机械原理 课后习题答案.pdf
《机械原理》课后习题附答案
CB D BC平面机构结构分析专业———班级———学号———姓名——— 1.图示为一简易冲床的初拟设计方案。
设计者的思路是:动力由齿轮1 输入,使轴A连续回转;而固装在轴A 上的凸轮与杠杆3 组成的凸轮机构将使冲头4 上下运动以达到冲压目的。
试绘出其机构运动简图,分析其运动是否确定,并提出修改措施。
C B 35 A 24 1解:1)取比例尺μ1=1mm/mm 绘制机构运动简图2)分析是否能实现设计意图由图:n=3 pι=4 p h=1因为:F=3n-2pι-p h =3x3-2x4-1=0因此,此简易冲床不能运动。
因为由构件3,4,5 及运动副B,C,D 组成不能运动的刚性机架3)提出修改方案为了使此机构能运动,应增加机构的自由度。
修改方案:D(1 (2DG7D 64C EF9 38B 2 A122如图所示为一小型压力机。
图中齿轮 1与偏心轮 1’为同一构件,绕固定轴心 o 连续转动。
在齿轮 5上开有凸轮凹槽,摆杆 4上的滚子 6嵌在凹槽中,从而使摆杆 4 绕 C 轴上下摆动。
同时,又通过偏心轮 1’、连杆 2、滑杆 3使 C 轴上下移动。
最后通过在摆杆 4的叉槽中的滑块 7和铰链 G 使冲头 8实现冲压运动。
试绘制其机构运动简图,并计算自由度。
b)解:计算该机构的自由度n=7, p ι=9, p h =2 F=3n-2p e -p h =3x7-2x8-2=13. 试计算下列二图所示齿轮连杆组合机构的自由度。
图中相切的圆周表示一对齿轮传动的节圆;凡局部自由度、复合铰链和虚约束均需明确指出。
解:a )解n=4 P ι=5 Ph=1F=3x4-2x5-1=134 C A复合铰链1a)BD 5b)解:n=6 Pι=7 Ph=3F=3×6-2×7-3=14.试计算下列二图所示压榨机的自由度。
图a 中,左右两半完全对称;图b 中,CD = FI = KL = KM = FJ = CE,LI =KF = MJ = JE = FC = ID。
机械原理课后答案
习题解答第一章绪论1-1 答:1 )机构是实现传递机械运动和动力的构件组合体。
如齿轮机构、连杆机构、凸轮机构、螺旋机构等。
2 )机器是在组成它的实物间进行确定的相对运动时,完成能量转换或做功的多件实物的组合体。
如电动机、内燃机、起重机、汽车等。
3 )机械是机器和机构的总称。
4 )a. 同一台机器可由一个或多个机构组成。
b. 同一个机构可以派生出多种性能、用途、外型完全不同的机器。
c. 机构可以独立存在并加以应用。
1-2 答:机构和机器,二者都是人为的实物组合体,各实物之间都具有确定的相对运动。
但后者可以实现能量的转换而前者不具备此作用。
1-3 答:1 )机构的分析:包括结构分析、运动分析、动力学分析。
2 )机构的综合:包括常用机构设计、传动系统设计。
1-4 略习题解答第二章平面机构的机构分析2-1 ~2-5 (答案略)2-6(a) 自由度F=1 (b) 自由度F=1(c) 自由度F=12-7题2 -7 图F =3 × 7 -2 × 9 -2 =12 -8a) n =7 =10 =0 F =3×7-2×10 =1b) B 局部自由度n =3 =3 =2 F=3×3 -2×3-2=1c) B 、D 局部自由度n =3 =3 =2 F=3×3 -2×3-2 =1d) D( 或C) 处为虚约束n =3 =4 F=3×3 -2×4=1e) n =5 =7 F=3×5-2×7=1f) A 、B 、C 、E 复合铰链n =7 =10 F =3×7-2×10 =1g) A 处为复合铰链n =10 =14 F =3×10 -2×14=2h) B 局部自由度n =8 =11 =1 F =3×8-2×11-1 =1i) B 、J 虚约束C 处局部自由度n =6 =8 =1 F =3×6 -2×8-1=1j) BB' 处虚约束A 、C 、D 复合铰链n =7 =10 F =3×7-2×10=1 k) C 、D 处复合铰链n=5 =6 =2F =3×5-2×6-2 =1l) n =8 =11 F =3×8-2×11 =2m) B 局部自由度I 虚约束4 杆和DG 虚约束n =6 =8 =1 F =3×6-2×8-1 =12-9a) n =3 =4 =1 F =3 × 3 -2 × 8 -1 =0 不能动。
机械原理课后习题答案(朱理)
机械原理作业(部分答案)第一章结构分析作业1.2 解:F = 3n-2P L-P H = 3×3-2×4-1= 0该机构不能运动,修改方案如下图:1.2 解:(a)F = 3n-2P L-P H = 3×4-2×5-1= 1 A点为复合铰链。
(b)F = 3n-2P L-P H = 3×5-2×6-2= 1B、E两点为局部自由度, F、C两点各有一处为虚约束。
(c)F = 3n-2P L-P H = 3×5-2×7-0= 1 FIJKLM为虚约束。
1.3 解:F = 3n-2P L-P H = 3×7-2×10-0= 11)以构件2为原动件,则结构由8-7、6-5、4-3三个Ⅱ级杆组组成,故机构为Ⅱ级机构(图a)。
2)以构件4为原动件,则结构由8-7、6-5、2-3三个Ⅱ级杆组组成,故机构为Ⅱ级机构(图b)。
