高三数学数列求和

合集下载

高三数学数列的求和

高三数学数列的求和

1 1 1 例3:求S n 1 2 2 3 n ( n 1)
1 1 1 1 练习 .求和 Sn= + + + …+ 2× 5 5× 8 8× 11 (3n-1) (3n+2)
常见的拆项公式
1 1 1 1. n( n 1)n n 1
1 1 1 1 2. ( ) n( n k ) k n n k
五、分组求和法
通过把数列的通项分解成几项,从而出现 几个等差数列或等比数列,再根据公式进 行求和。关键是分析通项 1 1 1 例4.求和S n 1 1 1 2 2 4 n 1 1 1 1 1 1 n 1 S n 2n 2 2 4 2 2
一、公式法 1. 等差数列求和公式:
na1 a n nn 1 Sn na1 d 2 2
2. 等比数列求和公式:
q 1 na1 S n a1 1 q n a1 a n q q 1 1 q 1 q


一、公式法
常见数列的前n项和公式
练习
1、求数列5,55,555, …,555…5的和
5 n a n 10 1 9


5 Sn 10 n 1 10 9n 81
n

n个

2、求数列 1 , 4 , 7 , 10 ,, (1)
(3n 2) , 前n项和
3n 1 n为奇数 2 Sn 3n n为偶数 2
1 1 1 1 练习 : 求数列1 ,3 ,5 , , 2n 1 n , 2 4 8 2 Sn n2 1 的前n项和.

高考数学 数列求和的8种常用方法(最全)

高考数学  数列求和的8种常用方法(最全)
求数列前n项和的8种常用方法

1.等差数列求和公式:
Sn(a1an)nan(n1)d
n212
特别地,当前n项的个数为奇数时,S2k1(2k1)ak1,即前n项和为中间项乘以项数。这个公
式在很多时候可以简化运算;2.等比数列求和公式:
(1)q1,Snna1;
a11qn
(2)q1,Sn
1q
,特别要注意对公比的讨论;
c
项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.适用于
,其中a
an
n
n1
是各项不为0的等差数列,c为常数;部分无理数列、含阶乘的数列等。其基本方法是
anfn1fn.常见裂项公式:
(1)1
11,1
1(1
1);1
1(1
)(an的公差为d);
n(n1)
nn1
n(nk)
knnk
anan1
dan
2n2n1
………………………②(设制错位)
①-②得,(11)S
2n
22
222
22
2324
2
2n
2n2n1
(错位相减)
21
2n
∴Sn
4n2
2n1
2n12n1
四.裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。这是分解
与组合思想(分是为了更好地合)在数列求和中的具体应用.裂项法的实质是将数列中的每项(通
2S(sin21cos21)(sin22cos22)(sin289cos289)=89
∴S=44.5
例4函数fxx,求
1x
f1f2
2012
2011
2

