八年级上册实数专题训练

合集下载

八年级数学上册实数练习题精选15

八年级数学上册实数练习题精选15

1 ___ π___ _____ -—, 3√27 , 2.6 , —, √25 , 3√-8 , 04 3(1)正数集合{ …};(2)负数集合{ …};(3)有理数集合{ …};(4)无理数集合{ …};2.求下列各数的平方根和算术平方根。

1(1) ——(2) 441 (3) 2.89 (4) 1024003.求下列各数的立方根。

1(1) ——(2) 0.125 (3) 1000 (4) 1061254.求下列各式的值。

_____ _____ ___ ___ 3√0.125 3√-216 √361 √10-29 ___ π___ _____ -—, 3√20 , 4.3 , —, √81 , 3√-1 , 08 16(1)正数集合{ …};(2)负数集合{ …};(3)有理数集合{ …};(4)无理数集合{ …};2.求下列各数的平方根和算术平方根。

144(1) ——(2) 324 (3) 1.44 (4) 10-21213.求下列各数的立方根。

1(1) ——(2) 0.216 (3) -1 (4) 10984.求下列各式的值。

_____ _____ ___ ___ 3√0.027 3√-512 √196 √1063 ___ π___ _____ -—, 3√2 , 8.9 , —, √49 , 3√-27 , 02 20(1)正数集合{ …};(2)负数集合{ …};(3)有理数集合{ …};(4)无理数集合{ …};2.求下列各数的平方根和算术平方根。

289(1) ——(2) 25 (3) 0.01 (4) 10-23243.求下列各数的立方根。

8(1) ——(2) 0.343 (3) 343 (4) 106274.求下列各式的值。

_____ _____ ___ ___3√0.125 3√-125 √289 √1027 ___ π___ _____—, 3√18 , 9.3 , —, √81 , 3√-8 , 06 21(1)正数集合{ …};(2)负数集合{ …};(3)有理数集合{ …};(4)无理数集合{ …};2.求下列各数的平方根和算术平方根。

八年级数学上册实数计算题

八年级数学上册实数计算题

八年级数学上册实数计算题一、实数计算题20题。

1. 计算:√(4) + sqrt[3]{-8}- 解析:- 先分别计算各项。

- 因为√(4)=2,sqrt[3]{-8}=-2(因为(-2)^3 = -8)。

- 所以√(4)+sqrt[3]{-8}=2+( - 2)=0。

2. 计算:√(9)-√(16)- 解析:- 先计算根号下的数。

- √(9) = 3,√(16)=4。

- 则√(9)-√(16)=3 - 4=-1。

3. 计算:√(25)+√(36)- 解析:- √(25)=5,√(36)=6。

- 所以√(25)+√(36)=5 + 6=11。

4. 计算:√(1)-√(0)- 解析:- 因为√(1)=1,√(0)=0。

- 所以√(1)-√(0)=1-0 = 1。

5. 计算:√(121)-√(144)- 解析:- √(121)=11,√(144)=12。

- 则√(121)-√(144)=11-12=-1。

6. 计算:√(169)+√(196)- 解析:- √(169)=13,√(196)=14。

- 所以√(169)+√(196)=13 + 14=27。

7. 计算:√(49)-√(64)- 解析:- √(49)=7,√(64)=8。

- 所以√(49)-√(64)=7-8=-1。

8. 计算:√(81)+√(100)- 解析:- √(81)=9,√(100)=10。

- 所以√(81)+√(100)=9 + 10=19。

9. 计算:sqrt[3]{27}+sqrt[3]{-1}- 解析:- 因为sqrt[3]{27}=3(因为3^3 = 27),sqrt[3]{-1}=-1(因为(-1)^3=-1)。

- 所以sqrt[3]{27}+sqrt[3]{-1}=3+( - 1)=2。

10. 计算:sqrt[3]{64}-sqrt[3]{125}- 解析:- sqrt[3]{64}=4(因为4^3 = 64),sqrt[3]{125}=5(因为5^3 = 125)。

八年级数学实数计算专项训练(含参考答案)

八年级数学实数计算专项训练(含参考答案)

八年级数学实数计算专项训练练习1 平方根与算术平方根(1)1. 求下列各数的平方根:(1)100; (2)0.0081; (3)499; (4)169.2. 求下列各数的平方根与算术平方根:(1)(-6)2; (2) 0; (3)-3; (4)163. 求下列各式的值: (1)225; (2)4936-; (3)121144±.4. 求下列各式中的x :(1)02592=-x ; (2)36)12(42=-x ;(2)81162=x ; (4)025)2(2=--x .5. 计算:(1)169144+; (2)1691971•(3)04.025÷练习2 平方根与算术平方根(2)1. 填空:(1)=121 ; (2)=-256 ; (3)=43 ; (4)=-412 . 2.求下列各数的平方根与算术平方根: (1)196; (2)(-3)2; (3)49151; (4)0.5625.3.求下列各数的算术平方根,并用符号表示出来:(1)7.12; (2)(-3.5)2; (3)3.25; (4)412.4. 求下列各式的值: (1)0004.0-; (2)256169±; (3)818±; (4)2)8(-.5. 求下列各式中的x :(1)025692=-x ; (2)25)12(42=-x ;(3)822=x ; (4)126942-=x练习3 立方根1. 求下列各数的立方根:(1)-27; (2)-0.125; (3)27102; (4)729;2. 求下列各式的值:(1)3512-; (2)38729; (3)3008.0-;(4)31292⨯⨯; (5)31000-; (6)364--.3. 计算:(1)33512729+-; (2)333001.01251241027.0-+--.4. 求下列各式中的x : (1) 08273=-x ; (2)54)32(413=+x ;(3)81)1(33=-x ; (4)216)2(3-=+-x .练习4 平方根与立方根1. 求下列各数的平方根: (1)169; (2)9100; (3)2)5(-; (4)412.2. 求下列各数的立方根: (1)125; (2)2764; (3)81-; (4)2)8(-.3. 求下列各式中的x :(1)81162=x ; (2)11253=x ;(2)81631)14(2=-+x ; (4)64)3(273-=-x .练习5 实数的混合运算(Ⅰ)1. 计算:(1)9125833-+--; (2)222)3(2)32()6(----+-;(3)0332019)279(8)1(+++-; (4)3220183)21()1(---+--;(5)23)6(216-+-; (6)31081412+-+-π;(7)130)31(27)14.3()2(--++-+--π; (8)230)3(27)2(12149--+--+π.练习6 实数混合运算(Ⅱ)1. 计算:(1)81)1()21(01--+-; (2)3322782+---;(3)2)71(27)1(130-+-⨯--π; (4)28)5()2()41(3021÷--⨯-+--.2.求下列各式中的x :(1)2764)9(3-=-x ; (2)0121)3(312=-+x ;(3)0216)1(83=--x ; (4)048)43(312=--x .练习7 实数混合运算(Ⅲ)1. 计算:(1)03)2019(4)8(π+++-; (2)20193)1(829-+-+-+; (3)3008.01003631-⨯; (4))281(12151322-+--;(5)13)31(98-+--; (6)2)21(40)3(2-+----π;(7)02)33()1(93-+--+-; (8)148)3(432-----+;(9)230)1.0(27213-+-⎪⎭⎫ ⎝⎛-+-π; (10)3221691)21(--+---.练习8 实数的混合运算(Ⅳ)1. 求下列各式中的x :(1)822=x ; (2)81253=x ;(3)12)1(312=-x ; (4)064)1(273=++x .2.计算:(1))41(28)2009(30-+-+-; (2)0312)8(24)3(-⨯-+--;(3)032)2()2(641-⨯--+-; (4)9)21(3)4(2)4()3(27823333-⨯-+-⨯---.练习9 二次根式(Ⅰ)1.求下列各式的值: (1)32; (2)250; (3)3248; (4)203. 2.计算: (1)169144964⨯; (2)40219031⨯;(3)271032121÷-; (4)227818⨯÷; (5)1.1337.2⨯; (6)5232232⨯÷;(7))2223(18⨯-÷; (8)213827÷⨯.3.已知0276433=-++b a ,求b b a )(-的立方根。

