1 =y2 (3) y= M ( x ) x1 =0, y1 =0 (1) EIz x1 =x2 =a , y1 =y2 (4) x2 =l , y2 =0 (2)
M ( x) y= EIz
例7-3 求图示梁C截面的挠度 和A截面的转角。 yC = Fab l 2 b2 a2 6lEIz

材料力学第07章 受压杆件的稳定性设计知识分享

材料力学第07章 受压杆件的稳定性设计知识分享
如20世纪初,享有盛誉的美国桥梁学家库柏(Theodore Cooper)在加拿大 离魁北克城14.4公里,圣劳伦斯河上建造长548米的魁北克大桥(Quebec Bridge),不幸的是,1907年8月29日,该桥发生稳定性破坏(图7-4),灾变发 生在当日收工前15分钟,85位工人死亡,原因是在施工中悬臂桁架西侧的下弦杆 有二节失稳所致,成为上世纪十大工程惨剧之一。
材料力学第07章 受压杆件的稳 定性设计
第一节 压杆稳定的概念
在第三章讨论杆件轴向拉伸和压缩的强度计算中,对于受压 杆件,当最大压应力达到极限应力(屈服极限或强度极限)时, 会发生强度失效(出现塑性变形或破裂)。只要其最大压应力 小于或等于许用应力,即满足强度条件时,杆件就能安全正常 工作。然而,在实际工程中的一些细长杆件受压时,杆件可能 发生突然弯曲,进而产生很大的弯曲变形而导致最后折断,而 杆件的压应力却远低于屈服极限或强度极限。显然,此时杆件 的失效不是由于强度不够而引起的,而是与杆件在一定压力作 用下突然弯曲,不能保持其原有的平衡形态有关。我们把构件 在外力作用下保持其原有平衡形态的能力称为构件的稳定性 (stability)。受压直杆在压力作用下保持其直线平衡形态的 能力称为压杆的稳定性。可见,细长压杆的失效是由于杆件丧 失稳定性而引起的,属于稳定性失效(failure by lost stability)。
w
A Fcr
l
B Fcr
x
x
Fcr
F
M(x)
图7-8 两端铰支细长压杆
选取如图所示坐标系xAw。
w
A
l
设距原点为x距离的任意截面 Fcr
的挠度为w,弯矩M的绝对值为
Fw。若挠度w为负时,M为正。
即M与w的符号相反,于是有

材料力学第七章 弯曲变形

材料力学第七章 弯曲变形

1.叠加原理 各载荷同时作用下梁任一截面的挠度和转角
等于各个 载荷单独作用时同一截面挠度和转角 的代数和。
2.叠加原理的前提 小变形 材料是线弹性材料
例1:求大梁跨度中点的挠度 F
q
A
c
B
l
l
F
2
2
q
A
c
B+ A
c
B
l
l
l
l
2
2
2
2
(wc )F
Fl 3 48 EI
(wc )q
5ql 4 384 EI
dx
o
三、弯曲刚度条件
x
w
w f (x) 挠曲线
| w |max [w], | |max [ ]
§7.2 挠曲线的近似微分方程
| ds | | d | (a)
纯弯曲时挠曲线曲率与弯矩的关系为 1 M (b)
EI
横力弯曲时, 剪力对梁弯曲变形很小,可忽略不计。此时曲率与 弯矩为x的函数 。它们的关系仍满足(b)式。
EI2 EIw2' C2 EIw2 C2 x D2
确定积分常数
边界条件 x 0,1 0 w1 0
连续条件 x a,1 2 w1 w2
求得自由端转角和挠度为
C1 0 C2 ma
D1 0
D2
1 2
ma2
B
2
|xl
ma EI
fB
w2
|xl
ma (l EI
a) 2
§7.4 用叠加法求弯曲变形
由(a)(b)可得 d M (c)
ds EI
y
d
由于挠度很小,挠曲线非常平
坦,ds dx,并考虑到符号(c)可

材料力学 第七章 应力状态与强度理论

材料力学 第七章 应力状态与强度理论

取三角形单元建立静力平衡方程
n 0
dA ( xdA cos ) sin ( xdA cos ) cos ( y dA sin ) cos ( y dA sin ) sin 0
t 0
dA ( xdA cos ) cos ( xdA cos ) sin ( y dA sin ) sin ( y dA sin ) cos 0
2 2

cos 2 x sin 2
2 x y 2 x y ( ) ( cos 2 x sin 2 )2
2
2

x y
sin 2 x cos 2
( 0) (
x y
2
2
sin 2 x cos 2 )
max x y x y 2 x 2 2 min
2
max
1 3
2
例7-2 试求例7-1中所示单元体的主应力和最大剪应力。
(1)求主应力的值
x 10MPa, y 30MPa, x 20MPa max x y x y 2 2 x min 2
复杂应力状态下(只就主应力状态说明) 有三个主应力
1 , 2 , 3
1
E
由 1引起的线段 1应变 1
由 2引起的线段 1应变 1
2
由 3引起的线段1应变 1
3
E
E
沿主应力1的方向的总应变为:
1 1 1 1
1 42.4 1 3 2 0 MPa 由 max 3 2.4 2

