隐函数和参数方程求导

合集下载

隐函数及参数方程确定函数求导法则

隐函数及参数方程确定函数求导法则
求抛射体在时刻 t 的运动速度的大小和方向.
解: 先求速度大小:
速度的水平分量为
dx dt

v1
,
垂直分量为
dy dt
v2
gt
,
故抛射体速度大小
v
(dx)2 (dy)2 dt dt
v12(v2g)t2
再求速度方向 (即轨迹的切线方向): y
设 为切线倾角, 则
tan d y

dy dt
d x v2 gt
o
x
dx
dt
v1
抛射体轨迹的参数方程
x y
v1t v2t
12
gt2
速度的水平分量
dx dt

v1
,
垂直分量
dy dt
v2
gt ,
速度的方向 tan v2 gt
v1
y
在刚射出 (即 t = 0 )时, 倾角为
arctanv2

(x2)/+(y2)/=(R2)/
2x 2 y dy 0 dx
dy x dx y
例2 求由方程ysinx+lny=1所确定的隐
函数的导数 y
/ x
解 将方程的两边同时对 x 求导,得
yx/
sin
x

y
cos
x

1 y
yx/

0
整理得
yx/
y2 cos x
1 y sin x
例3. 求由方程 y52yx3x70确定的隐函数
yy(x) 在
x
=
0
处的导数
dy 方程两边对 x 求导
ddx(y52yx3x7)0

隐函数与参数方程求导法则

隐函数与参数方程求导法则
值得注意的是,有些二元方程 确定的隐函数 并不能用代数方法从中解出来,换句话说,隐函数不是初等函数或不能化为显函数。关于隐函数的存在性、连续性和可微性等理论问题将在第十一章介绍。本节所讨论的隐函数都是存在的,可导的。直接对隐函数所满足的方程求导,往往更便利些。
由于二元方程 确定的隐函数 ,有
.
应用复合函数求导法则对恒等式两端求导数,即可求得隐函数的导数。下面举例说明隐函数的求导法则:
解已知弹头关于时间 的弹道曲线的参数方程是
其中 是重力加速度(常数).由参数方程的求导法,有
设在时刻 弹头的运动方向与地面的夹角为 ,有

, .
解得 .在点 的切线斜率 .从而,切线方程是

.
因为点 在双曲线上,所以 .于是,所求得切线方程是
.
当 时,有 .过双曲线 上点 的切线方程是 ,也满足(1)式.
例4证明抛物线 上任意点的切线在两个坐标轴上截距的和等于 .
证明在抛物线上任取一点 ,即 .求抛物线在点 的切线斜率 .由隐函数求导法则,有
定义设有两个非空数集A与B.若 ,由二元方程F(x,y)=0对应唯一一个 ,则称此对应关系 (或写为y= (x))是二元方程F(x,y)=0确定的隐函数。
由隐函数的定义看到,二元方程F(x,y)=0确定的隐函数y= (x)( , )必是二元方程F(x,y)=0的解,因此, ,有
F[x,f(x)]=0 (或F[x,f(x)] 0).
与 ,且
于是,二元方程F(x,y)=x +y -a =0在A=[-a,a]确定了两个连续的隐函数。
与 。
这两个隐函数的图像是以原点为心以a为半径的在区间 的上半圆周与下半圆周,如图5.5
由此可见,所谓隐函数就是对应关系 不明显的隐含在二元方程之中,相对隐函数来说,对应关系 “明显”的函数,例如,

隐函数和参数方程求导、相关变化率

隐函数和参数方程求导、相关变化率
#
x= t t-1 例 6 求曲线 在 t= 0 点处的切线方程. y 1+t e y - dx 解: 令 t 0 得切点 (0 , 1) , 2t 1 dt
y dy dy dy e 由隐函数求导法: e y te y 解得 dt dt dt 1 te y dy dy 斜率 dt e 1 dx t 0 dx dt t 0
证毕 #
记住方法!
参数方程求二阶导数的 方法:
ψ t 将一阶导函数视作复合 关系 y = , t= 1 x t

d2y d dt d y d ψ t 1 = y = = = 2 dx dx dt dx dt t t
解: 如图所示 dx 水平速度 v x = =v0 cos θ dt dy 垂直速度 v y = =v0 sin θ -g t dt
y
vy v0 θ
α
v vx x
2
0
2
则t 时刻炮弹速度的
2 2
v0 sin θ-gt = 大小:v= v x +v y = v0 cos θ +
dy dy dt v0 sin θ- gt 方向: tan α = = = dx dx v0 cos θ dt
证:
由条件 x= t 单调、可导,且 t 0 ,
则反函数 t= 1 x 存在且可导, dt 1 = dx t

y= t , t= 1 x ,
由复合函数求导法则有 dy dy dy dt 1 = = t = dt dx dt dx t dx dt
例3
解:
设 x , y 满足方程 cos x =sin y , 求 y .