3)以构件8为原动件,则结构由2-3-4-5一个Ⅲ级杆组和6-7一个Ⅱ级杆组组成,故机构为Ⅲ级机构(图c)。
(a) (b) (c)第二章 运动分析作业2.1 解:机构的瞬心如图所示。
2.2 解:取mmmm l /5=μ作机构位置图如下图所示。
1.求D 点的速度V D13P D V V =而 25241314==P P AE V V E D ,所以 s mm V V E D /14425241502524=⨯==2. 求ω1s r a d l V AE E /25.11201501===ω3. 求ω2因 98382412141212==P P P P ωω ,所以s rad /46.0983825.1983812=⨯==ωω 4. 求C 点的速度V Csmm C P V l C /2.10154446.0242=⨯⨯=⨯⨯=μω2.3 解:取mmmm l /1=μ作机构位置图如下图a 所示。
1. 求B 2点的速度V B2V B2 =ω1×L AB =10×30= 300 mm/s 2.求B 3点的速度V B3V B3 = V B2 + V B3B2大小 ? ω1×L AB ? 方向 ⊥BC ⊥AB ∥BC 取mm s mm v /10=μ作速度多边形如下图b 所示,由图量得:mmpb 223= ,所以smm pb V v B /270102733=⨯=⨯=μ由图a 量得:BC=123 mm , 则mmBC l l BC 1231123=⨯=⨯=μ3. 求D 点和E 点的速度V D 、V E利用速度影像在速度多边形,过p 点作⊥CE ,过b 3点作⊥BE ,得到e 点;过e 点作⊥pb 3,得到d 点 , 由图量得:mmpd 15=,mmpe 17=,所以smm pd V v D /1501015=⨯=⨯=μ , smm pe V v E /1701017=⨯=⨯=μ;smm b b V v B B /17010173223=⨯=⨯=μ4. 求ω3s rad l V BC B /2.212327033===ω5. 求n B a 222212/30003010smm l a AB n B =⨯=⨯=ω6. 求3B aa B3 = a B3n + a B3t = a B2 + a B3B2k + a B3B2τ 大小 ω32L BC ? ω12L AB 2ω3V B3B2 ?方向 B →C ⊥BC B →A ⊥BC ∥BC 22233/5951232.2s mm l a BC n B =⨯=⨯=ω223323/11882702.222s mm V a B B k B B =⨯⨯=⨯=ω取mm s mm a 2/50=μ作速度多边形如上图c 所示,由图量得:mmb 23'3=π ,mmb n 20'33=,所以233/11505023's mm b a a B =⨯=⨯=μπ2333/10005020's mm b n a at B =⨯=⨯=μ7. 求3α233/13.81231000s rad l a BC tB ===α8. 求D 点和E 点的加速度a D 、a E利用加速度影像在加速度多边形,作e b 3'π∆∽CBE ∆, 即 BE eb CE e CB b 33''==ππ,得到e 点;过e 点作⊥3'b π,得到d 点 , 由图量得:mme 16=π,mmd 13=π,所以2/6505013s mm d a a D =⨯=⨯=μπ ,2/8005016s mm e a a E =⨯=⨯=μπ 。
《机械原理》第八版课后习题答案
第2章 机构的结构分析(P29)2-12:图a 所示为一小型压力机。
图上,齿轮1与偏心轮1’为同一构件,绕固定轴心O 连续转动。
在齿轮5上开有凸轮轮凹槽,摆杆4上的滚子6嵌在凹槽中,从而使摆杆4绕C 轴上下摆动。
同时,又通过偏心轮1’、连杆2、滑杆3使C 轴上下移动。
最后通过在摆杆4的叉槽中的滑块7和铰链G 使冲头8实现冲压运动。
试绘制其机构运动简图,并计算自由度。
解:分析机构的组成:此机构由偏心轮1’(与齿轮1固结)、连杆2、滑杆3、摆杆4、齿轮5、滚子6、滑块7、冲头8和机架9组成。
偏心轮1’与机架9、连杆2与滑杆3、滑杆3与摆杆4、摆杆4与滚子6、齿轮5与机架9、滑块7与冲头8均组成转动副,滑杆3与机架9、摆杆4与滑块7、冲头8与机架9均组成移动副,齿轮1与齿轮5、凸轮(槽)5与滚子6组成高副。
故解法一:7=n 9=l p 2=h p12927323=-⨯-⨯=--=h l p p n F解法二:8=n 10=l p 2=h p 局部自由度1='F11210283)2(3=--⨯-⨯='-'-+-=F p p p n F h l(P30) 2-17:试计算如图所示各机构的自由度。
图a 、d 为齿轮-连杆组合机构;图b 为凸轮-连杆组合机构(图中在D 处为铰接在一起的两个滑块);图c 为一精压机机构。
并问在图d 所示机构中,齿轮3与5和齿条7与齿轮5的啮合高副所提供的约束数目是否相同?为什么?解: a) 4=n 5=l p 1=h p11524323=-⨯-⨯=--=h l p p n Fb) 5=n 6=l p 2=h p12625323=-⨯-⨯=--=h l p p n F12625323=-⨯-⨯=--=h l p p n Fc) 5=n 7=l p 0=h p10725323=-⨯-⨯=--=h l p p n Fd) 6=n 7=l p 3=h p13726323=-⨯-⨯=--=h l p p n F(C 可看做是转块和导块,有1个移动副和1个转动副)齿轮3与齿轮5的啮合为高副(因两齿轮中心距己被约束,故应为单侧接触)将提供1个约束。