专题14-13 《实数》计算题(专项练习)(巩固篇100题)-2021-2022学年八年级数学上册

专题14-13 《实数》计算题(专项练习)(巩固篇100题)-2021-2022学年八年级数学上册

专题14.13 《实数》计算题(专项练习)(巩固篇100题)一、解答题12.计算:(+1|+(5-2π)03.(1);(2)已知()2x 1- =4,求x 的值.4.已知:,x y 为实数,且3y <,化简:3y -5.计算:(1)110101(1)(3)2π-⎛⎫-+-+ ⎪⎝⎭(226213.14+6+2π-⎛⎫-- ⎪⎝⎭()7.计算:()23- 8.计算(1(2(x <2y <0)92 .10.计算:(2)(1+(12. 11.计算:12.计算:(1+(2)+1)213.计算:21-21-2-⎛⎫ ⎪⎝⎭14.计算:+2)2+2﹣215.计算:()202011-+16.计算: 21)3)(3--17.18.计算:(1﹣3|(2)1)2+)2﹣21)) 19.计算下列各式: (1)√6×(√3+√2)-2√3; (2)4√15÷√3−√20+5√15.20.计算:20-11-23+())()21.计算:|−2|+(−1)2012×(π−3)0−√8+(−2)−2222)023.(1)计算:2(1(2)求x 的值:3641)270x +-=(24.计算:(3(2. 25.已知x,y =,求4x yy x +-的值.26.计算:(1(2)2(11)-.27.已知4. (1)求x 、y 的值;28.计算:;(23;(3)(22017×(22016-2-(0(4)(a +b -.29.计算:|1.30(22π-+.31.计算:(13;(2)32.计算:33.已知 x y(1)x yy x+的值;(2)2x 2+6xy +2y 2的值.34.计算(1)0(2)((2 35.化简:(1(2(10+|﹣2|﹣(12)﹣136.计算下列各式(1) (2)371+ 38.计算:(1)()2320181122⎛⎫-+- ⎪⎝⎭(23+39.计算(1)﹣(2)1))﹣(1﹣2.40.计算:41.计算:(1)−√83+√16−|√3−2|;(2)(√12+3√3)×√3; (3)12×(√2+√3)−34×(√2−√27);(4)(−12)2×√(−2)2+12×√1253;42432(2 +44.计算:22 |1|3-⎛⎫-- ⎪⎝⎭45.计算:|3﹣1)2018.46.计算1.47.计算:2(3)21)-+⨯--.482318 49.计算:⎛⎝;12⎛⎫⎪⎝⎭.50.计算:(1)11(251233312713++.52.计算:(1)(2)201811-+53.计算:(1)21(2)--;(2)2(3254.计算:(1;(2)12)﹣12|;(3)2)2;(4)2020•2021. 55.计算(1|1(2)2|(3(4|3562.57.计算题:2--;(2)58.完成下列各题.(1)计算:())0311-+(2)计算:(()201412π1-+-.(3)(041-.(4)计算:())3212523-⎛⎫-+--+ ⎪⎝⎭.(5)计算:122323---.(6)1382+.(7)计算:2112-⎛⎫- ⎪⎝⎭.59.计算:2(71)+--60()0221( 3.14().2π-+---⨯61()()2202021--- 62.计算(12236 (2)220201020.2513163.计算:(1)- (2)(3) (4)64.计算:(1) (2) ()012018π+--6566.计算:4÷672020(1)-.68.计算:1||3+-69. 计算:+2|-2|;(-1)2018. 70.计算:(1)(√8+√3)×√6√10−√15√5; (2)2√12×(3√48−4√18−3√27)(3)√72−√32√8(√5−√2)(√5+√2); (4)(π−1)0+(−12)−1+|5−√27|−2√371.计算:(−3)2−(12)−1+(−2019)0.72.计算:201( 3.14)2π-⎛⎫-- ⎪⎝⎭.73.计算:(1)9×(﹣23)﹣3|(22+74.计算1). 75.计算:(1)(10+|2(﹣1)2018﹣13(2)(x+y )2﹣x (2y ﹣x ) 76.计算:(1(20,0)a b >>(3(477.78.计算:(1)⎛ ⎝;(2|1 79.计算:(1)()20201821--⨯--;(2)()()()221a a a a +--+.80.计算:(1)|﹣3|12+(﹣2)2 . |2.81.(12| (2)求x 的值:(2x ﹣1)2=9.822(317)0x y -+=的值.83.计算:()()20211211π--++.84.计算:(﹣1)2008+π0﹣(13)﹣185.计算:86.计算:3(1)|1-+ 87.计算:(1)217110.5395⎛⎫-÷⨯- ⎪⎝⎭(2)(2212-+88.02018)(1)|1π+-+.89.计算:(1) (2)(÷(3)0,0)a b >> 90.计算:(1321(2)(10)4---⨯- (2)225(24)-⨯--91.解下列方程:(1) 9(3-y )2=4; (2) 2732-3x ⎛⎫ ⎪⎝⎭+125=0.9221)+ 93.计算:(1) (2)01)1)(3) (4)0(3)|1---.94.计算:(1)|-5|+(-2)2-1;95.计算: 96.计算:(1)(22-97 98.计算下列各题(1)⎛÷ ⎝ (2)2- 99.(1);(2)(3);(4)100.计算:(12018(1)- (23参考答案1.-11 4【分析】先将二次根式化简,再根据实数的运算法则求得计算结果.=111 30224 ---++==-11 4.【点拨】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是二次根式、绝对值等考点的运算.2.【分析】按顺序先分别进行二次根据的乘法运算、绝对值的化简、0次幂的计算,然后再按运算顺序进行计算即可.解:(+1|+(5-2π)0=1+1=【点拨】本题考查了二次根式的混合运算,熟练掌握二次根式的混合运算的法则是解题的关键.3.(1)13-;(2) x1=3,x2=-1.【分析】(1)根据平方根和立方根的意义,化简求解即可;(2)根据平方根的意义,把方程化为一元一次方程求解.解:(1-2-13=-13;(2)(x-1)2=4,x-1=±2,x-1=2,x-1=-2.解得:x1=3,x2=-1.【点拨】此题主要考查了平方根和立方根的应用,灵活利用平方根和立方根的概念是解题关键.4.-1.【分析】根据所给的已知式子,由二次根式有意义的条件,可求x 取值范围,得到x ,然后求出y 的取值范围,然后根据二次根式的性质求解即可.解:由题意可知: 10x -≥且10x -≥1x ∴=3<-y x 3∴<y3∴-y34=---y y()()34=-+--+y y34=-++-y y1=-5.(1)3(2)18﹣﹣【分析】(1)先算乘方和开方,然后合并同类二次根式即可;(2)先算乘方、乘法、除法,然后合并同类二次根式即可.解:(1)原式=(﹣1)+1+21)=(﹣1)+1+2=3(2(2+12-=4﹣+12﹣=18﹣﹣【点拨】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答本题的关键,整式的乘法的运算公式及运算法则对二次根式的运算同样适应.6.11【解析】试题分析:根据二次根式的相关公式,零指数幂的规定,绝对值的意义以及负整数指数幂的相关规则,分别对算式的各个部分进行化简和运算,然后再对所得到的中间结果进行进一步的运算即可.试题解析:()2013.1462π-⎛⎫-+-+ ⎪⎝⎭ =2-1+6+4=117.4.5【分析】先计算平方、开平方和开立方,再计算加减.解:解:原式=9—32-3 =4.5【点拨】本题考查平方、算术平方根、立方根,解题关键是熟练掌握定义.8.(1) 203;(2)-21xy 解:试题分析:(1)根据二次根式的乘法和除法法则计算,(2)根据二次根式的性质进行化简. 试题解析=203,(2x <2y <0) =2122y x y x xy -⨯--, =21xy -. 9.-2.【解析】【分析】根据二次根式、三次根式的化简方法计算,再合并同类项.2,=332,=-2.【点拨】本题考查实数的综合运算能力.解决此类题目的关键是熟练掌握二次根式、三次根式的化简.10.(2) 2+【分析】(1)先利用二次根式的除法法则计算,再把各二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式和完全平方公式化简合并即可.解:(1)原式===(2)原式=1-5+1+5=2+【点拨】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.11.(1) 2(2)-30. 【分析】(1)先算除法,再算减法.(2)先化简,再利用平方差公式计算.解:(1)原式=2(2)原式=((4=-30.【点拨】本题考查根式化简,能够掌握平方差公式是解题关键.12.(1);(2)7-【分析】(1)先分别进行化简,然后再合并同类二次根式即可;(2)先利用平方差公式以及完全平方公式进行展开,然后再进行加减运算即可.解:(1)原式==;(2)原式=5231-+-=7-【点拨】本题考查了二次根式的化简,二次根式的混合运算,熟练掌握相关的运算法则是解题的关键.13.1【解析】【分析】按顺序先分别进行立方根的运算、绝对值的化简、负指数幂的运算,然后再按运算顺序进行计算即可.解:原式=-2×(-3)1-4=1【点拨】本题考查了实数的运算,涉及了立方根、负整数指数幂等,熟练掌握各运算的运算法则是解题的关键.14.29 4【分析】按顺序分别利用完全平方公式展开,化简二次根式,利用负指数幂进行计算,然后再按运算顺序进行计算即可.解:原式﹣14=294. 【点拨】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.1532【分析】首先计算乘方、负整数指数幂、算术平方根、立方根和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.解:解:()202011-+)1=1212+-+ 1=1212+- 32【点拨】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.16.3-【分析】先运用完全平方公式、平方差公式进行化简,然后进行计算.解:解:原式=4-[32-2]=4-[32-2]-4=4--4=3-【点拨】本题主要考查了二次根式的化简;特别是灵活运用全平方公式、平方差公式是解答本题的关键.17【分析】根据二次根式的混合运算法则进行计算.解:解:原式143+=(14327+=-==【点拨】本题考查二次根式的运算,解题的关键是掌握二次根式的运算法则.18.(1)﹣6;(2)9.【解析】【分析】(1)先进行二次根式的乘法运算,再把二次根式化为最简二次根式和去绝对值,然后合并即可;(2)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.解:(13|3﹣3=﹣6;(2)3﹣﹣2(2)=3﹣﹣6﹣=9.【点拨】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.19.(1) 3√2;(2) 3√5.【解析】【分析】(1)先利用分配律进行计算,然后再合并同类二次根式即可;(2)按顺序进行二次根式的除法运算、化简二次根式,然后再合并同类二次根式即可.解:(1)原式=3√2+2√3-2√3=3√2;(2)原式=4√5-2√5+√5=3√5.【点拨】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.20.5【分析】按照乘方,算术平方根,零指数幂,负整数指数幂的性质化简,进行计算即可解答解:解:原式4313=-++5=【点拨】此题考查算术平方根,零指数幂,负整数指数幂,解题关键在于掌握运算法则21.解:原式=。

八年级上册实数练习题

八年级上册实数练习题

八年级上册实数练习题实数是数学中的一个重要概念,在八年级上册学习中,我们需要通过一些实数练习题来巩固和提高我们对实数的理解和应用能力。

在本文中,我将为大家提供一系列的实数练习题,并对每个题目进行详细的解答,帮助大家更好地掌握实数的相关知识。

一、判断题1. -4是一个实数。

正确/错误?解答:正确。

实数包括所有的有理数和无理数,而-4是一个有理数,因此它也是一个实数。

2. 0是一个有理数。

正确/错误?解答:正确。

0是一个整数,而整数是有理数的一种特殊情况,因此0也是一个有理数,也是一个实数。

3. √2是一个实数。

正确/错误?解答:正确。

√2是一个无理数,而实数包括所有的有理数和无理数,因此√2也是一个实数。

4. π是一个实数。

正确/错误?解答:正确。

π是一个无理数,而实数包括所有的有理数和无理数,因此π也是一个实数。

二、选择题1. 下列哪个数是一个无理数?A. 3.2B. 5/3C. √5D. -1/2解答:C. √5无理数是指不能用两个整数的比值表示的实数,而√5是一个无理数。

2. 下列哪个数是一个有理数?A. 2√3B. 7.5C. -πD. 0.8解答:B. 7.5有理数是指能够用两个整数的比值表示的实数,而7.5可以写成15/2,是一个有理数。

三、计算题1. 计算下列各式的值:A. 3 - (√5 + 2)解答:3 - (√5 + 2) = 3 - √5 - 2 = 1 - √5B. (2/3) × (1/4)解答:(2/3) × (1/4) = 2/12 = 1/62. 求下列各式的结果:A. (√16)^2解答:(√16)^2 = 16B. | -5 |解答:| -5 | = 5四、综合题1. 若x是一个有理数且x ≠ 0,求证 -x也是一个有理数。

解答:由已知可知,x是一个有理数,即可以表示为两个整数的比值。

设x = a/b,其中a、b为整数且b ≠ 0,由于x ≠ 0,所以a ≠ 0。

八年级上册数学实数练习题

八年级上册数学实数练习题

实数单元习题练习(三)一、选择题:(48分) 1. 9的平方根是 ( )A 、3B 、-3C 、 3D 、81 2. 下列各数中,不是无理数的是 ( )A 、7B 、0.5C 、2πD 、…)个之间依次多两个115(3. 下列说法正确的是( )A 、有理数只是有限小数B 、无理数是无限小数 …C 、无限小数是无理数D 、3π是分数 4. 下列说法错误的是( )A 、1的平方根是1B 、–1的立方根是-1C 、2是2的平方根D 、–3是2)3(-的平方根 5. 若规定误差小于1, 那么60的估算值为( ) A 、3 B 、7 C 、8 D 、7或8 6. 和数轴上的点一一对应的是( )A 、整数B 、有理数C 、无理数D 、实数 %7. 下列说法正确的是( )A 、064.0-的立方根是B 、9-的平方根是3±C 、16的立方根是316D 、的立方根是 8. 若a 和a -都有意义,则a 的值是( )A 、0≥aB 、0≤aC 、0=aD 、0≠a 9. 边长为1的正方形的对角线长是( )A 、整数B 、分数C 、有理数D 、不是有理数 10.38-=( )*A 、2B 、-2C 、±2D 、不存在11.2a a =-,则实数a 在数轴上的对应点一定在( )A 、原点左侧B 、原点右侧C 、原点或原点左侧D 、原点或原点右侧 12.下列说法中正确的是( )A 、实数2a -是负数 B 、a a =2C 、a -一定是正数D 、实数a -的绝对值是a二. 填空题:(32分)13. 9的算术平方根是 ;3的平方根是 ; 0的平方根是 ;-2的平方根是 . |14. –1的立方根是 ,271的立方根是 , 9的立方根是 . 15.2的相反数是 , 倒数是 , -36的绝对值是 .16. 比较大小;6 .(填“>”或“<”)17. =-2)4( ;=-33)6( ; 2)196(= .18.37-的相反数是 ;32-= .19.若2b +5的立方根,则a = ,b = .20.a 的两个平方根是方程223=+y x 的一组解,则a = ,2a 的立方根是 . 三、解答题:(20分) }21.求下列各数的平方根和算术平方根:① 1; ② ③ 256 ④8125:22. 求下列各数的立方根: ①21627; ②610--.23.求下列各式的值: $①44.1; ②3027.0-; ③610-; ④649;⑤44.1-21.1; ⑦)32(2+{附加题:(20分)24.若21(2)0x y -+-=,求x y z ++的值。