D3_4 隐函数、参数方程的求导

D3_4 隐函数、参数方程的求导
则当
t , t 均可导, 且
t 0 时, 有:
(t ) 0
d y d y d t d y 1 t d t ; d x d t d x d t d x t d t dt
时, 有
F x, y x 0, x I 成立, 则称 F x, y 0 确定了区间 I
y 若从方程 F x, y 0 中能求解出函数: y x 或 x x y
则称该隐函数可以被显化。
3 例如: 方程 x y 3 1 0 就确定了一个显函数 y x 1 ;
求抛射体在时刻 t 的运动速度的大小和方向?
解: 先求速度大小:
dx dy 速度的水平分量为: v1 , 垂直分量为: v2 gt , dt dt
故抛射体速度大小
dx dy v dt dt
再求速度方向 设 为切线倾角, 则
2
2
v v2 gt
dy
d y sin x d cos x y 0
y cos x sin x y
sin x y sin x
dx
y cos x sin x y dy 由此得: sin x y sin x dx
机动 目录 上页 下页 返回 结束
说明:
1) 对幂指函数
y u
v
可用对数求导法求导 :
ln y v ln u
1 u v y v ln u y u uv v y u v ln u u
注意:
dy dv v 1 du v u ln u vu dx dx dx

第四部分隐函数与参数方程的求导法教学课件

第四部分隐函数与参数方程的求导法教学课件

则称此函数为由参数方程所确定的函数.
例如
x 2t,
y
t
2
,
t x 2
消去参数 t
y t2 ( x)2 x2 24
y 1 x 2
问题: 若消参困难或无法消参,如何求导?
一 般 地, 给 了 参 数 方 程
x (t)
y
(t
)
设函数x (t)单调,可导,且'(t) 0
则由反函数求导法则知 :
() dt dx
dx
dt
dt
dt
例7
求摆线
x y
a(t a(1
sin t) cos t)
在t
2
处的切线
方程 .
dy
解 dy
dx
dt dx
a sin t sin t a a cos t 1 cos t
dt
dy dx
t 2
sin
1
2 cos
1.
2
当 t 时, x a( 1), y a.
例10 一汽球从离开观察员500米处离地面铅直
上升,其速率为140米 / 秒.当气球高度为500米时,
观察员视线的仰角增加率是多少?
解 设气球上升t秒后, 其高度为h米, 观察员视线
的仰角为 , 则
tan h
500
上式两边对t求导,得 sec2 d 1 dh
dt 500 dt dh 140(米 / 秒), 当 h 500时, sec2 2
1 y cos x ln x sin x 1
y
x
y y(cos x ln x sin x 1 ) x
x sin x (cos x ln x sin x ) x

3.3隐函数与参数方程求导法则

3.3隐函数与参数方程求导法则

(t ) 0 时, 有
例5 已知圆的参数方程为


dy dy dx (a sin t ) ' a cos t / cos t dx dt dt (a cos t ) ' a sin t
参数方程所确定的函数的求导步骤是:先求 和 的导数,再求它们的商。因而,利用 求参数方程所确定的函数的导数可以用 D[y , t]/ D[x , t]
(3 y 2 x 0)
2
y ' |(1,1) 1
则所求切线方程为

y 1 (1)( x 1)
x y2 0
求隐函数的导数是由求导和解方程两个步骤组成. 因而,在 Mathematica 中可使用D 和 Solve 语句, 求由方程 F ( x, y) 0 所确定的隐函数的导数。
注意:
ln y v ln u 1 u v y v ln u y u u v v y u ( v ln u ) u y u v ln u v vu v 1 u
按幂函数求导公式
按指数函数求导公式
2) 有些显函数用对数求导法求导很方便 . 例如,
例3 求由方程 dy 。 dx 解
x 4 y 4 所确定的隐函数的导数
2 2
方程两边求导,得
从求导结果中解出隐函数的导数:
或者将两个步骤合并为
注意 在