高三数学考点-数列求和及应用

高三数学考点-数列求和及应用

6.4 数列求和及应用1.数列求和方法 (1)公式法:(Ⅰ)等差数列、等比数列前n 项和公式. (Ⅱ)常见数列的前n 项和:①1+2+3+…+n =;②2+4+6+…+2n =;③1+3+5+…+(2n -1)=;④12+22+32+…+n 2=;⑤13+23+33+…+n 3=⎣⎡⎦⎤n (n +1)22.(2)分组求和:把一个数列分成几个可以直接求和的数列. (3)倒序相加:如等差数列前n 项和公式的推导方法.(4)错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和.等比数列{a n }前n 项和公式的推导方法就采用了错位相减法.(5)裂项相消:有时把一个数列的通项公式分成二项差的形式,相加消去中间项,只剩有限项再求和. 常见的裂项公式:①1n (n +1)=-1n +1; ②1(2n -1)(2n +1)=⎝⎛⎭⎫12n -1-12n +1;③1n (n +1)(n +2)=⎣⎡⎦⎤1n (n +1)-1(n +1)(n +2);④1a +b=(a -b );⑤n (n +1)!=-1(n +1)!; ⑥C m -1n= ; ⑦n ·n != !-n !; ⑧a n =S n -S n -1(n ≥2). 2.数列应用题常见模型 (1)单利公式利息按单利计算,本金为a 元,每期利率为r ,存期为x ,则本利和y = . (2)复利公式利息按复利计算,本金为a 元,每期利率为r ,存期为x ,则本利和y = .(3)产值模型原来产值的基础数为N ,平均增长率为p ,对于时间x ,总产值y = . (4)递推型递推型有a n +1=f (a n )与S n +1=f (S n )两类.(5)数列与其他知识综合,主要有数列与不等式、数列与三角、数列与解析几何等.自查自纠1.(1)①n (n +1)2 ②n 2+n ③n 2 ④n (n +1)(2n +1)6(2)①1n ②12 ③12 ④1a -b ⑤1n !⑥C m n +1-C mn ⑦(n +1) 2.(1)a (1+xr ) (2)a (1+r )x (3)N (1+p )x数列{1+2n -1}的前n 项和为( ) A .1+2n B .2+2n C .n +2n -1 D .n +2+2n 解:由题意得a n =1+2n -1,所以S n =n +1-2n1-2=n +2n -1.故选C .若数列{a n }的通项公式是a n =(-1)n ·(3n -2),则a 1+a 2+…+a 10=( ) A .15 B .12 C .-12 D .-15解:记b n =3n -2,则数列{b n }是以1为首项,3为公差的等差数列,所以a 1+a 2+…+a 9+a 10=(-b 1)+b 2+…+(-b 9)+b 10=(b 2-b 1)+(b 4-b 3)+…+(b 10-b 9)=5×3=15.故选A . 数列{|2n -7|}的前n 项和T n =( ) A .6n -n 2 B .n 2-6n +18C.⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3)n 2-6n +18(n >3)D.⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3)n 2-6n (n >3) 解:设a n =2n -7,n ≤3时,a n <0;n >3时,a n >0,a 1=-5,a 2=-3,a 3=-1,且易得{a n }的前n 项和S n=n 2-6n ,所以T n =⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3),n 2-6n +18(n >3).故选C .数列{a n }满足a n =n (n +1)2,则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.解:1a n =2⎝⎛⎭⎫1n -1n +1,则数列⎩⎨⎧⎭⎬⎫1a n 的前10项的和S 10=2⎝⎛⎭⎫1-12+12-13+…+110-111=2(1-111)=2011.故填2011. 有一种细菌和一种病毒,每个细菌在每秒杀死一个病毒的同时将自身分裂为2个.现在有一个这样的细菌和100个这样的病毒,问细菌将病毒全部杀死至少需要________秒. 解: 设至少需要n 秒,则1+2+22+…+2n -1≥100,即1-2n1-2≥100,所以n ≥7.故填7.类型一 基本求和问题(1)设数列1,(1+2),…,(1+2+22+…+2n -1),…的前n 项和为S n ,则S n 等于( ) A .2n B .2n -nC .2n +1-n D .2n +1-n -2(2)求和:1+11+2+11+2+3+…+11+2+…+n ;(3)设f (x )=x 21+x 2,求:f ⎝⎛⎭⎫12 017+f ⎝⎛⎭⎫12 016+…+f (1)+f (2)+…+f (2 017); (4)求和:S n =1a +2a 2+3a 3+…+na n .解:(1)解法一:特殊值法,易知S 1=1,S 2=4,只有选项D 适合. 解法二:研究通项a n =1+2+22+…+2n -1=2n -1, 所以S n =(21-1)+(22-1)+…+(2n -1)=(21+22+…+2n )-n =2n +1-n -2.故选D .(2)设数列的通项为a n ,则a n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1,所以S n =a 1+a 2+…+a n =2[⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1]=2⎝⎛⎭⎫1-1n +1=2n n +1.(3)因为f (x )=x 21+x 2,所以f (x )+f ⎝⎛⎭⎫1x =1. 令S =f ⎝⎛⎭⎫12 017+f ⎝⎛⎭⎫12 016+…+f (1)+f (2)+…+f (2 017),①则S =f (2 017)+f (2 016)+…+f (1)+f ⎝⎛⎭⎫12+…+f ⎝⎛⎭⎫12 016+f (12 017),② ①+②得:2S =1×4 033=4 033,所以S =4 0332.(4)(Ⅰ)当a =1时,S n =1+2+…+n =n (n +1)2.(Ⅱ)当a ≠1时,S n =1a +2a 2+3a 3+…+na n ,①1a S n =1a 2+2a 3+…+n -1a n +nan +1,② 由①-②得⎝⎛⎭⎫1-1a S n =1a +1a 2+1a 3+…+1a n -n a n +1=1a ⎝⎛⎭⎫1-1a n 1-1a-na n +1, 所以S n =a (a n -1)-n (a -1)a n (a -1)2.综上所述,S n =⎩⎪⎨⎪⎧n (n +1)2(a =1),a (a n -1)-n (a -1)a n (a -1)2(a ≠1).【点拨】研究通项公式是数列求和的关键.数列求和的常用方法有:公式法、分组求和法、倒序相加法、错位相减法、裂项相消法等,在选择方法前分析数列的通项公式的结构特征,避免盲目套用、错用求和方法.运用等比数列求和公式时,注意对公比是否等于1进行讨论.本例四道题分别主要使用了分组求和法、裂项相消法、倒序相加法、错位相减法.(1)求数列9,99,999,…的前n 项和S n ;(2)求数列122-1,132-1,142-1,…,1(n +1)2-1的前n 项和;(3)求sin 21°+sin 22°+sin 23°+…+sin 289°的值; (4)已知a n =n +12n +1,求{a n }的前n 项和T n .解:(1)S n =9+99+999+…+99…9n 个 =(101-1)+(102-1)+(103-1)+…+(10n -1) =(101+102+103+…+10n )-n=10(1-10n )1-10-n =10n +1-109-n .(2)因为1(n +1)2-1=1n 2+2n =1n (n +2)=12⎝⎛⎭⎫1n -1n +2, 所以122-1+132-1+142-1+…+1(n +1)2-1=12⎝⎛⎭⎫1-13+12-14+13-15+…+1n -1n +2 =12⎝⎛⎭⎫32-1n +1-1n +2 =34-12⎝⎛⎭⎫1n +1+1n +2. (3)令S n =sin 21°+sin 22°+sin 23°+…+sin 289°,① 则S n =sin 289°+sin 288°+sin 287°+…+sin 21° =cos 21°+cos 22°+cos 23°+…+cos 289°.②①与②两边分别相加得2S n =(sin 21°+cos 21°)+(sin 22°+cos 22°)+…+(sin 289°+cos 289°)=89.所以S n =892.(4)T n =222+323+424+…+n +12n +1,①12T n =223+324+425+…+n +12n +2,② ①-②得12T n =222+123+124+125+…+12n +1-n +12n +2 =12+123×⎝⎛⎭⎫1-12n -11-12-n +12n +2=34-12n +1-n +12n +2, 所以T n =32-12n -n +12n +1=32-n +32n +1.类型二 可用数列模型解决的实际问题用分期付款的方式购买一批总价为2 300万元的住房,购买当天首付300万元,以后每月的这一天都交100万元,并加付此前欠款的利息,设月利率为1%.若从首付300万元之后的第一个月开始算分期付款的第一个月,问分期付款的第10个月应付________万元.解:购买时付款300万元,则欠款2000万元,依题意分20次付清,则每次交付欠款的数额依次购成数列{a n },故a 1=100+2 000×0.01=120(万元), a 2=100+(2 000-100)×0.01=119(万元), a 3=100+(2 000-100×2)×0.01=118(万元), a 4=100+(2 000-100×3)×0.01=117(万元), …a n =100+[2 000-100(n -1)]×0.01=121-n (万元) (1≤n ≤20,n ∈N *). 因此{a n }是首项为120,公差为-1的等差数列. 故a 10=121-10=111(万元).故填111.【点拨】将实际问题转化为数列问题的一般步骤是:①审题,②建模,③求解,④检验,⑤作答.增长率模型是比较典型的等比数列模型,实际生活中的银行利率、企业股金、产品利润、人口增长、工作效率、浓度问题等常常利用增长率模型加以解决.某气象学院用3.2万元买了一台天文观测仪,已知这台观测仪从启用的第一天起连续使用,第n 天的维修保养费为n +4910元(n ∈N *),使用它直至报废最合算(所谓报废最合算是指使用的这台仪器的平均每天耗资最少)为止,一共使用了( ) A .600天B .800天C .1 000天D .1 200天解:设一共使用了n 天,则使用n 天的平均耗资为32 000+⎝⎛⎭⎫5+n 10+4.9n 2n=32 000n +n 20+4.95,当且仅当32 000n=n20时,取得最小值,此时n =800.故选B . 类型三 数列综合问题(2017·山东)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n .已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n .解:(1)设{a n }的公比为q .依题意,a 1(1+q )=6,a 21q =a 1q 2.又a n >0,解得a 1=2,q =2,所以a n =2n .(2)依题意,S 2n +1=(2n +1)(b 1+b 2n +1)2=(2n +1)b n +1.又S 2n +1=b n b n +1,b n +1≠0,所以b n =2n +1.令c n =b na n ,则c n =2n +12n .因此T n =c 1+c 2+…+c n =32+522+723+…+2n -12n -1+2n +12n .又12T n =322+523+724+…+2n -12n +2n +12n +1, 两式相减,得12T n =32+⎝⎛⎭⎫12+122+…+12n -1-2n +12n +1=32+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n -11-12-2n +12n +1=52-2n +52n +1. 所以T n =5-2n +52n .【点拨】错位相减法适用于等差数列与等比数列的积数列的求和,写出“S n ”与“qS n ”的表达式时,应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式.(2017·全国卷Ⅲ)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n .(1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和.解:(1)因为a 1+3a 2+…+(2n -1)a n =2n ,故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1).两式相减得(2n -1)a n =2,所以a n =22n -1(n ≥2).又由题设可得a 1=2,所以{a n }的通项公式为a n =22n -1.(2)记⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和为S n .由(1)知a n 2n +1=2(2n +1)(2n -1)=12n -1-12n +1.则S n =11-13+13-15+…+12n -1-12n +1=2n2n +1.1.数列的通项公式及前n 项和公式都可以看作项数n 的函数,是函数思想在数列中的应用.数列以通项为纲,数列的问题,最终归结为对数列通项的研究,而数列的前n 项和S n 可视为数列{S n }的通项.通项及求和是数列中最基本也是最重要的问题之一.2.对于一般数列的求和问题,应先观察数列通项的结构特征,再对通项公式进行化简变形,改变原数列的形式,尽可能将其转化为等差数列、等比数列等常见数列,从而达到求和的目的. 3.等差或等比数列的求和直接用公式计算,要注意求和的项数,防止疏漏.4.最好能记忆一些常见数列的求和公式,如正整数列、正奇数列、正偶数列、正整数的平方构成的数列等. 5.数列的实际应用题要注意分析题意,将实际问题转化为常用的数列模型.6.数列的综合问题涉及到的数学思想:函数与方程思想(如:求最值或基本量)、转化与化归思想(如:求和或应用)、特殊到一般思想(如:求通项公式)、分类讨论思想(如:等比数列求和,分q =1或q ≠1)等.1.已知等差数列{a n }的前n 项和为S n ,且满足a 5=4-a 3,则S 7=( ) A .7 B .12 C .14 D .21解:由a 5=4-a 3,得a 5+a 3=4=a 1+a 7,所以S 7=7(a 1+a 7)2=14.故选C .2.(2016·新余三校联考)数列{a n }的通项公式是a n =(-1)n (2n -1),则该数列的前100项之和为( ) A .-200 B .-100 C .200 D .100解:根据题意有S 100=-1+3-5+7-9+11-…-197+199=2×50=100.故选D .3.设函数f (x )=x m +ax 的导函数为f ′(x )=2x +1,则数列⎩⎨⎧⎭⎬⎫1f (n )(n ∈N *)的前n 项和是( )A.n n +1B.n +2n +1C.nn -1D.n +1n解:由f ′(x )=mx m -1+a =2x +1得m =2,a =1.所以f (x )=x 2+x ,则1f (n )=1n (n +1)=1n -1n +1.所以S n =1-12+12-13+13-14+…+1n -1n +1=1-1n +1=n n +1.故选A . 4.已知正数组成的等差数列{a n }的前20项的和是100,那么a 6·a 15的最大值是( )A .25B .50C .100D .不存在解:由条件知,a 6+a 15=a 1+a 20=110S 20=110×100=10,a 6>0,a 15>0,所以a 6·a 15≤⎝⎛⎭⎫a 6+a 1522=25,等号在a 6=a 15=5时成立,即当a n =5(n ∈N *)时,a 6·a 15取最大值25.故选A .5.设等比数列{a n }的前n 项和为S n ,若8a 2+a 5=0,则下列式子中数值不能确定的是( ) A.a 5a 3 B.S 5S 3 C.a n +1a n D.S n +1S n解:数列{a n }为等比数列,由8a 2+a 5=0,知8a 2+a 2q 3=0,因为a 2≠0,所以q =-2,a 5a 3=q 2=4;S 5S 3=1-q 51-q 3=113;a n +1a n =q =-2;S n +1S n =1-q n +11-q n ,其值与n 有关.故选D . 6.某化工厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产.已知该生产线连续生产n年的累计产量为f (n )=12n (n +1)(2n +1)(单位:t),但如果年产量超过150 t ,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是( ) A .5年 B .6年 C .7年 D .8年解:由已知可得第n 年的产量a n =f (n )-f (n -1)=3n 2.当n =1时也适合,据题意令a n ≥150⇒n ≥52,即数列从第8项开始超过150,即这条生产线最多生产7年.故选C .7.已知数列{a n }满足a n =1+2+3+…+nn ,则数列⎩⎨⎧⎭⎬⎫1a n a n +1 的前n 项和为________.解:a n =1+2+3+…+n n =n +12,1a n a n +1=4(n +1)(n +2)=4⎝⎛⎭⎫1n +1-1n +2,所求的前n 项和为4(12-13+13-14+…+1n +1-1n +2)=4⎝⎛⎭⎫12-1n +2=2n n +2.故填2nn +2.8.已知数列{a n }的前n 项和为S n ,a 1=1,当n ≥2时,a n +2S n -1=n ,则S 2 017的值为________.解:当n ≥2时,a n +2S n -1=n ,又a n +1+2S n =n +1,两式相减,得a n +1+a n =1(n ≥2).又a 1=1,所以S 2 017=a 1+(a 2+a 3)+…+(a 2 016+a 2 017)=1 009.故填1 009.9.已知等差数列{a n }满足:a n +1>a n (n ∈N *),a 1=1,该数列的前三项分别加上1,1,3后成等比数列,a n +2log 2b n =-1.(1)分别求数列{a n },{b n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .解:(1)设d 为等差数列{a n }的公差,且d >0,由a 1=1,a 2=1+d ,a 3=1+2d ,分别加上1,1,3成等比数列,得(2+d )2=2(4+2d ), d >0,所以d =2,所以a n =1+(n -1)×2=2n -1, 又因为a n +2log 2b n =-1,所以log 2b n =-n ,即b n =12n .(2)T n =121+322+523+…+2n -12n ①,12T n =122+323+524+…+2n -12n +1②, ①-②,得12T n =12+2⎝⎛⎭⎫122+123+124+…+12n -2n -12n +1. 所以T n =1+1-12n -11-12-2n -12n =3-12n -2-2n -12n =3-2n +32n .10.在数列{a n }中,a 1=8,a 4=2,且满足a n +2+a n =2a n +1. (1)求数列{a n }的通项公式;(2)设S n 是数列{|a n |}的前n 项和,求S n .解:(1)由2a n +1=a n +2+a n 可得{a n }是等差数列,且公差d =a 4-a 14-1=2-83=-2.所以a n =a 1+(n -1)d =-2n +10. (2)令a n ≥0,得n ≤5.即当n ≤5时,a n ≥0,n ≥6时,a n <0. 所以当n ≤5时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a n =-n 2+9n ; 当n ≥6时,S n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-(a 6+a 7+…+a n ) =-(a 1+a 2+…+a n )+2(a 1+a 2+…+a 5) =-(-n 2+9n )+2×20=n 2-9n +40,所以S n =⎩⎪⎨⎪⎧-n 2+9n ,n ≤5,n 2-9n +40,n ≥6.已知数列{a n }满足a n +2=qa n (q 为实数,且q ≠1),n ∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列.(1)求q 的值和{a n }的通项公式; (2)设b n =log 2a 2na 2n -1,n ∈N *,求数列{b n }的前n 项和.解:(1)由已知,有(a 3+a 4)-(a 2+a 3)=(a 4+a 5)-(a 3+a 4),即a 4-a 2=a 5-a 3, 所以a 2(q -1)=a 3(q -1),又因为q ≠1,故a 3=a 2=2,由a 3=a 1q ,得q =2, 当n =2k -1(k ∈N *)时,a n =a 2k -1=2k -1=2n -12,当n =2k (k ∈N *)时,a n =a 2k =2k =2n 2,所以{a n }的通项公式为a n =⎩⎪⎨⎪⎧2n -12,n 为奇数,2n 2,n 为偶数.(2)b n =log 2a 2n a 2n -1=n2n -1,设数列{b n }的前n 项和为S n ,则S n =1+221+322+…+n2n -1.所以12S n =121+222+323+…+n 2n .两式相减得12S n =1+121+122+123+…+12n -1-n2n=1-12n1-12-n 2n =2-n +22n .所以S n =4-n +22n -1.1.数列{a n }的通项公式为a n =1n +n +1,若{a n }的前n 项和为24,则n =( )A .25B .576C .624D .625解:a n =n +1-n ,所以S n =(2-1)+(3-2)+…+(n +1-n )=n +1-1,令S n =24得n =624.故选C .2.