石油化学之催化加氢

合集下载

化学化工中的催化加氢反应

化学化工中的催化加氢反应

化学化工中的催化加氢反应在今天的化学化工领域,催化加氢反应是一种非常重要的工业生产技术,尤其是石油化工和化学品生产。

这种反应可以将不饱和化合物或硫化物转化为饱和化合物,从而提高其稳定性和可用性。

本文将介绍催化加氢反应的基本原理、反应类型、工业应用以及目前的发展趋势。

一、催化加氢反应的基本原理催化加氢反应是一种加氢还原的反应,它是指在催化剂存在的情况下,将不饱和化合物或硫化物与氢气作用,将氢原子加入分子中,形成饱和化合物的过程。

该过程将不饱和化合物的双键或三键断裂,产生新的碳氢键。

这种反应需要催化剂的存在,使不饱和化合物或硫化物分子中可反应的化学键与氢原子之间的活化能降低,从而提高反应速率和转化率。

二、催化加氢反应的种类在催化加氢反应中,根据不同的反应物和反应条件,可以分为饱和脂肪酸及其衍生物、芳香烃和杂环化合物等不同类型。

1、饱和脂肪酸及其衍生物的催化加氢反应饱和脂肪酸及其衍生物是一种重要的化学品,其在医药、食品、化妆品等行业中有着广泛的应用,因此饱和脂肪酸及其衍生物的催化加氢反应也是一项极为重要的工业生产技术。

该反应通常采用贵金属催化剂,如铂和钯等。

2、芳香烃的催化加氢反应芳香烃是一种典型的不饱和化合物,其催化加氢反应可以将芳香环上的双键和三键加氢,形成饱和环烷化合物。

这种反应常采用铝烷或钯催化剂,反应条件较为温和,常温下就能使芳香烃发生氢化反应。

3、杂环化合物的催化加氢反应杂环化合物是一种具有广泛用途的化学品,如吲哚、噻嗪等,其催化加氢反应可以使其产生稳定性更强的饱和杂环化合物。

这种反应的催化剂多采用贵金属催化剂,如铂、钯等。

三、催化加氢反应的工业应用催化加氢反应已经广泛应用于石油化工、化学品生产、环保以及新能源等领域,其中最重要的是石油化工中的加氢处理、醇或羧酸的催化加氢和生物质转化等过程。

1、石油化工中的加氢处理加氢处理是石油化工中广泛应用的一种反应,其主要目的是降低原油性质中的硫、氮、氧等有害元素,从而提高油品的质量和价值。

催化加氢技术及催化剂讲解

催化加氢技术及催化剂讲解

催化加氢技术及催化剂作者: buffaloli (站内联系TA)发布: 2009-03-03一、意义1.具有绿色化的化学反应,原子经济性。

催化加氢一般生成产物和水,不会生成其它副产物(副反应除外),具有很好的原子经济性。

绿色化学是当今科研和生产的世界潮流,我国已在重大科研项目研究的立项上向这个方向倾斜。

2.产品收率高、质量好,普通的加氢反应副反应很少,因此产品的质量很高。

3.反应条件温和;4.设备通用性二、催化加氢的内容1.加氢催化剂Ni 系催化剂骨架Ni(1)应用最广泛的一类Ni 系加氢催化剂,也称Renay-Ni ,顾名思义,即为Renay 发明。

具有很多微孔,是以多孔金属形态出现的金属催化剂,该类形态已延伸到骨架铜、骨架钴、骨架铁等催化剂,制备骨架形催化剂的主要目的是增加催化剂的表面积,提高催化剂的反应面,即催化剂活性。

(2)具体的制备方法:将Ni 和Al, Mg, Si, Zn 等易溶于碱的金属元素在高温下熔炼成合金,将合金粉碎后,再在一定的条件下,用碱溶至非活性组分,在非活性组分去除后,留下很多孔,成为骨架形的镍系催化剂。

(3)合金的成分对催化剂的结构和性能有很大的影响,镍、铝合金实际上是几种金属化合物,通常所说的固溶体,主要组分为NiAl3, Ni2Al3, NiAl, NiAl2 等,不同的固熔体在碱中的溶解速度有明显差别,一般说,溶解速度快慢是NiAI3 > Ni2AI3 > NiAl > NiAI2 ,其中后二种几乎不溶,因此,前二种组分的多少直接影响骨架Ni 催化剂的活性。

(4)多组分骨架镍催化剂,就是在熔融阶段,加入不溶于碱的第二组分和第三组分金属元素,如添加Sn, Pb, Mn, Cu, Ag, Mo, Cr, Fe, Co 等,这些第二组分元素的加入,一般能增加催化剂的活性,或改善催化剂的选择性和稳定性。

(5)使用骨加镍催化剂需注意:骨架镍具有很大表面,在催化剂的表面吸符有大量的活化氢,并且Ni 本身的活性也很,容易氧化,因此该类催化剂非常容易引起燃烧,一般在使用之前均放在有机溶剂中,如乙醇等。

石油加氢知识点总结

石油加氢知识点总结

石油加氢知识点总结一、石油加氢的基本原理石油加氢是指将含硫、含氮、含氧和不饱和化合物等物质经水合处理,在一定条件下通过催化剂引入氢气,使其中的不饱和化合物饱和,硫、氮、氧等杂质进行加氢脱除,从而获得高品质的石油产品的一种技术。

石油加氢的基本原理包括以下几个方面:1. 饱和不饱和烃类:石油中存在大量的不饱和烃类化合物,这些化合物在加氢的条件下能够转化为饱和烃类,增加产品的脱硫、脱氮和脱氧能力;2. 脱硫:石油中含有大量的硫化合物,这些化合物在加氢条件下能够被氢气还原成硫化氢并被吸附在催化剂表面,从而实现脱硫;3. 脱氮:石油中还含有一定量的含氮化合物,这些化合物在加氢条件下能被氢气还原成氨和吸附在催化剂表面,实现脱氮;4. 脱氧:石油中还含有一定量的含氧化合物,这些化合物在加氢条件下能被氢气还原成水和二氧化碳,实现脱氧。

二、石油加氢的工艺流程石油加氢工艺主要包括前处理和主处理两个部分,其中前处理是指石油经过脱硫、脱氮、脱氧等处理后的预处理工艺,主处理是指石油在加氢反应器中进行加氢反应的过程。

