《不定积分》PPT课件
合集下载
高等数学——不定积分课件
cos x cos2 x
dx
1
d
sin sin
x
2
x
1 2
1 1 sin
x
1 1 sin x
d
sin
x
1 ln 1 sin x ln 1 sin x C
2 1 ln 1 sin x C
2 1 sin x
机动 目录 上页 下页 返回 结束
例11. 求
(x2
x3 a2
3
)2
dx
1
(
1
1
)
(x a)(x a) 2a x a x a
∴
原式
=
1 2a
dx xa
dx xa
1 2a
d(x a) xa
d(x a) xa
1 ln x a ln x a C 1 ln x a C
2a
2a xa
机动 目录 上页 下页 返回 结束
(6) f (tan x)sec2 xdx
d
t
ln sect tan t C1
ln
x2 a2
x a
C1
x2 a2 x t a
(C C1 ln a)
机动 目录 上页 下页 返回 结束
第四章 不定积分
微分法: F(x) ( ? ) 互逆运算
积分法: ( ? ) f (x)
第一节 不定积分的概念与性质
一、 原函数与不定积分的概念 二、 基本积分表 三、不定积分的性质
机动 目录 上页 下页 返回 结束
一、 原函数与不定积分的概念
引例: 一个质量为 m 的质点, 在变力 下沿直线运动 , 试求质点的运动速度
根据牛顿第二定律, 加速度
因此问题转化为: 已知 v(t) A sin t , 求 v(t) ? m
第五章 不定积分 (《微积分》PPT课件)
(8)
dx cos2
x
sec2
xdx
tan
x
C;
(9)
dx sin2
x
csc2
xdx
cot
x
C;
(10) sec x tan xdx sec x C; (11) csc x cot xdx csc x C; (12) e xdx e x C; (13) a xdx a x C;
6. x xdx ______________________;
7.
dx
x2 x
_______________________;
8. ( x2 3x 2)dx _________________;
9. ( x 1)( x3 1)dx _____________;
10.
(1
x)2 x
dx
或 f ( x)dx在区间 I 内原函数(.primitive function )
例 sin x cos x sin x是cos x的原函数. ln x 1 ( x 0)
x ln x是1 在区间(0,)内的原函数.
x
定理 原函数存在定理:
如果函数 f ( x)在区间I 内连续, 那么在区间I 内存在可导函数F ( x) , 使x I ,都有F ( x) f ( x).
简言之:连续函数一定有原函数.
问题:(1) 原函数是否唯一? (2) 若不唯一它们之间有什么联系?
例 sin x cos x sin x C cos x
( C为任意常数)
关于原函数的说明:
(1)若 F ( x) f ( x) ,则对于任意常数 C ,
F( x) C 都是 f ( x)的原函数.
高等数学不定积分课件
公式
f (u)du u (x) 即 f [(x)](x)dx f ((x))d(x)
(也称配元法 , 凑微分法)
机动 目录 上页 下页 返回 结束
例1. 求
解: 令 u ax b ,则 d u adx , 故
原式 = um 1 d u 1 1 um1 C a a m1
注: 当
x a
)
1
(
x a
)2
d u arcsinu C 1u2
机动 目录 上页 下页 返回 结束
例4. 求 解:
sin cos
x dx x
dcos x cos x
类似
cos x dx sin x
d sin x sin x
机动 目录 上页 下页 返回 结束
例5. 求
解:
1 x2 a2
1 2a
(x a) (x a)
解: 原式 = (sec2x 1)dx sec2xdx dx tan x x C
例6. 求
解: 原式 =
x (1 x x(1 x2
2
)
)
dx
1 1 x2
dx
1 x
dx
arctan x
ln
x
C
机动 目录 上页 下页 返回 结束
例7. 求
x4 1 x2
dx
.