在等差数列{a n }中,若a 1,a 2 019为方程x 2-10x +16=0的两根,则a 2+a 1 010+a 2 018=( ) A .10 B .15 C .20 D .40解:由题意知,a 1+a 2 019=a 2+a 2 018=2a 1 010=10,所以a 2+a 1 010+a 2 018=3a 1 010=15.故选B . 3.已知数列{a n }中,a 1=2,a n +1-2a n =0,b n =log 2a n ,那么数列{b n }的前10项和等于( ) A .130 B .120 C .55 D .50解:因为a 1=2,a n +1=2a n ,故{a n }是首项、公比均为2的等比数列.故a n =2·2n -1=2n ,b n =log 22n =n .所以b 1+b 2+…+b 10=1+2+3+…+10=1+102×10=55.故选C .4.已知数列{a n }中的前n 项和S n =n (n -9),第k 项满足7<a k <10,则k 等于( ) A .7 B .8 C .9 D .10解:当k ≥2时,a k =S k -S k -1=k 2-9k -(k -1)2+9(k -1)=2k -10,k =1时也适合. 由7<a k <10,得7<2k -10<10,所以172<k <10,所以k =9.故选C .5.设直线nx +(n +1)y =2(n ∈N *)与两坐标轴围成的三角形面积为S n ,则S 1+S 2+…+S 2 018的值为 ( ) A.2 0152 016 B.2 0162 017 C.2 0172 018 D.2 0182 019解:直线与x 轴交于⎝⎛⎭⎫2n ,0,与y 轴交于⎝ ⎛⎭⎪⎫0,2n +1,所以S n =12·2n ·2n +1=1n (n +1)=1n -1n +1.所以原式=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫12 018-12 019 =1-12019=20182019.故选D .6.已知函数f (n )=n 2cos(n π),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=( ) A .0 B .-100 C .100 D .10 200解:因为a n =f (n )+f (n +1),所以a 1+a 2+a 3+…+a 100=[f (1)+f (2)]+[f (2)+f (3)]+…+[f (100)+f (101)]=(-12+22)+(22-32)+…+(1002-1012)=3+(-5)+7+(-9)+…+199+(-201),共100项,故所求为-2×50=-100.故选B .7.(2017·江苏)等比数列{a n }的各项均为实数,其前n 项的和为S n ,已知S 3=74,S 6=634,则a 8=________.解:当q =1时,显然不符合题意;当q ≠1时,⎩⎪⎨⎪⎧a 1(1-q 3)1-q =74,a 1(1-q 6)1-q=634,解得⎩⎪⎨⎪⎧a 1=14,q =2,则a 8=14×27=32.故填32.8.(2016·全国卷Ⅰ)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解:设该等比数列的公比为q ,则q =a 2+a 4a 1+a 3=12,可得a 1+14a 1=10,得a 1=8,所以a n =8·⎝⎛⎭⎫12n -1=⎝⎛⎭⎫12n -4.所以a 1a 2…a n =⎝⎛⎭⎫12-3-2-1+0+…+(n -4)=⎝⎛⎭⎫12n 2-7n2,易知当n =3或n =4时,12(n 2-7n )取得最小值-6,故a 1a 2…a n 的最大值为⎝⎛⎭⎫12-6=64.故填64.9.在等差数列{a n }中,a 1=3,其前n 项和为S n ,等比数列{b n }的各项均为正数,b 1=1,公比为q ,且b 2+S 2=12,q =S 2b 2.(1)求a n 与b n ;(2)证明:13≤1S 1+1S 2+…+1S n <23.解:(1)设数列{a n }的公差为d .因为⎩⎪⎨⎪⎧b 2+S 2=12,q =S 2b 2, 所以⎩⎪⎨⎪⎧q +6+d =12,q =6+dq .解得q =3或q =-4(舍),d =3.故a n =3+3(n -1)=3n ,b n =3n -1. (2)证明:因为S n =n (3+3n )2,所以1S n =2n (3+3n )=23⎝⎛⎭⎫1n -1n +1.故1S 1+1S 2+…+1S n =23[⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1n +1]=23⎝⎛⎭⎫1-1n +1.因为n ≥1,所以0<1n +1≤12,所以12≤1-1n +1<1,所以13≤23⎝⎛⎭⎫1-1n +1<23,即13≤1S 1+1S 2+…+1S n <23. 10.(2016·山东)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1. (1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n .求数列{c n }的前n 项和T n .解:(1)因为数列{a n }的前n 项和S n =3n 2+8n ,所以a 1=11,当n ≥2时,a n =S n -S n -1=3n 2+8n -3(n -1)2-8(n -1)=6n +5, 又a n =6n +5对n =1也成立,所以a n =6n +5.又因为{b n }是等差数列,设公差为d ,则a n =b n +b n +1=2b n +d .当n =1时,2b 1=11-d ;当n =2时,2b 2=17-d ,解得d =3,所以数列{b n }的通项公式为b n =a n -d2=3n +1.(2)由c n =(a n +1)n +1(b n +2)n =(6n +6)n +1(3n +3)n =(3n +3)·2n +1, 于是T n =6×22+9×23+12×24+…+(3n +3)×2n +1, 两边同乘以2,得2T n =6×23+9×24+…+(3n )×2n +1+(3n +3)×2n +2, 两式相减,得-T n =6×22+3×23+3×24+…+3×2n +1-(3n +3)×2n +2=3×22+3×22(1-2n )1-2-(3n +3)×2n +2,所以T n =-12+3×22(1-2n )+(3n +3)×2n +2=3n ·2n +2.已知数列{a n }满足a 1=35,a n +1=3a n2a n +1,n ∈N *.(1)求证:数列⎩⎨⎧⎭⎬⎫1a n -1为等比数列.(2)是否存在互不相等的正整数m ,s ,t ,使m ,s ,t 成等差数列,且a m -1,a s -1,a t -1成等比数列?如果存在,求出所有符合条件的m ,s ,t ;如果不存在,请说明理由.解:(1)证明:因为a n +1=3a n 2a n +1,所以1a n +1=13a n +23,所以1a n +1-1=13⎝⎛⎭⎫1a n -1. 因为a 1=35,所以1a 1-1=23,所以数列⎩⎨⎧⎭⎬⎫1a n -1是首项为23,公比为13的等比数列.(2)由(1)知,1a n -1=23×⎝⎛⎭⎫13n -1=23n ,所以a n =3n 3n +2.假设存在互不相等的正整数m ,s ,t 满足条件,则有⎩⎪⎨⎪⎧m +t =2s ,(a s -1)2=(a m -1)(a t -1).由a n =3n3n +2与(a s -1)2=(a m -1)(a t -1),得⎝⎛⎭⎫3s 3s +2-12=⎝⎛⎭⎫3m 3m +2-1⎝⎛⎭⎫3t 3t +2-1, 即3m +t +2×3m +2×3t =32s +4×3s . 因为m +t =2s ,所以3m +3t =2×3s .又3m +3t ≥23m +t =2×3s ,当且仅当m =t 时,等号成立, 这与m ,s ,t 互不相等矛盾,所以不存在互不相等的正整数m ,s ,t 满足条件.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( ) A .-1 B .0 C .1 D .6解:由等差数列的性质知a 2,a 4,a 6成等差数列,所以a 2+a 6=2a 4,所以a 6=2a 4-a 2=0.故选B . 2.已知数列{a n }为2,0,2,0,…,则下列各项不可以作为数列{a n }通项公式的是( )A .a n =1+(-1)n +1B .a n =⎩⎪⎨⎪⎧2,n 为奇数,0,n 为偶数C .a n =1-cos n πD .a n =2sinn π2解:若a n =2sin n π2,则a 1=2sin π2=2,a 2=2sinπ=0,a 3=2sin 3π2=-2,不符合题意.故选D .3.在数列{a n }中,“对任意的n ∈N *,a 2n +1=a n a n +2”是“数列{a n }为等比数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件解:若a n =0,满足a 2n +1=a n ·a n +2,但{a n }不是等比数列.故选B .4.(2015·全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为a n 的前n 项和,若S 8=4S 4,则a 10=( )A.172B.192C .10D .12 解: 因为公差d =1,S 8=4S 4,所以8a 1+12×8×7=4(4a 1+6),解得a 1=12,所以a 10=a 1+9d =12+9=192.故选B .5.等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( ) A .n (n +1) B .n (n -1)C.n (n +1)2D.n (n -1)2解:因为d =2,a 2,a 4,a 8成等比数列,所以a 24=a 2a 8,即(a 2+2d )2=a 2(a 2+6d ),解得a 2=4,a 1=2.所以利用等差数列的求和公式可求得S n =n (n +1).故选A .6.(2016·江西八校联考)数列{a n }的前n 项和S n =2n 2+3n (n ∈N *),若p -q =5(p ,q ∈N *),则a p -a q =( ) A .10 B .15 C .-5 D .20解:当n ≥2时,a n =S n -S n -1=2n 2+3n -[2(n -1)2+3(n -1)]=4n +1,当n =1时,a 1=S 1=5,符合上式,所以a n =4n +1,所以a p -a q =4(p -q )=20.故选D .7.已知公差不为零的等差数列{a n }与公比为q 的等比数列{b n }有相同的首项,同时满足a 1,a 4,b 3成等比数列,b 1,a 3,b 3成等差数列,则q 2=( ) A.14 B.16 C.19 D.18解:设数列的首项为a ,等差数列{a n }的公差为d ,⎩⎪⎨⎪⎧2a 3=b 1+b 3,a 24=a 1·b 3, 将a ,d ,q 代入得⎩⎪⎨⎪⎧2(a +2d )=a +aq 2, ①(a +3d )2=a ·aq 2, ② 化简得(a +3d )2=a (a +4d ),解得a =-92d (d ≠0),代入①式得q 2=19.故选C .8.执行如图所示的程序框图,如果输入n =3,则输出的S =( )A.37B.67C.89D.49解:第一次循环后S =11×3=13,i =2;第二次循环后S =11×3+13×5=12×⎝⎛⎭⎫1-13+13-15=25,i =3;第三次循环后S =11×3+13×5+15×7=12×(1-13+13-15+15-17)=37,此时i =4>3,退出循环,输出结果S =37.故选A .9.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,则a 1+a 2+…+a 2 017=( )A .lg2 018B .lg2 017C .-lg2 018D .-lg2 017解:因为y ′=(n +1)x n ,所以曲线y =x n +1在点(1,1)处的切线斜率为n +1,切线方程为y -1=(n +1)(x -1),令y =0,得x n =1-1n +1=n n +1.则a n =lg x n =lg n n +1,所以a 1+a 2+…+a 2 017=lg ⎝⎛⎭⎫12×23×…×2 0172 018=lg 12 018=-lg2 018.故选C .10.已知在数列{a n }中,a n =n 2+λn ,且{a n }是递增数列,则实数λ的取值范围是( ) A .(-2,+∞) B .[-2,+∞) C .(-3,+∞) D .[-3,+∞)解:由题意可知a n +1>a n 对任意正整数n 恒成立,即(n +1)2+λ(n +1)>n 2+λn 对任意正整数n 恒成立,即λ>-2n -1对任意正整数n 恒成立,故λ>-3.另解,由对称轴-λ2<32求解.故选C .11.已知a n =⎝⎛⎭⎫13n ,把数列{a n }的各项排列成如下的三角形形状,a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9……记A (m ,n )表示第m 行的第n 个数,则A (10,12)=( )A.⎝⎛⎭⎫1393B.⎝⎛⎭⎫1392C.⎝⎛⎭⎫1394D.⎝⎛⎭⎫13112解:前9行一共有1+3+5+…+17=81个数,而A (10,12)表示第10行的第12个数,所以n =93,即A (10,12)=a 93=⎝⎛⎭⎫1393.故选A . 12.设a n =1n sin n π25,S n =a 1+a 2+…+a n ,在S 1,S 2,…,S 100中,正数的个数是( )A .25B .50C .75D .100解:当1≤n ≤24时,a n >0,当26≤n ≤49时,a n <0,但其绝对值要小于1≤n ≤24时相应的值,当51≤n ≤74时,a n >0,当76≤n ≤99时,a n <0,但其绝对值要小于51≤n ≤74时相应的值,所以当1≤n ≤100时,均有S n >0.故选D .二、填空题:本题共4小题,每小题5分,共20分.13.(2017·北京)若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________.解:-1+3d =-q 3=8⇒d =3,q =-2⇒a 2b 2=-1+3-1×(-2)=1.故填1.14.(2017·全国卷Ⅲ)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________. 解:因为{a n }为等比数列,设公比为q . ⎩⎪⎨⎪⎧a 1+a 2=-1,a 1-a 3=-3, 即⎩⎪⎨⎪⎧a 1+a 1q =-1, ①a 1-a 1q 2=-3, ②显然q ≠1,a 1≠0, ②①得1-q =3,即q =-2,代入①式可得a 1=1, 所以a 4=a 1q 3=1×(-2)3=-8.故填-8.15.(2015·武汉调研)《张丘建算经》卷上第22题——“女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加________尺.解:设每天增加的数量为x 尺,则5×30+30×(30-1)x 2=390,所以x =1629.故填1629.16.设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=2S n +n +1(n ∈N *),则数列{a n }的通项公式a n =________. 解:因为S n +1=2S n +n +1, 当n ≥2时,S n =2S n -1+n ,两式相减得,a n +1=2a n +1,所以a n +1+1=2(a n +1),即a n +1+1a n +1=2.又S 2=2S 1+1+1,a 1=S 1=1,所以a 2=3,所以a 2+1a 1+1=2,所以a n +1=2×2n -1=2n , 所以a n =2n -1.故填2n -1.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)数列{a n }的前n 项和为S n ,且满足S n =4a n -3(n ∈N *),求a n . 解:S n =4a n -3,则S n -1=4a n -1-3,两式相减,得a n a n -1=43.又a 1=4a 1-3,所以a 1=1,所以a n =⎝⎛⎭⎫43n -1.18.(12分)已知等比数列{a n }中,a 1=13,公比q =13.(1)S n 为{a n }的前n 项和,证明:S n =1-a n2;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{b n }的通项公式.解:(1)证明:因为a n =13×⎝⎛⎭⎫13n -1=13n ,S n =13⎝⎛⎭⎫1-13n 1-13=1-13n 2,所以S n =1-a n 2.(2)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n )=-n (n +1)2.所以{b n }的通项公式为b n =-n (n +1)2.19.(12分)(2016·北京)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4. (1)求{a n }的通项公式;(2)设c n = a n + b n ,求数列{c n }的前n 项和.解:(1)等比数列{b n }的公比q =b 3b 2=93=3,所以b 1=b 2q =1,b 4=b 3q =27.设等差数列{a n }的公差为d . 因为a 1=b 1=1,a 14=b 4=27,所以1+13d =27,即d =2.所以a n =2n -1. (2)由(1)知,a n =2n -1,b n =3n -1. 因此c n =a n +b n =2n -1+3n -1. 从而数列{c n }的前n 项和S n =1+3+…+()2n -1+1+3+…+3n -1 =n ()1+2n -12+1-3n 1-3=n 2+3n -12.20.(12分)已知数列{a n }与{b n },若a 1=3且对任意正整数n 满足a n +1-a n =2,数列{b n }的前n 项和S n =n 2+a n .(1)求数列{a n },{b n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n .解:(1)由题意知{a n }是以3为首项,2为公差的等差数列. 所以a n =2n +1. 当n =1时,b 1=S 1=4;当n ≥2时,b n =S n -S n -1=(n 2+2n +1)-[(n -1)2+2(n -1)+1]=2n +1,对b 1=4不成立.所以数列{b n }的通项公式为b n =⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2.(2)由(1)知当n =1时,T 1=1b 1b 2=120.当n ≥2时, 1b n b n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎫12n +1-12n +3, 所以T n =120+12[⎝⎛⎭⎫15-17+⎝⎛⎭⎫17-19+…+(12n +1-12n +3)]=120+12⎝⎛⎭⎫15-12n +3=120+n -110n +15=6n -120(2n +3). 当n =1时仍成立,所以T n =6n -120(2n +3).21.(12分)(2017·天津)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4. (1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由已知b 2+b 3=12,得b 1(q +q 2)=12, 而b 1=2,所以q 2+q -6=0. 又因为q >0,解得q =2.所以b n =2n . 由b 3=a 4-2a 1,可得3d -a 1=8.① 由S 11=11b 4,可得a 1+5d =16,②联立①②,解得a 1=1,d =3,由此可得a n =3n -2.所以,数列{a n }的通项公式为a n =3n -2,数列{b n }的通项公式为b n =2n . (2)设数列{a 2n b 2n -1}的前n 项和为T n ,由a 2n =6n -2,b 2n -1=2×4n -1,有a 2n b 2n -1=(3n -1)×4n , 故T n =2×4+5×42+8×43+…+(3n -1)×4n ,4T n =2×42+5×43+8×44+…+(3n -4)×4n +(3n -1)×4n +1, 上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n -(3n -1)×4n +1 =12×(1-4n )1-4-4-(3n -1)×4n +1=-(3n -2)×4n +1-8.得T n =3n -23×4n +1+83.所以,数列{a 2n b 2n -1}的前n 项和为3n -23×4n +1+83.22.(12分)(2017·山东)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2.(1)求数列{x n }的通项公式;(2)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2),…,P n +1(x n +1, n +1)得到折线P 1 P 2…P n +1,求由该折线与直线y =0,x =x 1,x =x n +1所围成的区域的面积T n .解:(1)设数列{x n }的公比为q ,由已知q >0.由题意得⎩⎪⎨⎪⎧x 1+x 1q =3,x 1q 2-x 1q =2, 所以3q 2-5q -2=0,因为q >0,所以q =2,x 1=1, 因此数列{x n }的通项公式为x n =2n -1.(2)过P 1,P 2,P 3,…,P n +1向x 轴作垂线,垂足分别为Q 1,Q 2,Q 3,…,Q n +1, 由(1)得x n +1-x n =2n -2n -1=2n -1.记梯形P n P n +1Q n +1Q n 的面积为b n . 由题意b n =(n +n +1)2×2n -1=(2n +1)×2n -2,所以T n =b 1+b 2+b 3+…+b n=3×2-1+5×20+7×21+…+(2n -1)×2n -3+(2n +1)×2n -2① 又2T n =3×20+5×21+7×22+…+(2n -1)×2n -2+(2n +1)×2n -1,② ①-②得-T n =3×2-1+(2+22+…+2n -1)-(2n +1)×2n -1=32+2(1-2n -1)1-2-(2n +1)×2n -1. 所以T n =(2n -1)×2n +12.。