1. 前处理:前处理主要包括脱硫、脱氮和脱氧三个步骤。

其中脱硫是通过加氢反应将硫化合物还原为硫化氢,脱氮是通过加氢反应将含氮化合物还原为氨,脱氧是通过加氢反应将含氧化合物还原为水和二氧化碳。

2. 主处理:主处理是指石油在加氢反应器中进行加氢反应的过程。

在加氢反应器中,石油与加氢气通过催化剂的作用进行反应,实现脱硫、脱氮、脱氧等目的,得到高品质的石油产品。

三、石油加氢的催化剂石油加氢的催化剂主要包括氧化铝负载的钼、镍或铜催化剂、氧化铝负载的钼-镍催化剂和硅铝酸盐分子筛催化剂等。

这些催化剂在加氢反应过程中起着至关重要的作用,能够促进反应的进行,提高反应的效率和选择性。

1. 硫化钼催化剂:硫化钼催化剂是一种常用的石油加氢催化剂,它具有较高的活性和选择性,能够有效催化石油中的硫化合物和含氮化合物的加氢反应。

2. 硫化镍催化剂:硫化镍催化剂是另一种常用的石油加氢催化剂,它具有良好的热稳定性和机械强度,能够有效催化石油中的硫化合物和含氮化合物的加氢反应。

14-催化加氢过程

14-催化加氢过程

22:03
31
2、加氢催化剂的再生 催化剂失活:由于原料发生裂解和缩合反应, 催化剂表面逐渐被积炭覆盖,催化剂活性降低。 催化剂中毒:金属沉积会使催化剂活性减弱或
者使其孔隙被堵塞,铅、砷、硅属前者,镍、钒属
后者。 由于结焦而失活的催化剂可以用烧焦的办法再 生,中毒的催化剂不能再生。
22:03
32
第四节
稠环芳烃加氢裂化也包括以上过程,只是加氢、 断环逐次进行。
加氢
+ 3H2
断环
C4H9
加氢
C4H9
22:03
22
4、各种烃类加氢裂化反应速度比较
多环芳烃
双环芳烃
K5=1.1
加 氢 反 应
K1=0.9-1.0
环烷芳烃
K3=2.0
四氢萘
K7=1.2
烷基苯
K9=0.1
K2=0.1
K6=0.1
多环 K4=1.0 双环 K8=1.4 单环 K10=0.2 烷烃 环烷烃 环烷烃 环烷烃
第九章
催化加氢
第一节 概述
催化加氢是指石油馏分在氢气存在下催化加工过程 的统称。
22:03
1
一、意义
提高原油加工深度,合理利用石油资源;
改善产品质量,提高轻质油收率,减少大气污染;
随着原油日益变重变劣,对中间馏分油的需求越来
越多,催化加氢成为石油加工中的一个重要手段。
22:03
2
二、加氢过程的分类
主要有两大类:加氢精制和加氢裂化,还有专 门用于某种生产目的的加氢过程,如轻质油品加氢精 制、蜡油加氢裂化或渣油加氢处理、临氢降凝、润滑 油加氢等。
22:03
3
1、加氢精制
加氢精制是指在催化剂和氢气存在下,脱除石油

石油加氢技术

石油加氢技术

加 氢 精 制 ( Hydro-refining ) 主要用于油品精制 , 目的是除去油品中的硫 主要用于 油品精制,目的是除去油品中的 硫 、 氮 、 氧 油品精制 等杂原子及金属杂质 并对部分芳烃或烯烃加氢饱和, 等杂原子及 金属杂质, 并对部分芳烃或烯烃加氢饱和 , 改 金属 杂质, 善油品的使用性能,加氢精制的原料有重整原料 汽油、 重整原料、 善油品的使用性能 , 加氢精制的原料有 重整原料 、 汽油 、 煤油、柴油、各种中间馏分油、重油及渣油。 煤油、柴油、各种中间馏分油、重油及渣油。 加 氢 裂 化(Hydro-cracking) ) 实质上是催化加氢和催化裂化这两种反应的有机结合。 实质上是催化加氢和催化裂化这两种反应的有机结合。 催化加氢和催化裂化 这两种反应的有机结合 按加工原料可分为馏分油加氢裂化和渣油加氢裂化两种。 馏分油加氢裂化和渣油加氢裂化两种 按加工原料可分为 馏分油加氢裂化和渣油加氢裂化 两种 。 在化学原理上与催化裂化有许多共同之处, 在化学原理上与催化裂化有许多共同之处 , 但又有自己的 特点。 特点。
低温下各种氮化物的脱氮率有较大差异,但是在高温 低温下各种氮化物的脱氮率有较大差异, 但是在 高温 下各种氮化物的脱氮率都很高; 下各种氮化物的脱氮率都很高; 在分子结构相似的含氮化合物中, 在分子结构相似的含氮化合物中 , 氮原子所处的位置 不同,其反应速度也不同; 不同,其反应速度也不同; 不同馏分中的氮化物的加氢反应速度差别很大 。
深度加氢精制大多是加氢处理过程,加氢裂化和加氢处理 深度加氢精制大多是加氢处理过程,加氢裂化和加氢处理 属于转化率高, 相比,前者属于转化率高 相比,前者属于转化率高,以生产轻质油为主要目的的加 氢处理过程。 氢处理过程。
临 氢 降 凝(hydro-defreezing) 主要用于生产低凝柴油, 主要用于生产低凝柴油,采用具有选择性的分子筛催化剂 生产低凝柴油 (ZSM-5系列 ,能有选择性地使长链的正构烷烃或少侧链的烷 系列), 系列 烃发生裂化反应,而保留芳烃、环烷烃和多侧链烷烃, 烃发生裂化反应,而保留芳烃、环烷烃和多侧链烷烃,从而降 低馏分油的凝点。 低馏分油的凝点。 汽油:目的不是降凝,而是将直链烷烃除去,提高汽油抗爆性。 汽油:目的不是降凝,而是将直链烷烃除去,提高汽油抗爆性。 润滑油加氢 使润滑油的组分发生加氢精制和加氢裂化等反应, 使润滑油的组分发生加氢精制和加氢裂化等反应,使一些 加氢精制和加氢裂化等反应 非理想组分结构发生变化, 非理想组分结构发生变化,以脱除杂原子和改善润滑油的使用 性能。 性能。