机械原理课后习题答案
第四章课后习题4—12图示为一曲柄滑块机构的三个位置,F为作用在活塞上的力转动副A及B上所画的小圆为摩擦圆,试决定在此三个位置时作用在连杆AB上的作用力的真实方向(构件重量及惯性力略去不计)。
解:上图中构件2受压力。
因在转动副A处2、1之间的夹角∠OAB在逐渐减小,故相对角速度ω21沿顺时针方向,又因2受压力,故FR12应切于摩擦圆的下方;在转动副B处,2、3之间的夹角∠OBA在逐渐增大,相对角速度ω23也沿顺时针方向,故FR32应切于摩擦圆的上方。
R32解:上图构件2依然受压力。
因在转动副A处2、1之间的夹角∠OAB逐渐减小,故相对角速度ω21沿顺时针方向,又因2受压力,故F R12应切于摩擦圆的下方;在转动副B处,2、3之间的夹角∠OBA逐渐减小,故相对角速度ω23沿逆时针方向,F R32应切于摩擦圆的下方。
解:上图构件2受拉力。
因在转动副A处2、1之间的夹角∠OAB在逐渐增大,故相对角速度ω21沿顺时针方向,又因2受拉力,故FR12应切于摩擦圆的上方;在转动副B处,2、3之间的夹角∠OBA逐渐减小,故相对角速度ω23沿顺时针方向,FR32应切于摩擦圆的下方。
4-13 图示为一摆动推杆盘形凸轮机构,凸轮1沿逆时针方向回转,F为作用在推杆2上的外载荷,试确定凸轮1及机架3作用给推杆2的总反力FR12及FR32方位(不考虑构件的重量及惯性力,解:经受力分析,FR12的方向如上图所示。
在FR12的作用下,2相对于3顺时针转动,故FR32应切于摩擦圆的左侧。
补充题1 如图所示,楔块机构中,已知γ=β=60°,Q =1000N 格接触面摩擦系数f =0.15,如Q 为有效阻力,试求所需的驱动力F 。
解:对机构进行受力分析,并作出力三角形如图。
对楔块1,R 21R310F F F ++=由正弦定理有21sin(602sin(90R F F ϕϕ+-=))o o ① 对楔块2,同理有R12R320Q F F ++=sin(90sin(602ϕϕ+-=))o o ②sin(602sin(602F Q ϕϕ+=⋅-))o o且有2112R R F F = ,8.53arctgf ϕ==o ③联立以上三式,求解得F =1430.65N2 如图示斜面机构,已知:f (滑块1、2与导槽3相互之间摩擦系数)、λ(滑块1的倾斜角)、Q (工作阻力,沿水平方向),设不计两滑块质量,试确定该机构等速运动时所需的铅重方向的驱动力F 。
机械原理习题及解答.pdf
5-4 何谓重合度 ?重合度的大小与齿数 z 、模数 m、压力角 α 、齿顶高系数 ha* 、顶隙系数 c*
及中心距 a 之间有何关系 ?
答 通常把一对齿轮的实际啮合线长度与齿轮的法向齿距
pb 的比值 ε α。称为齿轮传动的重
合度。重合度的表达式为:
εα =[z 1(tan α al — tan α ’ ) ± z2(tan α a2-tan α’ )/2 π
解:
题图 2-7
1)分析 该机构包括 6 个活动构件,其中导杆与扇形齿轮固联在一起组成构件 联在一起组成构件 6。
2)计算自由度
5,齿轮与指针固
活动构件数为 n 6 ,机构中低副数 PL 8 ,高副数 PH 1 于是求得机构的自由度为:
F 3n 2PL PH 3 6 2 8 1 1
故该机构具有确定的运动。
5-5 齿轮齿条啮合传动有何特点 ?为什么说无论齿条是否为标准安装, 啮合线的位置都不会
改变 ?
答 由于不论齿条在任何位置, 其齿廓总与原始位置的齿廓平行. 而啮合线垂直于齿廓, 因
此,不论齿轮与齿条是否按标准安装,其啮合线的位置总是不变的,节点位置确定,齿轮的
节圆确定; 当齿轮与齿条按标准安装时, 齿轮的分度圆应与齿条的分度线相切。 这时齿轮的
由重合度的计算公式可见, 重合度 ε α与模数 m无关. 随着齿数 z 的增多而加大, 对于
按标准中心距安装的标准齿轮传动, 当两轮的齿数趋于无穷大时的极限重合度 ε α=1.981 此
外重合度还随啮合角 α ’的减小和齿顶高系数 ha* 的增大而增大。 重合度与中心距 a 有关 ( 涉
及啮合角 α’ ) ,与压力角 α、顶隙系数 c* 无关。
节圆与其分度圆重合,齿条的常节线也与其分度线重合。
机械原理课后习题答案.pdf
[解]
(1)取μι作机构运动简图;
μl
=
0.002
m mm
C3
lBC =
l
2 AB
+
l
2 AC
−
l AB
⋅ lAB
⋅ cos135
= 302 + 1002 − 30 ×100 × cos135 = 123 (mm)
B
D
2
1 ω1
A
ϕ1
4
E
(2)速度分析 取C为重合点:C( C2, C3)
vB → vC 2 → vD ,vE → ω2
p(c3)
ω2
2
D
c2
2) 求aC2
aC 2 = aB
+ aCn 2B
+
at C 2B
=
aC 3
+
aCk
2C 3
+ aCr 2C 3
方向: B→A C→B ⊥CB
0 ⊥CБайду номын сангаас向下 ∥BC e
大小: √ √
?
0√
?