解: 原式 =
(
第四章 不定积分
微分法: F(x) ( ? ) 互逆运算
积分法: ( ? ) f (x)
第一节 不定积分的概念与性质
一、 原函数与不定积分的概念 二、 基本积分表 三、不定积分的性质
机动 目录 上页 下页 返回 结束
一、 原函数与不定积分的概念
f (u)du u (x) 即 f [(x)](x)dx f ((x))d(x)
(也称配元法 , 凑微分法)
机动 目录 上页 下页 返回 结束
例1. 求
解: 令 u ax b ,则 d u adx , 故
原式 = um 1 d u 1 1 um1 C a a m1
注: 当
x a
)
1
(
x a
)2
d u arcsinu C 1u2
机动 目录 上页 下页 返回 结束
例4. 求 解:
sin cos
x dx x
dcos x cos x
类似
cos x dx sin x
d sin x sin x
机动 目录 上页 下页 返回 结束
例5. 求
解:
1 x2 a2
1 2a
(x a) (x a)
解: 原式 = (sec2x 1)dx sec2xdx dx tan x x C
例6. 求
解: 原式 =
x (1 x x(1 x2
2
)
)
dx
1 1 x2
dx
1 x
dx
arctan x
ln
x
C
机动 目录 上页 下页 返回 结束
例7. 求
x4 1 x2
dx
.
解: 原式 =
(
第四章 不定积分
微分法: F(x) ( ? ) 互逆运算
积分法: ( ? ) f (x)
第一节 不定积分的概念与性质
一、 原函数与不定积分的概念 二、 基本积分表 三、不定积分的性质
机动 目录 上页 下页 返回 结束
一、 原函数与不定积分的概念
高中数学课件-不定积分
积 分 号
被 积 函 数
被 积 表 达
式
积 分 变 量
任 意 常 数
函数 f ( x)的原函数的图形称为 f ( x) 的积分曲线.
显然,求不定积分得到一积分曲线族.
由不定积分的定义,可知
d
dx
f ( x)dx
f ( x),
d[ f ( x)dx] f ( x)dx,
F ( x)dx F ( x) C, dF ( x) F ( x) C.
分 表
(3)
dx x
说明:
ln x x 0,
C;
dx x
ln
x
C
,
x 0, [ln( x)] 1 ( x) 1 ,
x
x
dx x
ln(
x
)
C
,
dx x
ln
|
x
|
C
,
简写为
dx x
ln
x
C.
(4)
1
1 x
2
dx
arctan
x
C;
(5)
1 dx arcsin x C; 1 x2
(6) cos xdx sin x C;
f [ ( x)]( x)dx F[( x)] C [ f (u)du]u ( x) 由此可得换元法定理
定理8.4(1)设 f (u)具有原函数,u ( x)可导,
则有换元公式
f [ ( x)] ( x)dx [ f (u)du]u ( x)
第一类换元公式(凑微分法) 说明 使用此公式的关键在于将
不定积分的概念: f ( x)dx F ( x) C
基本积分表(1) 求微分与求积分的互逆关系
不定积分一.ppt
不定积分
例1
下列函数中,为函数e2x 的原函数
的是( B ) A. y 2e2x C. y e2x
B.
y 1 e2x 2
D. y 2e2x
: 分析 ( 1 e2x ) 1 e2x (2x) e2x
2
2
故选B
不定积分
课堂 练习
1、设ln x 是f (x) 的一个原函数,
则f (x)的另一个原函数是(其中k 0
y F(x) C
不定积分
说明:
曲线族里的所有积分曲线在横坐标x 相同的点处的切线彼此平行,即这些切
线有相同的斜率 f (x).
例3 已知曲线 y f (x) 在任意一点 x 处的
切线斜率为 3x2且曲线经过 (1,2)点,求 此曲线的方程.
不定积分
解:设所求曲线的方程为:y f (x) 由题意知:
两种运算互相抵消.
不定积分
⑵、如果先微分再积分,其结果只差
一个常数.
如:
1、[ (1 7x)103dx] (1 7x)103 2、 g(x)dx g(x) C
2、不定积分的性质 ⑴、不为零的常数因子,可以提到
积分号前.
不定积分
kf (x)dx k f (x)dx(k 0)
⑵、两个函数的代数和的积分等于
x)
1 arctan
x
C
kd[(x)] k(x) C
不定积分
例4
若 f (x)dx F(x) C, 则 ex f (ex)dx ( C )
A. F (ex ) C
B. F(ex ) C
C. F(ex ) C
D. 1 F(ex ) C
x
分析:
(ex ) (ex )(x)
例1
下列函数中,为函数e2x 的原函数
的是( B ) A. y 2e2x C. y e2x
B.
y 1 e2x 2
D. y 2e2x
: 分析 ( 1 e2x ) 1 e2x (2x) e2x
2
2
故选B
不定积分
课堂 练习
1、设ln x 是f (x) 的一个原函数,
则f (x)的另一个原函数是(其中k 0
y F(x) C
不定积分
说明:
曲线族里的所有积分曲线在横坐标x 相同的点处的切线彼此平行,即这些切
线有相同的斜率 f (x).