催化加氢工艺流程

催化加氢工艺流程

催化加氢工艺流程
《催化加氢工艺流程》
催化加氢工艺是一种常见的化工生产工艺,它通过催化剂的作用将烃类化合物加氢反应,生成含氢化合物。

这种工艺流程在石油加工、化学品生产以及环保领域都有广泛的应用。

在催化加氢工艺流程中,首先是将待加氢的原料送入反应器内。

原料可以是石油、天然气或者其他氢化合物。

接着,在反应器中添加合适的催化剂,催化剂的选择直接影响了反应的效率和产物的选择。

常见的催化剂有铂、钯、镍等。

在反应过程中,原料与催化剂发生反应,氢气与原料中的不饱和化合物发生加氢反应,生成饱和化合物。

这一过程通常在高温高压下进行,以促进反应的进行。

反应器内的温度和压力控制是很关键的,对于不同的反应物和催化剂组合有不同的最佳条件。

在反应结束后,需要对反应产物进行分离和提纯。

通过蒸馏、结晶、萃取等方法,可以得到目标化合物,并将未反应的原料和副产物进行提取和回收利用。

这一过程需要高效的分离设备和技术,以保证产品的纯度和产率。

催化加氢工艺流程在化工生产中有着重要的应用价值,它可以将原料转化为更有价值的产品,同时也可以减少环境污染,提高资源利用率。

随着工艺技术的不断发展和催化剂的研发改良,催化加氢工艺将会在未来有更广泛的应用前景。

第3章_催化加氢与脱氢

第3章_催化加氢与脱氢
炸性混合物;爆炸极限为6.0—36%(V)。
●甲醇是仅次于三烯和三苯的重要基础有机化工原料, 广泛用于有机合成、染料、合成纤维、合成橡胶、涂料 和国防等工业。甲醇大量用于生产甲醛和对苯二甲酸二 甲酯; ●以甲醇为原料经羰基化反应直接合成醋酸已经工业化; ●近年来,随着技术的发展的能源结构的改变,甲醇又开 辟了许多新的用途,是合成人工蛋白的重要原料; ●以甲醇为原料生产烯烃和汽油已实现工业化。因此,甲 醇的生产具有十分重要的意义。
进塔气体的组成有关 20000 50.1
ZnO-Cr2O3: 20000-40000h-1 30000 41.5 26.1 -1 40000 CuO-ZnO-Al2O3: 10000h 32.2 28.4
●增加空速在一定程度上能够增加甲醇产量 ●增加空速有利于反应热的移出,防止催化剂过热 ●空速太高:转化率降低,循环气量增加,从而增加能量消耗;
8.杂环化合物加氢
9.甲苯加氢制苯
(2)加氢精制
裂解气中乙烯和丙烯的精制
※从烃类裂解气分离得到的乙烯和丙烯中含有少
量乙炔、丙炔和两二烯等有害杂质,可利用催化 加氢方法,使炔烃和二烯烃进行选择加氢,转化 为相应的烯烃而除去。
(3)精制氢气
氢气中含有一氧化碳杂质,在加氢反应时能使催化 剂中毒。可通过催化加氢反应,使一氧化碳转化为 甲烷,达到精制的目的。其反应式如下:
催化剂活化
低压合成甲醇的催化剂,其化学组成是CuO-ZnOAl2O3 ,只有还原成金属铜才有活性。 还原过程为活化:氮气流升温、还原
CuO-ZnO-Al2O3
还原性气体 0.4MPa,99%N2 缓慢地升温, 20℃/h
催化剂
CuO-ZnO-Al2O3
160~170℃

石油炼制技术之催化加氢介绍课件

石油炼制技术之催化加氢介绍课件
能源储存:催化加氢技术在能源储存领域用于生产氢气,为燃料电池汽车等提供清洁能源
01
02
03
04
催化加氢技术的发展趋势
4
催化加氢技术的优化与改进
2019
提高催化剂活性和选择性
01
2020
优化反应条件,降低能耗和成本
02
2021
开发新型催化剂,提高催化效率
03
2022
研究催化加氢技术的新应用领域,拓展应用范围
04
催化加氢技术的环保与节能
03
减少废水排放:催化加氢技术可以减少废水排放,降低对环境的影响。
02
提高能源利用率:催化加氢技术可以提高能源利用率,降低能耗。
01
减少废气排放:催化加氢技术可以降低废气排放,减少环境污染。
04
降低生产成本:催化加氢技术可以提高生产效率,降低生产成本。
催化加氢技术的未来前景
催化加氢技术具有反应条件温和、选择性高、能耗低等优点,是一种绿色环保的工艺技术。
催化加氢技术在石油炼制中主要用于生产高质量的汽油、柴油、航空煤油等燃料,以及润滑油、石蜡等化工产品。
催化加氢技术的应用领域
石油炼制:提高油品质量,降低硫含量
化学工业:合成有机化合物,提高产品纯度
环境保护:处理工业废水,降低污染物排放
降低环境污染:催化加氢技术可以降低油品中的硫、氮、氧等杂质,减少环境污染。
提高炼油厂的竞争力:催化加氢技术可以提高炼油厂的技术水平和产品质量,提高炼油厂的竞争力。
催化加氢技术在化工生产中的应用
01
石油炼制:提高油品质量,降低硫含量
02
化学合成:生产精细化学品,如医药、农药、染料等
03
环境保护:减少污染物排放,提高废气、废水处理效果