E
d
b
其中:
an C 2B
= ω2 2
lBC
=
2.02
4
C P34
1
A P12
题3-1 试求图示各机构在图示位置时全部瞬心。
b) P13
P34 B
3
P 23 →∞
2
P12
A
4
C P14→∞
P24
1
题3-1 试求图示各机构在图示位置时全部瞬心。
c)
P13 P14 C
4
→∞ P 34
M
vM
机械原理 崔岩 张春燕课后习题答案
机械原理崔岩张春燕课后习题答案1、复习思考题1)、机器应具有什么特征?机器通常由哪三部分组成?各部分的功能是什么?2)、机器与机构有什么异同点?3)、什么叫构件?什么叫零件?什么叫通用零件和专用零件?试各举二个实例。
4)、设计机器时应满足哪些基本要求?试选取一台机器,分析设计时应满足的基本要求。
2、填空题1)、机器或机构,都是由组合而成的。
2)、机器或机构的之间,具有确定的相对运动。
3)、机器可以用来人的劳动,完成有用的。
4)、组成机构、并且相互间能作的物体,叫做构件。
5)、从运动的角度看,机构的主要功用在于运动或运动的形式。
6)、构件是机器的单元。
零件是机器的单元。
7)、机器的工作部分须完成机器的动作,且处于整个传动的。
8)、机器的传动部分是把原动部分的运动和功率传递给工作部分的。
9)、构件之间具有的相对运动,并能完成的机械功或实现能量转换的的组合,叫机器。
3、判断题1)、构件都是可动的。
()2)、机器的传动部分都是机构。
()3)、互相之间能作相对运动的物件是构件。
()4)、只从运动方面讲,机构是具有确定相对运动构件的组合。
()5)、机构的作用,只是传递或转换运动的形式。
()6)、机器是构件之间具有确定的相对运动,并能完成有用的机械功或实现能量转换的构件的组合。
()7)、机构中的主动件和被动件,都是构件。
()2 填空题答案1)、构件 2)、构件 3)、代替机械功 4)、相对运动 5)、传递转换 6)、运动制造 7)、预定终端 8)、中间环节 9)、确定有用构件3判断题答案1)、√ 2)、√ 3)、√ 4)、√ 5)、× 6)、√ 7)、√。
机械原理课后全部习题解答
机械原理课后全部习题解答文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]《机械原理》习题解答机械工程学院目录第1章绪论 (1)第2章平面机构的结构分析 (3)第3章平面连杆机构 (8)第4章凸轮机构及其设计 (15)第5章齿轮机构 (19)第6章轮系及其设计 (26)第8章机械运动力学方程 (32)第9章平面机构的平衡 (39)第一章绪论一、补充题1、复习思考题1)、机器应具有什么特征机器通常由哪三部分组成各部分的功能是什么2)、机器与机构有什么异同点3)、什么叫构件什么叫零件什么叫通用零件和专用零件试各举二个实例。
4)、设计机器时应满足哪些基本要求试选取一台机器,分析设计时应满足的基本要求。
2、填空题1)、机器或机构,都是由组合而成的。
2)、机器或机构的之间,具有确定的相对运动。
3)、机器可以用来人的劳动,完成有用的。
4)、组成机构、并且相互间能作的物体,叫做构件。
5)、从运动的角度看,机构的主要功用在于运动或运动的形式。
6)、构件是机器的单元。
零件是机器的单元。
7)、机器的工作部分须完成机器的动作,且处于整个传动的。
8)、机器的传动部分是把原动部分的运动和功率传递给工作部分的。
9)、构件之间具有的相对运动,并能完成的机械功或实现能量转换的的组合,叫机器。
3、判断题1)、构件都是可动的。
()2)、机器的传动部分都是机构。
()3)、互相之间能作相对运动的物件是构件。
()4)、只从运动方面讲,机构是具有确定相对运动构件的组合。
()5)、机构的作用,只是传递或转换运动的形式。
()6)、机器是构件之间具有确定的相对运动,并能完成有用的机械功或实现能量转换的构件的组合。
()7)、机构中的主动件和被动件,都是构件。
()2 填空题答案1)、构件 2)、构件 3)、代替机械功 4)、相对运动 5)、传递转换6)、运动制造 7)、预定终端 8)、中间环节 9)、确定有用构件3判断题答案1)、√ 2)、√ 3)、√ 4)、√ 5)、× 6)、√ 7)、√第二章 机构的结构分析2-7 是试指出图2-26中直接接触的构件所构成的运动副的名称。
机械原理课后答案
机械原理课后习题答案(顺序有点乱,不过不影响)第2章2-1 何谓构件?何谓运动副及运动副元素?运动副是如何进行分类的?答:参考教材5~7页。
2-2 机构运动简图有何用处?它能表示出原机构哪些方面的特征?答:机构运动简图可以表示机构的组成和运动传递情况,可进行运动分析,而且也可用来进行动力分析。
2-3 机构具有确定运动的条件是什么?当机构的原动件数少于或多于机构的自由度时,机构的运动将发生什么情况?答:参考教材12~13页。
2-4 何谓最小阻力定律?试举出在机械工程中应用最小阻力定律的1、2个实例。
2-5 在计算平面机构的自由度时,应注意哪些事项?答:参考教材15~17页。
2-6 在图2-20所示的机构中,在铰链C、B、D处,被连接的两构件上连接点的轨迹都是重合的,那么能说该机构有三个虚约束吗?为什么?答:不能,因为在铰链C、B、D中任何一处,被连接的两构件上连接点的轨迹重合是由于其他两处的作用,所以只能算一处。
2-7 何谓机构的组成原理?何谓基本杆组?它具有什么特性?如何确定基本杆组的级别及机构的级别?答:参考教材18~19页。
2-8 为何要对平面高副机构进行“高副低代"?“高副低代”应满足的条件是什么?答:参考教材20~21页。
2-9 任选三个你身边已有的或能观察到的下列常用装置(或其他装置),试画出其机构运动简图,并计算其自由度。
1)折叠桌或折叠椅;2)酒瓶软木塞开盖器;3)衣柜上的弹簧合页;4)可调臂台灯机构;5)剥线钳;6)磁带式录放音机功能键操纵机构;7)洗衣机定时器机构;8)轿车挡风玻璃雨刷机构;9)公共汽车自动开闭门机构;10)挖掘机机械臂机构;…。
2-10 请说出你自己身上腿部的髋关节、膝关节和踝关节分别可视为何种运动副?试画出仿腿部机构的机构运动简图,并计算其自由度。
2-11图示为一简易冲床的初拟设计方案。
设计者的思路是:动力由齿轮j输入,使轴A连续回转;而固装在轴^上的凸轮2与杠杆3组成的凸轮机构使冲头4上下运动,以达到冲压的目的。
《机械原理》第二版(刘会英 杨志强 张明勤 著)课后习题答案 机械工业出版社
D1D圆弧的中间. 5)曲柄应增长到 400mm. 2-6 答案:1)机构处在图示位置时,其机构的传动角γ如图所示.