例3 已知曲线 y f (x) 在任意一点 x 处的
切线斜率为 3x2且曲线经过 (1,2)点,求 此曲线的方程.
不定积分
解:设所求曲线的方程为:y f (x) 由题意知:
两种运算互相抵消.
不定积分
⑵、如果先微分再积分,其结果只差
一个常数.
如:
1、[ (1 7x)103dx] (1 7x)103 2、 g(x)dx g(x) C
2、不定积分的性质 ⑴、不为零的常数因子,可以提到
积分号前.
不定积分
kf (x)dx k f (x)dx(k 0)
⑵、两个函数的代数和的积分等于
x)
1 arctan
x
C
kd[(x)] k(x) C
不定积分
例4
若 f (x)dx F(x) C, 则 ex f (ex)dx ( C )
A. F (ex ) C
B. F(ex ) C
C. F(ex ) C
D. 1 F(ex ) C
x
分析:
(ex ) (ex )(x)
《不定积分》ppt课件
2
2
a2 x2 dx x a2 x2 a2 arcsin x C
2
2
a
.
+ 除牢记积分公式外,还需熟练运用几种常 用方法:
+ 〔1〕换元积分法 + 〔2〕分部积分法 + 〔3〕有理函数积分法〔运用分式变形处置
积分函数联络积分根本公式〕
.
+ 关于换元法的问题 不定积分的换元法是在复合函数求导法那 么的根底上得来的,我们应根据详细实例 来选择所用的方法,求不定积分不象求导 那样有规那么可依,因此要想熟练的求出 某函数的不定积分,只需作大量的练习。
ln a
shxdx chx C
chxdx shx C
dx
ln( x
x2 a2
x2 a2 ) C
I n
2
sin n
0
2
xdx cosn
0
xdx
n 1
n
I n2
x 2 a 2 dx x 2
x 2 a 2 a 2 ln( x 2
x2 a2 ) C
x 2 a 2 dx x 2
2
2
2
.
2.第一类换元法 利用复合函数的一阶微分形式的不变性,通过变量代换求不定积分
简记为
g(x) dx = f φ(x) φ‘(x)dx
例 1.求
e x dx
2x
解:令u =
x,原式= e x d x =
eu du = eu + C = e x + C
例 2.求
arcsin x−x2
x
dx
解
:
令
dt
=
1 4
1 t−3
−
高等数学不定积分的计算教学ppt
dx.
6x 1
3(2x 1) 4
(2x 1)10 dx (2x 1)10 dx
3
4
( (2x
1)9
(2x
1)10
)dx
1
2
3d(2 (2x
x
1) 1)9
1 2
4d(2x 1) (2 x 1)10
3 ( 1) (2x 1)8 2 ( 1) (2x 1)9 C
例8
计算(5)
2x 1 x2 4 x 5 dx.
例8
计算(6)
6x 1 (2 x 1)10
dx.
例8
计算(7)
1
x
x
dx.
例8
计算(8)
(1
x x)3
dx.
例8
计算(1)
1 x2 a2 dx;
x2
1
a2 dx
1 2a
x
1
a
x
1
a
dx
1 2a
d(x a) xa
d(x a) x a
例6 计算
(2 arctan x)2
1 x2
dx.
1 1 x2 dx d(arctan x)
f
(arctan
x
)
1
1 x
2
dx
f
(arctan
x)d(arctan
x)
例6 计算
(2 arctan x)2
1 x2
dx.
1
原式
1 x2 dx d(arctan x)
(2
arctan
x)2
tan
x
1
sec
d(tan x
x
sec
高等数学 课件 PPT 第四章 不定积分
如果一个函数存在原函数,那么这些原函数之间有什 么关系呢?
一、原函数的概念
定理2
若F(x)是函数f(x)在区间I上的一个原函数,则F(x)+C(C为任意 常数)是fx在区间I上的全体原函数.