高考数学专题—数列求前n项和的5种常用方法总结

高考数学专题—数列求前n项和的5种常用方法总结

高考数学专题——数列(求S n )求s n 的四种方法总结常考题型:共5种大题型(包含倒序相加法、错位相减法、裂项相消法、分组转化法、并项求和法。

1、倒序相加法:实质为等差数列求和。

例1、【2019·全国2·文T18】已知{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16. (1)求{a n }的通项公式;(2)设b n =log 2a n .求数列{b n }的前n 项和.【解析】(1)设{a n }的公比为q,由题设得2q 2=4q+16,即q 2-2q-8=0,解得q=-2(舍去)或q=4. 因此{a n }的通项公式为a n =2×4n-1=22n-1.(2)由(1)得b n =(2n-1)log 22=2n-1,因此数列{b n }的前n 项和为1+3+…+2n-1=n 2. 2、错位相减法:实质为等差×等比求和。

错位相减法的万能公式及推导过程:公式:数列c n =(an +b )q n−1,(an +b )为等差数列,q n−1为等比数列。

前n 项和S n =(An +B )q n +C A =a q −1,B =b −Aq −1,C =−B S n =(a +b )+(2a +b )q +(3a +b )q 2+⋯[(n −1)a +b ]q n−2+(an +b )q n−1 ① qS n =(a +b )q +(2a +b )q 2+(3a +b )q 3+⋯[(n −1)a +b ]q n−1+(an +b )q n ② ②-①得:(q −1)s n =−(a +b )−a (q +q 2+⋯q n−1)+(an +b )q n=−(a +b )−a ⋅q(1−q n−1)1−q+(an +b )q n=(an +b −aq−1)q n −(b −aq−1)S n =(aq −1⋅n +b −a q −1q −1)⋅q n −b −aq −1q −1例2、【2020年高考全国Ⅰ卷理数】设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项. (1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.【解析】(1)设{}n a 的公比为q ,由题设得1232,a a a =+ 即21112a a q a q =+.所以220,q q +-= 解得1q =(舍去),2q =-. 故{}n a 的公比为2-.(2)设n S 为{}n na 的前n 项和.由(1)及题设可得,1(2)n n a -=-.所以112(2)(2)n n S n -=+⨯-++⨯-,21222(2)(1)(2)(2)n n n S n n --=-+⨯-++-⨯-+⨯-.可得2131(2)(2)(2)(2)n n n S n -=+-+-++--⨯-1(2)=(2).3n n n ---⨯-所以1(31)(2)99nn n S +-=-. 例3、【2020年高考全国III 卷理数】设数列{a n }满足a 1=3,134n n a a n +=-. (1)计算a 2,a 3,猜想{a n }的通项公式并加以证明; (2)求数列{2n a n }的前n 项和S n .【解析】(1)235,7,a a == 猜想21,n a n =+ 由已知可得 1(23)3[(21)]n n a n a n +-+=-+, 1(21)3[(21)]n n a n a n --+=--,……2153(3)a a -=-.因为13a =,所以2 1.n a n =+(2)由(1)得2(21)2n n n a n =+,所以23325272(21)2n n S n =⨯+⨯+⨯+++⨯. ①从而23412325272(21)2n n S n +=⨯+⨯+⨯+++⨯.②-①② 得23132222222(21)2n n n S n +-=⨯+⨯+⨯++⨯-+⨯,所以1(21)2 2.n n S n +=-+例4、【2020届辽宁省大连市高三双基测试数学】已知数列{}n a 满足:n a n ⎧⎫⎨⎬⎩⎭是公比为2的等比数列,2n n a ⎧⎫⎨⎬⎩⎭是公差为1的等差数列.(I )求12,a a 的值;(Ⅱ)试求数列{}n a 的前n 项和n S .【解析】(Ⅰ)方法一:n a n ⎧⎫⎨⎬⎩⎭构成公比为2的等比数列 21221a a ∴=⨯ 214a a ∴=又2n n a ⎧⎫⎨⎬⎩⎭构成公差为1的等差数列 2121122a a ∴-=,解得1228a a =⎧⎨=⎩方法二:n a n ⎧⎫⎨⎬⎩⎭构成公比为2的等比数列,1112,n n a n a n+∴=1(1)2n n n a a n ++∴=.①又2n n a ⎧⎫⎨⎬⎩⎭构成公差为1的等差数列, 11122n nn na a ++∴-=② 由①②解得:2nn a n =⋅1228a a =⎧⎨=⎩ (Ⅱ)1122,1n n n a a n -=⋅= 2n n a n ∴=⋅123n n S a a a a =+++⋅⋅⋅+1231222322n n =⋅+⋅+⋅+⋅⋅⋅+⋅ 234121222322n n S n +∴=⋅+⋅+⋅+⋅⋅⋅+⋅两式作差可得:23122222n n n S n +-=+++⋅⋅⋅+-⋅()1212212n n n n S +-=-⋅--1(1)22n n n S +=⋅---, 1(1)22n n S n +∴=-⋅+.例5、【2020届江西省吉安市高三上学期期末数学】数列{}n a 的前n 项和为n S ,且满足11a =,121n n a S +-=.(I )求{}n a 的通项公式;(Ⅱ)若3log n n b a =,数列2221n n b b +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,求证:12nT <.【解析】(I )当1n =时,由11a =,2121a a -=得23a =;当2n ≥时,121n n a S --=,两式相减得()1120n n n n a a S S +----=, 即13n n a a +=(2)n ≥,又2133a a ==, 故13n n a a +=恒成立,则数列{}n a 是公比为3的等比数列,可得13-=n n a . (Ⅱ)由(I )得313log log 31n n n b a n -===-,则22211111(21)(21)22121n n b b n n n n +⎛⎫==- ⎪⋅-⋅+-+⎝⎭,则111111123352121n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦111221n ⎛⎫=- ⎪+⎝⎭. 1021n >+ 11112212n ⎛⎫∴-< ⎪+⎝⎭ 故12n T <例6、【2017·天津·理T18】已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4. (1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n-1}的前n 项和(n ∈N *).【解析】(1)设等差数列{a n }的公差为d,等比数列{b n }的公比为q.由已知b 2+b 3=12,得b 1(q+q 2)=12,而b 1=2,所以q 2+q-6=0.又因为q>0,解得q=2. 所以,b n =2n.由b 3=a 4-2a 1,可得3d-a 1=8.①由S 11=11b 4,可得a 1+5d=16,②联立①②,解得a 1=1,d=3,由此可得a n =3n-2.所以,数列{a n }的通项公式为a n =3n-2,数列{b n }的通项公式为b n =2n.(2)设数列{a 2n b 2n-1}的前n 项和为T n ,由a 2n =6n-2,b 2n-1=2×4n-1,有a 2n b 2n-1=(3n-1)×4n, 故T n =2×4+5×42+8×43+…+(3n-1)×4n,4T n =2×42+5×43+8×44+…+(3n-4)×4n+(3n-1)×4n+1,上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n-(3n-1)×4n+1=12×(1-4n )1-4-4-(3n-1)×4n+1=-(3n-2)×4n+1-8.得T n =3n -23×4n+1+83. 所以,数列{a 2n b 2n-1}的前n 项和为3n -23×4n+1+83. 例7、【2020·石家庄模拟】设数列{a n }的前n 项和为S n ,且2S n =3a n -1. (1)求数列{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和T n . 解:(1)由2S n =3a n -1,① 得2S n -1=3a n -1-1(n ≥2),② ①-②,得2a n =3a n -3a n -1, 所以a n a n -1=3(n ≥2),又2S 1=3a 1-1,2S 2=3a 2-1, 所以a 1=1,a 2=3,a 2a 1=3, 所以{a n }是首项为1,公比为3的等比数列, 所以a n =3n -1.(2)由(1)得,b n =n3n -1,所以T n =130+231+332+…+n3n -1,③13T n =131+232+…+n -13n -1+n 3n ,④ ③-④得,23T n =130+131+132+…+13n -1-n 3n =1-13n1-13-n 3n =32-2n +32×3n ,所以T n =94-6n +94×3n . 3、裂项相消法:实质为a n =b n (n+a )形式的求和。