意义是 的一阶导数。
一样的,都表示函数
例4
求方程 导数。
所确定的隐函数的


说明:
1) 对幂指函数 y u v 可用对数求导法求导 :
例1 求由方程 y 1 xe
y

隐函数及参数方程所表示函数的求导法

隐函数及参数方程所表示函数的求导法

x (t ), y (t ),
t [ , ]为参数 .
若x (t )与y (t )都可导,且 (t ) 0. 又x (t )存在
反函数 t 1 ( x),则y为x的复合函数 y ( 1 ( x)) ,即
y (t ),t 1 ( x).
Yunnan University
7
§6. 隐函数及参数方程所表示函数的求导法
由复合函数与反函数的 求导法则,有
dy dy dy dt (t ) dt 1 (t ) ( ( x)) . dx dt dx (t ) dx dt
这即是参数方程所表示 函数的求导法,从而导 函数的
§6. 隐函数及参数方程所表示函数的求导法 一、隐函数求导法
设二元方程 F ( x, y) 0
确定了唯一的单值可导函数y f ( x),求 dy . dx
例如: F ( x, y) x 2 y 2 R2 0可确定隐函数
y R 2 x 2,x [ R, R],y [0, R]; 和 y R 2 x 2,x [ R, R],y [ R,0].
4
§6. 隐函数及参数方程所表示函数的求导法
x2 y2 例3. 求 垂 直 于 直 线 l : 2 x 4 y 3 0并 与 双 曲 线 1 2 7 相切的直线方程。
解: 设双曲线上一点 ( x, y)的切线斜率为 k,则由隐函数求
导法,有
2x 2 y 7x y 0, 即 k y . 2 7 2y

y y( x) x x . y ( x) y
方 法I : 对 于 由 方 程 F ( x, y) 0确 定 的 隐 函 数 , 只 需 用 应复 合 函 数 的 求 导 法 , 对 恒 等 式方 或程 两 端 关 于 x求 导 数 , 即 可 得 隐 函 数的导数(注意 y是x的 函 数 ) .

隐函数及参数方程求导

隐函数及参数方程求导

隐函数及参数方程求导一、隐函数求导1.1隐函数的定义在数学中,对于一个方程y=f(x)可能存在的解x=g(y)可以表示为隐函数。

在隐函数中,无法通过常规的代数运算将自变量和因变量分离。

1.2隐函数求导的方法隐函数求导是指在一个隐函数方程中,通过对x或y的求导来求解另一个变量。

设隐函数方程为F(x, y) = 0,其中x为自变量,y为因变量。

要求隐函数的导数dy/dx,可以采用如下步骤:1. 对方程两边同时对x求导,得到:∂F/∂x + (∂F/∂y)(dy/dx) = 0。

2. 将dy/dx项移到方程左边,得到:dy/dx = - (∂F/∂x) / (∂F/∂y)。

1.3隐函数求导的例题考虑方程x^2 + y^2 = 1,我们需要求解dy/dx。

根据求导公式,将方程两边对x求导,得到:2x + 2y(dy/dx) = 0。

将dy/dx项移到方程左边,并且整理方程,得到:dy/dx = - x / y。

2.1参数方程的定义在数学中,一个方程系统中的自变量和因变量都是以参数的形式表示的,这样的方程系统称为参数方程。

参数方程可以表示为x=f(t)和y=g(t),其中x和y是自变量,而t则是一个参数。

2.2参数方程求导的方法参数方程求导是指在一个参数方程中,通过对参数t的求导来求解x和y的导数。

设参数方程为x = f(t)和y = g(t),我们需要求解dx/dt和dy/dt。

1. 对x = f(t)和y = g(t)两个方程同时对t求导,得到:dx/dt =f'(t)和dy/dt = g'(t)。

2. 这样我们就得到了x和y对t的一阶导数,然后可以通过dx/dt和dy/dt得到dy/dx,即:dy/dx = (dy/dt) / (dx/dt) = (g'(t)) / (f'(t))。

2.3参数方程求导的例题考虑参数方程x = cos(t)和y = sin(t),我们需要求解dy/dx。

隐函数和参数方程求导

隐函数和参数方程求导

得相关变化率之间的关系式 求出未知的相关变化率
16
例7. 一气球从离开观察员500 m 处离地面铅直上升, 其速率为 140 m min , 当气球高度为 500 m 时, 观察员
视线的仰角增加率是多少? 解: 设气球上升 t 分后其高度为h , 仰角为 , h h 则 tan 500 两边对 t 求导 500 d 1 dh 2 sec 2 1 tan 2 sec d t 500 d t dh 已知 140 m min , h = 500m 时, tan 1 , sec 2 2 , dt d 1 1 ( rad/ min ) 140 17 d t 2 500
两边取对数
u ( ln u ) u
1 ln y ln x 1 ln x 2 ln x 3 ln x 4 2 对 x 求导
y 1 1 1 1 1 y 2 x 1 x 2 x 3 x 4