材料力学 第七章弯曲正应力(1,2)解析

材料力学 第七章弯曲正应力(1,2)解析

M
1.平面假设: 梁各个横截面变形后仍保持为平面,并仍垂直于变形 后的轴线,横截面绕某一轴旋转了一个角度。 2.单向受力假设: 假设各纵向纤维之间互不挤压。于是各纵向纤维均 处于单向受拉或受压的状态。
中性层 梁在弯曲变形时,凹面部分纵向纤维缩短,凸面 部分纵向纤维伸长,必有一层纵向纤维既不伸长也不 缩短,保持原来的长度,这一纵向纤维层称为中性层. 中性轴
C截面
Fb/4 拉应力 压应力 B截面
20
y 20
拉应力
压应力
可见:压应力强度条件由B截面控制,拉应力强度 条件则B、C截面都要考虑。
Fb/2
40 180
120 C 形心 86 z 134
Fb/4 考虑截面B :
t,max
c, max
M B y1 F / 2 2 103 mm134 mm 90 MPa 4 4 Iz 5493 10 mm F 73.8 kN
c
注:强度校核(选截面、荷载) ( 1) ( 2)
[ ]t [ ]c (等截面)只须校核Mmax处
[ ]t [ ]c (等截面)
(a)对称截面情况只须校核Mmax处使
maxt [ ]t , maxc [ ]c
(b)非对称截面情况,具体分析,一般要校核 M+max与 M-max两处。
查型钢表得56b号工字钢的Wz比较接近要求值
Wz 2447cm3 2447103 mm3
此时 max
M max 153MPa Wz
误差小于5%,可用
例4-17 跨长 l= 2m 的铸铁梁受力如图,已知铸铁 的许用拉应力[ t ]=30 MPa,许用压应力[ c ] =90 MPa。试根据截面最为合理的要求,确定T字形梁 横截面的尺寸d ,并校核梁的强度 。

材料力学第七章 梁的变形

材料力学第七章 梁的变形

EIy1=-Fx13/9+ 5Fa2x1/9 EIy2=-Fx23/9+F(x2-a )3/6+ 5Fa2x2/9
(0≤x1 ≤a)
( a ≤x2 ≤3a )
7. 求ymax , θmax
x 0,
max
A
5Fa2 9EI
()
x 1.367a,
ymax
0.4838 Fa3 EI
21
F
A
C
在如图所示的座标系下,顺时针转为正,反之为负。
转角方程 θ = θ(x)
平行于轴线方向的线位移忽略
7
挠度与转角的关系:
θ θ’
y
x y
小变形
θ =θ ′
tgθ ′ ≈ θ ′ = y′
y dy
dx
x
8
§7-2 直梁挠曲线近似微分方程
一、挠曲线近似微分方程
纯弯曲 k 1 M
EIz
(x)
F C yCF
42
例题4
怎样用叠加法确定C 和 yC ?
q
A
B
C
yC
l
l
C
2
2
43
A
B
l 2
q
C
yC
l
C
2
A
l 2
A
l 2
q
B
l 2
q
B
l 2
A
q
l
B
l
2
2
44
简单静不定梁(超静定梁)
一、静定梁
F Fl
A
B
C
l
l
2
2
qa
A
B
C
a
a
45