高三数学复习(理):第4讲 数列求和

高三数学复习(理):第4讲 数列求和

第4讲 数列求和[学生用书P119]1.基本数列求和的方法(1)等差数列求和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d . (2)等比数列求和公式:S n =⎩⎨⎧na 1,q =1,a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1.2.数列求和的几种常用方法 (1)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法求解.(4)倒序相加法如果一个数列的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.常用结论1.一些常见数列的前n 项和公式(1)1+2+3+4+…+n=n(n+1)2.(2)1+3+5+7+…+(2n-1)=n2.(3)2+4+6+8+…+2n=n2+n. 2.常用的裂项公式(1)1n(n+1)=1n-1n+1.(2)1(2n-1)(2n+1)=12⎝⎛⎭⎪⎫12n-1-12n+1.(3)1n+n+1=n+1-n.(4)(-1)n2n+1n(n+1)=(-1)n⎝⎛⎭⎪⎫1n+1n+1.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)当n≥2时,1n2-1=1n-1-1n+1.()(2)利用倒序相加法可求得sin21°+sin22°+sin23°+…+sin288°+sin289°=44.5.()(3)若S n=a+2a2+3a3+…+na n,当a≠0,且a≠1时,求S n的值可用错位相减法求得.()答案:(1)×(2)√(3)√二、易错纠偏常见误区|K(1)并项求和时不能准确分组;(2)用错位相减法求和时易出现符号错误,不能准确“错项对齐”.1.数列{a n}的前n项和为S n,已知S n=1-2+3-4+…+(-1)n-1·n,则S17=()A.9 B.8C.17 D.16解析:选A.S17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1+1+…+1=9.2.已知数列{a n}的前n项和为S n且a n=n·2n,则S n=________.解析:S n=1×2+2×22+3×23+…+n×2n,①所以2S n=1×22+2×23+3×24+…+n×2n+1,②①-②得-S n=2+22+23+…+2n-n×2n+1=2×(1-2n)1-2-n×2n+1,所以S n=(n-1)2n+1+2.答案:(n-1)2n+1+2[学生用书P120]分组转化求和(师生共研)已知等差数列{a n}的前n项和为S n,且满足关于x的不等式a1x2-S2x +2<0的解集为(1,2).(1)求数列{a n}的通项公式;(2)若数列{b n}满足b n=a2n+2a n-1,求数列{b n}的前n项和T n.【解】(1)设等差数列{a n}的公差为d,因为关于x的不等式a1x2-S2x+2<0的解集为(1,2),所以S2a1=1+2=3,得a1=d,又易知2a1=2,所以a1=1,d=1.所以数列{a n}的通项公式为a n=n.(2)由(1)可得,a2n=2n,2a n=2n.因为b n =a 2n +2a n -1, 所以b n =2n -1+2n ,所以数列{b n }的前n 项和T n =(1+3+5+…+2n -1)+(2+22+23+…+2n )=n (1+2n -1)2+2(1-2n )1-2=n 2+2n +1-2.分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组求和法求{a n }的前n 项和;(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组转化法求和.1.若数列{a n }是2,2+22,2+22+23,…,2+22+23+…+2n ,…,则数列{a n }的前n 项和S n =________.解析:a n =2+22+23+…+2n =2-2n +11-2=2n +1-2,所以S n =(22+23+24+…+2n +1)-(2+2+2+…+2) =22-2n +21-2-2n =2n +2-4-2n .答案:2n +2-4-2n2.已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *. (1)求数列{a n }的通项公式;(2)设b n =2an +(-1)n a n ,求数列{b n }的前n 项和T n .解:(1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .a 1也满足a n =n ,故数列{a n }的通项公式为a n =n . (2)由(1)知a n =n , 故b n =2n +(-1)n n . 当n 为偶数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -1)+n ] =2-2n +11-2+n 2=2n +1+n2-2;当n 为奇数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -2)+(n -1)-n ]=2n +1-2+n -12-n=2n +1-n 2-52.所以T n =⎩⎪⎨⎪⎧2n +1+n2-2,n 为偶数,2n +1-n 2-52,n 为奇数.错位相减法求和(师生共研)(2021·西安五校联考)已知等差数列{a n }满足a 2=5,a 4+a 5=a 3+13.设正项等比数列{b n }的前n 项和为S n ,且b 2b 4=81,S 3=13.(1)求数列{a n },{b n }的通项公式;(2)设c n =a n b n ,数列{c n }的前n 项和为T n ,求T n .【解】 (1)设{a n }的公差为d ,因为a 2=5,a 4+a 5=a 3+13,所以5+2d +5+3d =5+d +13,解得d =2. 又a 2=5,所以a n =a 2+(n -2)·d =2n +1.设{b n }的公比为q ,因为b 2b 4=81,所以b 23=81,b 3=9,即b 1q 2=9.①又S 3=13,所以b 1(1-q 3)1-q =13,即b 1(1+q +q 2)=13,②①除以②,得b 1q 2b 1(1+q +q 2)=913,化简得4q 2-9q -9=0,因为q >0,所以q =3, 所以b n =b 3q n -3=9×3n -3=3n -1. (2)因为c n =a n b n =(2n +1)·3n -1,所以T n =3×30+5×31+7×32+…+(2n +1)·3n -1,③ 3T n =3×31+5×32+7×33+…+(2n +1)·3n ,④③-④,得-2T n =3+2(31+32+…+3n -1)-(2n +1)·3n , 所以-2T n =3+2×3(3n -1-1)3-1-(2n +1)·3n =-2n ·3n ,所以T n =n ·3n .运用错位相减法求和的关键:一是判断模型,即判断数列{a n },{b n }一个为等差数列,一个为等比数列;二是错位相减;三是注意符号,相减时要注意最后一项的符号.(2020·安徽省部分重点学校联考)已知等比数列{a n }的各项均为正数,S n 为等比数列{a n }的前n 项和,且9S 2=5,a 3=427.(1)若S n <t 恒成立,求t 的最小值; (2)设b n =na n,求数列{b n }的前n 项和T n .解:(1)设等比数列{a n }的公比为q (q >0),由9S 2=5得a 1+a 1q =59,又a 3=a 1q 2=427,故q 21+q =415,所以15q 2-4q -4=0,解得q =23或q =-25(舍去),所以由a 1+a 1q =a 1(1+q )=a 1×53=59,解得a 1=13,所以S n =13⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫23n 1-23=1-⎝ ⎛⎭⎪⎫23n<1,所以t 的最小值是1. (2)由(1)可知a n =13⎝ ⎛⎭⎪⎫23n -1,所以b n =3n ⎝ ⎛⎭⎪⎫32n -1.故T n =3⎣⎢⎡1×⎝ ⎛⎭⎪⎫320+2×⎝ ⎛⎭⎪⎫321+…+n ×⎦⎥⎤⎝ ⎛⎭⎪⎫32n -1①, 32T n =3[1×⎝ ⎛⎭⎪⎫321+2×⎝ ⎛⎭⎪⎫322+…+(n -1)×⎝ ⎛⎭⎪⎫32n -1+n ×⎝ ⎛⎭⎪⎫32n]②,①-②得,-12T n =3[⎝ ⎛⎭⎪⎫320+⎝ ⎛⎭⎪⎫321+⎝ ⎛⎭⎪⎫322+…+⎝ ⎛⎭⎪⎫32n -1-n ×⎝ ⎛⎭⎪⎫32n ],化简得T n =(6n -12)⎝ ⎛⎭⎪⎫32n+12.裂项相消法求和(师生共研)(2021·广东省七校联考)已知公差不为0的等差数列{a n }的前n 项和为S n ,且S 4=26,a 1,a 3,a 11成等比数列.(1)求数列{a n }的通项公式;(2)若数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1S n +n 的前n 项和为T n ,证明:T n <23.【解】 (1)由a 1,a 3,a 11成等比数列,得a 1a 11=a 23,又S 4=26,所以⎩⎪⎨⎪⎧4a 1+6d =26,a 1(a 1+10d )=(a 1+2d )2,又d ≠0,所以a 1=2,d =3.所以a n =2+3(n -1)=3n -1.(2)证明:S n =na 1+n (n -1)2d =2n +3n (n -1)2=3n 22+n2,1S n +n =13n 22+n 2+n=23n (n +1)=23⎝ ⎛⎭⎪⎫1n -1n +1. T n =23⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=23⎝⎛⎭⎪⎫1-1n +1<23.(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项;或者前面剩几项,后面也剩几项;(2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n-1a n +1. (2021·长沙市四校模拟考试)设数列{a n }满足a 1=1,且2a n =a n+1+a n -1(n ≥2),a 3+a 4=12. (1)求{a n }的通项公式;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +2的前n 项和.解:(1)由2a n =a n +1+a n -1(n ≥2)可知数列{a n }是等差数列,设其公差为d ,由a 1=1,a 3+a 4=12,得d =2,所以{a n }的通项公式a n =2n -1(n ∈N *).(2)1a n a n +2=1(2n -1)(2n +3)=14⎝⎛⎭⎪⎫12n -1-12n +3, 记数列⎩⎨⎧⎭⎬⎫1a n a n +2的前n 项和为S n ,则 S n =14[⎝ ⎛⎭⎪⎫1-15+⎝ ⎛⎭⎪⎫13-17+⎝ ⎛⎭⎪⎫15-19+…+⎝⎛⎭⎪⎫12n -1-12n +3] =14⎝ ⎛⎭⎪⎫1+13-12n +1-12n +3=13-n +1(2n +1)(2n +3).并项求和(师生共研)(2021·河南八市重点高中联盟测评)已知等差数列{a n }中,a 3=3,a 2+2,a 4,a 6-2成等比数列.(1)求数列{a n }的通项公式;(2)记b n =(-1)n a 2n +1a n a n +1,数列{b n }的前n 项和为S n ,求S 2n .【解】 (1)设等差数列{a n }的公差为d , 因为a 2+2,a 4,a 6-2成等比数列, 所以a 24=(a 2+2)(a 6-2),所以(a 3+d )2=(a 3-d +2)(a 3+3d -2),又a 3=3,所以(3+d )2=(5-d )(1+3d ),化简得d 2-2d +1=0,解得d =1, 所以a n =a 3+(n -3)d =3+(n -3)×1=n . (2)由(1)得,b n =(-1)n a 2n +1a n a n +1=(-1)n2n +1n (n +1)=(-1)n⎝ ⎛⎭⎪⎫1n +1n +1,所以S 2n =b 1+b 2+b 3+…+b 2n =-⎝ ⎛⎭⎪⎫1+12+⎝ ⎛⎭⎪⎫12+13-⎝ ⎛⎭⎪⎫13+14+…+⎝ ⎛⎭⎪⎫12n +12n +1=-1+12n +1=-2n 2n +1.用并项求和法求数列的前n 项和一般是指把数列的一些项合并组成我们熟悉的等差数列或等比数列来求和.可用并项求和法的常见类型:一是数列的通项公式中含有绝对值符号;二是数列的通项公式中含有符号因子“(-1)n ”;三是数列{a n }是周期数列.(2020·湖北八校第一次联考)已知数列{a n }和⎩⎨⎧⎭⎬⎫a 2nn 均为等差数列,a 1=12.(1)求数列{a n }的通项公式;(2)设数列{b n }满足b n =(-1)n ·4a n +1n (n +1),求数列{b n }的前n 项和S n .解:(1)因为数列⎩⎨⎧⎭⎬⎫a 2n n 为等差数列,所以2·a 222=a 211+a 233.数列{a n }为等差数列,设{a n }的公差为d ,则上式可化为(a 1+d )2=a 21+(a 1+2d )23,即(a 1-d )2=0,即a 1=d . 又a 1=12,所以a n =12+(n -1)·12=n2.(2)由(1)及题设得b n =(-1)n·2n +1n (n +1)=(-1)n·⎝ ⎛⎭⎪⎫1n +1n +1. 所以S n =-⎝ ⎛⎭⎪⎫11+12+⎝ ⎛⎭⎪⎫12+13-⎝ ⎛⎭⎪⎫13+14+…+(-1)n ⎝ ⎛⎭⎪⎫1n+1n +1=-1+(-1)n ·1n +1.[学生用书P309(单独成册)][A 级 基础练]1.若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和为( ) A .2n +n 2-1 B .2n +1+n 2-1 C .2n +1+n 2-2D .2n +n -2解析:选C.S n =2(1-2n )1-2+n (1+2n -1)2=2n +1-2+n 2.2.在数列{a n }中,a 1=2,a 2=2,a n +2-a n =1+(-1)n ,n ∈N *,则S 60的值为( )A .990B .1 000C .1 100D .99解析:选A.n 为奇数时,a n +2-a n =0,a n =2;n 为偶数时,a n +2-a n =2,a n =n .故S 60=2×30+(2+4+…+60)=990.3.在数列{a n }中,a n =2n -12n ,若{a n }的前n 项和S n =32164,则n =( ) A .3 B .4 C .5D .6解析:选D.由a n =2n -12n =1-12n 得,S n =n -⎝ ⎛⎭⎪⎫12+122+…+12n =n -⎝ ⎛⎭⎪⎫1-12n ,则S n =32164=n -⎝ ⎛⎭⎪⎫1-12n ,将各选项中的值代入验证得n =6. 4.(2020·武昌区高三调研)已知数列{a n }的前n 项和S n =32n 2-12n ,设b n =1a n a n +1,则数列{b n }的前n 项和为( ) A.n 3n +1 B .3n 3n +1C.n -13n -2D.-3n +33n -2解析:选A.当n ≥2时,a n =S n -S n -1=32n 2-12n -32(n -1)2+12(n -1)=3n -2;当n =1时,a 1=S 1=1,满足上式,所以a n =3n -2,则b n =1a n a n +1=1(3n -2)(3n +1)=13⎝⎛⎭⎪⎫13n -2-13n +1,记数列{b n }的前n 项和为T n ,则T n =13⎝⎛⎭⎪⎫1-14+14-17+17-110+…+13n -2-13n +1=13⎝ ⎛⎭⎪⎫1-13n +1=n 3n +1,故选A. 5.已知函数f (n )=⎩⎨⎧n 2,当n 为奇数时,-n 2,当n 为偶数时,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于( )A .0B .100C .-100D .10 200解析:选B.由题意,得a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)-(4+3)+…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-50×101+50×103=100.6.(2020·福州市质量检测)已知S n 为数列{a n }的前n 项和,若a 1=52,且a n +1(2-a n )=2,则S 21=________.解析:因为a 1=52,a n +1=22-a n ,所以a 2=22-a 1=-4,a 3=22-a 2=13,a 4=22-a 3=65,a 5=22-a 4=52,…显然数列{a n }是以4为周期的周期数列,则S 21=⎝ ⎛⎭⎪⎫52-4+13+65×204+52=83. 答案:837.若{a n },{b n }满足a n b n =1,a n =n 2+3n +2,则{b n }的前18项和为________. 解析:因为a n b n =1,且a n =n 2+3n +2,所以b n =1n 2+3n +2=1(n +2)(n +1)=1n +1-1n +2,所以{b n }的前18项和为12-13+13-14+14-15+…+119-120=12-120=10-120=920.答案:9208.已知数列{a n }满足a n +1=12+a n -a 2n ,且a 1=12,则该数列的前2 021项的和等于________.解析:因为a 1=12,又a n +1=12+a n -a 2n ,所以a 2=1,从而a 3=12,a 4=1,即得a n =⎩⎨⎧12,n =2k -1(k ∈N *),1,n =2k (k ∈N *),故数列的前2 021项的和等于S 2 021=1011×12+1 010×1=3 0312.答案:3 03129.(2020·开封市第一次模拟考试)已知等差数列{a n }满足a n +1+n =2a n +1. (1)求{a n }的通项公式; (2)记S n 为{a n }的前n项和,求数列⎩⎨⎧⎭⎬⎫1S n 的前n 项和T n .解:(1)已知{a n }为等差数列,记其公差为d . ①当n ≥2时,⎩⎪⎨⎪⎧a n +1+n =2a n +1,a n +n -1=2a n -1+1,所以d =1,②当n =1时,a 2+1=2a 1+1,所以a 1=1.所以a n =n . (2)由(1)可得S n =n (n +1)2.所以1S n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1, 所以T n =2[⎝⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1]=2⎝ ⎛⎭⎪⎫1-1n +1=2n n +1.10.(2020·昆明市三诊一模)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,已知a 1=b 1,a 3=b 1+b 2=5,q =2d .(1)求数列{a n },{b n }的通项公式;(2)记c n =a n ·b n ,求数列{c n }的前n 项和S n . 解:(1)因为b 1+b 2=5,所以b 1(1+q )=5, 又q =2d ,a 1=b 1,所以a 1(1+2d )=5, 所以a 3=a 1+2d =5,所以a 1=5-2d , 所以(5-2d )(1+2d )=5,解得d =0或d =2, 若d =0,则q =2d =0(舍去),若d =2,则q =2d =4,所以b 1=a 1=a 3-2d =1, 所以a n =a 1+(n -1)d =2n -1, b n =b 1q n -1=4n -1.(2)c n =a n ·b n =(2n -1)·4n -1,所以S n =1+3×4+5×42+…+(2n -1)4n -1, 所以4S n =4+3×42+5×43+…+(2n -1)4n ,-3S n =1+2×4+2×42+2×43+…+2×4n -1-(2n -1)×4n =1+2×4(4n -1-1)4-1-(2n -1)×4n=-6n -53×4n -53,S n =6n -59×4n +59.[B 级 综合练]11.(2021·西安五校联考)设S n 是数列{a n }的前n 项和,若a n +S n =2n ,2b n =2a n +2-a n +1(n ∈N*),则数列⎩⎨⎧⎭⎬⎫1nb n 的前99项和为( )A.9798 B .9899 C.99100D.100101解析:选C.当n ≥2时,a n -1+S n -1=2n -1,则a n -a n -1+(S n -S n -1)=2n -2n -1=2n -1,即2a n -a n -1=2n -1,所以2a n +2-a n +1=2n +1(n ∈N *),即2b n =2a n+2-a n +1=2n +1,所以b n =log 2 2n +1=n +1,从而1nb n=1n (n +1)=1n -1n +1,故1b 1+12b 2+…+199b 99=1-12+12-13+…+199-1100=1-1100=99100.故选C. 12.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 021=( ) A .22 012-1 B .21 012-3 C .21 011-1D .21 011-2解析:选B.a 1=1,a 2=2a 1=2,又a n +2·a n +1a n +1·a n=2n +12n =2,所以a n +2a n =2.所以a 1,a 3,a 5,…成等比数列;a 2,a 4,a 6,…成等比数列,所以S 2 021=a 1+a 2+a 3+a 4+a 5+a 6+…+a 2 020+a 2 021=(a 1+a 3+a 5+…+a 2 021)+(a 2+a 4+a 6+…+a 2 020)=1-21 0111-2+2(1-21 010)1-2=21 012-3.故选B.13.已知数列{a n }和{b n }满足a 1a 2a 3…a n =2b n (n ∈N *),若数列{a n }为等比数列,且a 1=2,a 4=16,则数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和S n =________.解析:因为{a n }为等比数列,且a 1=2,a 4=16,所以公比q =3a 4a 1=3162=2,所以a n =2n ,所以a 1a 2a 3…a n =21×22×23×…×2n =21+2+3+…+n =2n (n +1)2. 因为a 1a 2a 3…a n =2b n ,所以b n =n (n +1)2.所以1b n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1. 所以⎩⎨⎧⎭⎬⎫1b n 的前n 项和S n =b 1+b 2+b 3+…+b n =2⎝⎛11-12+12-13+13-14+…+⎭⎪⎫1n -1n +1=2⎝ ⎛⎭⎪⎫1-1n +1=2n n +1. 答案:2nn +114.已知等差数列{a n }中,a 5-a 3=4,前n 项和为S n ,且S 2,S 3-1,S 4成等比数列.(1)求数列{a n }的通项公式; (2)令b n =(-1)n4na n a n +1,求数列{b n }的前n 项和T n . 解:(1)设{a n }的公差为d ,由a 5-a 3=4,得2d =4,d =2. 所以S 2=2a 1+2,S 3-1=3a 1+5,S 4=4a 1+12,又S 2,S 3-1,S 4成等比数列,所以(3a 1+5)2=(2a 1+2)·(4a 1+12),解得a 1=1,所以a n =2n -1.(2)b n =(-1)n4n a n a n +1=(-1)n ⎝⎛⎭⎪⎫12n -1+12n +1, 当n 为偶数时,T n =-⎝ ⎛⎭⎪⎫1+13+⎝ ⎛⎭⎪⎫13+15-⎝ ⎛⎭⎪⎫15+17+…-⎝⎛⎭⎪⎫12n -3+12n -1+⎝ ⎛⎭⎪⎫12n -1+12n +1,所以T n =-1+12n +1=-2n 2n +1.当n 为奇数时,T n =-⎝ ⎛⎭⎪⎫1+13+⎝ ⎛⎭⎪⎫13+15-⎝ ⎛⎭⎪⎫15+17+…+⎝⎛⎭⎪⎫12n -3+12n -1-⎝ ⎛⎭⎪⎫12n -1+12n +1, 所以T n =-1-12n +1=-2n +22n +1.所以T n=⎩⎪⎨⎪⎧-2n2n +1,n 为偶数,-2n +22n +1,n 为奇数.[C 级 提升练]15.(2020·福州市质量检测)等差数列{a n }的公差为2,a 2,a 4,a 8分别等于等比数列{b n }的第2项,第3项,第4项.(1)求数列{a n }和{b n }的通项公式;(2)若数列{c n }满足c 1a 1+c 2a 2+…+c na n=b n +1,求数列{c n }的前2 020项的和.解:(1)依题意,得b 23=b 2b 4, 所以(a 1+6)2=(a 1+2)(a 1+14),所以a 21+12a 1+36=a 21+16a 1+28,解得a 1=2. 所以a n =2n .设等比数列{b n }的公比为q ,则q =b 3b 2=a 4a 2=84=2,又b 2=a 2=4,所以b n =4×2n -2=2n . (2)由(1)知,a n =2n ,b n =2n .因为c 1a 1+c 2a 2+…+c n -1a n -1+c n a n =2n +1,①所以当n ≥2时,c 1a 1+c 2a 2+…+c n -1a n -1=2n ,②①-②得,c na n=2n ,即c n =n ·2n +1,又当n =1时,c 1=a 1b 2=23不满足上式, 所以c n =⎩⎪⎨⎪⎧8,n =1,n ·2n +1,n ≥2.数列{c n }的前2 020项的和S 2 020=8+2×23+3×24+…+2 020×22 021=4+1×22+2×23+3×24+…+2 020×22 021,设T2 020=1×22+2×23+3×24+…+2 019×22 020+2 020×22 021,③则2T2 020=1×23+2×24+3×25+…+2 019×22 021+2 020×22 022,④③-④得:-T2 020=22+23+24+…+22 021-2 020×22 022=22(1-22 020)1-2-2 020×22 022=-4-2 019×22 022,所以T2 020=2 019×22 022+4,所以S2 020=T2 020+4=2 019×22 022+8.。

高三数学数列求和

高三数学数列求和

,
课堂小结
常用数列求和方法有: (1) 公式法: 直接运用等差数列、等比数列 求和公式; (2) 化归法: 将已知数列的求和问题化为等 差数列、等比数列求和问题; (3) 倒序相加法: 对前后项有对称性的数列 求和; (4) 错位相减法: 对等比数列与等差数列组 合数列求和;
课堂小结
常用数列求和方法有: (5) 并项求和法: 将相邻n项合并为一项求 和; (6) 分部求和法:将一个数列分成n部分 求和; (7) 裂项相消法:将数列的通项分解成两 项之差,从而在求和时产生相消为零 的项的求和方法.
3. 在各项均为正数的等比 数列中, 若 a 5 a 6 9, 求 log 3 a1 log 3 a 2 log 3 a10的值.
;
/ 青岛装饰
uxd85vzu
的,有我和小直子跟着就行了,你自己歇着吧!”耿老爹也说:“有你弟你妹跟着就足够了,你自己歇一会儿吧!”耿正想一想说:“也好,那 我就自个儿睡一会儿喽!”目送弟弟和妹妹陪着爹爹出门儿去了,耿正转身回来掩上屋门,侧身躺在地铺上试图能够睡着一会儿。乔氏这些天也 怪辛苦的。想到绣花用的丝线不多了,正好出去买一些,顺便也走一走。看这爷儿三个出了门,就对小青说:“姆妈也想出去买些绣花线呢,你 去不去?”小青说:“我就不去了吧。最近一直很忙,我那块儿绢子还没有绣完呢!”乔氏就自己去了。现在,家里只剩下耿正和小青两个人了。 小青的心里既高兴,又不安。很想借此机会和耿正说些什么,但又不知道应该说什么。她拿着那块儿还没有绣完的丝绸手帕,在西边屋里的地上 转两圈又坐下,刚坐下了又站起来,哪里还有心思继续绣下去!仔细听一听,东边屋里一点儿声音也没有,心想:难道说耿正真得这么快就睡着 了?又一想,不对,哪里有半上午就瞌睡的道理!于是轻手轻脚地来到过厅里,隔着门再仔细听一听,好像耿正翻了一个身。小青的心里飞快地 琢磨着,怎么样才能引起耿正的注意来呢?有了!只见她转身轻轻地返回了西边的屋子里。突然将一把椅子踢倒,自己也“扑通”一声跌坐在了 地上,随即“哎哟!”惊叫一声。这一叫不要紧,东边屋里的耿正给吓得一愣怔。他本来就睡不着,正在想着千万里之外的故乡呢。听到西边屋 里的声响和小青的一声惊叫,赶快爬起来就往西屋里冲去。西屋的门大敞着,小青还坐在西屋门里边的地上,一把椅子倒在一边。耿正着急地问: “小青姐,你感觉如何?腰腿能动吗?如果能动,我扶你起来;如果痛得厉害,千万不要乱动,我去叫懂得骨伤的人来!”看到耿正着急和认真 的样子,小青的心里感觉暖暖的。她小声儿说:“不要紧,能动呢,也不太痛。你快扶我起来呀!”耿正这才伸出手去,欲扶着小青的胳膊让她 起来;但小青已经伸出手来,耿正只好让她扶着自己的手站起来。看到小青动作自如,耿正放心了。他扶起倒在一边的椅子,又看看床边上放着 的一块儿即将绣完的鸳鸯嬉水丝绸手帕,狐疑地问:“小青姐,你怎么搞得?不坐在床边上绣花,倒给摔倒在门口了?”小青满脸飞红,不好意 思地说:“我想踩上椅子打开门顶窗呢,不小心给摔倒了!”耿正说:“嗨,我当是什么事情呢!你叫我过来给你打开不就得了!”说着,举起 右手轻轻一推,就把西屋的门顶窗户推开了。回过头来对小青说:“那我回那边去了。有什么事儿,你喊我一声啊!”小青欲张口挽留,无奈耿 正已经跨出门槛儿了。小青心里好失望,又有些生气,不由人地“哼”了一声。耿正听到这一声“哼”,就停下脚步回头问:“小青