1 1 1 1 x 1 x 2 x 3 x 4
10
(t ) 0 时, 有
若上述参数方程中 则由它确定的函数
二阶可导, 且
可求二阶导数 .
x (t ) 利用新的参数方程 d y (t ) ,可得 dx (t ) d d y dx d 2 y d (d y ) ( ) d t dx d t d x 2 dx dx (t ) (t ) (t ) (t ) (t ) 2 (t )
18
内容小结
1. 隐函数求导法则 直接对方程两边求导
2. 对数求导法 : 适用于幂指函数及某些用连乘, 连除表示的函数 3. 参数方程求导法
转化

隐函数和参数方程求导

隐函数和参数方程求导

隐函数和参数方程求导
隐函数求导:隐函数求导是指对于一个由两个或多个未知量的函数所组成的方程,通过对其中的一个未知量进行求导,得到关于该未知量的导数表达式。

常见的隐函数求导问题可以通过链式法则来解决。

考虑一个隐函数方程F(x, y) = 0,其中x和y是两个未知量,我们希望对该方程进行求导,得到关于y的导数dy/dx。

首先,我们假设y是关于x的函数,即y=f(x),那么原方程可以重写为F(x,f(x))=0。

然后,我们对该方程两边同时对x求导,根据链式法则,可以得到:∂F/∂x + ∂F/∂y * dy/dx = 0。

最后,通过对这个方程关于y求导,我们可以解出dy/dx的表达式:dy/dx = - (∂F/∂x) / (∂F/∂y)。

参数方程求导:参数方程是指将变量x和y都表示为一个参数t的函数形式,即x = f(t)和y = g(t)。

参数方程求导可以通过对这两个函数分别对t求导,然后利用导数的链式法则来得到关于t的导数dt/dx和
dt/dy。

假设x = f(t)和y = g(t),我们希望求导dx/dt和dy/dt。

首先,对x = f(t)对t求导,得到dx/dt;
然后,对y = g(t)对t求导,得到dy/dt;
最后,通过利用导数的链式法则,我们可以得到dt/dx和dt/dy的表达式:
dt/dx = 1 / (dx/dt);
dt/dy = 1 / (dy/dt)。