γ=∠CBE
COSγ=BE/BC
即 COSγ=(γSinα+e)/L
……①
从上式可知,r↑,e↑均可使传动角γ↓;L↑使γ↑。
2)从上式可知,最小传动角出现在AB杆垂直于导路时.(即α=900时)
综上分析:AB 杆的取值为: 15<lAB<45 或者者 55<lAB<115
2-3 答案:由于lAB+lAD≤lBC+lCD,且以最短杆AB的邻边为机架。故该铰链四杆机构 为曲柄摇杆机构。AB为曲柄。
1)以曲柄AB为主动件,作业摇杆CD的极限位置如图所示。
∴AC1=lAB+lBC=80 AC2=lBC-lAB=24 极位夹角θ: θ=COS-1∠C2AD-COS-1∠C1AD =COS-1[(AC 2 2+AD2-C 2 D2)/2AC 2 *AD]-COS-1[(AC 1 2+AD2-C 1 D2)/
为机架,则只能最短杆即为 AD=30,则最长杆可能为 BC 杆,也可能是 AB 杆。
1)1) 若AB杆为最长杆:lAD+lAB≤lBC+lCD∴lAB≤55 即50<lAB≤55 2)2) 若BC杆为最长杆:lAD+lBC≤lAB+lCD∴lAB≥45 即45≤lAB<50 ∴若该机构为双曲柄机构,则AB杆杆长的取值范围为:45≤lAB≤55 3)3) 欲使该机构为双摇杆机构,则最短杆与最长杆之和应大于另外二杆之和。现在
以EF为原动件时:
由2个Ⅱ级基本杆组组成,机构级别为2级。 C)F=3×7-2×10=1 其中C点为复合铰链,分别由 2、3、4构件在C点构成 复合铰。以AB为原动件时:
机械原理习题及课后答案(图文并茂)
2
1 5
解答:原机构自由度 F=33- 2 4-1 = 0,不合理 , 改为以下几种结构均可:
2-3 图 2-39 所示为一小型压力机,其中,1 为滚子;2 为摆杆;3 为滑块;4 为滑杆;5 为齿轮及凸轮;6 为连杆;7 为齿轮及偏心轮;8 为机架;9 为压头。试绘制 其机构运动简图,并计算其自由度。
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力通根保1据过护生管高产线中工敷资艺设料高技试中术卷资0配不料置仅试技可卷术以要是解求指决,机吊对组顶电在层气进配设行置备继不进电规行保范空护高载高中与中资带资料负料1荷试试下卷卷高问总中题体资2配2料,置试而时卷且,调可需控保要试障在验各最;类大对管限设路度备习内进题来行到确调位保整。机使在组其管高在路中正敷资常设料工过试况程卷下中安与,全过要,度加并工强且作看尽下护可都关能可于地以管缩正路小常高故工中障作资高;料中对试资于卷料继连试电接卷保管破护口坏进处范行理围整高,核中或对资者定料对值试某,卷些审弯异核扁常与度高校固中对定资图盒料纸位试,置卷编.工保写况护复进层杂行防设自腐备动跨与处接装理地置,线高尤弯中其曲资要半料避径试免标卷错高调误等试高,方中要案资求,料技编试术写5、卷交重电保底要气护。设设装管备备置线4高、调动敷中电试作设资气高,技料课中并术3试、件资且中卷管中料拒包试路调试绝含验敷试卷动线方设技作槽案技术,、以术来管及避架系免等统不多启必项动要方方高式案中,;资为对料解整试决套卷高启突中动然语过停文程机电中。气高因课中此件资,中料电管试力壁卷高薄电中、气资接设料口备试不进卷严行保等调护问试装题工置,作调合并试理且技利进术用行,管过要线关求敷运电设行力技高保术中护。资装线料置缆试做敷卷到设技准原术确则指灵:导活在。。分对对线于于盒调差处试动,过保当程护不中装同高置电中高压资中回料资路试料交卷试叉技卷时术调,问试应题技采,术用作是金为指属调发隔试电板人机进员一行,变隔需压开要器处在组理事在;前发同掌生一握内线图部槽纸故内资障,料时强、,电设需回备要路制进须造行同厂外时家部切出电断具源习高高题中中电资资源料料,试试线卷卷缆试切敷验除设报从完告而毕与采,相用要关高进技中行术资检资料查料试和,卷检并主测且要处了保理解护。现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
(完整版)机械原理课后全部习题答案
机械原理课后全部习题答案目录第1章绪论 (1)第2章平面机构的结构分析 (3)第3章平面连杆机构 (8)第4章凸轮机构及其设计 (15)第5章齿轮机构 (19)第6章轮系及其设计 (26)第8章机械运动力学方程 (32)第9章平面机构的平衡 (39)第一章绪论一、补充题1、复习思考题1)、机器应具有什么特征?机器通常由哪三部分组成?各部分的功能是什么?2)、机器与机构有什么异同点?3)、什么叫构件?什么叫零件?什么叫通用零件和专用零件?试各举二个实例。
4)、设计机器时应满足哪些基本要求?试选取一台机器,分析设计时应满足的基本要求。
2、填空题1)、机器或机构,都是由组合而成的。
2)、机器或机构的之间,具有确定的相对运动。
3)、机器可以用来人的劳动,完成有用的。
4)、组成机构、并且相互间能作的物体,叫做构件。
5)、从运动的角度看,机构的主要功用在于运动或运动的形式。
6)、构件是机器的单元。
零件是机器的单元。
7)、机器的工作部分须完成机器的动作,且处于整个传动的。
8)、机器的传动部分是把原动部分的运动和功率传递给工作部分的。