定理2说明,若一个函数有原函数,则它必有无穷多个原函数,且 它们彼此相差一个常数. 事实上,设F(x)和G(x)都是f(x)的原函数,则
g(x)=f[φ(x)]φ′(x). 作变量代换u=φ(x),并将φ′(x)dx凑微分成dφ(x),则可将关 于变量x的积分转化为关于变量u的积分,于是有
∫f[φ(x)]φ′(x)dx=∫f(u)du. 如果∫f(u)du 可以求出,那么∫g(x)dx 的问题也就解决了,这就 是第一类换元积分法,又称为凑微分法.
一、第一类换元积分法
【例1】
解 本题的关键是将2xdx凑微分得dx2,然后令u=x2,则
【例2】
解 先将被积表达式中的sec2xdx凑微分得dtanx,然后令 u=tanx,再积分,即
一、第一类换元积分法
【例3】
一、第一类换元积分法
注意
(1)求不定积分的方法不唯一,不同方法算出的 答案也不相同,但它们的导数都是被积函数,经过恒等 变形后可以互化,其结果本质上只相差一个常数.
对于给定的函数fx具备什么条件才有原函数?这个问题将 在下一章讨论,这里先介绍一个结论.
一、原函数的概念
定理1
(原函数存在定理)若函数f(x)在区间I上连续,则函数 f(x)在区间I上存在原函数F(x).
由于初等函数在其定义区间上都是连续的,所以初等函 数在其定义区间上都存在原函数. 如果一个函数存在原函数,那么它的原函数是否唯一?事 实上,函数fx的原函数不是唯一的.例如,x2是2x的一个原 函数,而(x2+1)′=2x,故x2+1也是2x的一个原函数.
一、原函数的概念
定理2
若F(x)是函数f(x)在区间I上的一个原函数,则F(x)+C(C为任意 常数)是fx在区间I上的全体原函数.
定理2说明,若一个函数有原函数,则它必有无穷多个原函数,且 它们彼此相差一个常数. 事实上,设F(x)和G(x)都是f(x)的原函数,则
g(x)=f[φ(x)]φ′(x). 作变量代换u=φ(x),并将φ′(x)dx凑微分成dφ(x),则可将关 于变量x的积分转化为关于变量u的积分,于是有
∫f[φ(x)]φ′(x)dx=∫f(u)du. 如果∫f(u)du 可以求出,那么∫g(x)dx 的问题也就解决了,这就 是第一类换元积分法,又称为凑微分法.
一、第一类换元积分法
【例1】
解 本题的关键是将2xdx凑微分得dx2,然后令u=x2,则
【例2】
解 先将被积表达式中的sec2xdx凑微分得dtanx,然后令 u=tanx,再积分,即
一、第一类换元积分法
【例3】
一、第一类换元积分法
注意
(1)求不定积分的方法不唯一,不同方法算出的 答案也不相同,但它们的导数都是被积函数,经过恒等 变形后可以互化,其结果本质上只相差一个常数.
对于给定的函数fx具备什么条件才有原函数?这个问题将 在下一章讨论,这里先介绍一个结论.
一、原函数的概念
定理1
(原函数存在定理)若函数f(x)在区间I上连续,则函数 f(x)在区间I上存在原函数F(x).
由于初等函数在其定义区间上都是连续的,所以初等函 数在其定义区间上都存在原函数. 如果一个函数存在原函数,那么它的原函数是否唯一?事 实上,函数fx的原函数不是唯一的.例如,x2是2x的一个原 函数,而(x2+1)′=2x,故x2+1也是2x的一个原函数.
不定积分课件
解:
② 不含对数函数; ③ 仅含有理函数
的结果中,
23
四、凑微分法: 例 6求
解:
原式=
24
时, 原式=
时, 原式=
25
例7 求
解
26
例 8
求
解:
27
例 9求
解1
28
例 9求
解2
烦!
29
例10(自学)
解
30
五、分部积分法(被积函数是两类不同函数的乘积) 例11
解:
原式=
31
例12
解:
8
五、有理函数真分式的积分:
R(x) P(x) a0xn a1xn1 an Q(x)
(n m)
a0xn a1xn1 an
分母在实数范围内因式分解
若分母含因式 (x a)k,则对应的部分因式为
A1 xa
(x
A2 a)2
…
(x
Ak a)k
若分母含既约因式 (x2 p x q)k,则对应的部分因式为
ea x sin bx dx ; ea x cos bx dx 。
10
不定积分
(典型例题)
11
一、由
求
例1
,求
解:
12
例2
在
上定义,在
内可导,
在
内定义且可导,
时,
求
, 的表达式.