通过求导,我们可以得到参数方程对应的隐函数的导数关系。

在实际问题中,求导可以帮助我们分析函数的变化趋势、求解最值问题等,具有非常重要的应用价值。

隐函数与参数方程的求导法则

隐函数与参数方程的求导法则

隐函数与参数方程的求导法则在微积分中,求导是求函数在某一点的变化率的操作。

当我们面对的函数是显式函数时,也就是可以通过直接表示成y=f(x)的形式,求导问题相对较为简单。

但在一些情况下,我们会遇到隐式函数或参数方程,这就需要用到隐函数与参数方程的求导法则。

一、隐函数的求导法则隐函数是指通过x和y之间的关系式来定义的函数,其中y不能用x的表达式直接表示出来。

在求解隐函数的导数时,我们需要运用到隐函数的求导法则,具体步骤如下:1.对于隐函数关系式进行求导,将dy/dx表示为f(x, y)。

2.将dx移到方程的一侧,得到f(x, y)dx+(-1)dy=0。

3.根据链式法则,乘得dy/dx=-(f(x, y)dx/dy)。

4.将方程中的dy/dx替换成-dy/dx,便可得到所求的导数。

举个例子来进行说明。

假设我们有一个方程x^2+y^2=R^2表示一个圆的形状,其中R是一个常数。

如果我们想要求解这个圆的切线斜率,就需要使用隐函数的求导法则。

首先对方程两边求导,得到2xdx+2ydy=0。

将dy/dx替换成-dy/dx,得到2xdx-2ydy=0。

然后将式子整理为dy/dx的形式,即dy/dx=-(2x/2y)=-x/y。

这就是所求的切线斜率。

二、参数方程的求导法则参数方程是指通过t来表示x和y,即x=f(t),y=g(t),其中t是一个独立变量。

求解参数方程的导数时,我们同样需要运用到参数方程的求导法则,具体步骤如下:1.对于参数方程中的每一个方程分别求导,得到dx/dt和dy/dt。

2.将两个式子相除,得到dy/dx=(dy/dt)/(dx/dt)。

接下来,让我们通过一个例子来进一步说明参数方程的求导法则。

假设我们有一个参数方程x=cos(t),y=sin(t),其中0≤t≤2π。

我们想求解在该参数方程下的切线斜率。

首先对参数方程x=cos(t)和y=sin(t)分别求导,得到dx/dt=-sin(t)和dy/dt=cos(t)。

隐函数求导及参数方程求导

隐函数求导及参数方程求导
代入 x 0、y 1 及
y
x0 y 1

1 4

y
x0 y 1

1 16
.
例4. 求由方程 x y sin y 0
2
1
所确定的隐函数 y=y(x) 的二阶导数 解: 在方程的两边分别对x求导
1 y
'
1 2
cos y y 0
'
y
'
2 2 cos y
,
dy
dt y( t ) { 确定 y y( x ) 的求导法: dx dx x( t ) x x( t ) dt
y y( t )
dy
例7

求摆线
dy dx
dy dx
t
x a ( t sin t ) 在 t 时的切线方程。 2 y a ( 1 cos t )
方程两边对
3
x 求导 , 得
3
4 x y xy 4 y y 0
将 x 0、 y 1 代入,得
(1 )
1 4
x 求导 , 得
y
x0 y 1
;
视 y y ( x ) 、 y y ( x ) , 将方程 ( 1 ) 两边再对
2
x y 12 y 2 ( y ) 2 4 y 3 y 0 , 12 x 2 y
tan t ,
(
d ( tan t ) dx

( tan t ) x ( t )
4

sec t 3 a cos
2
t sin t

sec t 3 a sin t

隐函数及参数方程所确定的函数的求导法

隐函数及参数方程所确定的函数的求导法

谢谢聆听
一、隐函数的导数
把一个隐函数化成显函数,叫作隐函数的显化.例如, 从方程3x+y2+5=0解出y=± √ -5-3x,就把隐函数化成显函 数.隐函数的显化有时是有困难的,甚至是不可能的.例如, ey=y+x在x的一定变化范围内虽然也能确定一个隐函数y=f (x),却无法将它显化.因此有必要介绍隐函数的求导方法.
设y=f(x)是由F(x,y)=0所确定的隐函数,则F(x, f(x))=0.由于此式左端是将y=f(x)代入F(x,y)所 得到的复合函数,因此,根据链式法则将等式两边对x求导, 便可得到所求的导数.
我们通过几个例子来说明这种方法.
一、隐函数的导数
【例1】
求方程xy-ex+ey=0所确定的隐函数y=f(x)的导数 . 解 方程两端同时对x求导,并注意到y是x的函数,得
下面举几个例子.
一、隐函数的导数
【例4】
求函数y=xx(x>0)的导数. 解 这是幂指函数,求导数时,既不能用幂函数的导数 公式,也不能用指数函数的导数公式. 对等式两边取对数,得
lny=xlnx, 两边对x求导,得
一、隐函数的导数
【例5】
二、由参数方程所确定的函数的导数
函数关系除了用显式和隐式表示外,还可以用参数 方程来表示.
一般的,如果参数方程x=φ(t), 确定y与x之间的函数关系,则称此函数关系所表示的函 数为由参数方程所确定的函数.
对于参数方程所确定的函数的求导,通常不需要由 参数方程消去参数t化为y与x之间的直接函数关系后再求 导.
二、由参数方程所确定的函数的导数
如果函数φ(t)和ψ(t)都可导,φ′(t)≠0且x=φ(t) 存在反函数t=φ-1(x),则y为x的复合函数.根据复合函数求 导法则,得