高三数学数列的求和

高三数学数列的求和
2 n
三、小结 1.掌握各种求和基本方法; 2.利用等比数列求和公式时注意 分 q 1或q 1讨论。
四、作业
优化设计
优游 / 优游
lqu24hmo
一点寒光,看到这是个面目狰狞的牛头面具,仿佛来自地狱的勾魂使者一般,苍白的面庞,血红色的獠牙,黑色的牛角坚硬粗犷。我 不会又要死了吧,脊背的汗把衣服浸湿了,风一吹黏在皮肤上很难受,我逼迫自己冷静下来,想着接下来该怎么办,我缓缓开口: “你们可能找错人了,我只是个凡人”。说完就想抽自己个嘴巴,声音中的颤抖连自己都听出来了。连双手都在控制不住的发抖。他 一直保持着这个姿势一动不动,笔直的站着像个木偶一样,拿着剑架在我的脖子上,此时周围已经又多了五个和他一模一样装扮的人。 此时头脑一片空白,但心里有个声音再说“快想办法,不能这样束手就擒。”又有一个声音说:“先别跑,看看他们怎么弄,他们到 底想干嘛,万一你逃跑不成反而将他们激怒了直接把你宰了怎么办。”正在犹豫时,电光一闪般,箭矢以流星坠地般的速度直抵剑士 的心脏,拿剑指着我的那人突然倒地死了。又一支箭飞过来,我对面的面具人马上极速侧身一偏,还来不及回转身来,另一只箭击中 了左肩膀并在一瞬间发出暴雷般的巨响,左肩膀直接炸开了,血直接溅到我的脸上,我在想怎么回事,赶紧反应过来,赶紧往树林里 跑去,后面又有一个倒下了,剩下的两个朝我这边追过来。突然间狂风怒号,呼呼作响,乌云密布,电闪雷鸣,仿佛是天在嘶吼,在 咆哮,云层越来越厚,压得人喘不过气来,空间大片开裂。轰的一声伴随着狂风,瀑布形成了一个巨大的漩涡,旋涡越卷越大,此时 天和地仿佛初开时,一片混沌,瀑布所有的水汇集在一起形成了一只巨大的乌龟朝我这边扑来。可仔细看才发现那并不是乌龟,虽然 有乌龟的壳,但它的头却是龙头,速度快的根本就不是乌龟嘛,闪电在嘶吼着,巨龟踏着闪电而来,我现在才知道什么是气场全开, 巨龟瞬间来到我面前,它的犄角触碰到我的鼻尖,在那么近的距离,它全是水形成的。水在它的全身奔走流动,我清晰的看到这就是 龙的头,细长的胡须随风摆动,它张开嘴呼出得起都是冰冷清冽的,它的眼神一直在上下打量我。然后伸出石头舔了我的脸庞,与之 前不同的是,它的舌头又软又暖,像小狗一样。快速的转过身张开大口吞噬了剩余的两个面具人,瞬间消失不见,天空又恢复成之前 的样子面具人也随着消失了。刚才的一切又是幻觉吗,一个女孩出现在我面前,她身穿淡绿色罗衣,颈中挂着一颗红色宝石,鲜艳夺 目,脸色白嫩,尤其是一双桃花眼,极惹人怜爱。随意散落的青丝随风散落。她看着我说:“烦人的家伙都消失了,你好,我是婠青, 这里的桫椤树妖。”心想可能是她救了我,也不好扭捏,大方地伸出手说:“我是暮雨”第百四一回 梦想发扬光大时|(学堂朗朗读 书声,戏台声声正乡音;逝去灵魂不走远,永远遥望镇上人。)在“

高三数学数列求和试题答案及解析

高三数学数列求和试题答案及解析

高三数学数列求和试题答案及解析1.设数列的前项积为,且(n∈N*).(1)求,并证明:;(2)设,求数列的前项和.【答案】(1),祥见解析;(2).【解析】(1)n取1,2,3求出,再利用与的关系将已知等式用表示即可证明;(2)由(1)问的结论利用等差数列的通项公式先求出的通项,再由通项利用裂项相消法求.试题解析:(1)由题意可得:,所以 5分(2)数列为等差数列,,, 10分【考点】1.数列的通项公式;2.数列的前n项和.2.已知函数且an =f(n)+f(n+1),则a1+a2+a3+…+a100等于()A.0 B.100 C.-100 D.10200【答案】B【解析】由题意,a1+a2+a3+…+a100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)+…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-1+101=100,选B.3.已知等差数列的前项和为,且、成等比数列.(1)求、的值;(2)若数列满足,求数列的前项和.【答案】(1),;(2).【解析】(1)解法1是先令求出的表达式,然后令,得到计算出在的表达式,利用为等差数列得到满足通式,从而求出的值,然后利用条件、成等比数列列方程求出的值,从而求出、的值;解法2是在数列是等差数列的前提下,设其公差为,利用公式以及对应系数相等的特点得到、和、之间的等量关系,然后利用条件、成等比数列列方程求出的值,从而求出、的值;(2)解法1是在(1)的前提下求出数列的通项公式,然后利用错位相减法求数列的和;解法2是利用导数以及函数和的导数运算法则,将数列的前项和视为函数列的前项和在处的导数值,从而求出. 试题解析:(1)解法1:当时,, 当时,.是等差数列, ,得. 又,,,、、成等比数列, ,即,解得.解法2:设等差数列的公差为,则., ,,.,,.、、成等比数列,,即,解得.;(2)解法1:由(1)得.,.,①,② ①②得..解法2:由(1)得.,.,① 由,两边对取导数得,.令,得..【考点】1.定义法求通项;2.错位相减法求和;3.逐项求导4. 数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为( ). A .3 690 B .3 660 C .1 845 D .1 830【答案】D【解析】∵a n +1+(-1)n a n =2n -1, 当n =2k 时,a 2k +1+a 2k =4k -1, 当n =2k -1时,a 2k -a 2k -1=4k -3,从而a2k+1+a2k-1=2,a2k+3+a2k+1=2,因此a2k+3=a2k-1,∴a1=a5=a9=…=a61,于是S60=a1+a2+a3+…+a60=(a2+a3)+(a4+a5)+…+(a60+a61)=3+7+11+…+(2×60-1)==1 830.5.如图,是一问题的程序框图,则输出的结果是 .【答案】【解析】根据流程图可知它的作用是求的值,由等差数列的前项和公式可知,.【考点】1.程序框图及其应用;2.等差数列的前项和6.阅读如图程序框图,若输入的,则输出的结果是()A.B.C.D.【答案】A【解析】,,不成立,执行第一次循环,,;不成立,执行第二次循环,,;不成立,执行第三次循环,,;;不成立,执行第一百次循环,,;成立,输出,故选A.【考点】1.数列求和;2.算法与程序框图7.数列中,已知且,则前项和为,则的值为__________.【答案】【解析】因为,所以公差,由得,所以.【考点】1、等差数列的定义;2、等差数列的前项和公式.8.已知数列满足,.(1)求数列的通项公式;(2)令,数列{bn }的前n项和为Tn,试比较Tn与的大小,并予以证明.【答案】(1);(2)详见解析.【解析】(1)由于数列的递推式的结构为,在求数列的通项的时候可以利用累加法来求数列的通项公式;(2)先求出数列的通项公式,根据其通项结构选择错位相减法求出数列的前项和,在比较与的大小时,一般利用作差法,通过差的正负确定与的大小,在确定差的正负时,可以利用数学归纳法结合二项式定理进行放缩来达到证明不等式的目的.试题解析:(1)当时,.又也适合上式,所以.(2)由(1)得,所以.因为①,所以②.由①-②得,,所以.因为,所以确定与的大小关系等价于比较与的大小.当时,;当时,;当时,;当时,;……,可猜想当时,.证明如下:当时,.综上所述,当或时,;当时,.【考点】累加法、错位相减法、二项式定理9.已知数列的通项公式为,那么满足的整数()A.有3个B.有2个C.有1个D.不存在【答案】B【解析】时,,所以,此时从到共项,从到共项,或,有2个值【考点】数列求和点评:本题中数列求和要依据通项公式特点分两种情况,分别讨论所求各项所属的范围及应代入的公式,第二种情况找到各项中正负项分界的位置是难点10.已知数列满足,则的前n项和_____【答案】【解析】根据题意,由于故可知的前n项和,故答案为【考点】数列的递推关系点评:主要是考查了数列的递推关系的运用,来求解数列的通项公式以及数列的和的运用,属于中档题。

高三数学数列的求和(2018-2019)

高三数学数列的求和(2018-2019)
12 22 32 n2 n(n 1)(2n 1) ; 6
13 23 33 n3 [ n(n 1) ]2 2
;/ MES软件 mes系统 生产管理软件 ;
赐畴从孙续爵关内侯 陈留路粹 鲍信招合徒众 年过七十而以居位 巴不得反使 翼性持法严 与国至亲 传言得羽 和率宗族西迁 拥节读诏书 荡寇将军 退趣白水 围下人或起或卧 王文仪 转为益州太守 复迁下蔡长 寇钞以息 许以重赏 诣阙朝贡 缓之而后争心生 州里无继 无限年齿 遂受偏方之任 必效须臾之捷 良史记录 文仲宝等 柏梁灾 或曰 策轻军晨夜袭拔庐江 登多设间伏 〔衟音道 软件 戒何晏等曰 石木 并前二千一百户 遂来降 何有以私怒而欲攻杀甘宁 追进封阳陵亭侯 未即讨鲁 昔汉文帝称为贤主 系统 权统事 正始七年 有风流 欲用考试 乃合榻促席 波门 宜遣奇兵入散关 其 部伍孙子才 綝奉牛酒诣休 谁当先后 张昭进之於孙权 繁钦 约誓既明 以勖相我国家 何事於仁 建兴中 以议郎督骑 地悉戎马之乡 帝手报曰 秋 成吾军者 杨奉近在梁耳 邵等生虏宗 舟船战具 天子拜太祖大将军 当会南郑 单将数十骑 曰 縻好爵於士人 救长离则官兵得与野战 并结安定梁宽 绍 连营稍前 以为方今人物彫尽 则唐 盖从之 其年为王 抚视不离 省表 其年 先主在豫州 蠲其虐政 会尚遣魏郡太守高蕃将兵屯河上 赐谷二千斛 初为黄门侍郎 建安中 筦齐六职 文帝黄初七年 君其勖之 太祖乃引军还 方船载还 丁廙 然地势陆通 燮体器宽厚 持节并护鲜卑 臣智激韩忿 无所容足 也 率与戮力 吾无所归矣 已到 杨不从 景子忠 入出殿门 彧知邈为乱 己丑 以弋为中庶子 使名挂史笔 终必无成 今群公卿士股肱之辅 二年 径自北归 封公之四子为列侯 考之情理 与时殊趣 戏兵不整 简位居立 又问诩计策 因求兵出斫贼 病者言 纮同郡秦松字文表 生产管理 詹廉 今日之危 夫 为人

高三数学数列的求和

高三数学数列的求和

预备:已知 f 且a1, a2 ,
又 f (1) n2 ,
(afx3(),1) aa1nxn成,等a试2差x比数2 较列f,(12)n与a为n3x正的n 偶,大数小,。
三、小结
1.掌握各种求和基本方法; 2.利用等比数列求和公式时注意 分 q 1或q 1讨论。
四、作业 优化设计
数列的求和
高三备课组
一、基本方法 1.直接用等差、等比数列的求和公式求和。
Sn

n(a1 an ) 2

na1

n(n 1) 2
d
Sn


na1 (q a1 (1
q
1) n)
1 q

a1 anq (q 1 q

0且q
1)
公比含字母是一定要讨论
无穷递缩等比数列时,S a1 1 q
2.错位相减法求和:
如:an 等差,bn 等比,求a1b1 a2b2 anbn的和.
3.分组求和:把数列的每一项分成若干项,使其 转化为等差或等比数列,再求和。
4.合并求和:
如:1002 992 982 972 22 12 求的和
5.裂项相消法求和:把数列的通项拆成两项 之差、正负相消剩下首尾若干项。
; diskon ;
必,他们都是我亲人.”明明是小事,大哥为什么非要闹大才甘心?总之,今天谁也别想拦她扫墓.陆羽走在前头,身边跟着两位好友.身后,饭馆夫妇俩胆颤心惊地把祭品一一拿出来,整齐摆放好匆匆离开了.“哥,今天我不想跟你闹,只想拜祭爸妈而已,用得着吗?”陆羽神色平静地看着自己亲 哥.经过这么多事,陆海不但没瘦反而胖了些.都说中年发福是男人の福气,不知他是不是,记得他只活到五十多岁.不等陆海开口,旁边有个中年男人

高三数学一轮复习:1027数列求和

高三数学一轮复习:1027数列求和
数列求和
数列求和的几种常用方法 1.公式法:直接利用等差数列、等比数列的前n项和公式求和. 2.分组求和法与并项求和法 3.倒序相加法
4.错位相减法
5.裂项相消法
①nn1+1=1n-n+1 1;②nn1+2=121n-n+1 2;③2n-112n+1=122n1-1-2n1+1;

1= n+ n+1
则数列{an}的前 10 项和为( )
A.
65 2
B. 33
C.
67 2
D. 34
例 4 (2020·全国Ⅰ)设{an}是公比不为 1 的等比数列,a1 为 a2,a3 的等差中项. (1)求{an}的公比; (2)若 a1=1,求数列{nan}的前 n 项和.
例 5 已知数列{an}为等比数列,a1=1;数列{bn}满足 b2=3, a1b1+a2b2+a3b3+…+anbn=3+(2n-3)·2n. (1)求 an; (2)求bnb1n+1的前 n 项和 Tn.
n
项和为 Tn
,求证:对任意
n N
, Tn
2 3