解:
时,
时,
13
例2
在
上定义,在
内可导,
在
内定义且可导,
时,
求 答案:
, 的表达式。
14
二、分段函数求不定积分:
例 5 求常数a,b 的值,使
② 不含对数函数; ③ 仅含有理函数
的结果中,
23
四、凑微分法: 例 6求
解:
原式=
24
时, 原式=
时, 原式=
25
例7 求
解
26
例 8
求
解:
27
例 9求
解1
28
例 9求
解2
烦!
29
例10(自学)
解
30
五、分部积分法(被积函数是两类不同函数的乘积) 例11
解:
原式=
31
例12
解:
8
五、有理函数真分式的积分:
R(x) P(x) a0xn a1xn1 an Q(x)
(n m)
a0xn a1xn1 an
分母在实数范围内因式分解
若分母含因式 (x a)k,则对应的部分因式为
A1 xa
(x
A2 a)2
…
(x
Ak a)k
若分母含既约因式 (x2 p x q)k,则对应的部分因式为
ea x sin bx dx ; ea x cos bx dx 。
10
不定积分
(典型例题)
11
一、由
求
例1
,求
解:
12
例2
在
上定义,在
内可导,
在
内定义且可导,
时,
求
, 的表达式.
解:
时,
时,
13
例2
在
上定义,在
内可导,
在
内定义且可导,
时,
求 答案:
, 的表达式。
14
二、分段函数求不定积分:
例 5 求常数a,b 的值,使
《不定积分教学》课件
不定积分的性质
总结词
不定积分的性质是理解不定积分的关键,它包括比较定理、积分中值定理等。
详细描述
比较定理指出,如果一个函数在某个区间上大于或小于另一个函数,那么它的不定积分在相应的区间上也大于或 小于另一个函数的不定积分。积分中值定理则指出,如果一个函数在某个区间上连续,那么在这个区间上至少存 在一点,使得函数在该点的值等于函数在该区间上的不定积分值的平均值。
在电磁学中,不定积分可以用于 求解电场、磁场、电流等物理量 的分布和变化规律。
微积分基本定理
要点一
微积分基本定理
微积分基本定理是微积分学中的核心定理之一,它建立了 不定积分和定积分之间的联系,即牛顿-莱布尼茨公式。
要点二
计算方法
通过微积分基本定理,可以计算定积分的值,从而得到原 函数或物理量的具体数值。
针对学生在使用换元法和分部积分法时存在的问 题,加强相关训练。
及时总结与反思
学生应及时总结解题经验,反思自己在解题过程 中存在的问题,以便进一步提高。
05
总结与回顾
本章重点回顾
不定积分的概念
回顾了不定积分的定义、性质和计算方法,以及不定积分与原函数 的关系。
不定积分的计算方法
总结了不定积分的多种计算方法,包括直接积分法、换元积分法、 分部积分法等,并给出了相应的例题和练习题。
C),其中 (C) 是积分常数。
换元积分法
总结词
换元积分法是通过引入新的变量来简化 不定积分计算的方法。
VS
详细描述
换元积分法的关键是选择适当的换元,将 复杂的不定积分转化为简单的不定积分或 已知的积分。通过换元,可以将不定积分 的被积函数转化为更易于处理的形式,从 而简化计算过程。
不定积分的概念及其性质[优质ppt]
Nove.30Mon.章不定积分
❖ 不定积分的概念及性质;
❖
❖ 不定积分的换元法;
❖
❖ 不定积分的分部积分法;
❖
❖ 有理函数不定积分.
❖ ❖ ❖
微积分产生的原因: 1. 求物体在任意时刻的速度和加速度; 2. 求曲线的切线:透镜设计和轨迹的切线方向; 3. 求最大值和最小值:
获得炮弹射程最大的发射角问题; 行星离开太阳的最远和最近距离问题; 4.微小量的累加:曲线长,曲线围成的面积,曲面围 成的体积,物体重心。
F (x)d x F (x)C , d(F x)F (x)C .
结论:微分运算与求不定积分的运算是互逆的.