5.3隐函数与参数方程求导法则

5.3隐函数与参数方程求导法则

3x + 4 y − 8 3 = 0
例3 求由方程 e
函数 y′( x ) 。
解 对方程
x + y − xy − e = 0 确定的隐函数 y = y ( x) 的导
e x + y − xy − e = 0
的两边关于 x 求导, 注意到 y 是 x 的函数,由复合函数的求导法则
(e x + y − xy − e)′ = (e x + y )( x + y )′ − ( xy )′
x = v1t 例8 抛射体运动轨迹的参数方程为 2 y = v2 t − 1 g t 2 求抛射体在时刻 t 的运动速度的大小和方向.
解 先求速度大小:
dx dy = v1 , 垂直分量为 = v2 − g t , 速度的水平分量为 dt dt
dx 2 d y 2 2 2 v = ( ) + ( ) = v + ( v − gt ) 故抛射体速度大小 1 2 dt dt
F ( x , y1 ) = F ( x , a 2 − x 2 ) ≡ 0
y2 = − a 2 − x 2 ∈ B = ( −∞, 0], F ( x , y2 ) = F ( x , − a 2 − x 2 ) ≡ 0
例如方程 e xy + x 2 y − 1 = 0 所决定的隐函数就无法将它化成显函 数 y = f ( x ) 形式。
由此解得
= e x + y (1 + y ′) − y − xy ′ = 0 ,
y′ =
ex+ y − x
y − ex+ y
例4
例5
a a b x 例如, y = ( x > 0, a > 0 , b > 0 , ≠ 1 ) b b x a

隐函数和参数方程求导法

隐函数和参数方程求导法

隐函数和参数方程求导法1.隐函数求导法隐函数求导法用于求解包含隐函数的导数。

一般来说,我们可以将隐函数表示为两个变量之间的关系式,例如y=f(x)。

在一些情况下,这个关系式无法直接解出y关于x的显式表达式。

这时,我们可以使用隐函数求导法来找到y关于x的导数。

假设有一个含有两个变量x和y的隐函数关系式F(x,y)=0。

要求这个隐函数关于x的导数,可以按照以下步骤进行:步骤1:对关系式两边同时求导,并得到导数关系式dF/dx = 0;步骤2:根据导数关系式,将dF/dx中的y'用y和x表示出来;步骤3:解出y',即为所求的导数。

举例说明:假设有一个隐函数关系式x^2+y^2=1、我们要求这个隐函数关于x的导数。

按照上述步骤,我们可以进行如下计算:步骤1:对关系式两边同时求导,得到2x + 2yy' = 0;步骤2:将dF/dx中的y'用y和x表示出来,得到y' = -x/y;步骤3:解出y',即为所求的导数。

通过以上计算,我们得到了这个隐函数关于x的导数为y'=-x/y。

参数方程求导法用于求解包含参数方程的导数。

参数方程是用参数表示的轨迹方程,常用形式为x=f(t)和y=g(t),其中x和y是关于参数t 的函数。

要求参数方程的导数,可以按照以下步骤进行:步骤1:将参数方程的x和y分别关于t求导,得到dx/dt和dy/dt;步骤2:将dx/dt和dy/dt的结果合并,得到y关于x的导数dy/dx;步骤3:通过dy/dx的结果,可以进一步求解y关于x的高阶导数。

举例说明:假设有一个参数方程x=2t,y=t^2、我们要求这个参数方程的导数。

按照上述步骤,我们可以进行如下计算:步骤1:将参数方程的x和y分别关于t求导,得到dx/dt = 2 和dy/dt = 2t;步骤2:将dx/dt和dy/dt的结果合并,得到dy/dx =(dy/dt)/(dx/dt) = (2t)/(2) = t;步骤3:通过dy/dx的结果,可以进一步求解y关于x的高阶导数,例如二阶导数d^2y/dx^2 = d(dy/dx)/dx = d(t)/dx = 0。

隐函数及其参变量函数的求导方法

隐函数及其参变量函数的求导方法
2. 对数求导法 : 适用于幂指函数及某些用连乘, 连除表示的函数
3. 参数方程求导法:求高阶导数时,从低到高每次都用 参数方程求导公式
4. 相关变化率问题 列出依赖于 t 的相关变量关系式 对 t 求导 相关变化率之间的关系式
思考题
设xy((tt)),由yx
(t) (t)
2
4
问题: 消参数困难或无法消去参数时如何求导?
平面曲线参数方程的一般形式
x (t ),

y


(t
),
t[,]为参数 .
这 x 里 (t)与 y (t)都可 (t)导 2 (t), 2 0 . 且
由于 (t)与 (t)至少有一个不 妨为 设 (t)零 0,,
隐函数和参数方程求导 相关变化率
张世涛
主要内容:
一、隐函数的导数 二、由参数方程确定的函数的导数 三、相关变化率
一、隐函数的导数
由方 Fx ,(y程 )0所确定 yy(x 的 )称 函 为 .数 隐
y f (x) 形式的函数称为显函 . 数
F(x,y)0 yf(x) 隐函数的显化
例如:xy310可确定显函数 y 3 1 x 例如:y52yx3x70可确定 y 是 x 的函数 ,
(2) 含有较多的乘、 方除 、、 开乘 方运算的
例4 设 y x sixn (x 0 ),求 y .
解 等式两边取对数, 得 ln ysix n ln x,
上式两边 x求对导 , 得
1ycoxslnxsix n1,
y
x
yy(cx olsn xsixn 1) x
xs ixn(cx olsn xsixn). x
可知yx ((tt)),对吗?