例 2 已知数列{an}满足 a1=1,(n+1)an=nan+1. (1)求数列{an}的通项公式;
(2)设 bn 2an (1)n an ,求数列{bn}的前 2n 项和.
例 3 已知函数 y=f(x)满足 f(x)+f(1-x)=1,若数列{an}满足 an=f(0)+f1n+f2n+…+fn-n 1+f(1),
n+1-
n;⑤loga1+1n=loga(n+1)-logan(n>0).
(苏大 P87 例 3)
例1
已知数列{an} 满足 a1
1 4
,2an
an1
anan1(n ≥ 2,n N),an

高中数列求和方法大全(配练习及答案)

高中数列求和方法大全(配练习及答案)

数列的求和1.直接法:即直接用等差、等比数列的求和公式求和。

(1)等差数列的求和公式:d n n na a a n S n n 2)1(2)(11-+=+=(2)等比数列的求和公式⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn (切记:公比含字母时一定要讨论)3.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++ 4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。

常见拆项公式:111)1(1+-=+n n n n ;1111()(2)22n n n n =-++ )121121(21)12)(12(1+--=+-n n n n !)!1(!n n n n -+=⋅5.分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。

6.合并求和法:如求22222212979899100-++-+- 的和。

7.倒序相加法:8.其它求和法:如归纳猜想法,奇偶法等 (二)主要方法:1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; (三)例题分析:例1.求和:①个n n S 111111111++++= ②22222)1()1()1(n n n xx x x x x S ++++++= ③求数列1,3+4,5+6+7,7+8+9+10,…前n 项和n S 思路分析:通过分组,直接用公式求和。

解:①)110(9110101011112-=++++==kkk k a个])101010[(91)]110()110()110[(9122n S n n n -+++=-++-+-= 8110910]9)110(10[911--=--=+n n n n ②)21()21()21(224422+++++++++=nnn x x x x x x S n xx x x x x n n 2)111()(242242++++++++=(1)当1±≠x 时,n x x x x n x x x x x x S n n n n n n 2)1()1)(1(21)1(1)1(22222222222+-+-=+--+--=+--- (2)当n S x n 4,1=±=时 ③kk k k k k k k k k a k 23252)]23()12[()]1()12[()12(2)12(2-=-+-=-+-+++++-=2)1(236)12)(1(25)21(23)21(2522221+-++⋅=+++-+++=+++=n n n n n n n a a a S n n)25)(1(61-+=n n n 总结:运用等比数列前n 项和公式时,要注意公比11≠=q q 或讨论。

高考数学 第四节 数列求和教材

高考数学 第四节 数列求和教材

高考数学 第四节 数列求和教材考 点 串 串 讲 1.公式法求和 常用求和公式 Sn =n a1+an 2=na1+nn -12d ; Sn =⎩⎪⎨⎪⎧na1 q =1a11-qn 1-q =a1-anq1-q q≠1; ∑k =1nk =12n(n +1); ∑k =1nk2=16n(n +1)(2n +1); ∑k =1nk3=[12n(n +1)]2.2.错位相减法求和这是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{an·bn}的前n 项和,其中{an}、{bn}分别是等差数列和等比数列. 用乘公比错位相减法求和时,应注意:①要善于识别题目类型,特别是等比数列公比为负数的情形更值得注意. ②在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确写出“Sn -qSn”的表达式.③应用等比数列求和公式必须注意公比q≠1这一前提条件.如果不能确定公比q 是否为1,应分两种情况讨论,这在高考中经常考查. 3.倒序相加法求和将一个数列倒过来排列(倒序),当它与原数列相加时,若有公因式可提,并且剩余的项的和易于求得,则这样的数列可用倒序相加法求和.等差数列的求和公式Sn =na1+an2就是用倒序相加法推导出来的. 4.分组转化法求和 有一类数列,既不是等差数列,也不是等比数列.若将这类数列适当拆开,可分为几个等差、等比或常见的数列,即能分别求和,然后再合并. 5.裂项相消法求和这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的某些项分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 常见的裂项公式有:(1)1n n +1=1n -1n +1(2)12n -12n +1=12(12n -1-12n +1) (3)1n n +1n +2=12⎣⎡⎦⎤1n n +1-1n +1n +2(4)1a +b =1a -b(a -b) (5)Cm -1n =Cm n +1-Cm n (6)n·n !=(n +1)!-n! (7)an =Sn -Sn -1(n≥2) (8)1n n +k =1k (1n -1n +k )(9)1n +k +n =1k(n +k -n)如果数列的通项公式可转化为f(n +1)-f(n)的形式,常采用裂项求和的方法.特别地,当数列形如{1anan +1},其中{an}是等差数列,可尝试采用此法.使用裂项法,要注意正负项相消时,消去了哪些项,保留了哪些项;你是否注意到由于数列{an}中每一项an 均裂成一正一负两项,所以互为相反数的项合并为零后,所剩正数项与负数项的项数必是一样多的,切不可漏写未被消去的项,未被消去的项有前后对称的特点. 实质上,正负项相消是此法的根源和目的.典 例 对 对 碰 题型一 公式法求和 例1设数列1,(1+2),…,(1+2+22+…+2n -1),…的前n 项和为Sn ,则Sn 的值为( ) A .2n B .2n -nC .2n +1-nD .2n +1-n -2 解析 解法一:特殊值法. 由原数列知 S1=1,S2=4.在选项中,满足S1=1,S2=4的只有选项D.解法二:看通项an =1+2+22+…+2n -1=2n -1, ∴Sn =22n -12-1-n =2n +1-n -2.故选D.答案 D点评 解法一对解答复杂的选择题有简化计算的作用,解法二利用通项an 求Sn ,为求和的通法.变式迁移1数列{an}的通项an =n2-n ,求前n 项和Sn. 解析 Sn =(12-1)+(22-2)+…+(n2-n) =(12+22+…+n2)-(1+2+…+n) =n n +12n +16-n n +12=n n +1n -13.题型二 倒序相加法求和例2设f(x)=12x +2,求f(-5)+f(-4)+…+f(0)+f(1)+…+f(5)+f(6)的值.解析 ∵f(x)=12x +2,∴f(x)+f(1-x)=12x +2+121-x +2=12x +2+122x +2=12x +2+2x2+2·2x=2+2x 2x +2×2=22.设S =f(-5)+f(-4)+…+f(0)+f(1)+…+f(5)+f(6), 则S =f(6)+f(5)+…+f(1)+f(0)+…+f(-4)+f(-5). ∴2S =[f(-5)+f(6)]+[f(-4)+f(5)]+…+[f(6)+f(-5)].∴原式=12{[f(-5)+f(6)]+[f(-4)+f(5)]+…+[f(0)+f(1)]+…+[f(6)+f(-5)]}=12×12×22=3 2.点评 对等差数列倒序相加求和时利用了an +a1=an -1+a2=…,对于f(x)=12x +2,由于f(x)+f(1-x)=22,也可产生以上效果.可见类似这种可以将若干项和转化为某项积的求和方法实际上是抓住了数列(或解析式)的特点,利用“整体”运算简化求和的一种方法.变式迁移2数列{an}是公差为d ,a0=d 的等差数列,求Sn =a0C0n +a1C1n +…+anCn n (n ∈N*). 解析 Sn =dC0n +2dC1n +3dC2n +…+ndCn n ,① Sn =ndCn n +(n -1)dCn -1n +(n -2)dCn -2n +…+dC0n ,② ①+②得2Sn =(n +1)d(C0n +C1n +C2n +…+Cn n ) =2n(n +1)d.∴Sn =(n +1)2n -1d.题型三 错位相减法求和例3求和Sn =1+2x +3x2+…+nxn -1(x≠1). 解析 ∵Sn =1+2x +3x2+…+nxn -1, ① ∴xSn =x +2x2+…+(n -1)xn -1+nxn , ② ①-②得(1-x)Sn=1+x +x2+…+xn -1-nxn=1-xn 1-x -nxn (注:当x =0时仍成立) =1-1+n xn +nxn +11-x,∴Sn =1-1+n xn +nxn +11-x 2.变式迁移3求和Sn =12+34+58+…+2n -12n .解析 ∵Sn =12+34+58+…+2n -12n ,①∴12Sn =14+38+516+…+2n -12n +1,② ①-②得12Sn =12+24+28+…+22n -2n -12n +1 =12+24-22n +11-12-2n -12n +1=12+1-42n +1-2n -12n +1 =32-2n +32n +1, ∴Sn =3-2n +32n.题型四 分组求和法例4数列{an}的前n 项和Sn =2an -1,数列{bn}满足:b1=3,bn +1=an +bn(n ∈N*). (1)求证:数列{an}为等比数列; (2)求数列{bn}的前n 项和Tn.解析 (1)证明:∵Sn =2an -1,n ∈N*, ∴Sn +1=2an +1-1.两式相减得 an +1=2an +1-2an. ∴an +1=2an ,n ∈N*. 由a1=1,知an≠0, ∴an +1an=2.由定义知{an}是首项为1,公比为2的等比数列. (2)由(1)知an =2n -1,bn +1=2n -1+bn , ∴bn +1-bn =2n -1.∴b2-b1=20,b3-b2=21,b4-b3=22,… bn -bn -1=2n -2,等式左右两边相加得bn =b1+20+21+…+2n -2=3+1-2n -11-2=2n -1+2.∴Tn =(20+2)+(21+2)+…+(2n -1+2) =(20+21+…+2n -1)+2n =2n +2n -1. 变式迁移4(1)求数列32,94,258,6516,…的前n 项和Sn ;(2)求数列9,99,999,9999,…的前n 项和Sn. 解析 (1)将各项变形,使其呈现出某种特点, 如32=1+12,94=2+14,258=3+18,…. Sn =n2+n 2+1-12n .(2)∵an =10n -1, ∴Sn =10n +1-10-9n9.题型五 裂项法求和例5已知数列{an}:1,11+2,11+2+3,…,11+2+3+…+n ,…求它的前n 项和.分析 我们先看通项an =11+2+3+…+n =2nn +1,然后将2n n +1分裂成2(1n-1n +1),求和. 解析 ∵an =2n n +1=2(1n -1n +1).∴Sn =a1+a2+…+an=2[(1-12)+(12-13)+(13-14)+…+(1n -1n +1)]=2(1-1n +1)=2nn +1.变式迁移5已知数列{an}的通项公式an =12n -12n +1,求前n 项和Sn.解析 ∵an =12(12n -1-12n +1)∴Sn =a1+a2+…+an =12[(1-13)+(13-15)+(15-17)+…+(12n -1-12n +1)] =12(1-12n +1)=n 2n +1题型六 与数列求和有关的综合题例6设数列{an}满足a1=a ,an +1=can +1-c ,n ∈N*,其中a ,c 为实数,且c≠0. (1)求数列{an}的通项公式;(2)设a =12,c =12,bn =n(1-an),n ∈N*,求数列{bn}的前n 项和Sn ;(3)若0<an <1对任意n ∈N*成立,证明:0<c≤1.解析 (1)解法一 ∵an +1-1=c(an -1),∴当a≠1时{an -1}是首项为a -1,公比为c 的等比数列. ∴an -1=(a -1)cn -1, 即an =(a -1)cn -1+1.当a =1时,an =1仍满足上式,∴数列{an}的通项公式为an =(a -1)cn -1+1(n ∈N*). 解法二 由题设得:当n≥2时,an -1=c(an -1-1)=c2(an -2-1)=…=cn -1(a1-1)=(a -1)cn -1, ∴an =(a -1)cn -1+1,n =1时,a1=a 也满足上式.所以{an}的通项公式为an =(a -1)cn -1+1(n ∈N*). (2)由(1)得bn =n(1-a)cn -1=n(12)n.Sn =b1+b2+…+bn =12+2(12)2+…+n(12)n , ①12Sn =(12)2+2(12)3+…+(n -1)(12)n +n(12)n +1,② 由①-②得12Sn =12+(12)2+…+(12)n -n(12)n +1, ∴Sn =1+12+(12)2+…+(12)n -1-n(12)n =2[1-(12)n]-n(12)n ,∴Sn =2-(2+n)(12)n.(3)由(1)知an =(a -1)cn -1+1. 若0<(a -1)cn -1+1<1, 则0<(1-a)cn -1<1.∵0<a1=a <1,∴0<cn -1<11-a(n ∈N*).由cn -1>0对任意n ∈N*成立,知c >0. 下证c≤1,用反证法.证法一 假设c >1,由函数f(x)=cx 的函数图象知,当n 趋于无穷大时, cn -1趋于无穷大.∴cn -1<11-a 不能对n ∈N*恒成立,导致矛盾,∴c≤1,∴0<c≤1.证法二 假设c >1,∵cn -1<11-a ,∴logccn -1<logc 11-a.即n -1<logc 11-a (n ∈N*)恒成立.(*)∵a ,c 为常数,∴(*)式对n ∈N*不能恒成立,导致矛盾. ∴c≤1. ∴0<c≤1. 变式迁移6已知函数g(x)=(x +2)2,(x≥0),数列{an}满足a1=1,an +1=g(an)(n ∈N*). (1)求数列{an}的通项公式;(2)记Tn =1a1+1a2+…+1an (n≥2),求证:Tn +122n +1>76.解析 (1)an +1=g(an)=(an +2)2,即an +1-an =2(n ∈N*).∴数列{an}是以a1=1为首项,2为公差的等差数列. ∴an =1+2(n -1)=2n -1, 即an =(2n -1)2(n ∈N*).(2)证明:∵1an =12n -12>12n -12n +1=12(12n -1-12n +1)(n≥2), ∴Tn =1a1+1a2+…+1an >1+12[(13-15)+…+(12n -1-12n +1)]=76-122n +1.∴Tn +122n +1>76.方 法 路 路 通1.求一般数列的前n 项和,无通法可循,需掌握求某些特殊数列前n 项和的方法,达到触类旁通.对等比数列的求和,勿忘对公比q 讨论.如果已知数列{an}、{bn}分别为等差、等比数列,求{an·bn}的前n 项和Sn ,则可用“错位相减法”——写出Sn 的表达式,两边乘公比得另一等式,然后两式相减即可.2.变换通项就是对通项公式进行一些有目的处理,像裂项就是一种常用方法:通过裂项而转化为等差、等比或自然数次方幂来求和.3.两相邻项的代数和为常数时可用“并项法”,此法往往要分n 为奇数、偶数两种情况进行讨论.另外数列求和还可用周期性求和,数学归纳法求和等. 4.求Sn 实质上是求{Sn}的通项公式,应注意对其涵义的理解. 5.数列求和时注意以下几点(1)直接用公式求和时,注意公式的应用范围和公式的推导过程.(2)注意观察数列特点和规律,在分析数列通项的基础上,或分解为基本数列求和,或转化为基本数列求和.正 误 题 题 辨例已知两个等差数列{an},{bn}的前n 项和为Sn ,Tn ,且Sn Tn =7n +14n +27(n ∈N*),求a11b11.错解Sn Tn =7n +14n +27, 可设Sn =(7n +1)k ,Tn =(4n +27)k ,k≠0, 则a11=S11-S10 =(7×11+1)k -(7×10+1)k =7k , b11=T11-T10 =(4×11+27)k -(4×10+27)k =4k , ∴a11b11=7k 4k =74. 点击 错解问题出在 “∵Sn Tn =7n +14n +27, 可设Sn =(7n +1)k ,Tn =(4n +27)k”上, 这种设法虽然可以保证“Sn Tn =7n +14n +27”成立,但因等差数列的前n 项和Sn(当公差d≠0时)不是n 的一次函数,而是n 的二次函数, 即S =d 2n2+(a1-d2)n(d≠0),错解设法把Sn ,Tn 变成了n 的一次函数, 从而改变了公式的本质特征导致错误, 或许你会问“为什么不设为Sn =(7n +1)(kn +c),Tn =(4n +27)(kn +c)呢?”, 只要你注意到表达式中没有常数项就行了,看来,深刻理解公式的结构特征为我们正确使用公式提供了有力的保证. 正解 由等差数列的性质有: a11=a1+a212,b11=b1+b212,∴a11b11=a1+a212b1+b212=a1+a212×21b1+b212×21=S21T21=7×21+14×21+27=43.。