基 (1 )k dkx x C(k 是常数);
本
积
(2)
xd xx1C(1); 1
分
表
(3)说明dx:xlxn |x0|, C; dxlnxC,
x
x 0 ,[l n x )] (1 (x) 1,
解: 加速g度 , 则 d为 vg,解得 dt
v(t)gd g t tC
这里C不能任意取,它由决初定值,
t 0 时 v 0 , g 0 C Cv0
v(t)g tv0 又由 d ds t于 vg tv0
s(t)(g tv0)dt12g2tv0tC1
t 0 时 s (t) , s 0 C 1 s(t)1 2g2tv0ts0 简单的初值问题(initial problem):
例 yx2,x (, )
根据求导数数 时降 幂 1次 低 函 ,数 所次 以原 a3 x函
(ax3)3ax2 x2 a 1 3
y1x3 是x2的一个原函数。 3
且 1x31,1x3C (C任意 )也 常 x是 2的 数原函数 33
❖ 不定积分的概念及性质;
❖
❖ 不定积分的换元法;
❖
❖ 不定积分的分部积分法;
❖
❖ 有理函数不定积分.
❖ ❖ ❖
微积分产生的原因: 1. 求物体在任意时刻的速度和加速度; 2. 求曲线的切线:透镜设计和轨迹的切线方向; 3. 求最大值和最小值:
获得炮弹射程最大的发射角问题; 行星离开太阳的最远和最近距离问题; 4.微小量的累加:曲线长,曲线围成的面积,曲面围 成的体积,物体重心。
F (x)d x F (x)C , d(F x)F (x)C .
结论:微分运算与求不定积分的运算是互逆的.
基 (1 )k dkx x C(k 是常数);
本
积
(2)
xd xx1C(1); 1
分
表
(3)说明dx:xlxn |x0|, C; dxlnxC,
x
x 0 ,[l n x )] (1 (x) 1,
解: 加速g度 , 则 d为 vg,解得 dt
v(t)gd g t tC
这里C不能任意取,它由决初定值,
t 0 时 v 0 , g 0 C Cv0
v(t)g tv0 又由 d ds t于 vg tv0
s(t)(g tv0)dt12g2tv0tC1
t 0 时 s (t) , s 0 C 1 s(t)1 2g2tv0ts0 简单的初值问题(initial problem):
例 yx2,x (, )
根据求导数数 时降 幂 1次 低 函 ,数 所次 以原 a3 x函
(ax3)3ax2 x2 a 1 3
y1x3 是x2的一个原函数。 3
且 1x31,1x3C (C任意 )也 常 x是 2的 数原函数 33
不定积分的计算PPT文档共18页
不定积分的计算
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯斯 庇尔
▪
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
ห้องสมุดไป่ตู้
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
18
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯斯 庇尔
▪
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
ห้องสมุดไป่ตู้
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
18
《高数》不定积分》课件
《高数》不定积分》PPT 课件
本PPT课件详细介绍了《高数》中的不定积分,包括不定积分的定义、基本积 分公式、常用的不定积分法、分部积分法、三角函数的不定积分、倒代换法、 不定积分的应用以及综合例题。
不定积分的定义
1 什么是不定积分
不定积分是反导函数的概念,表示函数的原函数的集合。
2 符号表示
常用的符号表示为∫f(x)dx,其中f(x)为被积函数。
3
三角恒等变换
利用三角函数的基本恒等变换简化积分计算。
三角函数的不定积分
正弦函数的不定积分
正切函数的不定积分
对正弦函数积分得到负余弦函数。
对正切函数积分得到自然对数函 数的绝对值。
余切函数的不定积分
对余切函数积分得到自然对数函 数的绝对值的负数。
倒代换法
倒代换法是一种高级的积分方法,通过变量的倒代换将含有平方根或有理函数的积分转化为更容易求解的形式。
不定积分的应用
1 曲线的长度
通过对曲线方程求导然后 对导函数进行积分,可以 计算曲线的长度。
2 曲线下面积
通过不定积分计算曲线与 x轴之间的面积,可以得 到曲线下面积。
3 函数的平均值
通过对函数进行积分,可 以计算函数在一个区间上 的平均值。