催化加氢试题和答案

催化加氢试题和答案

一、概念题1. 催化加氢:催化加氢是在氢气存在下对石油馏分进行催化加工过程的通称。

2. 加氢处理:指在加氢反应过程中,只有 < 10%勺原料油分子变小的加氢技术。

3. 加氢裂化:指在加氢反应过程中,原料油分子中有10%以上变小的加氢技术。

4. 加氢脱硫(HDS)反应:石油馏分中的含硫化合物在催化剂和氢气的作用下,进行氢解反应,转化为不含硫的相应烃类和H2S。

5. 加氢脱氮(HDN)反应:石油馏分中的含氮化合物在催化剂和氢气的作用下,进行氢解反应,转化为不含氮的相应烃类和NH3。

6. 加氢脱氧(HDO)反应:含氧化合物通过氢解反应生成相应的烃类及水。

7. 空速:指单位时间里通过单位催化剂的原料油的量,有两种表达形式,一种为体积空速(LHSV ),另一种为重量空速(WHSV)。

8. 氢油比:单位时间里进入反应器的气体流量与原料油量的比值。

9. 石脑油加氢精制:指对高硫原油的直馏石脑油和二次热加工石脑油(如焦化石脑油)进行加氢精制,脱除其中硫、氮等杂质及烯烃饱和,从而获得乙烯裂解原料。

10. 润滑油催化脱蜡技术:在氢气和择形分子筛的存在下,将高凝点的正构烷烃选择性地裂化成气体和较小的烃分子,从而降低润滑油凝点的过程。

11. 润滑油异构脱蜡技术:指在专用分子筛催化剂的作用下,将高倾点的正构烷烃经异构化反应生成低倾点的支链烷轻。

12. 氢脆:由于氢残留在钢中所引起的脆化现象。

13. 高温氢腐蚀:在高温高压条件下扩散侵入钢中的氢与不稳定的碳化物发生化学反应,生成甲烷气泡(它包含甲烷的成核过程和成长),即Fe3C+2H2—CH4+3Fe,并在晶间空穴和非金属夹杂部位聚集,弓I起钢的强度、延性和韧性下降与劣化,同时发生晶间断裂。

14. 设备漏损量:即管道或高压设备法兰连接处及循环氢压缩机运动部位等处的漏损。

15. 溶解损失量:指在高压下溶于生成油中的气体在生成油减压时这部分气体排出时而造成的损失。

二、简答题1. 加氢精制的目的和优点。

催化加氢原理

催化加氢原理

催化加氢原理加氢反应器是一种加氢精制反应器,通常用来从汽油中除去重质馏分,使油品具有更高的辛烷值,即增加抗爆性,改善发动机燃烧性能。

加氢精制反应器的特点是反应过程均匀性高,工艺条件稳定,操作简单易控制,无需搅拌和传热设备,因此加氢精制反应器已经广泛应用于石油化工生产中。

如果是均相反应,例如合成氨的合成,就是气固相催化反应。

如果是非均相反应,例如合成气的甲烷化反应,就是液液相催化反应。

而加氢精制反应器,由于在工艺设计上考虑了两种情况,所以可以同时满足这两种反应模式。

在反应器中的气相或液相上进行各种化学反应都属于均相反应。

在均相反应中反应物不断地在反应器中转移,反应混合物的温度和浓度都是恒定的。

但是均相反应又有其不足之处:在非均相反应中,虽然反应物在反应器中不断地转移,但是反应速率和温度、压力等外界条件是随时间变化的。

因此,它与均相反应相比反应速率较慢、温度较低、压力较高。

当然还有另外一种形式的非均相反应,即多相反应,即反应过程中反应物分别在反应器的几个部位同时发生反应,例如在沸腾床反应器中发生的反应。

反应器内压力较低,适用于低压反应。

反应过程中,原料气不参与反应,只起到分离作用,因此压力不高。

但是由于反应速率不快,因此对反应器有严格的要求,不仅材质必须耐高压,而且反应器的容积也不能太大。

催化加氢反应器其实在设计催化加氢反应器时,大家都知道应该采用合理的设计方案,合理的设计方案可以避免催化剂过早失活,也可以避免活性较高的脱氢催化剂氧化分解;也可以保证较高的净化效率。

但是有很多工厂为了降低能耗,所以会把反应器设计得非常大。

大家想一想,既然采用非均相催化反应,那么我们采用的催化剂的粒径应该是非常小的,大概只有纳米级甚至亚微米级。

大家可能感觉这样的催化剂怎么可能存在呢?其实现在科技水平越来越先进,人类利用光电子技术将催化剂颗粒做得极小,并将表面包覆,从而达到提升催化活性的目的。

第四章 催化加氢

第四章  催化加氢

这是因为共同存在时,发生了吸附竞争,乙炔吸附能力最强,大部分活性中 心被乙炔所覆盖,所以乙炔加氢速度最快。正是利用这一特性来精制烯烃 与芳烃。 (四)含氧化合物的加氢比较 醛、酮、酸、酯的加氢产物都是醇,但其加氢难易程度不同。一般醛比酮容 易加氢,酯类比酸类容易加氢,醇和酚则氢解为烃和水较因难,需要更高 的反应温度。 (五)有机硫化物的氢解速度比较 各种有机硫化物在钼酸钴催化剂存在下的氢解速度发现硫化物的结构不同, 氢解速度有较显著差别,其顺序为:
(二)骨架催化剂
将具有催化活性的金属和铝或硅制成合金,再用氢氧化钠溶液浸渍合金,除去其中的部 分铝或硅,即得到活性金属的骨架称骨架催化剂。最常用的骨架催化剂有骨架镍, 合金中镍占40~50%,可应用于各种类型的加氢反应。骨架镍活性很高,有足够的 机械强度。骨架镍非常活泼,置于空气中能自燃。其它的骨架催化剂有骨架铜,骨 架钴等。 (三)金属氧化物 主要有MoO3、Cr2O3、ZnO、CuO和NiO等,可以单独使用,也可以是混合氧化物,例 如CuO-CuCr2O4(Adkins催化剂,简称铜铬催化剂),ZnO- Cr2O3 ,CuO-ZnO- Cr2O3 , CuO-ZnO-A12O3,Co-Mo-O,Ni-Co-Cr-O,Fe-Mo-O等,铜铬催化剂广泛应用于醛、 酸、酯等化合物的加氢。这类加氢催化剂的活性比金属催化剂差。要求有较高的加 氢反应温度和压力。抗毒性较强,适用于一氧化碳加氢反应。 (四)金属硫化物 金属硫化物主要是MoS2、WS2、Ni2S3、Co-Mo-S、Fe-Mo-S等。含硫化合物有抗毒性, 可用于含硫化合物的氢解,主要用于加氢精制。Ni2S3可用于共轭双键的选择加氢。 (五)金属络合物 这类加氢催化剂的中心原子,多是贵金属,如Ru、Rh、Pd等的络合物。也有Ni、Co、 Fe、Cu等络合物。其特点是活性较高,选择性好,反应条件缓和,可以用于共轭双 键的选择加氢为单烯烃。络合物催化剂是一类液相均相加氢催化剂,能溶于液相, 由于催化剂是溶于加氢产物中,难于分离。而这类催化剂用的又多是贵金属,所以 工业上采用络合物催化剂时催化剂的分离与回收是很关键的问题。