八年级上册数学实数习题

八年级上册数学实数习题

1、()26-(d e )算术平方根是__________.2、ππ-+-43=_____________. 4、实数a,b,c 在数轴上(de)对应点如图所示化简c b c b a a ---++2=________________. 5、若m 、n 互为相反数,则n m +-5=_________. 6、若2)2(1-+-n m =0,则m =________,n =_________. 7、若a a -=2,则a______0.13、若x,y 都是实数,且42112=+-+-y x x ,则xy(de)值(). A 、0B 、21C 、2D 、不能确定16、已知04)3(2=-+-b a ,则ba3(de)值是().A 、41B 、-41C 、433D 、43 17、计算33841627-+-+(de)值是(). A 、1B 、±1C 、2D 、718、有一个数(de)相反数、平方根、立方根都等于它本身,这个数是().A 、-1B 、1C 、0D 、±119、下列命题中,正确(de)是().A 、无理数包括正无理数、0和负无理数B 、无理数不是实数C 、无理数是带根号(de)数D 、无理数是无限不循环小数 20、下列命题中,正确(de)是().A 、两个无理数(de)和是无理数B 、两个无理数(de)积是实数C 、无理数是开方开不尽(de)数D 、两个有理数(de)商有可能是无理数三、解答题:(本题共6小题,每小题5分,共30分)21、求972(de)平方根和算术平方根.22、计算252826-+(de)值.24、若0)13(12=-++-y x x ,求25y x +(de)值. 25、计算)515(5-26、若13223+-+-=x x y ,求3x +y(de)值.27、若a 、b 、c 满足01)5(32=-+++-c b a ,求代数式acb -(de)值. 28、已知052522=-++-xx x y ,求7(x +y )-20(de)立方根. 22、已知a 、b 满足0382=-++b a ,解关于x (de)方程()122-=++a b x a .14、已知321x -与323-y 互为相反数,求yx21+(de)值. 12、若(2x +3)2和y +2互为相反数,求x -y(de)值.13、如果A(de)平方根是2x -1与3x -4,求A(de)值 11、已知实数a 、b 在数轴上(de)试化简:(a -b)2-|a +b |17、如果一个数(de)平方根是3+a 和152-a ,求这个数. 54.小丽想用一块面积为400平方厘米(de)正方形纸片,沿着边(de)方向裁出一块面积为300平方厘米(de)长方形纸片,使它(de)长宽之比为3:2.不知能否裁出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大(de)纸片裁出一块面积小(de)纸片.”你同意小明(de)说法吗 请说明理由.5整数部分,求a+2b+c(de)平方根.。

北师大版八年级数学上册专题2.7实数的混合运算专项训练(40题)专题特训(原卷版+解析)

北师大版八年级数学上册专题2.7实数的混合运算专项训练(40题)专题特训(原卷版+解析)