参数方程含有隐函数求导

参数方程含有隐函数求导

显函数:等号的左端是因变量的符号,而右端是含有自变量的式子,当自变量取定义域内任一值是,由这式子能确定对应的函数值。

如y=sin x,y=ln (x+2)
隐函数:一般地,如果变量x和y满足一个方程F(x,y)=0,在一定条件下,当x取区间内任一值时,相应地总有满足这方程的唯一的y值存在,那么说方程F(x,y)=0在该区间内确定了一个隐函数。

如e^y+xy-e=0。

隐函数对x求导:
①直接对x求导法:把y看成常数,直接用公式对x求导,y不变。

②两边取对数求导法:这种方法适用于含有幂指数函数。

两边先取对数,再进行求导。

三、由参数方程所确定的函数导数
参数方程:
一般地,若参数方程
确定的y与x的函数关系,则称此函数关系所表达的函数由参数方程所的函数
参数方程的导数:
四、相关变化率
设x=x(t)及y=y(t)都是可导函数,而变量x与y之间存在某种关系,从而变化率
间也存在一定关系,这两个相互依赖的变化率称为相关变化率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y x (t ) (t ) (t ) (t ) x y 3 x (t ) 3
注意 : 已知

d2 y 1 f (t ) d x2
?
x f (t ) d2 y 例4. 设 y t f (t ) f (t ) , 且 f (t )有些显函数用对数求导法求导很方便 . 例如,
两边取对数 a ln y x ln a [ ln b ln x ] b [ ln x ln a ] b 两边对 x 求导 a a b y ln b x x y
( x 1)( x 2) 又如, y ( x 3)( x 4)
1. 求螺线 在对应于 的点处的切线方程. x r cos 解: 化为参数方程 y r sin dy dy sin cos d dx dx cos sin d
), 当 时对应点 M ( 0 , 2 2
2 dy 斜率 k dx 2 2 ∴ 切线方程为 y x 2
r
例8 河水以8米 3 / 秒的体流量流入水库中 , 水库
形状是长为 4000米, 顶角为1200的水槽, 问水深 20米时, 水面每小时上升几米 ?
解 设时刻 t水深为h( t ), 水库内水量为V ( t ), 则 V (t ) 4000 3h2 dV dh 上式两边对t求导得 dt 8000 3h dt dV 28800米3 / 小时, 当h 20米时, dt dh 水面上升之速率 0.104米 / 小时 dt
100 m/min 的速率向气球出发点走来,当距离为500 m 时, 仰角的增加率是多少 ?
500 提示: tan x 对 t 求导
2
500
x d 500 dx sec 2 dt x dt dx d 已知 100 m min , x 500 m , 求 . dt dt
60 0
内容小结
1. 隐函数求导法则 2. 对数求导法 : 直接对方程两边求导 适用于幂指函数及某些用连乘, 连除表示的函数
3. 参数方程求导法
转化极坐标方程求导
求高阶导数时,从低到高每次都用参数方程求导公式 4. 相关变化率问题
列出依赖于 t 的相关变量关系式
对 t 求导
相关变化率之间的关系式
思考与练习

dx 2 (t 1) dt dy 2t d t 1 cos y
dy t dy d t dx (t 1)(1 cos y ) dx dt
三、相关变化率
为两可导函数 之间有联系
相关变化率问题解法: 之间也有联系 称为相关变化率
找出相关变量的关系式
对 t 求导
得相关变化率之间的关系式 求出未知的相关变化率
dy dx
t 0