化工工艺学第四章4.3催化加氢与脱氢过程

化工工艺学第四章4.3催化加氢与脱氢过程
CO 3H2 Ni Al2O3
+
CH4ห้องสมุดไป่ตู้
+
H2O
260~300℃ 3.0MPa
甲烷化反应
CH4
+
CO2
+
4 H2
Ni
Al2O3
2 H2O
(4)精制苯 从焦炉气或煤焦油中分离得到的苯,含有硫化 物杂质,通过催化加氢,可以比较干净地将它 们脱除掉。例如噻吩的脱除,其反应如下式。
4.3.3 CO加氢合成甲醇
4.3.2 催化加氢、脱氢反应的一般规律
• 二、催化脱氢反应的一般规律 • 1、热力学分析 • ①温度的影响 • 与烃类加氢反应相反,烃类脱氢反应是吸热反应, ⊿H>0,其吸热量与烃类的结构有关。
T↑ , KP ↑,xe ↑
4.3.2 催化加氢、脱氢反应的一般规律
• ②压力的影响 • 脱氢反应,分子数增多,P↓ ,Xe↑ • 工业上高温下减压操作不安全。 加稀释剂,常用水 • 表4-34是压力与脱氢反应转化率及其反应温度的关系。
• 研究结果表明:无论是丁烷、丁烯、乙苯或二乙 苯,其脱氢反应的速率控制步骤都是表面化学反应, 都可按双位吸附理论来描述其动力学速率方程,其动 力学速率方程可用双曲模型来表示。
正 逆
(动力学项)(推动) 力 2 (吸附项)
催化加氢在石油化工工业中的应用
催化加氢用于合成有机产品外,还用于精制过程。 (1)合成有机产品
温度对不同单一反应速率的影响
△H0 > 0
不可逆反应:T ↑, k1↑,反应速率增大 可逆吸热反应: T ↑, k1↑,KP ↑,反应速率增大 可逆放热反应: T ↑, k1↑,KP ↓ ,反应速率
△H0 < 0

催化加氢反应方程式

催化加氢反应方程式

催化加氢反应方程式1. 引言催化加氢反应是一种常见的化学反应,通过在合适的催化剂存在下,将氢气与有机物或无机物发生反应,从而实现加氢的目的。

这种反应在工业领域中具有广泛的应用,例如石油加工、有机合成等。

本文将介绍催化加氢反应的基本原理、机制以及常见的催化剂和反应方程式。

2. 基本原理催化加氢反应是利用催化剂来降低反应活化能,促进反应进行的过程。

在催化剂存在下,氢气可以与待加氢物质发生吸附和解离,生成中间物种,并最终得到产物。

催化剂通常是金属或金属合金,在表面上提供了活性位点来促进吸附和解离过程。

3. 反应机制催化加氢反应的具体机制取决于待加氢物质的性质和所使用的催化剂。

以下是两种常见的反应机制:3.1 贵金属催化剂下的加氢反应当使用贵金属催化剂时,加氢反应通常遵循以下机制:1.吸附:待加氢物质在催化剂表面吸附;2.解离:氢气在催化剂表面吸附并解离成H原子;3.迁移:H原子从催化剂表面迁移到待加氢物质的吸附位点;4.饱和:H原子与待加氢物质发生反应,形成饱和产物。

3.2 过渡金属催化剂下的加氢反应当使用过渡金属催化剂时,加氢反应通常遵循以下机制:1.吸附:待加氢物质在催化剂表面吸附;2.活化:待加氢物质与催化剂发生相互作用,使其活性增强;3.迁移:活性中间体从催化剂表面迁移到待加氢物质的吸附位点;4.饱和:活性中间体与H原子发生反应,形成饱和产物。

4. 常见的催化剂4.1 贵金属催化剂贵金属如铂、钯、铑等常用于催化加氢反应。

它们在催化加氢反应中具有高的活性和选择性。

4.2 过渡金属催化剂过渡金属如镍、钼、铁等也常用于催化加氢反应。

它们在催化加氢反应中具有较高的活性和选择性,并且相对便宜。

4.3 支撑型催化剂支撑型催化剂是将贵金属或过渡金属负载在一种稳定的载体上,以增加其表面积和稳定性。

常见的载体有活性炭、氧化铝等。

5. 常见的反应方程式以下是几个常见的催化加氢反应方程式:1.烯烃加氢:RCH=CH2 + H2 -> RCH2-CH32.酮类加氢:R1-CO-R2 + H2 -> R1-CH2-R23.羰基化合物加氢:RC=O + H2 -> RCH-OH6. 应用领域催化加氢反应在工业领域中具有广泛的应用,例如:•石油加工:将原油中的不饱和烃加氢,降低其不稳定性和毒性;•化学合成:将有机化合物中的官能团加氢,改变其性质和用途;•环境保护:将废水中的有机污染物加氢,降解为无害的产物。