专题2.7 实数的混合运算专项训练(40题)【北师大版】考卷信息:本套训练卷共40题,题型针对性较高,覆盖面广,选题有深度,可加强学生对实数混合运算的理解!1.(2023春·黑龙江齐齐哈尔·八年级统考期中)计算√116−√614+|√3−1|−√3 2.(2023春·广西玉林·八年级统考期末)计算:(−1)2023−√9+|1−√2|−√−83. 3.(2023春·河南洛阳·八年级统考期末)计算:−32×2+√(−4)2+√−643.4.(2023春·四川广元·八年级校联考期末)计算:√−83+|√3−2|−(−1)2021+|−√3|.5.(2023春·四川德阳·八年级四川省德阳中学校校考期中)计算:−22+√36−√−273−|2−√5|. 6.(2023春·四川泸州·八年级统考期末)计算:−32×29+√2516÷58+√−273. 7.(2023春·四川绵阳·八年级校联考期中)计算:√196×√−643÷√12425−√(−3)2−|√3+√−83|. 8.(2023春·四川绵阳·八年级统考期中)计算:√−83+√9−√1916+(−1)2022+|1−√2| 9.(2023春·山东临沂·八年级统考期中)计算: (1)√9+√52+√−273(2)(−3)2−|−12|−√910.(2023春·山西临汾·八年级统考期中)计算: (1)√0.04+√−83−√125; (2)−√214+√0.1253+√1−6364.11.(2023春·河南驻马店·八年级统考期中)(1)计算∶ √16+√−643−2√3+|√3−2|; (2)求下列式子中的x : 9x 2−16=0.12.(2023春·重庆彭水·八年级统考期中)(1)计算√83−√16+|√3−2|; (2)(12)0+(−2)3×18−√273×√19.13.(2023春·湖北十堰·八年级统考期末)计算下列各式的值: (1)√16−√−13+|2−√3|(2)√7(√7√7)−√8314.(2023春·湖北省直辖县级单位·八年级统考期末)计算: (1)√16+√−643−√(−3)2+|√3−1|; (2)已知(x +1)2=16,求x 的值.15.(2023春·天津静海·八年级校考期中)计算: (1)(−1)3+|1−√2|+√83; (2)√0.01+√−83−√1416.(2023春·黑龙江哈尔滨·八年级统考期中)计算 (1)8x 3+125=0;(2)√−83+√(−3)2−|√3−2|.17.(2023春·广东广州·八年级广州大学附属中学校考期中)计算: (1)√3+|√3−2|−√−83+√(−2)2. (2)√81+√(−3)2×√169−√1214+√−273.18.(2023春·广东汕头·八年级校考期中)计算 (1)√9−√(−5)33÷√(34)2(2)(−1)2021−√9+√−83+|√3−2|19.(2023春·山西吕梁·八年级统考期中)(1)计算:(−1)2022−(√16+√214)+√273+12 (2)解方程:2x 2=1820.(2023春·山东临沂·八年级统考期中)(1)计算:(−1)2017−√(−2)2−√−83+|√3−2|; (2)求x 的值:2(x −3)2=32.21.(2023春·辽宁鞍山·八年级校联考期中)计算: (1)√273−√25+|√3−2|−(1−√3) (2)√13×(√13√13)−√27322.(2023春·重庆江津·八年级校联考期中)计算: (1)−42×(−1)2023+√83−√25; (2)2√14−|2−√3|+√(−9)2+√−273.23.(2023春·山东聊城·八年级统考期中)计算:(1)2−2+√−13+(√83+4)÷√(−6)2 (2)(π−2023)0+√1.21−√−33263−√0.008324.(2023春·四川德阳·八年级四川省德阳市第二中学校校考期中)计算: (1)√(−3)2×(−13)−√273÷√14(2)√−83−√2+(√3)2+|1−√2|−(−1)2023 25.(2023春·河北唐山·八年级统考期中)计算: (1)(√2)2−√273+|√3−3|; (2)√9×√4+√102−(−4)2;26.(2023春·浙江宁波·八年级校考期中)计算下列各式: (1)√4+|−2|+√−273+(−1)2017; (2)(−3)2÷(−23)+(−2)3×(−32).27.(2023春·广东广州·八年级校考期中)计算: (1)(√5)2+√(−3)2+√−83; (2)(−2)3×18−√273×(−√19).28.(2023春·河南鹤壁·八年级校考期中)计算: (1)√14+√−83−11−√21; (2)0.1252022×(−8)2023.29.(2023春·山东枣庄·八年级统考期末)(1)计算:√16−√19+√273−|3−√5|;(2)求x 的值:(x +1)3=−827.30.(2023春·天津河北·八年级统考期中)(1)计算:√0.04+√−83−√14+2; (2)求下式中x 的值: 4(x +5)2=16.31.(2023春·黑龙江牡丹江·八年级校考期中)计算: (1)√−83−√3+(√5)2+|1−√3| (2)√36+√214+√−27332.(2023春·湖北十堰·八年级统考期中)计算:(1)√−8273×√14−√(−2)2;(2)√3−√25+|√3−3|+√1−63643.33.(2023春·云南红河·八年级校考期中)计算 (1)√25−√273+|−√9|(2)|2−√5|+|3−√7|+|√7−√5|34.(2023春·江苏泰州·八年级校考期中)计算或解方程: (1)8(x −1)3=−1258;(2)3(x −1)2−15=0.(3)−14×√4+|√9−5|+√214+√−0.1253.35.(2023春·北京西城·八年级北京市回民学校校考期中)按要求计算下列各题 (1)计算:|1−√2|−√(−2)2+√273;(2)已知√a −1+√b −5=0,则(a −b )2的算术平方根; (3)已知4x 2=25,求x 的值; (4)已知(x +1)2=1,求x 的值.36.(2023春·浙江宁波·八年级校联考期中)计算: (1)−2+(−7)−3+8;(2)−12021+(12−13)×|−6|÷22; (3)(14−23−56)×(−12); (4)−23+√−273−(−2)2÷√1681.37.(2023春·山东德州·八年级统考期中)计算: (1) −22−(√−38+8)÷√(−6)2−|√7−3|(2)√−1253−√279+√−(−14)3+√8273(3)(3x+2)2=16 (4)12(2x −1)3=−438.(2023春·浙江绍兴·八年级校考期中)计算: (1)|−8|+32+(−12)−32(2)2×(−5)−(−3)÷34(3)√81+√−273+√(−23)2−14(4)22+(−2)2+√19+(−1)201939.(2023春·山东东营·八年级统考期末)(1)计算 ∶√144−(2022−π)0+√(−3)2 ∶√259+√−125273+|√2−2|(2)解方程 ∶(x +2)2=25 ∶(x −1)3=2740.(2023春·江苏·八年级期中)计算 (1)√16−√−83+√−1273(2)√3(√3√3)(3)|3−√2|−|√2−π|−√(−3)2 (4)9(x +1)2−16=0(解方程)专题2.7 实数的混合运算专项训练(40题)【北师大版】考卷信息:本套训练卷共40题,题型针对性较高,覆盖面广,选题有深度,可加强学生对实数混合运算的理解!1.(2023春·黑龙江齐齐哈尔·八年级统考期中)计算√116−√614+|√3−1|−√3【答案】−134【分析】先根据算术平方根的定义,去绝对值的方法化简,再合并即可.【详解】解:原式=14−√254+√3−1−√3=14−52+√3−1−√3=14−52−1+√3−√3=−134【点睛】本题考查求一个数的算术平方根,去绝对值,实数的运算等知识,掌握相关法则和公式是解题的关键.2.(2023春·广西玉林·八年级统考期末)计算:(−1)2023−√9+|1−√2|−√−83.【答案】√2−3【分析】先计算乘方运算,化简绝对值,求解算术平方根与立方根,再合并即可.【详解】解:原式=−1−3+√2−1+2=√2−3.【点睛】本题考查的是实数的混合运算,掌握化简绝对值,求解算术平方根与立方根是解本题的关键.3.(2023春·河南洛阳·八年级统考期末)计算:−32×2+√(−4)2+√−643.【答案】−18【分析】原式利用立方根,平方根,以及平方的定义化简即可得到结果.【详解】解:−32×2+√(−4)2+√−643=−9×2+4−4=−18【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.4.(2023春·四川广元·八年级校联考期末)计算:√−83+|√3−2|−(−1)2021+|−√3|. 【答案】1【分析】先计算立方根、去绝对值、计算乘方,再计算加减即可. 【详解】解:原式=−2+2−√3+1+√3 =1.【点睛】本题主要考查实数的运算,掌握实数的运算顺序及有关运算法则是解答本题的关键. 5.(2023春·四川德阳·八年级四川省德阳中学校校考期中)计算:−22+√36−√−273−|2−√5|. 【答案】7−√5【分析】首先计算乘方、开方,去绝对值,然后从左向右依次计算,求出算式的值是多少即可. 【详解】解:−22+√36−√−273−|2−√5|=−4+6−(−3)−(√5−2) =−4+6+3−√5+2=7−√5.【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用. 6.(2023春·四川泸州·八年级统考期末)计算:−32×29+√2516÷58+√−273. 【答案】−3【分析】先计算平方、开平方和开立方,再计算加减. 【详解】解:原式=−9×29+54×85+(−3) =−2+2+(−3) =−3.【点睛】本题考查平方、算术平方根、立方根,解题关键是熟练掌握定义.7.(2023春·四川绵阳·八年级校联考期中)计算:√196×√−643÷√12425−√(−3)2−|√3+√−83|.【答案】−45+√3【分析】根据实数的混合计算法则求解即可. 【详解】解:原式=14×(−4)÷√4925−3−|√3−2|=−56÷75−3−(2−√3)=−40−3−2+√3=−45+√3.【点睛】本题主要考查了实数的混合计算,正确计算是解题的关键. 8.(2023春·四川绵阳·八年级统考期中)计算:√−83+√9−√1916+(−1)2022+|1−√2|【答案】−14+√2【分析】先化简各式,再进行加减运算. 【详解】解:原式=−2+3−54+1+√2−1=−14+√2.【点睛】本题考查开方运算,乘方运算,去绝对值.熟练掌握相关运算法则,是解题的关键. 9.(2023春·山东临沂·八年级统考期中)计算: (1)√9+√52+√−273(2)(−3)2−|−12|−√9【答案】(1)5 (2)512【分析】(1)根据算术平方根、立方根的性质化简,再计算加减即可; (2)根据乘方、绝对值、算术平方根的性质化简,再计算加减即可. 【详解】(1)解:√9+√52+√−273=3+5−3=5;(2)解:(−3)2−|−12|−√9=9−12−3=512.【点睛】本题考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减.10.(2023春·山西临汾·八年级统考期中)计算: (1)√0.04+√−83−√125;(2)−√214+√0.1253+√1−6364. 【答案】(1)−2 (2)−78【分析】(1)首先计算开平方和开立方,然后从左向右依次计算,求出算式的值即可; (2)首先计算开平方和开立方,然后从左向右依次计算,求出算式的值即可. 