9)、构件之间具有的相对运动,并能完成的机械功或实现能量转换的的组合,叫机器。
3、判断题1)、构件都是可动的。
()2)、机器的传动部分都是机构。
()3)、互相之间能作相对运动的物件是构件。
()4)、只从运动方面讲,机构是具有确定相对运动构件的组合。
()5)、机构的作用,只是传递或转换运动的形式。
()6)、机器是构件之间具有确定的相对运动,并能完成有用的机械功或实现能量转换的构件的组合。
()7)、机构中的主动件和被动件,都是构件。
()2 填空题答案1)、构件2)、构件3)、代替机械功4)、相对运动5)、传递转换6)、运动制造7)、预定终端8)、中间环节9)、确定有用构件3判断题答案1)、√2)、√3)、√4)、√5)、×6)、√7)、√第二章 机构的结构分析2-7 是试指出图2-26中直接接触的构件所构成的运动副的名称。
机械原理最全课后习题答案
第二章 平面机构的结构分析题2-1 图a 所示为一简易冲床的初拟设计方案。
设计者的思路是:动力由齿轮1输入,使轴A 连续回转;而固装在轴A 上的凸轮2与杠杆3组成的凸轮机构使冲头4上下运动,以达到冲压的目的。
试绘出其机构运动简图(各尺寸由图上量取),分析是否能实现设计意图,并提出修改方案。
解:1)取比例尺,绘制机构运动简图。
(图2-1a) 2)要分析是否能实现设计意图,首先要计算机构的自由度。
尽管此机构有4个活动件,但齿轮1和凸轮2是固装在轴A上,只能作为一个活动件,故3=n3=l p 1=h p01423323=-⨯-⨯=--=h l p p n F原动件数不等于自由度数,此简易冲床不能运动,即不能实现设计意图。
分析:因构件3、4与机架5和运动副B 、C 、D 组成不能运动的刚性桁架。
故需增加构件的自由度。
3)提出修改方案:可以在机构的适当位置增加一个活动构件和一个低副,或用一个高副来代替一个低副。
(1) 在构件3、4之间加一连杆及一个转动副(图2-1b)。
(2) 在构件3、4之间加一滑块及一个移动副(图2-1c)。
(3) 在构件3、4之间加一滚子(局部自由度)及一个平面高副(图2-1d)。
1(c)题2-154364(a)53221讨论:增加机构自由度的方法一般是在适当位置上添加一个构件(相当于增加3个自由度)和1个低副(相当于引入2个约束),如图2-1(b )(c )所示,这样就相当于给机构增加了一个自由度。
用一个高副代替一个低副也可以增加机构自由度,如图2-1(d)所示。
题2-2 图a所示为一小型压力机。
图上,齿轮1与偏心轮1’为同一构件,绕固定轴心O连续转动。
在齿轮5上开有凸轮轮凹槽,摆杆4上的滚子6嵌在凹槽中,从而使摆杆4绕C轴上下摆动。
同时,又通过偏心轮1’、连杆2、滑杆3使C轴上下移动。
最后通过在摆杆4的叉槽中的滑块7和铰链G使冲头8实现冲压运动。
试绘制其机构运动简图,并计算自由度。
机械原理第九版课后题答案
机械原理第九版课后题答案1. 多杆杆机构1.题目:一个三杆杆机构可构成一个正运动副吗?答案:一个三杆杆机构可以构成一个正运动副,只需要其中两个杆满足以下条件即可:–杆的长度之和大于第三个杆的长度。
–两个杆的长度之差小于第三个杆的长度。
2.题目:判定一个六杆机构能否构成一个运动副。
答案:判定一个六杆机构能否构成一个运动副,可以有两种方法:1.根据杆的数目和自由度之间的关系,自由度即为杆数减去2。
•六杆机构的自由度为6-2=4,而运动副的自由度为1,因此六杆机构不能构成一个运动副。
2.根据六杆机构的几何特性,判定它是否为运动副,如判断杆的长度是否满足某些条件。
3.题目:一个六杆机构有一个杆为固定杆,其他杆均可任意旋转,是否可以构成一个四杆机构?答案:一个六杆机构有一个杆为固定杆,其他杆均可任意旋转,可以构成一个四杆机构。
由于固定杆不会运动,因此可以将它从机构中去掉,这样剩下的五杆就构成了一个四杆机构。
2. 齿轮传动4.题目:两个齿轮的模数分别为4和6,齿数分别为24和36,求它们的传动比。
答案:传动比可以通过齿轮的齿数比和模数比来计算。
传动比等于从驱动齿轮到被动齿轮的转速比,即被动齿轮的齿数除以驱动齿轮的齿数。
传动比 = 36 / 24 = 1.55.题目:一个齿轮传动系统,输入齿轮的转速为2000 rpm,输出齿轮的齿数为40。
如果两个齿轮的模数相等,求输出齿轮的转速。
答案:齿轮传动系统的转速比等于被动齿轮的齿数除以驱动齿轮的齿数。
假设输入齿轮的转速为N1,输出齿轮的转速为N2,输入齿轮的齿数为Z1,输出齿轮的齿数为Z2,则有公式:转速比 = N2 / N1 = Z2 / Z1在本题中,已知N1 = 2000 rpm,Z2 = 40,且两个齿轮的模数相等,即Z1 = Z2,所以有:N2 / 2000 = 40 / 40N2 = 2000 rpm6.题目:一个齿轮传动系统中,输入齿轮的齿数为20,传动比为4,求输出齿轮的齿数。
机械原理课后题答案
机械原理课后题答案1. 列举并解释一下机械原理中的三大支配因素。
- 动力:指施加在机构元件上的力或力矩,用来驱动机构执行运动或产生工作效果。
- 运动:指机构元件相对运动的方式、路径和速度。
- 连结:指机构元件之间的连接方式,包括直接和间接连接两种形式。