催化加氢原理

催化加氢原理

催化加氢原理催化加氢是一种常用的化学反应方法,通过引入催化剂来加速加氢反应的进行。

催化剂通常是一种金属或金属合金,例如铂、钯、镍等。

催化剂提供了一个表面,通过这个表面,反应物能够与催化剂发生相互作用,进而促使反应进行。

催化加氢原理基于活性金属表面上的吸附现象。

催化剂表面具有特殊的物理化学性质,能够吸附氢气和反应物分子。

两者在催化剂表面发生相互作用后,发生化学反应,产生需要的产物。

催化剂表面的金属原子提供了氢气分子进入反应物分子中的位置,促进了加氢反应的进行。

催化剂的选择对催化加氢反应起着重要作用。

选择合适的催化剂可以提高反应的速率和选择性。

不同的催化剂对于不同的加氢反应具有不同的催化活性和选择性。

催化剂的性能受到诸多因素影响,如催化剂的晶体结构、金属负载量、活性金属的物种等。

催化剂的活性金属与反应物之间发生的物理化学作用被称为表面吸附。

表面吸附可分为物理吸附和化学吸附两种。

物理吸附是一种临时性吸附,以范德华力为主。

化学吸附是一种较为牢固的吸附,涉及化学键的形成和断裂。

在催化加氢反应中,化学吸附是主要的吸附方式。

在催化加氢反应中,一般需要提供适当的反应条件,以促进催化剂的活性。

反应条件可以包括适当的温度、压力和氢气流量。

这些条件是为了保证催化剂表面的吸附位点能够与氢气和反应物分子进行充分的反应。

总之,催化加氢是一种通过引入催化剂来加速加氢反应的方法。

催化剂通过提供特殊的吸附表面,促使反应物与催化剂表面发生物理化学作用,进而实现加氢反应。

催化剂的选择和适当的反应条件对于催化加氢反应具有重要的影响。

烯烃催化加氢氢化热

烯烃催化加氢氢化热

烯烃催化加氢氢化热烯烃催化加氢氢化热是一种常见的化学反应,用于将含有C=C双键的烯烃转化为不饱和烃。

在这个过程中,烯烃和氢气会被发生催化加氢反应,从而产生烷烃。

这个过程是非常重要的,因为它可以为石油化工工业提供关键的烷烃原料,同时也为我们的生活提供了许多常用的化学物质。

第一步是烯烃分子的吸附。

烯烃分子首先必须被吸附到催化剂表面。

这可以通过表面组分中的吸附位点来实现。

当烯烃分子进入表面时,它们将被吸附在可利用的吸附位点上。

第二步是氢原子的吸附。

一旦烯烃成功地吸附到催化剂表面,氢原子将被吸附到催化剂表面上以与烯烃反应。

这个过程需要催化剂表面有足够数量的吸附位点来与氢原子进行反应。

第三步是化学反应。

当烯烃和氢原子成功地吸附到催化剂表面时,它们将开始发生化学反应。

在这个反应中,烯烃的一个碳碳双键被氢原子所取代。

这个过程通常也称为“烯烃加氢”反应。

第四步是产物的吸附和脱附。

在反应完成后,产生的烃烷必须从催化剂表面上脱附。

这个过程可以通过催化剂表面上的反被动位点来实现。

对于大多数烯烃的氢化反应,使用的催化剂通常是金属催化剂,如铂,钯,镍和钼等。

使用这些催化剂能够使烯烃加氢反应更加高效且更加选择性。

此外,在反应中,调整温度和压力也是非常重要的,因为它们可以影响反应的速率和选择性。

总而言之,烯烃催化加氢氢化热是一种非常重要的化学反应过程,它为石油化工工业提供了序列饱和烷烃原料,同时也是许多日常用品的重要成分。

虽然反应过程相对简单,但是整个过程需要多个步骤协同完成,需要调整多个参数,才能使反应达到最佳效果。

炼油厂采用的主流石油加工工艺——催化加氢工艺详解

炼油厂采用的主流石油加工工艺——催化加氢工艺详解
2、反应压力 提高氢分压有利于加氢过程反应的进行,加快反应速度。但压力提高 增加装置的设备投资费用和运行费用,同时对催化剂的机械强度要求 也提高。目前工业上装置的操作压力 一般在 7.0~20.0MPa 之间。
3、反应空速
空速的大小反映了反应器的处理能力和反应时间。空速越大,装置的 处理能力越大,但原料与催化剂的接触时间则越短,相应的反应时间 也就越短。因此,空速的大小最终影响原料的转化率和反应的深度。
1、加氢处理催化剂 加氢处理催化剂中常用的加氢活性组分有铂、钯、镍等金属和钨、钼、 镍、钴的混合硫化物,它们对各类反应的活性顺序为: 加氢饱和 Pt,Pb﹥Ni﹥W-Ni﹥Mo-Ni﹥Mo-Co﹥W-Co 加氢脱硫 Mo-Co﹥Mo-Ni﹥W-Ni﹥W-Co 加氢脱氮 W-Ni﹥Mo-Ni﹥Mo-Co﹥W-Co 加氢活性主要取决于金属的种类、含量、化合物状态及在载体表面的 分散度等。 活性氧化铝是加氢处理催化剂常用的载体。
目前炼油厂采用的加氢过程主要分为两类:一类是加氢处理,一 类是加氢裂化。
用这种技术的目的在于脱除油品中的硫、氮、氧及金属等杂质, 同时还使烯烃、二烯烃、芳烃和稠环芳烃选择加氢饱和,从而改善原 料的品质和产品的使用性能。此外,加氢裂化的目的在于将大分子裂 化为小分子以提高轻质油收率,同时还除去一些杂志。其特点是轻质 油收率高,产品饱和度高,杂质含量少。 作用机理 吸附在催化剂上的氢分子生成活泼的氢原子与被催化剂削弱了键的 烯、炔加成。烯烃在铂、钯或镍等金属催化剂的存在下,可以与氢加 成而生成烷烃。加氢过程可分为两大类:
4、催化剂再生 国内加氢装置一般采用催化剂器内再生方式,有蒸汽-空气烧焦法和 氮气-空气烧焦法两种。 再生过程包括以下两个阶段: ①再生前的预处理 在反应器烧焦之前,需先进行催化剂脱油与加热炉清焦。 ②烧焦再生 通过逐步提高烧焦温度和降低氧浓度,并控制烧焦过程分三个阶段完 成。