【详解】(1)解:原式=0.2−2−15=−2(2)解:原式=−32+12+18=−78【点睛】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.11.(2023春·河南驻马店·八年级统考期中)(1)计算∶ √16+√−643−2√3+|√3−2|; (2)求下列式子中的x : 9x 2−16=0. 【答案】(1)2−3√3;(2)x =±43【分析】(1)先计算算术平方根,立方根,化简绝对值,再合并即可; (2)把方程化为x 2=169,再利用直接平方根的含义解方程即可.【详解】(1)解:原式=4−4−2√3+2−√3=2−3√3 (2)解:∶9x 2−16=0, ∶9x 2=16, ∶x 2=169,解得:x =±43;【点睛】本题考查的是实数的混合运算,利用平方根的含义解方程,熟记平方根的含义是解本题的关键.12.(2023春·重庆彭水·八年级统考期中)(1)计算√83−√16+|√3−2|; (2)(12)0+(−2)3×18−√273×√19.【答案】(1)−√3;(2)−1【分析】(1)先根据立方根定义、算术平方根计算,再利用绝对值的代数意义化简,计算即可得到结果; (2)先将零指数幂、立方根、算术平方根、乘方计算,再进行计算即可 【详解】解:(1)√83−√16+|√3−2|=2−4+2−√3=−√3;(2)(12)0+(−2)3×18−√273×√19=1−8×18−3×13=1−1−1=−1.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 13.(2023春·湖北十堰·八年级统考期末)计算下列各式的值: (1)√16−√−13+|2−√3| (2)√7(√7√7)−√83【答案】(1)7−√3 (2)6【分析】(1)先化简各式,再进行加减运算; (2)先算乘法,求立方根,再进行加减运算. 【详解】(1)解:原式=4−(−1)+2−√3=5+2−√3=7−√3;(2)原式=√7×√7+√7√72=7+1−2=6.【点睛】本题考查实数的混合运算.熟练掌握相关运算法则,正确的计算是解题的关键. 14.(2023春·湖北省直辖县级单位·八年级统考期末)计算: (1)√16+√−643−√(−3)2+|√3−1|; (2)已知(x +1)2=16,求x 的值. 【答案】(1)−4+√3 (2)x =3或x =−5【分析】(1)原式先化简算术平方根、立方根和绝对值,然后再进行加减运算即可即可; (2)直接运用开平方法求解方程即可.【详解】(1)解:√16+√−643−√(−3)2+|√3−1| =4−4−3+√3−1 =−4+√3; (2)(x +1)2=16, x +1=±4, ∶x =3或x =−5.【点睛】本题主要考查了实数的混合运算和运用开平方法解方程,熟练掌握算术平方根的定义是解答本题的关键.15.(2023春·天津静海·八年级校考期中)计算: (1)(−1)3+|1−√2|+√83; (2)√0.01+√−83−√14 【答案】(1)√2 (2)−2.4【分析】(1)根据立方、立方根、实数绝对值化简后再去计算即可; (2)根据算术平方根、立方根化简后计算即可. 【详解】(1)原式=−1+√2−1+2=√2; (2)原式=0.1−2−12=−2.4.【点睛】本题考查实数的混合运算,解题的关键是先化简再去计算.16.(2023春·黑龙江哈尔滨·八年级统考期中)计算(1)8x3+125=0;(2)√−83+√(−3)2−|√3−2|.【答案】(1)−52(2)−1+√3【分析】(1)先整体求得x3,然后再根据立方根的知识求得x即可;(2)先根据立方根、算术平方根、绝对值的知识化简,然后再计算即可.【详解】(1)解:8x3+125=0,8x3=125,x3=−1258,x=−52.(2)解:√−83+√(−3)2−|√3−2|,=−2+3−2+√3,=−1+√3.【点睛】本题主要考查了立方根、算术平方根、绝对值、实数的运算等知识点,灵活运用相关运算法则是解答本题的关键.17.(2023春·广东广州·八年级广州大学附属中学校考期中)计算:(1)√3+|√3−2|−√−83+√(−2)2.(2)√81+√(−3)2×√169−√1214+√−273.【答案】(1)6(2)132【分析】(1)分别计算化简绝对值,开立方根和开算术平方根,再按照实数加减混合运算即可.(2)分别计算开立方根、开算术平方根和实数乘除,再按照有理数加减乘除混合运算即可.【详解】(1)解:√3+|√3−2|−√−83+√(−2)2=√3+2−√3+2+2=6故答案为:6.(2)解:√81+√(−3)2×√169−√1214+√−273=9+3×43−72−3=9+4−72−3=132故答案为:132.【点睛】本题考查了实数的加减乘除混合运算,解题的关键在于熟练掌握实数的运算法则. 18.(2023春·广东汕头·八年级校考期中)计算 (1)√9−√(−5)33÷√(34)2(2)(−1)2021−√9+√−83+|√3−2| 【答案】(1)293;(2)−4−√3;【分析】(1)先分别计算算术平方根、立方根,再进行实数的加减运算即可;(2)先分别计算乘方、算术平方根、立方根和化简绝对值,再进行实数的加减运算即可;【详解】(1)解:√9−√(−5)33÷√(34)2=3−(−5)÷34=3+5×43=293;(2)(−1)2021−√9+√−83+|√3−2|=−1−3+(−2)+(2−√3)=−4−2+2−√3=−4−√3;【点睛】本题考查实数的加减运算,解题的关键是掌握立方根和绝对值相关知识.19.(2023春·山西吕梁·八年级统考期中)(1)计算:(−1)2022−(√16+√214)+√273+12 (2)解方程:2x 2=18 【答案】(1)−1;(2)x =±3【分析】(1)原式分别根据乘方的意义、算术平方根以及立方根的意义化简各项后,再进行加减运算即可得到结果;(2)方程两边同除以2后,再进行开平方运算即可. 【详解】解:(1)(−1)2022−(√16+√214)+√273+12 =1−(4+32)+3+12=1−4−32+3+12 =−1; (2)2x 2=18 x 2=9 x =±3.【点睛】本题主要考查了实数的混合运算以及运用平方根解方程,熟练掌握相关知识是解答本题的关键. 20.(2023春·山东临沂·八年级统考期中)(1)计算:(−1)2017−√(−2)2−√−83+|√3−2|; (2)求x 的值:2(x −3)2=32.【答案】(1)1−√3;(2)x 的值为7或−1【分析】(1)先计算乘方、算术平方根、立方根、化简绝对值,再计算实数的加减法即可得; (2)利用平方根解方程即可得.【详解】解:(1)原式=−1−√4−(−2)+2−√3=−1−2+2+2−√3=1−√3;(2)2(x −3)2=32, (x −3)2=16,x −3=4或x −3=−4, 解得x =7或x =−1, 所以x 的值为7或−1.【点睛】本题考查了算术平方根、立方根、实数的运算、利用平方根解方程,熟练掌握各运算法则是解题关键.21.(2023春·辽宁鞍山·八年级校联考期中)计算:(1)√273−√25+|√3−2|−(1−√3)(2)√13×(√13√13)−√273【答案】(1)−1(2)0【分析】(1)根据实数的混合计算法则求解即可;(2)根据实数的混合计算法则求解即可.【详解】(1)解:原式=3−5+2−√3−1+√3=−1;(2)解:原式=√13×√13−√13×√13−3=13−10−3=0.【点睛】本题主要考查了实数的混合计算,熟知相关计算法则是解题的关键.22.(2023春·重庆江津·八年级校联考期中)计算:(1)−42×(−1)2023+√83−√25;(2)2√14−|2−√3|+√(−9)2+√−273.【答案】(1)13;(2)5+√3【分析】(1)根据幂的运算法则,根式性质,立方根的定义直接计算即可得到答案;(2)根据根式的性质,立方根的定义直接计算即可得到答案;【详解】(1)解:原式=−16×(−1)+2−5=16+2−5=13;(2)解:原式=2×12−2+√3+9+(−3)=1−2+√3+9−3=5+√3;【点睛】本题考查根式的性质,立方根的定义,幂的运算,解题的关键是熟练掌握√a 2=|a | ,√a 33=a . 23.(2023春·山东聊城·八年级统考期中)计算: (1)2−2+√−13+(√83+4)÷√(−6)2 (2)(π−2023)0+√1.21−√−33263−√0.0083【答案】(1)14 (2)2.65【分析】(1)先计算负整数指数幂、立方根、算术平方根,再根据实数的混合计算法则求解即可; (2)先计算零指数幂、算术平方根及立方根,再根据实数的混合计算法则求解即可. 【详解】(1)解:原式=14−1+(2+4)÷6=14−1+6÷6 =14−1+1 =14;(2)解:原式=1+1.1−(−322)−0.2=1+1.1−(−34)−0.2=1+1.1+34−0.2=2.65.【点睛】本题主要考查了实数的混合计算,零指数幂和负整数指数幂,熟知相关计算法则是解题的关键. 24.(2023春·四川德阳·八年级四川省德阳市第二中学校校考期中)计算: (1)√(−3)2×(−13)−√273÷√14(2)√−83−√2+(√3)2+|1−√2|−(−1)2023 【答案】(1)−7 (2)1【分析】(1)先分别求解算术平方根、立方根,然后进行乘除运算,最后进行减法运算即可;(2)先分别求解立方根,乘方,绝对值,然后进行加减运算即可. 【详解】(1)解:√(−3)2×(−13)−√273÷√14=3×(−13)−3÷12=−1−6=−7;(2)解:√−83−√2+(√3)2+|1−√2|−(−1)2023=−2−√2+3+√2−1−(−1) =−2+3−1+1−√2+√2=1.【点睛】本题考查了算术平方根、立方根,乘方,绝对值,实数的混合运算.解题的关键在于正确的运算. 25.(2023春·河北唐山·八年级统考期中)计算: (1)(√2)2−√273+|√3−3|; (2)√9×√4+√102−(−4)2; 【答案】(1)2−√3 (2)0【分析】(1)先计算平方、立方根,去绝对值符号,再进行加减运算; (2)先计算开平方,有理数的乘方,再进行乘法运算,最后进行加减运算. 【详解】(1)解:原式=2−3+(−√3+3)=2−3−√3+3=2−√3;(2)解:原式=3×2+10−16=6+10−16=0.【点睛】本题考查了实数的混合运算,平方、平方根、立方根,绝对值的性质,有理数的乘方,熟练掌握运算法则及运算顺序是解题的关键.26.(2023春·浙江宁波·八年级校考期中)计算下列各式: (1)√4+|−2|+√−273+(−1)2017;(2)(−3)2÷(−23)+(−2)3×(−32).【答案】(1)0 (2)−32【分析】(1)分别根据算术平方根的定义,绝对值的性质,立方根的定义计算出各数,再根据实数的加减法则进行计算;(2)先算乘方,再算乘除,最后算加减即可. 【详解】(1)解:原式=2+2−3−1 =0;(2)解:原式=9÷(−23)+(−8)×(−32)=9×(−32)+12=−272+12 =−32.【点睛】本题考查的是实数的运算,熟知实数混合运算的法则是解题的关键. 27.(2023春·广东广州·八年级校考期中)计算: (1)(√5)2+√(−3)2+√−83; (2)(−2)3×18−√273×(−√19). 【答案】(1)6 (2)0【分析】(1)原式利用乘方的意义,平方根、立方根定义计算即可得到结果; (2)原式利用乘方的意义,立方根定义,以及乘法法则计算即可得到结果. 【详解】(1)解:原式=5+3+(−2)=8−2=6; (2)解:原式=(−8)×18−3×(−13)=−1+1=0.【点睛】本题考查实数的运算,涉及立方根、平方根、乘方运算,掌握实数的运算顺序是关键. 28.(2023春·河南鹤壁·八年级校考期中)计算:(1)√14+√−83−11−√21;(2)0.1252022×(−8)2023. 