材料力学第7章 梁的变形

材料力学第7章 梁的变形
23
图7.15
图7.16
24
21
图7.14
22
第六节 用力法解简单超静定梁 前面几节分析的梁,如简支梁、悬臂梁、外伸 梁等,都是静定梁。在工程实际中,有时为了提高 强度或控制位移,常常采取增加约束的方式,使静 定梁变成了超静定梁或静不定梁(statically indeter minate beam),如图7.15所示。超静定梁的特点 是,独立未知力的数目大于独立静力平衡方程式的 数目,仅仅利用静力平衡条件不能求出全部的支座 反力和内力。超静定梁的基本求解方法与拉压超静 定问题相同,仍然是力法。本节将结合求梁变形的 叠加法,举例介绍简单超静定梁的求解。
1
图7.1
2
①挠度y。梁中任一横截面的形心C在垂直于 轴线方向的位移称为该截面处的挠度(deflection), 用y表示。显然,梁中不同横截面处的挠度一般是 不同的,可表示为
3
②转角θ。梁中任一横截面绕其中性轴转过的 角度,称为该截面的转角 (slope)。转角沿梁长度 方向的变化规律可用转角方上任一点的曲率 为
由式(a)和式(c)可得
7
在选取的坐标系下,根据弯矩M的正负号规定 可以看出:弯矩M的正负号与y″的正负号总是相反 的,如图7.2所示。因此,式(d)中应取负号,即
式(7.2)即为梁的挠曲线近似微分方程,适用 于理想线弹性材料制成的细长梁的小变形问题。
13
第五节 梁的刚度计算 一、梁的刚度计算 梁的刚度计算,通常是校核其变形是否超过许 用挠度[f]和许用转角[θ],可以表述为 式中,ymax和θmax为梁的最大挠度和最大转角。
14
在机械工程中,一般对梁的挠度和转角都进行 校核;而在土木工程中,通常只校核挠度,并且以 许用挠度与跨长的比值 作为校核的标准,即

材料力学第七章应力应变分析

材料力学第七章应力应变分析

x
y
2
x
2
y
cos 2
xy sin 2
x
y
2
sin 2
xy cos 2
1、最大正应力的方位

d d
2[
x
y sin 2
2
xy cos 2 ] 0
tg 2 0
2 xy x
y
0 0
90
0 和 0+90°确定两个互相垂直的平面,一个是最大正应 力所在的平面,另一个是最小正应力所在的平面.
的方位.
m
m a
A
l
解: 把从A点处截取的单元体放大如图
x 70, y 0, xy 50
A
tan 20
2 xy x y
2 50 1.429
1
3
(70) 0
0
A
x
0
27.5 62.5
3
1
因为 x < y ,所以 0= 27.5° 与 min 对应
max min
x
2
y
(
x
2
y )2
三、应力状态的分类
1、空间应力状态
三个主应力1 、2 、3 均不等于零
2、平面应力状态
三个主应力1 、2 、3 中有两个不等于零
3、单向应力状态
三个主应力 1 、2 、3 中只有一个不等于零
2 3
2
1
1
1
1
1
3 2
2
1
例题 1 画出如图所示梁S截面的应力状态单元体.
F
5
S平面
4
3
l/2
2
l/2 1
任意一对平行平面上的应力相等
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