催化加氢反应

催化加氢反应

催化加氢反应引言催化加氢反应是一种重要的化学反应,具有广泛的应用。

它通过催化剂的作用,将有机化合物中的不饱和键还原为饱和键,同时将氢气添加到分子中,从而产生目标化合物。

本文将介绍催化加氢反应的基本原理、常见的催化剂和反应条件,以及一些应用案例。

基本原理催化加氢反应是利用催化剂在适当的反应条件下,将有机化合物中的不饱和键还原为饱和键的化学反应。

这种反应通常需要在高温和高压条件下进行。

催化剂在反应中起到了降低活化能的作用,加速了反应速率。

常见的催化剂包括负载型金属催化剂和均相催化剂。

催化加氢反应的机理可以分为两个步骤:吸附和反应。

在吸附步骤中,有机物和氢气会被吸附到催化剂表面;在反应步骤中,吸附状态的有机物和氢气发生反应生成饱和化合物,并释放出吸附在催化剂表面的产物。

催化剂的选择对反应的选择性和活性具有重要影响。

常见的金属催化剂包括铂、钯、铑等,这些金属催化剂通常以负载的形式存在于载体上。

常见催化剂负载型金属催化剂负载型金属催化剂是指将金属颗粒负载在载体上的催化剂。

载体可以增加催化剂表面积,提高反应效率。

常见的载体材料包括活性炭、氧化铝、硅胶等。

负载型金属催化剂具有良好的热稳定性和机械强度,在催化加氢反应中得到了广泛应用。

均相催化剂均相催化剂是指溶解在反应体系中的催化剂。

均相催化剂通常是有机物溶液中的金属阳离子,如铂酸盐、钯酸盐等。

均相催化剂具有催化活性高、选择性好等优点,但在反应后的分离和催化剂的再生方面存在一定的困难。

反应条件催化加氢反应的反应条件包括温度、压力、反应物浓度和催化剂的选择等因素。

温度温度是催化加氢反应中一个重要的参数。

一般情况下,较高的温度可以提高反应速率,但也会增加副反应的可能性。

因此,选择适当的反应温度对于催化加氢反应的成功进行是十分重要的。

压力催化加氢反应通常需要在高压下进行,以保证氢气能够充分溶解并参与反应。

较高的压力可以促进反应的进行,提高产率和选择性。

反应物浓度有机化合物的浓度对反应速率和选择性也有一定的影响。

加氢技术

加氢技术
助剂是金属化合物,也有非金属元素;
加氢精制催化剂的化学组成对其活性的影响,主要表现
在主金属和助催化剂的比例上,主金属与助剂两者之间 应有合理的比例 。
助剂的作用按机理不同可以分为两类:
★ 结构性助剂:作用是增大表面积,防止烧结,提 高催化剂的结构稳定性;
★ 调变性助剂:作用是改变催化剂的电子结构、表 面性质或晶型结构,从而可以提高催化剂的活性 或选择性。
RSR H2S
④ 噻吩类:
+ 3H2
S
+ H2
H2 C4H9SH
C4H8 SH2
S
H2
C4H10
噻吩类加氢脱硫有两个途径:
先加氢使环上双键饱和,然后再开环,脱硫生成烷烃; 先开环脱硫生成二烯烃,然后二烯烃再加氢饱和。
对许多有机含硫化合物的加氢脱硫反应进行研究表明:
硫醇、硫醚、二硫化物的加氢脱硫在较缓和的条件下 就能进行;环状化合物加氢脱硫比较困难。
深度加氢精制大多是加氢处理过程,加氢裂化和加氢处理 相比,前者属于转化率高,以生产轻质油为主要目的的加 氢处理过程。
临 氢 降 凝(hydro-defreezing)
主要用于生产低凝柴油,采用具有选择性的分子筛催化剂 (ZSM-5系列),能有选择性地使长链的正构烷烃或少侧链的烷 烃发生裂化反应,而保留芳烃、环烷烃和多侧链烷烃,从而降 低馏分油的凝点。 汽油:目的不是降凝,而是将直链烷烃除去,提高汽油抗爆性。
CH3
2.烯烃
在加氢裂化过程中,烯烃可进行加氢、异构化、环化和 聚合等反应;
加氢和异构化反应速度明显大于环化和聚合反应;
大分子烯烃可进一步发生分解,生成更小分子的烯烃,进 而被加氢饱和;
加氢裂化反应产品中烯烃含量少,产品的安定性好。