【答案】(1)−1212−√21 (2)−8【分析】(1)根据算术平方根、立方根定义先化简,再利用实数加减运算法则计算即可得到答案; (2)先将小数化为分数,再利用积的乘方运算的逆运算求解即可得到答案. 【详解】(1)解:√14+√−83−11−√21=12−2−11−√21 =−112−11−√21=−1212−√21;(2)解:0.1252022×(−8)2023=(18)2022×(−8)2023=[18×(−8)]2022×(−8) =(−1)2022×(−8)=−8.【点睛】本题考查实数混合运算,涉及算术平方根、立方根、实数加减运算、分数与小数互化、积的乘方运算的逆运算等知识,熟练掌握相关运算法则是解决问题的关键.29.(2023春·山东枣庄·八年级统考期末)(1)计算:√16−√19+√273−|3−√5|;(2)求x 的值:(x +1)3=−827.【答案】(1)113+√5;(2)x =−53【分析】(1)首先计算开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可. (2)根据立方根的含义和求法,求出x +1的值,进而求出x 的值即可. 【详解】解:(1)√16−√19+√273−|3−√5| =4−13+3−(3−√5)=4−13+3−3+√5=113+√5.(2)∵(x +1)3=−827, ∴x +1=−23, 解得:x =−53.【点睛】此题主要考查了立方根的含义和求法,以及实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.30.(2023春·天津河北·八年级统考期中)(1)计算:√0.04+√−83−√14+2;(2)求下式中x 的值: 4(x +5)2=16. 【答案】(1)−0.3;(2)x =−7或x =−3【分析】(1)首先进行开平方和开立方运算,再进行有理数的加减即可求解;(2)首先求出(x +5)2的值,然后根据平方根的定义求出x +5的值,进而求出x 的值即可. 【详解】解:(1)√0.04+√−83−√14+2 =0.2+(−2)−12+2 =−0.3;(2)4(x +5)2=16, 即(x +5)2=4,∴x +5=−2或x +5=2, 解得x =−7或x =−3.【点睛】此题主要考查了平方根、立方根的定义,以及实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行. 31.(2023春·黑龙江牡丹江·八年级校考期中)计算: (1)√−83−√3+(√5)2+|1−√3| (2)√36+√214+√−273【答案】(1)2 (2)92【分析】(1)根据立方根定义、平方根的性质、绝对值的意义等计算即可; (2)根据立方根、算术平方根的定义计算即可. 【详解】(1)解:√−83−√3+(√5)2+|1−√3| =−2−√3+5+√3−1 =2;(2)解:√36+√214+√−273=6+32−3=92.【点睛】本题考查了实数的混合运算,掌握立方根、算术平方根的定义等是解题的关键. 32.(2023春·湖北十堰·八年级统考期中)计算: (1)√−8273×√14−√(−2)2; (2)√3−√25+|√3−3|+√1−63643.【答案】(1)−213 (2)−74【分析】(1)先利用立方根,算术平方根的性质化简,再进行计算; (2)先利用立方根,算术平方根、绝对值的性质化简,再进行计算. 【详解】(1)解:原式=−23×12−√4=−13−2=−213;(2)解:原式=√3−5+3−√3+√1643=−2+14=−74.【点睛】本题考查了实数的混合运算,熟练掌握运算法则是解题的关键.33.(2023春·云南红河·八年级校考期中)计算(1)√25−√273+|−√9|(2)|2−√5|+|3−√7|+|√7−√5|【答案】(1)5(2)1【分析】(1)先化简根式再计算(2)先化简再进行实数的混合运算(1)解:原式=5−3+3=5(2)解:原式=√5−2+3−√7+√7−√5=1【点睛】本题考查了根式的化简,去绝对值运算,熟练掌握运算法则是解题关键.34.(2023春·江苏泰州·八年级校考期中)计算或解方程:(1)8(x−1)3=−1258;(2)3(x−1)2−15=0.(3)−14×√4+|√9−5|+√214+√−0.1253.【答案】(1)x=−14(2)x=1±√5(3)1【分析】(1)利用立方根解方程即可;(2)移项,利用平方根解方程即可;(3)先化简各式,再加减运算即可.【详解】(1)解:8(x−1)3=−1258,∶(x −1)3=−12564∶x −1=√−125643=−54,∶x =−14;(2)解:3(x −1)2−15=0, ∶3(x −1)2=15, ∶(x −1)2=5, ∶x −1=±√5, ∶x =1±√5;(3)原式=−1×2+|3−5|+32−0.5=−2+|−2|+32−12=−2+2+32−12=1.【点睛】本题考查利用平方根和立方根解方程,实数的混合运算.熟练掌握相关运算法则,正确计算,是解题的关键.35.(2023春·北京西城·八年级北京市回民学校校考期中)按要求计算下列各题 (1)计算:|1−√2|−√(−2)2+√273;(2)已知√a −1+√b −5=0,则(a −b )2的算术平方根; (3)已知4x 2=25,求x 的值; (4)已知(x +1)2=1,求x 的值. 【答案】(1)√2 (2)4(3)x 1=52,x 2=−52(4)x 1=0,x 2=−2【分析】(1)先根据绝对值、算术平方根、立方根的知识化简,然后再结束即可;(2)先根据算术平方根的非负性求得a 、b 的值,然后再代入(a −b )2求出其算术平方根即可; (3)先求出x 2,然后再运用平方根解方程即可解答;(4)运用平方根解方程即可解答.【详解】(1)解:|1−√2|−√(−2)2+√273, =√2−1−2+3, =√2.(2)解:∶√a −1+√b −5=0, ∶a −1=0,b −5=0, ∶a =1,b =5,∶(a −b )2=(1−5)2=16, ∶(a −b )2的算术平方根是4. (3)解:4x 2=25, x 2=254,∶x 1=52,x 2=−52. (4)解:(x +1)2=1, x +1=±1, ∶x 1=0,x 2=−2.【点睛】本题主要考查了实数的混合运算、算术平方根的非负性、立方根、运用平方根解方程等知识点,灵活运用相关知识成为解答本题的关键.36.(2023春·浙江宁波·八年级校联考期中)计算: (1)−2+(−7)−3+8;(2)−12021+(12−13)×|−6|÷22; (3)(14−23−56)×(−12); (4)−23+√−273−(−2)2÷√1681.【答案】(1)−4 (2)−34 (3)15 (4)−20【分析】(1)先将减法运算变成加法,再计算求解; (2)先计算乘方、绝对值和括号里面的,再计算加法; (3)先运用乘法分配律,再计算加减运算;(4)先计算乘方、立方根和平方根,再计算除法,最后计算加减. 【详解】(1)−2+(−7)−3+8=−2−7−3+8=−4;(2)−12021+(12−13)×|−6|÷22=−1+16×6×14=−1+14=−34;(3)(14−23−56)×(−12)=−14×12+23×12+56×12=−3+8+10=15;(4)−23+√−273−(−2)2÷√1681=−8−3−4×94=−11−9=−20.【点睛】此题考查了有理数的混合运算,以及实数混合运算的能力,关键是能准确确定运算顺序和方法. 37.(2023春·山东德州·八年级统考期中)计算: (1) −22−(√−38+8)÷√(−6)2−|√7−3|(2)√−1253−√279+√−(−14)3+√8273(3)(3x+2)2=16 (4)12(2x −1)3=−4 【答案】(1)−8+√7(2)−478(3)x=−2或x=23(4)x=−12【分析】(1)根据乘方计算、求算术平方根、立方根、绝对值化简即可;(2)根据求算术平方根、立方根进行计算即可;(3)根据求平方根进行解方程即可;(4)根据求立方根进行解方程即可.【详解】(1)解:原式=−4−(−2+8)÷6−(3−√7)=−4−1−3+√7=−8+√7;(2)解:原式=−5−53+√164+23=−5−1+18=−478;(3)解:由(3x+2)2=16,得:3x+2=−4或3x+2=4解得:x=−2或x=23;∴方程的解为x=−2或x=23;(4)解:由12(2x−1)3=−4,得:(2x−1)3=−82x−1=−2x=−12.【点睛】本题考查实数的混合运算及根据平方根和立方根解方程,解题的关键是熟练掌握乘方计算、求算术平方根、立方根、绝对值化简、根据平方根和立方根解方程,本题的易错点是根据平方根解方程时需考虑求一个正数的平方根应有两个互为相反数的解.38.(2023春·浙江绍兴·八年级校考期中)计算:(1)|−8|+32+(−12)−32(2)2×(−5)−(−3)÷34(3)√81+√−273+√(−23)2−14(4)22+(−2)2+√19+(−1)2019【答案】(1)−4 (2)−6 (3)523(4)713【分析】(1)先算绝对值和去括号,再算加减; (2)先算乘除,再算加法;(3)先算立方根,算术平方根和乘方,再算加减; (4)先算乘方和算术平方根,再算加减. 【详解】(1)|−8|+32+(−12)−32=8+32−12−32=−4(2)2×(−5)−(−3)÷34=−10+4 =−6(3)√81+√−273+√(−23)2−14=9+(−3)+23−1=523(4)22+(−2)2+√19+(−1)2019=4+4+13−1=71 3【点睛】本题主要考查了实数的混合运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.39.(2023春·山东东营·八年级统考期末)(1)计算∶√144−(2022−π)0+√(−3)2∶√259+√−125273+|√2−2|(2)解方程∶(x+2)2=25∶(x−1)3=27【答案】(1)∶14;∶2−√2;(2)∶x=3或−7;∶x=4【分析】(1)∶利用算术平方根的意义,零指数幂的意义即可求解;∶利用算术平方根,立方根的意义和绝对值的意义化简运算即可;(2)∶利用平方根的意义解答即可;∶利用立方根的意义解答即可.【详解】解:(1)∶√144−(2022−π)0+√(−3)2=12−1+3=14;∶√259+√−125273+|√2−2|=53+(−53)+2−√2=2−√2;(2)∶(x+2)2=25∴x+2=±5,∴x=3或−7;∶(x−1)3=27∴x−1=3∴x=4【点睛】本题主要考查了实数的运算,算术平方根的意义,立方根的意义,熟练掌握实数运算法则与性质是解题的关键40.(2023春·江苏·八年级期中)计算 (1)√16−√−83+√−1273(2)√3(√3√3)(3)|3−√2|−|√2−π|−√(−3)2 (4)9(x +1)2−16=0(解方程) 【答案】(1)523 (2)2 (3)6−π(4)x =13或x =−73【分析】(1)根据实数的混合计算法则求解即可; (2)根据实数的混合计算法则求解即可; (3)根据实数的混合计算法则求解即可; (4)根据求平方根的方法解方程即可. 【详解】(1)解:原式=4−(−2)+(−13)=4+2−13=523;(2)解:原式=√3×√3−√3√3=3−1=2;(3)解:原式=3−√2−(π−√2)−(−3)=3−√2−π+√2+3=6−π;(4)解:∶9(x +1)2−16=0, ∶9(x +1)2=16, ∶(x +1)2=169,∶x +1=43或x +1=−43,∶x =13或x =−73.【点睛】本题主要考查了实数的混合计算,求平方根的方法解方程,熟知相关计算法则是解题的关键.。