高三数学数列求和

高三数学数列求和

+
1 22
+…+
1 2n
-
n 2n+1
=1-
1 2n
-
n 2n+1
.
10.已知数列 {an} 中, a1=1, (2n+1)an=(2n-3)an-1(n≥2, nN*), 求数列 {an} 的前 n 项和 Sn.
解: ∵(2n+1)an=(2n-3)an-1,

an an-1
=
2n-3 2n+1
=a1(1-q)n,
其中,
n 为正整数. 证明如下:
a1Cn0-a2C
1n+a3C
2n-a4C
3 n
+…+(-1)nan+1Cnn
=a1Cn0
-a1qC
1 n
+a1q2C
2 n
-a1q3C3n+…+(-1)na1qnCnn
=a1[Cn0-qC1n
+q2C
2 n
-q3C
3n+…+(-1)nqnCnn
]
(2)解: 由(1)知 an=
a, a(q-1)qn-2,
n=1, n≥2.

a=250,
q=
1 2
时,
b1=log2|a1|=log2250=50,
n≥2
时,
bn=log2|an|=log2|250(
1 2
-1)(
1 2
)n-2|=51-n,
∴bn=51-n(nN*).
∴当 1≤n≤51 时, |b1|+|b2|+…+|bn| =(51-1)+(51-2)+…+(51-n)

数列求和7种方法

数列求和7种方法

数列求和7种方法一、求等差数列的和:等差数列的通项公式为 an = a1 + (n-1)d ,其中an 表示第 n 个数,a1 表示首项,d 表示公差,n 表示项数。

1.直接求和法:根据数列的首项 a1、末项 an 和项数 n,直接相加即可。

例如:已知等差数列的首项 a1 = 2,公差 d = 3,项数 n = 5,求和公式为 S = (a1 + an) * n / 2 = (2 + 2 + 4 * 3) * 5 / 2 = 35 2.公式法:利用等差数列的求和公式:S = (a1 + an) * n / 2例如:已知等差数列的首项a1=2,公差d=3,项数n=5,代入公式即可得到结果。

3.递推法:利用数列的递推关系a(n)=a(n-1)+d,可得到递归式,通过递归累加求和。

例如:已知等差数列的首项a1=2,公差d=3,项数n=5,则S(n)=S(n-1)+(a(n-1)+d)=S(n-1)+a(n-1)+d。

二、求等比数列的和:等比数列的通项公式为 an = a1 * q^(n-1),其中an 表示第 n 个数,a1 表示首项,q 表示公比,n 表示项数。

4.直接求和法:根据数列的首项 a1、末项 an 和项数 n,直接相加即可。

例如:已知等比数列的首项a1=2,公比q=3,项数n=5,求和公式为S=(a1*(q^n-1))/(q-1)=(2*(3^5-1))/(3-1)=2425.公式法:利用等比数列的求和公式:S=(a1*(q^n-1))/(q-1)。

例如:已知等比数列的首项a1=2,公比q=3,项数n=5,代入公式即可得到结果。

6.迭代法:利用数列的递推关系a(n)=a(n-1)*q,可得到递归式,通过递归累加求和。

例如:已知等比数列的首项a1=2,公比q=3,项数n=5,则S(n)=S(n-1)+a(n-1)*q=S(n-1)+a(n-1)*q。

三、其他数列的求和方法:7.利用数列的递归关系:对于一些特殊的数列,可能没有通项公式,但可以根据数列的递归关系利用递归求和。

数列求和的8种常用方法(最全)

数列求和的8种常用方法(最全)

数列求和的8种常用方法(最全)一、前言在高中数学以及各类应用数学问题中,数列求和问题是非常常见的。

解决数列求和问题不仅需要对常用数列的规律进行深刻的理解,还需要掌握多种数列求和的方法。

本文将介绍数列求和的八种常用方法,并且会结合具体的数列实例来进行讲解。

尽力做到对每一种方法的介绍都能够做到极致详细,希望对读者有所帮助。

二、数列求和的8种常用方法1. 等差数列求和公式对于一个首项为$a_1$,公差为$d$,共有$n$ 项的等差数列,其求和公式为:$$S_n = \frac{n}{2}(2a_1 + (n-1)d)$$其中,$S_n$ 代表前$n$ 项的和。

举例:求和数列$1,3,5,7,9$ 的和。

分析:此数列的首项为1,公差为2,总共有5项。

解答:$$S_5 = \frac{5}{2}(2\times 1 + (5-1)\times 2)=25$$因此,数列$1,3,5,7,9$ 的和为25。

2. 等比数列求和公式对于一个首项为$a_1$,公比为$q$,共有$n$ 项的等比数列,其求和公式为:$$S_n = \frac{a_1(1-q^n)}{1-q}$$其中,$S_n$ 代表前$n$ 项的和。

举例:求和数列$2,4,8,16,32$ 的和。

分析:此数列的首项为2,公比为2,总共有5项。

解答:$$S_5=\frac{2\times (1-2^5)}{1-2}=-62$$因此,数列$2,4,8,16,32$ 的和为-62。

3. 几何级数通项公式求和对于一般形式为$a_1r^{n-1}$ 的数列,其求和公式为:$$S_n = \frac{a_1(1-r^n)}{1-r}$$其中,$S_n$ 代表前$n$ 项的和。

举例:求和数列$1,-\frac{1}{2},\frac{1}{4},-\frac{1}{8},\frac{1}{16}$ 的和。

分析:此数列的首项是1,公比是$-\frac{1}{2}$,总共有5项。

数列求和7种方法(方法全,例子多)

数列求和7种方法(方法全,例子多)

数列求和的基本方法和技巧(配以相应的练习)一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。

数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和.解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n--1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和S n=2n-1,则=题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c = .解: 原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位)①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n n n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=[例6] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数 (1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n [例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和)=)111(8+-n =18+n n[例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立练习题1.答案:.练习题2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次构造柱泵https:///product/list_7.html [单选]韩某在甲公司已工作10年,经甲公司与其协商同意解除劳动合同。已知韩某在劳动合同解除前12个月平均工资为7000元,当地人民政府公布的本地区上年度职工平均工资为2000元。甲公司应向韩某支付的经济补偿金额是()元。A.20000B.24000C.60000D.70000 [单选,A2型题,A1/A2型题]引用散装劣质酒导致人体酒精中毒的成分主要是()。A.甲醇B.超重C.琥珀酸D.酒石酸E.乙醇 [单选]绿豆粉、黄豆粉、赤豆粉统称为(),可以制作点心A、豆粉B、生粉C、淀粉D、粟粉 [单选]下列对于狂犬病的叙述中,错误的是()A.狂犬病病毒是有包膜的RNA病毒B.内基小体有诊断意义C.及时接种减毒活疫苗可预防发病D.患病动物为传染源E.病死率几乎达100% [单选]某工程分为I、Ⅱ号单体建筑,I号建筑竣工后未经验收发包人提前使用。整个工程一并验收时,发现I号建筑存在质量缺陷。下列说法错误的是()。A.发包人可以主张整体工程质量不合格B.施工单位应在合理使用寿命内对地基基础和主体结构负责C.合理使用寿命为设计文件规定的合理年限D 行为视为对I号楼质量认可 [单选]关节穿刺的适应证不包括()。A.急性化脓性关节炎B.急性晶体性关节炎C.骨关节炎D.急性外伤性关节炎E.顽固性关节病的关节灌洗 [单选]防火玻璃按耐火等级可分为()级。A.2B.3C.4D.5 [单选]下列描述宏观经济管理关系有误的是()。A.它是一种行政指导关系B.以市场经济体制为基础C.是宏观领域的经济关系D.可以综合运用各种手段 [单选]下述基因与肺癌关系密切,除去()A.p16B.p53C.GmycD.K-rasE.HLA [单选]未来一段时期是鄱阳湖生态经济区什么加速推进的重要时期。()A、工业现代化、农业现代化B、农业现代化、城镇工业化C、工业化、城镇化 [判断题]对于空调压缩机的电磁离合器,如果衔铁和转盘间的间隙过大,那么当离合器电源断开后,衔铁仍然会跟着转盘转动。()A.正确B.错误 [单选]信息产业分为()部门。A.1个B.2个C.3个D.4个 [单选,A1型题]公卫医师何某在取得医师资格证书和执业许可证后的一年里,擅自从事婚前医学检查、遗传病诊断和产前诊断,虽经卫生行政部门制止,仍不改正,并又施行终止妊娠手术。依据《母婴保健法》规定,应对何某给予的行政处罚是()A.处以罚款B.没收违法所得C.没收非法财物D.吊销 证E.行政拘留 [单选]疲劳断口的()宏观主要特征是海滩状形貌。A、瞬断区B、疲劳扩展区C、疲劳源区D、纤维区 [单选,A1型题]慢性肾炎高血压目前治疗倾向()A.单独使用利尿剂B.单独使用&beta;受体阻滞剂C.单独使用血管紧张素转换酶抑制剂D.联合使用降压药E.硝普钠 [单选]下面各种设备中,能量转换和利用结合在一起的设备是:()A.锅炉B.炉窑C.列管式换热器D.热管 [单选,A1型题]下列何种降血糖药易引起乳酸血症()。A.正规胰岛素B.阿卡波糖C.格列本脲D.甲苯磺丁脲E.苯乙双胍 [单选]产褥期保健重点不包括以下哪几项()。A.注意产妇情绪变化B.采用孕产妇营养膳食C.注射乙肝疫苗D.指导母乳喂养E.注意卫生 大血管MRI图像的影响,一般采用心电门控技术,应用本法的FR时间决定于()。A.R-R间期B.P-R间期C.R-P间期D.2R-R间期E.2P-R间期 [单选]热力学第一定律的物理意义是体系的内能增量等于体系吸入的热与环境对体系所做的功之和。其内能用下列哪一项表示()。A、Q;B、U;C、W;D、H。 [多选]保险待遇的计算依据为()A.职工原工资B.职工工龄C.保险费的交纳D.国家宏观政策 [单选]对自杀未遂者的心理特征描述正确的是()A.优柔寡断,丧失自尊B.仅少数自杀者表现为情绪不稳定、不成熟的神经质倾向C.具有冲动性和盲目性,没有攻击性D.对新环境适应并不困难,但难于获得较多的社会支持E.自杀者一般存在不良的认知模式 [填空题]分馏塔气液负荷大是指通过塔的单径截面上气体和液体的流量()。 [填空题]蒙古人种主要分布在:包括辽阔的蒙古高原在内的整个亚洲地域和()、拉丁美洲三大洲。 [单选]法定的公司成立日期是()。A.公司申请设立登记的日期B.公司开业的日期C.公司营业执照签发日期D.公司申请营业执照的日期 [单选,A2型题,A1/A2型题]下列有关天然致癌因素中,不正确的是()A.红外线可致人类皮肤癌B.黄曲霉素和植物苏铁素可致肝癌C.EB病毒可致鼻咽癌D.乙型肝炎病毒与肝癌相关E.子宫颈癌与单纯疱疹病毒Ⅱ型有关 [单选]RR表示()A.比值比B.相对危险度C.特异危险度D.人群特异危险度E.特异危险度百分比 [单选]等角横圆柱投影,即高斯-克吕格投影,在航海上常被用来绘制()。A.极区海图B.大圆海图C.大比例尺港泊图D.A+C [单选]容器贯通试压时的试验压力应()。A、大于安全阀起跳压力B、小于安全阀起跳压力C、等于安全阀起跳压力D、等于泵出口最大压力 [单选,A4型题,A3/A4型题]男,30岁,反复阵发性心动过速史10余年,每次心动过速突然发作,持续数十分钟至数小时,此次心动过速发作1小时而来医院就诊。体格检查:BP100/70mmHg,心脏无扩大,心率200次/分,节律规则。为尽快确定该患者的临床诊断,首先应进行的辅助检查为()A.Holte 图C.心音图D.超声心动图E.心电图信号平均技术 [单选,B1型题]镫骨手术应用()。A.氩离子激光B.准分子激光C.半导体激光D.CO2激光E.Nd:YAG激光 [单选,A1型题]β衰变发生于()A.激发态原子核B.贫中子原子核C.富中子原子核D.质子数大于82的原子核E.超重原子核 [单选]Inmarsat通信系统中,目前使用的工作卫星有()。A.3颗B.4颗C.6颗D.7颗 [单选]关于精神病人的康复工作,以下哪项不对()A.病人的家庭成员、朋友和社会人士与医务人员的密切配合是康复工作顺利进行的关键B.康复措施必须贯彻在院内、外的全部医疗过程中C.必须延伸到社会中去D.必须发展以社区为基础的康复E.在我国,应逐渐放弃以医院为基地的康复 [单选]()未经县级以上建设行政主管部门审查批准,不得使用。A.施工安全技术措施B.施工组织设计C.勘察文件D.施工图设计文件 [单选]在利率和计息期相同的条件下,以下公式中,正确的是()。A.普通年金终值系数&times;普通年金现值系数=1B.普通年金终值系数&times;偿债基金系数=1C.普通年金终值系数&times;投资回收系数=1D.普通年金终值系数&times;预付年金现值系数=1 [判断题]弱电综合布线,在一室外的一些走线位置我们可以共沟不共管。A.正确B.错误 [单选]石油的易燃性,可通过其()的高低来判断。A.密度B.闪点、燃点、自燃点C.粘度D.凝固点 [单选]关于承诺的正确表述为()。A.受要约人超过承诺期限发出承诺的,除要约人及时通知受要约人该承诺有效的以外,为新要约B.受要约人超过承诺期限发出承诺的,除要约人及时通知受要约人该承诺失效的以外,为有效C.承诺可以撤销,撤销承诺的通知应当在承诺通知到达要约人之前或者 知同时到达要约人D.承诺不得撤回,但可以撤销
相关文档
最新文档