环烷烃催化加氢反应

环烷烃催化加氢反应

环烷烃催化加氢反应环烷烃催化加氢反应,是一种常用的化学反应方法。

在这个反应中,环烷烃分子与氢气发生作用,生成相应的饱和环烷烃。

这种反应具有广泛的应用领域,尤其在石油化工工业中发挥着重要作用。

环烷烃是一类分子结构中含有环状碳骨架的化合物,其结构稳定,化学惰性较高。

然而,有时候需要将环烷烃转化为饱和的直链烃,以满足特定的需求。

这时候,环烷烃催化加氢反应就派上了用场。

催化加氢反应是一种利用催化剂促进化学反应的方法。

在环烷烃催化加氢反应中,催化剂起到了至关重要的作用。

常用的催化剂有铂、钯、铑等贵金属催化剂,它们能够促进环烷烃分子与氢气之间的反应,使得环烷烃分子中的碳碳双键断裂,并与氢气发生氢化反应,最终生成饱和的直链烷烃。

催化加氢反应中,反应条件的控制也是非常关键的。

一般来说,反应需要在一定的温度和压力下进行。

温度的选择要根据具体的反应物和催化剂来确定,一般在100~200摄氏度之间。

而压力的选择则与反应物的反应活性有关,一般在10~50大气压之间。

此外,还需要控制反应物和催化剂的比例,以及反应物的浓度等因素。

环烷烃催化加氢反应在石油化工工业中具有广泛的应用。

例如,在炼油过程中,原油中的环烷烃和不饱和烃是不稳定的,会对设备和催化剂产生不良影响。

通过催化加氢反应,可以将这些不稳定的分子转化为稳定的饱和烃,提高炼油产品的质量和稳定性。

环烷烃催化加氢反应还可以用于生产清洁能源。

例如,生物质转化为生物柴油的过程中,也需要通过催化加氢反应将其中的环烷烃转化为饱和的直链烃。

这样不仅可以提高生物柴油的品质,还可以减少燃烧排放产生的污染物。

环烷烃催化加氢反应是一种重要的化学反应方法。

通过合理选择催化剂和控制反应条件,可以将环烷烃转化为饱和的直链烃,满足不同领域的需求。

这种反应在石油化工工业和清洁能源生产中发挥着重要作用,为人们的生活和工业生产带来了诸多好处。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
噻吩<四氢噻吩≈硫醚<二硫化物<硫醇
教学ppt
12
随着含硫化合物分子中环烷环和芳香环数目的增加,它的加 氢反应速率是下降的,这种现象可能是由于空间位阻所致。
教学ppt
13
在不同位置上甲基取代的二苯并噻吩的反应性能有很大差别, 当甲基靠近噻吩环的硫原子时,其加氢脱硫反应速率要减慢一个 数量级。
教学ppt
教学ppt
21
教学ppt
22
教学ppt
23
吡咯环和吡啶环饱和反应的平衡常数均小于1,同时由于此反 应是放热的,所以其平衡常数随温度的升高而减小。而氢解反应和 总的加氢脱氮反应的平衡常数则都是大于1的。
教学ppt
24
(3)加氢脱氮反应的动力学
含氮化合物中胺类是最容易加氢脱氮的,而吡咯和吡啶环上 的氮是较难脱除的。喹啉在较低的温度下其脱氮率很低,只有在 较高的温度下脱氮才比较完全。
教学ppt
2
加氢处理技术应用极其广泛, 加氢处理的主要过程有以下 几种: 1.汽油馏分加氢处理 2.煤油馏分加氢处理 3.柴油馏分加氢处理 4.重馏分油加氢处理 5.润滑油加氢补充精制(Hydrofinishing) 6.润滑油加氢脱蜡(Hydrodewaxing) 7.渣油加氢处理
教学ppt
3
不同的加氢处理过程及目的,加氢催化剂、工艺条件以及流程等 不同。
加氢处理催化剂是单功能催化剂,只需要有加氢的活性组分,其 活性组分主要有由钼或钨和钴或镍的硫化物组成,也可用金属镍、铂 或钯加氢的活性组分,载体一般均为氧化铝 。对于要求深度脱氮的, 载体可以是氧化铝进行改性(加卤素、SiO2或磷化物)或用分子筛做 载体具有一定的酸性。
一般条件范围为:氢分压,1~15MPa;温度,280~420℃。
9
教学ppt
10
由表可见,压力越低,温度的影响越明显;温度越高压力的影 响越显著。对噻吩而言,要想达到较高的加氢脱硫转化率,反应压 力不应低于4MPa,反应温度不应高于700K(约425℃)。
教学ppt
11
(3)加氢脱硫反应的动力学
动力学研究表明,单体含硫化合物的加氢脱硫反应大体都属于 表观一级反应。如果原料为较窄的馏分,其加氢脱硫反应级数也接 近于1;而对于较宽的馏分,由于其中含硫化合物的组成比较复杂, 有的易于反应,有的则不易反应,这样其表观反应级数便在1与2之 间。研究还表明,含硫化合物的加氢反应速率与其分子结构有密切 联系,其反应速率一般按如下顺序依次增大:
第五章 催化加氢
催化加氢是石油加工的重要过程,其目的主要有两个:一是 通过加氢脱去石油中的硫、氮、氧及金属等杂质,以改善油品质 量及减少对环境的污染等,即所谓加氢处理(包括传统意义的 Hydrorefining和Hydrotreating);二是使较重的原料在氢压下裂解 为轻质燃料或制取乙烯的原料,即所谓加氢裂化(Hydrocracking)。
哌啶
吡啶加氢生成哌啶的反应很快达到平衡,正戊胺脱氮反应也 很快;而哌啶中C—N键断裂变成正戊胺的反应则很慢,是整个吡 啶加氢脱氮反应的控制步骤。
教学ppt
28
喹啉的加氢脱氮反应机理:
网络中的数字表示375℃下的表观一级反应速率常数[mol/g催 化剂·s]。
教学ppt
29
吖啶加氢脱氮反应机理:
网络中的数字表示在367℃、13.7MPa下的表观一级反应速率常数[g /g催化剂·s]。吖啶的加氢脱氮需要比喹啉更高的压力,当起始摩尔浓度 相同时,吖啶在氢分压13.6MPa下才能达到与喹啉在氢分压3.4MPa下同 样的反应速率。吖啶的反应机理与喹啉的有相似之处,其吡啶环的加氢 速率比其它环的加氢速率更大。
14
(4)加氢脱硫反应机理
硫醇,硫醚及二硫化物的加氢脱硫反应历程比较简单。硫醇中 的C—S键断裂同时加氢即得烷烃及H2S,硫醚在加氢时先生成硫醇, 然后再进一步脱硫。二硫化物在加氢条件下首先发生S—S键断裂 反应生成硫醇,进而再脱硫。
噻吩及其衍生物由于其中硫杂环的芳香性,所以特别不易氢 解,导致石油馏分中的噻吩硫要比非噻吩硫难以脱除得多。因而对 于噻吩及其衍生物的加氢脱硫进行了大量的研究,结果表明它们的 反应历程是比较复杂的。教学ppt Nhomakorabea4
教学ppt
5
5.1.2加氢处理反应及机理
1.加氢脱硫
(1)加氢脱硫反应
石油馏分中各类含硫化合物的C—S键是比较容易断裂的,其键 能比C—C键的小许多,在加氢过程中,C—S键先行断开而生成相 应的烃类和H2S。
教学ppt
6
教学ppt
7
教学ppt
8
(2)加氢脱硫反应的热力学
教学ppt
教学ppt
1
5.1 加氢处理(Hydrotreating)
5.1.1 概 述
加氢处理是指在催化剂和氢气存在下,除去石油馏分中含硫、 氮、氧及金属杂原子的过程,同时也使烯烃饱和和部分多环芳烃 加氢。加氢处理的反应条件比加氢裂化缓和一些,催化剂也有所 不同,在此条件下,原料的平均分子量及分子的碳骨架结构的变 化很小(裂化不大于10%)。
教学ppt
15
噻吩的加氢脱硫可能有如下两个途径: 一般认为这两种反应途径同时存在。
教学ppt
16
苯并噻吩的加氢脱硫比噻吩困难些,它的反应历程同样也有 两个途径:
教学ppt
17
二苯并噻吩(硫芴)的加氢脱硫则比苯并噻吩还要困难,据研 究,其途径为:
式中的数字表示在Co-Mo/Al2O3催化剂存在下及300℃、10.2MPa下的表 观一级反应速率常数(L/g催化剂·s)。
教学ppt
18
2.加氢脱氮
(1)加氢脱氮反应
石油馏分中的含氮化合物主要是吡咯类和吡啶类的氮杂环化合 物,也含有很少量的胺类和腈类,它们经加氢脱氮后产生烃类和氨。
教学ppt
19
教学ppt
20
(2)加氢脱氮反应的热力学
C=N双键的键能比C—N单键键能要大一倍,所以吡咯环和吡 啶环都要首先加氢饱和,然后进而发生C—N键氢解反应。
教学ppt
25
教学ppt
26
喹啉与各种取代位置不同的二甲基喹啉的加氢脱氮反应速率很接近, 这表明甲基并不明显阻碍其反应。看来这可能是由于氮原子并没有在催化剂 上发生端连吸附,而是通过芳香性环结构的π键而吸附的。非碱性和碱性含 氮化合物的加氢脱氮速率是相近的。
教学ppt
27
(4)加氢脱氮反应 机理 吡啶的加氢脱氮的反应机理:
相关文档
最新文档