根据对材料的均匀、连续假设进一步推知,拉(压)杆横截面上的内力均匀分布,亦即横
衡方程: Fx 0
-FR + F2 F1 0
A
1 B 2C
FR=F2-F1=50-20=30kN
(2)计算各段轴力,研究AB段,假想
FR
1
2
F F N1
N2
F2
1-1截面将杆件分为两部分,取左端为研
A
究对象,画受力图,列方程:
1
2C
Fx 0 FN1-FR=0 FN1=FR=30kN
30kN
再研究BC段,假想2-2截面将杆件分为两部分, 取右端为研究对象,画受力图,列方程:
8
§7-2 轴向拉(压)时横截面上的内力
例题 试作此杆的轴力图。
40KN
55KN 25KN
20KN
解: 1、为求轴力方便,先求
出约束力 ∑Fx=0
-FR-F1+F2-F3+F4=0 FR=10KN
FR
取横截面1-1左边为分
A 600
B
C
300
500
D
E
400
1800 1 F1=40KN 2 F2=55KN3 F3=25KN 4 F4=20KN
截面法求内力 1)假想沿 m-m 横截面将杆切开,如图a。
2)杆件横截面 m-m 上的内力是一个分布的力系,其合力为 FN
3)由于外力的作用线沿杆的轴线,同二力平衡公理,FN的作用线 也必定沿杆的作用线。
4) FN 为杆件在横截面 m-m 上的轴力。取左半部分为研究对象图b。
Fx 0
FN F
FN F 0 图a F
§7-3 轴向拉(压)时横截面及斜截面上的应力 (1)轴向拉(压)时横截面上的应力
用任一横截面将杆一分为二, 取一部分研究,可得横截面上的内
力FN=F。
杆件拉伸变形后(虚线),纵 向线被拉长;横向线仍为直线,只 是两线分别移动了一定的距离。
F
F
F
FN
1. 平面假设——原为平面的横截面在杆变形后仍为平面,对于拉(压)杆
AB段 Fx 0
F1
FN1 F1 10kN
BC段 Fx 0
F1
FN 2 + F2 F1 0
F1
FN
2
F1
F2
10 20 10kN
CD段 Fx 0 FN 3 F4 25kN
FN kN
2、绘制轴力图。
1 F2 2 F3 3 F4 FN1
FN2
F2
FN3
F4
10
+
25
+
x
10
同样取右半部分为研究对象图c。
m
F
m
列平衡方程同样可得:FN F
当轴力方向与截面外的法 线方向一致时,杆件受拉,轴 力为正,反之轴力为负 。
图b F 图c FN
FN
F
3
§7-2 轴向拉(压)时横截面上的内力
计算轴力时通常按正向假设(设正法),若得负号则表明杆件受压。
若沿杆件轴线作用有多少个力,则杆件不同部分横截面上的轴力不尽 相同,为形象地表示轴力随横截面位置的变化情况,通常画出轴力图。
FN
画受力图,列方程:
A
Fx 0
-FN2-F2=0 FN2=-F2=-20kN
(2)再研究1-1、2-2截面段,将杆件分为 三部分,取中端为研究对象,画受力图,列
方程: Fx 0
FN1′-F1+FN2′=0 FN1=30kN
(3)求约束力。列杆的平衡方程:
Fx 0 FR=FN1=30kN
(4)根据上述轴力值,画出活塞的轴力图。
第二篇 材料力学
1
第七章 拉伸、压缩、与剪切
§7-1 轴向拉伸与压缩的概念
作用在杆件上的外力合力的作用线与杆件轴线重合,杆件变形 是沿轴线方向的伸长或缩短。
拉伸
压缩
F
FF
F
工程中的运用实例
2
第七章 拉伸、压缩、与剪切
§7-2 轴向拉(压)时横截面上的内力
研究构件的强度与刚度,必须研究构件的内力及应力。
例7.1 柱状活塞在F1、F2和堪作用下处于平衡状态,如图,设 F1=60kN,F2=35kN,F3=25kN,试画出该杆的轴力图。
F1
1
F2 2
F3
A
1
B
2C
解:(1)先研究AB段。为此,沿1—1截面假想将活塞分为两部分,取 左段为研究对象,画受力图,列平衡方程:
Fx 0
F N1 F1 0 F N1力为拉力,得
FN1=FR=10 kN(拉力)
FR
A 11 FN1
B2
C3
D4
3 F3
FN3
E
F4
横截面2-2
A1
FN2=50 kN(拉力)
FR
取截面3-3右边
FN3=-5 kN (压力)
同理,FN4=20 kN (拉力)
10
2、绘制轴力图。
3
F1
2
FN2
50
5
D
E
4
F4
FN4
4E
20
9
第七章 拉伸、压缩、与剪切
Fx 0 -FN2-F2=0 FN2=-F2=-20kN
(3)根据上述轴力值,画出活塞的轴力图。
20 kN
6
§7-2 轴向拉(压)时横截面上的内力
对于一端固定的杆件,既可以
先求出固定端的约束反力,再求各 FN
段的内力,也可从杆件的自由端开 A
始,逐一求得各段的内力。
(1)先研究BC段,假想2-2截面将杆 件分为两部分,取右端为研究对象,
F1
F 1 N1
A
1
4
§7-2 轴向拉(压)时横截面上的内力
(2)再研究BC段。为此,沿22截面假想将活塞分为两部分,取右段为
研究对象,画受力图,列平衡方程:
Fx 0
F1
1
F2 2
F3
F N2 + F3 0
A
F N2 -F3 -25kN(压力)
F1
(3)根据上述轴力值,画
A
出活塞的轴力图。
1
1
F1 2 F2
1 1 FN1
B FN2
22
C F2
1 1 FN1
2C
F1
2 FN′2
1 B 2C
30kN
207kN
§7-2 轴向拉(压)时横截面上的内力
例:如图,已知:F1=10kN;F2=20kN; F3=35kN;F4=25kN;试画出图示杆
件的轴力图。
解:1、计算各段的轴力。
A 1 B 2 C 3D
F 1 N1
1
B
2
FN2 2
2
C
F3
C
当轴力方向与截面外
的法线方向一致时,杆件 受拉,轴力为正,反之轴 力为负 。
65kN
25kN
5
§7-2 轴向拉(压)时横截面上的内力
例7.2 如图所示左端固定杆,已知F1=50kN,F2=20kN,试画出
该杆的轴力图。
解:(1)求约束力。列杆的平
FR
1
F1 2 F2
且仍相互平行,仍垂直于轴线,只是各横截面间沿杆轴相对平移。
2. 假设杆件是由无数根纵向纤维所组成,由平面假设可知,任意两截面间 无数根纤维的变形相同,由于材料是均匀连续的,因此所有纵向纤维的力学性
能相同,可以推想各纵向纤维的受力是一样的。
10
§7-3 轴向拉(压)时横截面及斜截面上的应力
3. 推论:拉(压)杆受力后任意两个横截面之间纵向线段的伸长(缩短)变形是均匀的。
相关文档
最新文档