(典型题)初中数学八年级数学上册第二单元《实数》测试(包含答案解析)

(典型题)初中数学八年级数学上册第二单元《实数》测试(包含答案解析)

一、选择题1.若用我们数学课本上采用的科学计算器进行计算,其按键顺序如图,则输出结果应为( )A .8B .4C .12D .14 2.下列说法中:①立方根等于本身的是1-,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤23π-是负分数;⑥两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数.其中正确的个数是( )A .3B .4C .5D .6 3.已知实数x 、y 满足|x -4|+8y -=0,则以x 、y 的值为两边长的等腰三角形周长是( )A .20或16B .20C .16D .18 4.下列实数227,3π,3.14159,9-,39,-0.1010010001…….(每两个1之间依次多1个0)中无理数有( )A .1个B .2个C .3个D .4个5.如x 为实数,在“(31)-□x ”的“□”中添上一种运算符号(在“+”、“-”、“×”、“÷”中选择),其运算结果是有理数,则x 不可能是( )A .31-B .31+C .33D .13-6.已知 ||3a =,216b =,且0a b +<,则代数式-a b 的值为( ) A .-1或-7B .1或-7C .1或7D .±1或7± 7.下列说法中正确的是( ) A .25的值是±5B .两个无理数的和仍是无理数C .-3没有立方根.D .22-a b 是最简二次根式.8.实数a 、b 在数轴上的位置如图所示,那么()2a b a b -++的结果是( )A .2aB .2bC .2a -D .2b - 9.下列说法正确的是( )A 5B .55C .2<5<3D .数轴上不存在表示5的点10.如图,数轴上有M ,N ,P ,Q 四点,则这四点中所表示的数最接近﹣10的是( )A .点MB .点NC .点PD .点Q11.已知x 5,则代数式x 2﹣x ﹣2的值为( ) A .5B .5 C .5D .512.下列运算正确的是( )A .(x +y )2=x 2+y 2B .(﹣12x 2)3=﹣16x 6C .215-=125D 2(5)-=5二、填空题13.若202120212a b -+=,其中a ,b 均为整数,则符合题意的有序数对(),a b 的组数是______.14.3x -+|2x ﹣y |=0,那么x ﹣y =_____.15.一个数的算术平方根是6,则这个数是_______,它的另一个平方根是_________. 16.计算((2323⨯+的结果是_____.17.一个正方体的木块的体积是3343cm ,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是________.18.已知b>032a b -=_____.19.若[)x 表示大于x 的最小整数,如[)56=,[)1.81-=-,则下列结论中正确的有______(填写所有正确结论的序号).①[)01=;②33055⎡⎫-=⎪⎢⎣⎭;③[)0x x -<;④[)1x x x <≤+;⑤存在有理数x 使[)0.2x x -=成立.20.已知:15-=m m,则221m m -=_______. 三、解答题 21.计算.(121483230(223)5; (2)22021021(1)(2)(4)362π-⎛⎫---⨯- ⎪⎝⎭22.计算:(1(2)已知﹣a|=0,求a 2﹣+2+b 2的值.23.计算:21()|12-24.计算:(1))11(2142⎛⎫⨯-- ⎪⎝⎭25.计算:(1(2)2|1(2)+--26.化简(1)+(2【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据2ndf 键是功能转换键列算式,然后解答即可.【详解】14==. 故选:D .【点睛】本题考查了利用计算器进行数的开方,是基础题,要注意2ndf 键的功能. 2.A解析:A【分析】根据平方根和立方根的性质,以及无理数的性质判断选项的正确性.【详解】解:立方根等于本身的数有:1-,1,0,故①正确;平方根等于本身的数有:0,故②错误;的和是0,是有理数,故③错误; 实数与数轴上的点一一对应,故④正确;23π-是无理数,不是分数,故⑤错误; 从数轴上来看,两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数,故⑥正确.故选:A .【点睛】本题考查平方根和立方根的性质,无理数的性质,解题的关键是熟练掌握这些概念. 3.B解析:B【分析】根据绝对值与二次根式的非负性即可求出x 与y 的值.由于没有说明x 与y 是腰长还是底边长,故需要分类讨论.【详解】由题意可知:x-4=0,y-8=0,∴x=4,y=8,当腰长为4,底边长为8时,∵4+4=8,∴不能围成三角形,当腰长为8,底边长为4时,∵4+8>8,∴能围成三角形,∴周长为:8+8+4=20,故选:B .【点睛】本题考查了算术平方根,以及三角形三边关系,解题的关键是正确理解非负性的意义,以及三角形三边关系,本题属于基础题型.4.C解析:C【分析】根据无理数的概念即可判断.【详解】解:,无理数有:3π,-0.1010010001…….(每两个1之间依次多1个0),共有3个. 故选:C .【点睛】 本题考查了无理数.解题的关键是熟练掌握无理数的概念.5.C解析:C【分析】根据题意,添上一种运算符号后逐一判断即可.【详解】解:A 、1)1)0-=,故选项A 不符合题意;B 、1)1)2⨯=,故选项B 不符合题意;C 1与C 符合题意;D 、1)(10+-=,故选项D 不符合题意.故选:C .【点睛】本题主要考查了二次根式的混合运算,熟记二次根式的混合运算法则以及平方差公式是解答本题的关键. 6.C解析:C【分析】分别求出a 与b 的值,再利用0a b +<这一条件判断出a 、b 的值,进而分情况讨论即可解题.【详解】 解 ||3a =,216b =,3,4a b ∴=±=±,0a b +<,3,4a b ∴==-或3,4a b =-=-,7a b ∴-=或1,故选C .【点睛】本题考查了去绝对值和求平方根,正确的确定a 、b 的值是解答本题的关键.7.D解析:D【分析】根据算术平方根和平方根的概念,无理数的概念立方根的概念,和二次根式的概念逐一判断即可.【详解】5=,故A 选项错误;0ππ-+=,故B 选项错误;-3=C 选项错误;D 选项正确;故选D .【点睛】本题考查了算术平方根和平方根的区别,无理数、二次根式和立方根的概念,题目较为综合,熟练掌握相关概念是本题的关键.8.D解析:D【分析】由数轴可得到0b a <<a b =+和绝对值的性质,即可得到答案.【详解】解:根据题意,则 0b a <<,∴0a b ->,0a b +<,∴a b -=a b a b -++=a b a b ---=2b -;故选:D .【点睛】本题考查了二次根式的性质,绝对值的意义,数轴的定义,解题的关键是掌握所学的知识,正确得到0b a <<.9.C解析:C【分析】根据无理数的意义,开平方,被开方数越大算术平方根越大,实数与数轴的关系,可得答案.【详解】解:A A 错误;B 、5的平方根是B 错误;C ∴23,故C 正确;D D错误;故选:C.【点睛】本题考查了实数的意义、实数与数轴的关系利用被开方数越大算术平方根越大是解题关键.10.B解析:B【分析】根据无理数的估值方法进行判断即可;【详解】∵-3.16,∴点N最接近故选:B.【点睛】本题考查了实数与数轴,无理数的估算,熟练掌握知识点是解题的关键;11.D解析:D【分析】把已知条件变形得到x2=4x+1,利用降次的方法得到原式=3x-1,然后把 x 的值代入计算即可.【详解】∵x,∴x﹣2∴(x﹣2)2=5,即x2﹣4x+4=5,∴x2=4x+1,∴x2﹣x﹣2=4x+1﹣x﹣2=3x﹣1,当x时,原式=3)﹣1=.故选:D.【点睛】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值,运用整体代入的方法可简化计算.12.D解析:D【分析】直接利用积的乘方运算法则以及负整数指数幂的性质和二次根式的性质、完全平方公式分别判断得出答案.【详解】解:A 、(x +y )2=x 2+2xy +y 2,故此选项错误;B 、(﹣12x 2)3=﹣18x 6,故此选项错误; C 、215-=25,故此选项错误;D 5,故此选项正确;故选:D .【点睛】本题考查了积的乘方、负整数指数幂、二次根式的性质、完全平方公式,解题关键是熟知这些性质,并能准确应用.二、填空题13.5【分析】由绝对值和算术平方根的非负性求出ab 所有的可能值即可得到答案【详解】解:∵且均为整数又∵∴可分为以下几种情况:①解得:;②解得:或;③解得:或;∴符合题意的有序数对共由5组;故答案为:5【 解析:5【分析】由绝对值和算术平方根的非负性,求出a 、b 所有的可能值,即可得到答案.【详解】解:∵20212a -=,且a ,b 均为整数,又∵20210a -≥0≥,∴可分为以下几种情况:①20210a -=2=,解得:2021a =,2017b =-;②20211a -=1=,解得:2020a =或2022a =,2020b =-;③20212a -=0=解得:2019a =或2023a =,2021b =-;∴符合题意的有序数对(),a b 共由5组;故答案为:5.【点睛】本题考查了绝对值的非负性,算术平方根的非负性,解题的关键是掌握非负的性质进行解题.14.﹣3【分析】先根据非负数的性质列出方程组求出xy 的值进而可求出x ﹣y 的值【详解】解:∵+|2x ﹣y|=0∴解得所以x ﹣y =3﹣6=﹣3故答案为:-3【点睛】本题考查了二次根式的非负性绝对值的非负性根解析:﹣3【分析】先根据非负数的性质列出方程组,求出x、y的值,进而可求出x﹣y的值.【详解】解:∵+|2x﹣y|=0,∴3020xx y-=⎧⎨-=⎩,解得36 xy=⎧⎨=⎩.所以x﹣y=3﹣6=﹣3.故答案为:-3【点睛】本题考查了二次根式的非负性,绝对值的非负性,根据题意得到关于x、y的二元一次方程组,求出x、y的值是解题关键.15.-6【分析】根据正数的平方根有两个它们互为相反数进行解答【详解】解:∵∴这个数是36∵一个正数的两个平方根互为相反数这个数的算术平方根为6∴它的另一个平方根是6的相反数即-6故答案为:36-6【点睛解析:-6【分析】根据正数的平方根有两个,它们互为相反数进行解答.【详解】解:∵26=36,∴这个数是36∵一个正数的两个平方根互为相反数,这个数的算术平方根为6,∴它的另一个平方根是6的相反数,即-6.故答案为:36,-6.【点睛】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.16.1【分析】根据二次根式混合运算的法则进行计算即可【详解】解:原式=故答案为:1【点睛】本题考查二次根式的混合运算熟练掌握运算法则是解题的关键解析:1【分析】根据二次根式混合运算的法则进行计算即可.【详解】解:原式=222431-=-=,故答案为:1.【点睛】本题考查二次根式的混合运算,熟练掌握运算法则是解题的关键.17.5cm3【分析】先根据正方体的体积求出正方体的边长要使它锯成8块同样大小的小正方体木块只需要将正方体的每条棱长平均分为两份即可得到小正方体的棱长即可求出表面积【详解】解:∵一个正方体的木块的体积是∴ 解析:5cm 3.【分析】先根据正方体的体积求出正方体的边长,要使它锯成8块同样大小的小正方体木块,只需要将正方体的每条棱长平均分为两份即可,得到小正方体的棱长,即可求出表面积.【详解】解:∵一个正方体的木块的体积是3343cm ,∴(cm 3),要将它锯成8块同样大小的小正方体木块,则每个小正方体的棱长为7÷2=3.5(cm 3), ∴每个小正方体的表面积为6×3.52=73.5(cm 3).故答案为73.5cm 3.【点睛】本题考查了立方根.解题的关键是能够通过空间想象得出如何将正方体分成8块同样大小的小正方体木块.18.【分析】先由二次根式的被开方数为非负数得出≥0结合已知条件b >0根据有理数乘法法则得出a≤0再利用积的算术平方根的性质进行化简即可【详解】解:∵≥0b >0∴a≤0故答案为:【点睛】本题主要考查了二次解析:-【分析】先由二次根式的被开方数为非负数得出32a b -≥0,结合已知条件b >0,根据有理数乘法法则得出a≤0,再利用积的算术平方根的性质进行化简即可.【详解】解:∵32a b -≥0,b >0,∴a≤0,a =⋅=-故答案为:-【点睛】本题主要考查了二次根式的性质与化简,难度适中,得出a≤0是解题的关键. 19.①④⑤【分析】根据题意表示大于x 的最小整数结合各项进行判断即可得出答案【详解】解:①根据表示大于x 的最小整数故正确;②应该等于故错误;③当x=05时故错误;④根据定义可知但不会超过x+1所以成立故正 解析:①④⑤【分析】根据题意[)x 表示大于x 的最小整数,结合各项进行判断即可得出答案.【详解】解:①[)01=,根据[)x 表示大于x 的最小整数,故正确; ②33055⎡⎫-=⎪⎢⎣⎭,应该等于333215555⎡⎫-=-=⎪⎢⎣⎭,故错误; ③[)0x x -<,当x=0.5时,[)10.5=0.50x x -=->,故错误;④[)1x x x <≤+,根据定义可知[)x x <,但[)x 不会超过x+1,所以[)1x x x <≤+成立,故正确;⑤当x=0.8时,[)1-0.8=0.2x x -=,故正确.故答案为:①④⑤.【点睛】本题主要考查了对题意的理解,准确的理解题意是解决本题的关键. 20.【分析】先利用完全平方差公式求出的值再利用完全平方和公式求出的值最后利用平方差公式即可得【详解】则故答案为:【点睛】本题考查了完全平方公式平方差公式平方根熟记公式是解题关键解析:±【分析】 先利用完全平方差公式求出221m m +的值,再利用完全平方和公式求出1m m+的值,最后利用平方差公式即可得.【详解】 15m m -=, 22221252271m m m m ⎛⎫-+=+= ⎪⎭∴⎝+=, 22212279122m m m m +⎛⎫∴+= =⎪+⎝=⎭+,1m m∴+=,则22111m m m m m m ⎛⎫-= ⎪⎛⎫+-=± ⎪⎭⎝⎭⎝故答案为:±本题考查了完全平方公式、平方差公式、平方根,熟记公式是解题关键.三、解答题21.(1)-7;(2)-5【分析】(1)先算二次根式的乘方,乘除,再算加减法,即可求解;(2)先算乘方,算术平方根,再算加减法,即可求解.【详解】(1)原式-3-7;(2)原式=4(164)1--⨯--=4416+--=-5.【点睛】本题主要考查二次根式的混合运算以及实数的混合运算,掌握二次根数的混合运算法则以及实数的混合运算法则,是解题的关键.22.(1)2)4【分析】(1)根据二次根式的乘除法和加减法可以解答本题;(2)根据﹣a|=0,可以得到a 、b 的值,然后将所求式子变形,再将a 、b 的值代入即可解答本题.【详解】解:(1=4-=4+(2)∵﹣a|=0, ∴a =0,b ﹣2=0,∴a,b =2,∴a2﹣a +2+b 2=(a 2+b 2)2+22=02+4=4【点睛】本题考查了如二次根式的化简求值、非负数的性质、解答本题的关键是明确二次根式混合运算的计算方法;23.14【分析】先计算平方、立方根、绝对值,再加减即可.【详解】解:21()|12-+ =12|13|4+-- =1224+- =14【点睛】本题考查了实数的计算,解题关键是准确的计算立方根、算术平方根和乘方,明确绝对值的意义.24.(1)2;(3)-3【分析】(1)根据平方差公式计算即可;(2)根据实数混合运算法则计算即可.【详解】解:(1)原式221=-31=-2=(2)原式()223=+--3=-.【点睛】本题主要考查了实数的运算以及平方差公式,解题的关键是熟练掌握平方差公式以及实数混合运算法则.25.(1)13;(2)3 【分析】(1)直接利用算术平方根的性质、二次根式的性质、立方根的性质分别化简在计算得出答(2)直接利用绝对值的性质、平方的的性质计算得出答案.【详解】解:(1=1-2+4=1-23+ 1=3(2)2|1(2)+--14+=3【点睛】此题主要考查了实数运算,正确化简各数是解题关键.26.(1)1-+;(2)54【分析】(1)先利用平方差公式计算,然后将每个二次根式化为最简二次根式,最后合并计算即可;(2)先将每个二次根式化简为最简二次根式,然后合并即可.【详解】(1)解:原式22231=-+=-+=-+(2)解:原式=== 【点睛】 本题考查了二次根式的运算,熟练掌握运算法则是解题的关键.。