2. 解释一下机械原理中的三大运动副类型。
- 滑动副:两个机构元件之间只能沿着一条确定的直线运动,如推拉杆、滑块等。
- 旋转副:两个机构元件之间只能绕一条确定的轴线旋转运动,如轴承、齿轮等。
- 滚动副:两个机构元件之间存在滚动运动,如滚子轴承、滚珠丝杠等。
3. 什么是机械原理中的受力分析方法?受力分析方法是指通过分析机构元件之间的力和力矩关系,找出各个元件的受力情况,以解决机构设计和运动性能分析的方法。
常用的受力分析方法包括力平衡法、力矩平衡法、虚功原理等。
4. 什么是力平衡法?力平衡法是一种受力分析方法,通过分析机构元件之间的力平衡关系,得到各个元件所受力的大小和方向。
它基于牛顿第一定律,即所有物体受力之和为零,可用来解决机构中受力平衡问题,确定力的大小和方向。
5. 解释一下力矩平衡法。
力矩平衡法是一种受力分析方法,通过分析机构元件之间的力矩平衡关系,得到各个元件所受力的大小和方向。
在机械原理中,力矩平衡法常被用于解决转动副运动问题,根据力矩平衡条件,求解未知力矩和力矩的方向。
6. 什么是虚功原理?虚功原理是一种受力分析方法,通过分析机构元件之间的虚功平衡关系,得到各个元件所受力的大小和方向。
虚功原理是基于功率平衡的原理,即虚功平衡原理,在机械原理中常用于分析运动副的受力情况和功率传递效率。
7. 介绍一下机械原理中的摩擦现象。
摩擦是指两个物体相对运动时由接触面之间的相互作用力导致的阻碍运动的力。
在机械运动中,正常情况下不可避免地存在摩擦力,摩擦力会导致机械能的损失、能量的消耗和部件的磨损。
因此在机械原理中需要对摩擦进行充分的考虑和分析。
机械原理课后题答案
选择填空:(1)当机构的原动件数目小于或大于其自由度数时,该机构将( B )确定运动。
A.有;B.没有;C.不一定;(2)在机构中,某些不影响机构运动传递的重复部分所带入的约束为( A )。
A.虚约束;B.局部自由度;C.复合铰链;(3)机构具有确定运动的条件是(B )。
A.机构自由度数小于原动件数;机构自由度数大于原动件数;B.机构自由度数等于原动件数;(4)用一个平面低副联二个做平面运动的构件所形成的运动链共有( B )个自由度。
A.3;B.4;C.5;D.6;(5)杆组是自由度等于( A )的运动链。
A.0;B.1;C.原动件数。
(6)平面运动副所提供的约束为( D )。
A.1;B.2;C.3;D.1或2;(7)某机构为Ⅲ级机构,那么该机构应满足的必要充分条件是( D )。
A.含有一个原动件组;B.原动件;C.至少含有一个Ⅱ级杆组;D.至少含有一个Ⅲ级杆组;(8)机构中只有一个(D )。
A.闭式运动链;B.原动件;C.从动件;D.机架。
(9)具有确定运动的差动轮系中其原动件数目( C )。
A.至少应有2个;B.最多有2个;C.只有2个;D. 不受限制。
(10)在加速度多边形中,连接极点至任一点的矢量,代表构件上相应点的____B__加速度;而其它任意两点间矢量,则代表构件上相应两点间的______加速度。
A.法向; 切向B.绝对; 相对C.法向; 相对D.合成; 切向(11)在速度多边形中,极点代表该构件上_____A_为零的点。
A.绝对速度B.加速度C.相对速度D.哥氏加速度(12)机械出现自锁是由于( A )。
A. 机械效率小于零;B. 驱动力太小;C. 阻力太大;D. 约束反力太大;(13)当四杆机构处于死点位置时,机构的压力角_B _。
A. 为00;B. 为090;C. 与构件尺寸有关;(14)四杆机构的急回特性是针对主动件_D _而言的。
D. 等速运动;E. 等速移动;F. 变速转动或变速移动;(15)对于双摇杆机构,最短构件与最长构件之和_H _大于其余两构件长度之和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
瞬心P13为构件3的绝对瞬心,构件3上各点在该位置的运动是绕P13的 转动,则距P13越近的点,速度越小,过作BC线的垂线P13 E⊥BC,垂 足E点即为所求的点。
E
E点距C点距离为 μl ⋅ CE = 2 × 34.3 = 68.6 (mm) C P34
ω3
=
vB
P13B ⋅ μl
=
vE
P13E ⋅ μl
4 6
(2-3)
F = 3n − (2pl + ph )
1
= 3× 3 − (2 × 4 + 0) = 1
F = 3n − (2pl + ph − p') − F' = 3 × 4 − (2 × 5 + 1 − 0) − 0
=1
F = 3n − (2pl + ph − p') − F' = 3 ×7 − (2 × 8 + 2 − 0) − 2 =1
(1) 求vC
vC = vB + vCB
(2) 求vE: 用速度影像法 (3) 求vF
vF = vE + vFE
B vB
A
b (c) (e)
D C
E G
F
p(a, d, g ) (f )
题3-8 b) 解
在图示各机构中,设已知各构件的尺寸,原动件以等角速度ω1顺时针方
向转动;试以图解法求机构在图示位置时构件3上C点的速度及加速度。
[解]
(1)取μι作机构运动简图;
(2)速度分析
μl
=
l AB AB