例7. 有一底半径为 R cm , 高为 h cm 的圆锥容器 , 今以25 cm3 s自顶部向容器内注水 , 试求当容器内水 位等于锥高的一半时水面上升的速度.
h 解: 设时刻 t 容器内水面高度为 x , 水的 x 体积为 V , 则 2 R 3 3 1 R 2 h 1 r 2 (h x) [ h ( h x ) ] 3 3 2 3h 两边对 t 求导 r hx dV R 2 d V h 2 ( h x ) 2 dx , 而 25 (cm 3 s)R hx dt dt h dt r R 2 h dx 100 25h (cm s) , 故 2 2 2 dt R R (h x)
2
h
sec 2 1 tan 2
dh 已知 140 m min , h = 500m 时, tan 1 , sec 2 2 , dt d 1 1 ( rad/ min ) 140 d t 2 500
思考题: 当气球升至500 m 时停住 , 有一观测者以
当 x 0 时, y 1, 故由 ① 得 1 y (0) e 1 再代入 ② 得 y (0) 2 e
备用题
1. 设 解: 方法1 求其反函数的导数 .
1 e
1 y
x
方法2 等式两边同时对 y 求导
dx dy
dx dy
2. 设
,求
解: 方程组两边同时对 t 求导, 得
例6. 一气球从离开观察员500 m 处离地面铅直上升, 其速率为 140 m min , 当气球高度为 500 m 时, 观察员 视线的仰角增加率是多少? 解: 设气球上升 t 分后其高度为h , 仰角为 , h 则 tan 500 500 两边对 t 求导
d 1 dh sec d t 500 d t
x 2 y y 0 8 9 9 x y x 2 16 y 3 y 3
2
x2 y3 2
3 4 3
3 3 故切线方程为 y 3 ( x 2) 2 4

例3 . 求
解: 两边取对数 , 化为隐式
的导数 .
两边对 x 求导

1 sin x y cos x ln x y x sin x sin x y x (cos x ln x ) x
3 x x 2x 2 1 2 ln x 3(2 x) 3(2 x) (2 x)

3. 设
由方程
确定 , 求
解: 方程两边对 x 求导, 得
e y y y x y 0
再求导, 得
y 2 e y (e x) y 2 y 0 y


(含导数 y的方程 )
例1. 求由方程 在 x = 0 处的导数
确定的隐函数
解: 方程两边对 x 求导

dy dy 1 21x 6 0 5y 2 dx dx 6 d y 1 21x 4 dx 5 y 2
4
因x=0时y=0, 故
例2. 求椭圆
在点
处的切线方程.
解: 椭圆方程两边对 x 求导
d y t f (t ) t, 解: f (t ) dx
x t 2 2 t 例5. 设由方程 t 2 y sin y 1 (0 1) 确定函数 y y ( x) , 求
解: 方程组两边对 t 求导 , 得
dx 2t 2 dt dy dy cos y 2t 0 dt dt
(t ) 0 时, 有
若上述参数方程中 则由它确定的函数
二阶可导, 且
可求二阶导数 .
x (t ) 利用新的参数方程 d y (t ) ,可得 dx (t ) d d y dx d 2 y d (d y ) ( ) 2 dx dx d t dx d t dx (t ) (t ) (t ) (t ) (t ) 2 (t )
说明:
1) 对幂指函数 y u v 可用对数求导法求导 :
注意:
ln y v ln u 1 u v y v ln u y u u v v y u ( v ln u ) u y u v ln u v vu v 1 u
按幂函数求导公式
两边取对数
1 ln y ln x 1 ln x 2 ln x 3 ln x 4 2 对 x 求导
y 1 1 1 1 1 y 2 x 1 x 2 x 3 x 4
u ( ln u ) u



1 1 1 1 x 1 x 2 x 3 x 4
二、由参数方程确定的函数的导数
若参数方程
关系,
可确定一个 y 与 x 之间的函数 可导, 且

d y d y d t d y 1 (t ) dx d t dx d t dx (t ) dt (t ) 0 时, 有 dx dx d t dx 1 (t ) d y d t d y d t d y (t ) (此时看成 x 是 y 的函数 ) d t
第3章
§ 3.4 隐函数和参数方程求导
一、隐函数的求导法则
二、由参数方程所确定的函数的导数
三、相关变化率
一、隐函数的求导法则
若由方程 可确定 y 是 x 的函数 , 则称此 函数为隐函数 . 由 表示的函数 , 称为显函数 . 例如, 可确定显函数
可确定 y 是 x 的函数 ,
但此隐函数不能显化 . 隐函数求导方法: 两边对 x 求导
y2 , y2 . 提示: 分别用对数微分法求 y1
答案:
2. 设y (sin x) y1
tan x

x x
ln x
3
2 x , 求 y . 2 (2 x)
y2 y y1
(sin x) tan x (sec 2 x ln sin x 1)
1 x
ln x 3
相关文档
最新文档