综合例题
例题1
计算∫(2x^3+4x^2-6x+8)dx。
例题3
计算∫(1/x)dx,其中x不等于0。
例题2
计算∫(e^x+sinx+cosx)dx。源自基本积分公式常数积分
对常数函数积分得到一个与x无关的常数。
指数函数积分
对指数函数积分得到与指数函数相同的函数。
幂函数积分
对幂函数积分得到幂次数加一的函数。
本PPT课件详细介绍了《高数》中的不定积分,包括不定积分的定义、基本积 分公式、常用的不定积分法、分部积分法、三角函数的不定积分、倒代换法、 不定积分的应用以及综合例题。
不定积分的定义
1 什么是不定积分
不定积分是反导函数的概念,表示函数的原函数的集合。
2 符号表示
常用的符号表示为∫f(x)dx,其中f(x)为被积函数。
3
三角恒等变换
利用三角函数的基本恒等变换简化积分计算。
三角函数的不定积分
正弦函数的不定积分
正切函数的不定积分
对正弦函数积分得到负余弦函数。
对正切函数积分得到自然对数函 数的绝对值。
余切函数的不定积分
对余切函数积分得到自然对数函 数的绝对值的负数。
倒代换法
倒代换法是一种高级的积分方法,通过变量的倒代换将含有平方根或有理函数的积分转化为更容易求解的形式。
不定积分的应用
1 曲线的长度
通过对曲线方程求导然后 对导函数进行积分,可以 计算曲线的长度。
2 曲线下面积
通过不定积分计算曲线与 x轴之间的面积,可以得 到曲线下面积。
3 函数的平均值
通过对函数进行积分,可 以计算函数在一个区间上 的平均值。
综合例题
例题1
计算∫(2x^3+4x^2-6x+8)dx。
例题3
计算∫(1/x)dx,其中x不等于0。
例题2
计算∫(e^x+sinx+cosx)dx。源自基本积分公式常数积分
对常数函数积分得到一个与x无关的常数。
指数函数积分
对指数函数积分得到与指数函数相同的函数。
幂函数积分
对幂函数积分得到幂次数加一的函数。
不定积分的计算ppt课件
1
1 (ex )2
dex
arctan ex C.
dex exdx
1
1 u
2
du
arctan u C
一般地, 有
ex f (ex )dx f (ex )dex.
13
例9 求
dx 2x ln
x
.
解
dx 2x ln
x
2
1 ln
x
d
(ln
x)
1 ln ln x C. 2
d ln x 1 dx x
解: 令 u ln x , v x
则 du 1 dx , v 1 x2
x
2
原式
=
1 2
x2
ln
x
1 2
x dx
1 x2 ln x 1 x2 C
2
4
30
例2 求积分 x cos xdx . uvdx uv uvdx
分析:被积函数 xcosx 是幂函数与三角函数的乘积,
采用分部积分.d(1x2 Nhomakorabea)
x arccos x 1 x2 C
34
例4 求 x arctan xdx.
解 设 u = arctanx, v′= x, 则
x
arctan
xdx
arctan
xd
(
1 2
x
2
)
du
1 1 x2
dx, v
1 2
x2
1 x2 arctan x 1
2
2
x2 1 x2 dx
1 x2 arctan x 1
不定积分的计算
一、第一换元积分法 二、第二换元积分法 三、分部积分法
1
高数不定积分-讲解和例题.ppt
tan
x
cos2
d x
x
1 tan
x
dtan
x
ln
tan
x
C
例6:
sin2 x d x
1
cos 2x 2
d
x
1 2
dx
1 2
cos 2x d 2 x
1 x 1 sin2x C. 24
同理, cos2 x d x 1 x 1 sin2x C. 24
例7:
cos4
xd
x
1
cos 2 x 2
f (u)
du
[F (u) C]u( x) F ( x) C. 证明:{ F( x) C } F( x)( x)
f ( x)( x), 得证。
换元公式: f ( x)( x)d x
(x)d x d ( x) f ( x) d ( x)
φ (x) = u
f (u)du F(u) C
x
1 d x d ln x x
1 ln x
d
ln
x
1 u
d
u
ln u
C
ln
ln
x
C.
题目做得熟练后,中间变量 u 可以不写出来。
例2:
11 x2 sin x d x
1 x2
d
x
d(
1) x
sin
1 x
d
1 x
cos 1 C. x
例3: tanxcdo1sxxdcocsoisnsxxxdxln cos x C.
则 f (x)dx F(x) C
就表示了一族积分曲线 y = F (x) + C .
y
它们相互平行,即 在横坐标相同的点 处有相同的切线斜 率。
相关主题