⎛ ⎜⎝
m mm
⎞ ⎟⎠
C
3
D
取B为重合点:B(B1, B2, B3)
2
4
vB2 (= vB1) → vB3 → vC 3
1) 求vB2 vB 2 = vB1 = ω1 l AB
B B(B1, B2, B3)
1 ω1
A
b)
2) 求vB3
ω4
= ω2
P12 P24 P14 P24
P12P24 = 0 ⇒ ω4 = 0 ⇒ vC = 0
则必然是杆2和杆3 共线的位置,有两 共线位置:
P24
B P23
3
ϕ1
2A
P12
1
C P34
ϕ2
E
4 D
P14
①重叠共线位置 ϕ1 = 227
P13
②拉直共线位置 ϕ2 = 26
题3-5
• 在图示的各机构中,设已知各构件的尺寸及点B的速度,试作出 其在图示位置时的速度多边形。
4
C P34
1
A P12
题3-1 试求图示各机构在图示位置时全部瞬心。
b) P13
P34 B
3
P 23 →∞
2
P12
A
4
C P14→∞
P24
1
题3-1 试求图示各机构在图示位置时全部瞬心。
c)
P13 P14 C
4
→∞ P 34
M
vM
3
B
P23 P24
2 P12
A
1
题3-2 在图示的齿轮-连杆组合机构中, 试用瞬心法求齿轮1和3的传动比ω1/ ω3 。
(1)未刹车时 n=6,pl=8,ph=0,F=2
(2)刹紧一边时 n=5,pl=7,ph=0,F=1
(3)刹紧两边时 n=4,pl=6,ph=0,F=0
《机械原理》作业题解
第三章 平面机构的运动分析
题3-1 试求图示各机构在图示位置时全部瞬心。
a)
P14→∞ P13→∞
B
3
P23
P24
2
P14→∞
C
F
A
B
E
vB
D
a)
D
B
vB
C
A
E
G F
b)
题3-5 解
a) 解: 顺序 vB → vC、vD → vE
(1) 求vC和vD
F
vC = vB + vCB
vD = vB + vDB
(2) 求vE
vE = vC + vEC = vD + vED
C
A
B
E
vB
D p(a, f )
b
d
c
e
题3-5 解
b) 解: 顺序 vB → vC → vE → vF
《机械原理》作业题解
第二章 机构的结构分析
F=3n-2pl-ph =3× 3-2×4- 1 =0
F = 3n − (2pl + ph ) = 3× 4 − (2 × 5 + 1) = 1
7
8
5
9
4 3
2
1-1'
F = 3n − (2pl + ph − p') − F' = 3 × 8 − (2 × 10 + 2 − 0) −1 =1
P24
B P23
3
2A
P12
1
4
D
P14
vE
=
vB
P13 E P13B
= ω2lAB
P13 E P13B
= 10 × 0.06 × 70.3 118.5
=
0.36
(m /
s)
P13
题3-4解
3)当vC=0时, φ角之值(有两个解)?
vC = ω4 ⋅ lCD
当ω4=0时, vC=0,而
当P24与P24 重合时
• 1)当φ=165时,点C的速度vC ; • 2)当φ=165时,构件3的BC线上(或其延长线上)速度最小的一点E
的位置及其速度的大小 ;
• 3)当vC=0时, φ角之值(有两个解)。
题3-4解
取μι作机构运动简图;并求出各瞬心如图所示。
μl
=2
mm mm
1)当φ=165时,点C的速度vC =?
解: 1. 绘机构运动简图 2.求瞬心P13 3.求ω1/ ω3
ω1 = P36 P13 ω3 P16 P13
P13
P23
5
D
P36
3
6
2
C
P12
4
B
1
P16
A
题3-4
• 在图示的四杆机构中,lAB=60 mm, lCD=90 mm ,lAD= lBC=120 mm,
ω2 = 10 rad/s,试用瞬心法求:
利用瞬心P13
P24
2A
瞬心P13为构件
P12
3的绝对瞬心
1
C P34
4 D
P14
ω3
=
vB
P13B ⋅ μl
=
vC
P13C ⋅ μl
vC
=
vB
P13C P13B
= ω2lAB
P13C P13B
= 10 × 0.06 × 78.2 118.5
=
0.40
(m / s)
P13
题3-4解
2)当φ=165时,构件3的BC线上(或其延长线上)速度最小的 一点E的位置及其速度的大小
p' = 2p'l + p'h − 3n' = 2 × 3 + 0 − 3× 2 = 0
p' = 2p'l + p'h − 3n' = 2 ×10 + 0 − 3×6 = 2
F = 3n − (2pl + ph − p') − F' = 3 × 11 − (2 × 17 + 0 − 2) − 0 =1
vB3 = vB2 + vB3B2
方向: ⊥BD ⊥BA ∥CD
大小: ?
vP 24 = ω2 ⋅ P12 P24μl = ω4 ⋅ P14 P24μl
利用瞬心P24
⇒ ω4
= ω2
Байду номын сангаас
P12 P24 P14 P24
= 10 × 48.5 108.5
=
4.47 (rad
/ s)
vC = ω4 ⋅ lCD = 4.47 × 0.09 = 0.40 (m / s)
3
解法2:
B P23