(典型题)初中数学八年级数学上册第二单元《实数》测试题(含答案解析)

(典型题)初中数学八年级数学上册第二单元《实数》测试题(含答案解析)

一、选择题1.下列计算正确的是( )A +=B =C 6=-D 1-= 2.与数轴上的点一—对应的数是( )A .分数或整数B .无理数C .有理数D .有理数或无理数 3.一个正方形的面积为29,则它的边长应在( ) A .3到4之间 B .4到5之间 C .5到6之间 D .6到7之间 4.对于两个不相等的有理数a ,b ,我们规定符号{},max a b 表示a ,b 两数中较大的数,例如{}2,42max -=.则方程{},34max x x x -=+的解为( )A .-1B .-2C .-1或-2D .1或25.下列各式中,正确的是( )A .3=B 3=±C 3=-D 3=6. )A .8 B .4C D 7.下列计算正确的是( ). A .()()22a b a b b a +-=- B .224x y xy +=C .()235a a -=-D .=8.已知||3a =,216b =,且0a b +<,则代数式-a b 的值为( ) A .-1或-7B .1或-7C .1或7D .±1或7± 9.已知一个表面积为212dm 的正方体,这个正方体的棱长为( )A .2dmB CD .3dm10( )A .1与2之间B .2与3之间C .3与4之间D .5与6之间 11.已知21a -与2a -+是一个正数的平方根,则这个正数的值是( ) A .9 B .3 C .1D .81 12.下列对于二次根式的计算正确的是( )A =B .2C .2=D .=二、填空题13.a b -=________.14.对于任意非零实数a ,b ,定义运算“※”如下:“a b ※”a b ab-=,则12233420202021++++※※※※的值为__________.15.已知6y x =+,当x 分别取1,2,3,…,2021时,所对应y 值的总和是__.16.对于正整数n ,规定111()(1)1f n n n n n ==-++,例如:111(1)1212f ==-⨯,111(2)2323f ==-⨯,111(3)3434f ==-⨯,…则(1)(2)(3)(2021)f f f f ++++= _______ 17.材料:一般地,n 个相同因数a 相乘:n a a a a a ⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____. 18.请你写出一个比3大且比4小的无理数,该无理数可以是:____.19.已知2a =+,2b =,则227a b ++的算术平方根是_____.20.已知2x =,2y =+x 2+y 2﹣2xy 的值为_____.三、解答题21.计算:(1)(π﹣2020)0﹣.(2.22.(3++-.23.计算:(1(2)已知﹣a|=0,求a 2﹣+2+b 2的值.24.已知某正数的两个平方根是314a -和2a +,14b -的立方根为-2,求+a b 的算术平方根.25.计算下列各题:(1(2)()(3)(226.化简(1)+(2【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据二次根式加减运算和二次根式的性质逐项排除即可.【详解】与A选项错误;===B选项正确;=-=,所以C选项错误;321与D选项错误;故选答案为B.【点睛】本题考查了二次根式加减运算和二次根式的性质,掌握同类二次根式的定义和二次根式的性质是解答本题的关键.2.D解析:D【分析】实数与数轴上的点一一对应,实数包括有理数和无理数.【详解】A. 分数或整数,只是有理数,不是数轴上所有点,故此项不正确;B. 只是无理数,不是数轴上所有点,故此项不正确;C. 只是有理数,不是数轴上所有点,故此项不正确;D. 有理数和无理数是实数的组成,实数与数轴上的点一一对应,故此项正确;故选D.【点睛】此题考查了实数的意义,能掌握实数与数轴的关系是解答此题的关键.3.C解析:C一个正方形的面积为29“夹逼法”的近似值,从而解决问题.【详解】解:∵正方形的面积为29,∴,5<6.故选:C .【点睛】此题主要考查了无理数的估算能力,解决本题的关键是得到最接近无理数的有理数的值.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.4.A解析:A【分析】利用题中的新定义化简已知方程,求解即可.【详解】①当0x >时,即x x >-,此时max }{34x x x x -==+,, 解得2x =-,不符合题意舍去. ②当0x <时,即x x <-,此时max }{34x x x x -=-=+,, 解得1x =-且符合题意.故选:A .【点睛】此题考查了新定义下实数的运算以及解一元一次方程,运用分类讨论的思想是解答本题的关键. 5.D解析:D【分析】根据二次根式的性质化简判断.【详解】A 、3=±,故该项不符合题意;B 3=,故该项不符合题意;C 3=,故该项不符合题意;D 3=,故该项符合题意;【点睛】此题考查二次根式的化简,正确掌握二次根式的性质是解题的关键.6.B解析:B【分析】根据分数的性质,在分子分母同乘以2,再根据二次根式的性质化简即可.【详解】=== 故选:B .【点睛】此题考查化简二次根式,掌握分数的性质确定分子分母同乘以最小的数值,使分母化为一个数的平方,由此化简二次根式是解题的关键.7.D解析:D【分析】根据平方差公式、合并同类项、幂的乘方、二次根式的运算法则即可求出答案.【详解】A.原式=a 2−b 2,故A 错误;B.2x 与2y 不是同类项,不能合并,故B 错误;C.原式=a 6,故C 错误;D.原式=D 正确;故选:D .【点睛】本题考查了平方差公式、合并同类项、幂的乘方、二次根式,解题的关键是熟练运用运算法则,本题属于基础题型.8.C解析:C【分析】分别求出a 与b 的值,再利用0a b +<这一条件判断出a 、b 的值,进而分情况讨论即可解题.【详解】 解 ||3a =,216b =,3,4a b ∴=±=±,0a b +<,3,4a b ∴==-或3,4a b =-=-,7a b ∴-=或1,【点睛】本题考查了去绝对值和求平方根,正确的确定a 、b 的值是解答本题的关键.9.B解析:B【分析】先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可.【详解】设正方形的棱长为a ,∵正方体有6个面且每个面都相等,∴正方体的一个面的面积为2,∴22a =,解得:a =∴dm .故选:B .【点睛】本题主要考查了算术平方根的定义,求得正方形的一个面的面积是解题的关键. 10.C解析:C【分析】【详解】解:<34∴<<,故选:C .【点睛】本题考查无理数的估算,掌握几个非负整数的算术平方根的大小比较方法是解决问题的关键.11.A解析:A【分析】首先根据正数有两个平方根,它们互为相反数可得2120a a --+=,解方程可得1a =-,然后再求出这个正数即可.【详解】解:由题意得:2120a a --+=,解得:1a =-,213a -=-,23a -+=,则这个正数为9.故选:A .【点睛】此题主要考查了平方根,关键是掌握一个正数有两个平方根,这两个平方根互为相反数. 12.C解析:C【分析】利用二次根式的加减和乘除运算法则进行计算即可.【详解】解:=B.=C.2=,故原题计算正确;D.10=,故原题计算错误.故选:C【点睛】此题主要考查了二次根式的混合运算,掌握二次根式的运算法则是解答此题的关键.二、填空题13.2【分析】根据最简二次根式同类二次根式的性质计算即可得到a 和b 的值;再将a 和b 的值代入到代数式通过计算即可得到答案【详解】根据题意得:∴∵最简二次根式与是同类最简二次根式∴∴∴故答案为:2【点睛】本 解析:2【分析】根据最简二次根式、同类二次根式的性质计算,即可得到a 和b 的值;再将a 和b 的值代入到代数式,通过计算即可得到答案.【详解】根据题意得:12a -=∴3a =∵与∴252b b +=-∴1b =∴312a b -=-=故答案为:2.【点睛】本题考查了二次根式的知识;解题的关键是熟练掌握最简二次根式、同类二次根式、代数式的性质,从而完成求解.14.【分析】根据已知将原式变形进而计算得出答案【详解】解:根据题意∵∴……∴=====故答案为:【点睛】此题主要考查了实数运算正确将原式变形是解题关键 解析:20202021-【分析】根据已知将原式变形进而计算得出答案.【详解】解:根据题意, ∵“a b ※”a b ab-=, ∴12※121(1)122-==--⨯,231123()2323-==--⨯※,……, ∴12233420202021++++※※※※ =122320202021122320202021---+++⨯⨯⨯ =11111(1)()()22320202021------- =111111(1)223320202021--+-+-+- =1(1)2021-- =20202021-. 故答案为:20202021-. 【点睛】此题主要考查了实数运算,正确将原式变形是解题关键.15.4054【分析】先化简二次根式求出y 的表达式再将x 的取值依次代入然后求和即可得【详解】解:当时当时则所求的总和为故答案为:【点睛】本题考查了二次根式的化简求值绝对值运算等知识点掌握二次根式的化简方法 解析:4054【分析】先化简二次根式求出y 的表达式,再将x 的取值依次代入,然后求和即可得.【详解】解:646y x x x =+=--+当4x <时,46102y x x x =--+=-当4x ≥时,462y x x =--+=则所求的总和为(1021)(1022)(1023)222-⨯+-⨯+-⨯++++86422018=+++⨯4054=故答案为:4054.【点睛】本题考查了二次根式的化简求值、绝对值运算等知识点,掌握二次根式的化简方法是解题关键.16.【分析】根据题意可得:原式=再根据加法的结合律相加计算即可【详解】解:原式=故答案为:【点睛】本题考查了数字类规律探究和新定义问题正确理解题意准确计算是关键 解析:20212022【分析】根据题意可得:原式=111111112233420212022-+-+-++-,再根据加法的结合律相加计算即可.【详解】解:原式=11111111202111223342021202220222022-+-+-++-=-=. 故答案为:20212022. 【点睛】本题考查了数字类规律探究和新定义问题,正确理解题意、准确计算是关键. 17.3;【分析】由可求出由可分别求出继而可计算出结果【详解】解:(1)由题意可知:则(2)由题意可知:则∴故答案为:3;【点睛】本题主要考查定义新运算读懂题意掌握运算方法是解题关键解析:3; 1173. 【分析】由239=可求出2log 93=,由4216=,43=81可分别求出2log 164=,3log 814=,继而可计算出结果.【详解】解:(1)由题意可知:239=,则2log 93=,(2)由题意可知: 4216=,43=81,则2log 164=,3log 814=,∴223141(log 16)log 811617333+=+=, 故答案为:3;1173. 【点睛】 本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键.18.答案不唯一如:【分析】无限不循环小数是无理数根据无理数的三种形式解答即可【详解】设该无理数是x 由题意得∴x=10或11或12或13或14或15该无理数可以是:答案不唯一如:故答案为:答案不唯一如:【解析:【分析】无限不循环小数是无理数,根据无理数的三种形式解答即可.【详解】设该无理数是x x <<∴x=10或11或12或13或14或15,【点睛】此题考查无理数的定义,熟记定义并掌握无理数的三种形式是解题的关键.19.5【分析】根据完全平方公式和算术平方根即可求解【详解】解:因为所以=(+2)2+(-2)2+7=9+2+9-2+7=25所以a2+b2+7的算术平方根是5故答案为:5【点睛】本题考查了完全平方公式算解析:5【分析】根据完全平方公式和算术平方根即可求解.【详解】解:因为2a =,2b =,,所以227a b ++=)2+)2+7=25.所以a 2+b 2+7的算术平方根是5.故答案为:5.【点睛】本题考查了完全平方公式、算术平方根,解决本题的关键是掌握完全平方公式、算术平方根.20.【分析】根据二次根式的减法法则求出利用完全平方公式把原式化简代入计算即可【详解】解:则故答案为:12【点睛】本题考查的是二次根式的化简求值掌握完全平方公式二次根式的加减法法则是解题的关键解析:【分析】根据二次根式的减法法则求出x y -,利用完全平方公式把原式化简,代入计算即可.【详解】解:2x =-2y =+ 23x y, 则22222()(23)12x y xy x y , 故答案为:12.【点睛】本题考查的是二次根式的化简求值,掌握完全平方公式、二次根式的加减法法则是解题的关键.三、解答题21.(1)-2;(2)4【分析】(1)根据零指数幂、二次根式、立方根、绝对值的计算法则来化简,之后按照二次根式的加减计算法则来计算即可;(2)先计算二次根式的乘除,再计算二次根式的加减即可.【详解】解:(1)原式=()12212-⨯+-+=121+ =2-;(2)原式()32-=231+-=4.【点睛】本题考查的是实数的混合计算,熟练掌握相关的计算法则是解题的关键. 22.10-【分析】根据二次根式运算法则计算即可.【详解】解:原式=2253+-5924=+-1424=-10=-.【点睛】本题考查了二次根式的运算,解题关键是熟练运用二次根式运用算法则进行计算,注意:平方差公式的运用.23.(1)2)4【分析】(1)根据二次根式的乘除法和加减法可以解答本题;(2)根据﹣a|=0,可以得到a 、b 的值,然后将所求式子变形,再将a 、b 的值代入即可解答本题.【详解】解:(1=4-=4+(2)∵﹣a|=0, ∴a =0,b ﹣2=0,∴a,b =2,∴a2﹣a +2+b 2=(a 2+b 2)2+22=02+4=0+4=4【点睛】本题考查了如二次根式的化简求值、非负数的性质、解答本题的关键是明确二次根式混合运算的计算方法;24.3【分析】利用正数的平方根有两个,且互为相反数列出方程,求出方程的解即可得到a 的值,根据立方根的定义求出b 的值,根据算术平方根的定义求出a+b 的算术平方根.【详解】解:由题意得,31420a a -++=,148b -=-,解得:3a =,6b =,∴9a b +=,∴+a b 的算术平方根是3.【点睛】本题考查的是平方根、立方根和算术平方根的定义,正数的平方根有两个,且互为相反数;正数的算术平方根是正数,0的算术平方根是0,负数没有平方根.25.(1)0;(2)【分析】(1)根据平方根、立方根的意义进行计算即可;(2)利用平方差公式和实数的计算方法进行计算即可.【详解】解:(1=2+(﹣5)+3=0;(2)()(3)(2=32)2﹣2=9﹣﹣2=【点睛】本题考查了包含算术平方根、立方根、平方差公式的实数计算,熟练运用法则和公式是解决问题关键.26.(1)1-+;(2)54【分析】(1)先利用平方差公式计算,然后将每个二次根式化为最简二次根式,最后合并计算即可;(2)先将每个二次根式化简为最简二次根式,然后合并即可.【详解】(1)解:原式22231=-+=-+=-+(2)解:原式=== 【点睛】 本题考查了二次根式的运算,熟练掌握运算法则是解题的关键.。

(必考题)初中数学八年级数学上册第二单元《实数》测试(有答案解析)(1)

(必考题)初中数学八年级数学上册第二单元《实数》测试(有答案解析)(1)

一、选择题 1.16的平方根是( ) A .4 B .4± C .2± D .-2 2.若用我们数学课本上采用的科学计算器进行计算,其按键顺序如图,则输出结果应为( )A .8B .4C .12D .14 3.81的平方根是( )A .81B .9-C .9D .9±4.下列计算中,正确的是( )A .()()()22253532-=-= B .()3710101010+⨯=⨯= C .()()a b a c a bc +-=- D .()()3232321+-=-= 5.下列各式中,正确的是( ) A .93±= B .93=± C .()233-=- D .()233-=6.若a 化成最简二次根式后,能与2合并,则a 的值不可以是( )A .12B .8C .18D .287.实数a ,b 在数轴上对应点的位置如图所示,则化简代数式2-a b a +的结果是( ).A .-bB .2aC .-2aD .-2a-b8.1x -x 的取值范围是( )A .x <1B .x >1C .x≥1D .x≤19.已知:23-,23+,则a 与b 的关系是( ) A .相等 B .互为相反数 C .互为倒数 D .平方相等 10.下面有四个命题:①两条直线被第三条直线所截,同位角相等;②0.1的算术平方根是0.01;③3323)=5;④如果点P (3-2n ,1)到两坐标轴的距离相等,那么n =1,其中假命题的有( )A .1个B .2个C .3个D .4个11.下列计算正确的是( )A +=B =C 4=D 3=- 12.下列说法正确的是( )A .4的平方根是2B ±4C .-36的算术平方根是6D .25的平方根是±5二、填空题13.+|2x ﹣y |=0,那么x ﹣y =_____.14.对于任意非零实数a ,b ,定义运算“※”如下:“a b ※”a b ab-=,则12233420202021++++※※※※的值为__________.15.定义:如果将一个正整数a 写在每一个正整数的右边,所得到的新的正整数能被a 整除,则这个正整数a 称为“魔术数”.例如:将2写在1的右边得到12,写在2的右边得到22,……,所得到的新的正整数的个位数字均为2,即为偶数,由于偶数能被2整除,所以2是“魔术数”.根据定义,在正整数3,4,5中,“魔术数”为____________;若“魔术数”是一个两位数,我们可设这个两位数的“魔术数”为x ,将这个数写在正整数n 的右边,得到的新的正整数可表示为()100n x +,请你找出所有的两位数中的“魔术数”是_____________.16.的整数部分a=_____,小数部分b=__________.17.已知3y x =+,当x 分别取1,2,3,,2020⋯时,所对应的y 值的总和是_________.18.在实数π,87,0中,无理数的个数是________个.19.若代数式x 有意义,则实数x 的取值范围是_________. 20.已知:15-=m m,则221m m -=_______. 三、解答题21.(123-+.(2)先化简,再求值:()()()2212352x y x y x y y x ⎛⎫⎡⎤+-+--÷- ⎪⎣⎦⎝⎭,其中4x =,2y =.22.设a 为正整数,对于一个四位正整数,若千位与百位的数字之和等于a ,十位与个位的数字之和等于1a -,则称这样的数为“a 级收缩数”.例如在正整数2634中,因为268+=,34781+==-,所以2634是“8级收缩数”,其中8a =.(1)直接写出最小的“6级收缩数”和最大“7级收缩数”;(2)若一个“6级收缩数”的千位数字与十位数字之积为6,求这个“6级收缩数”.⋅=,且c是有理数,则称a与b是关于c的共23.定义:若两个二次根式a、b满足a b c轭二次根式.(1)若a4的共轭二次根式,则a=;(2)若2+4+是关于2的共轭二次根式,求m的值.24.计算.(1(2.25.(1)计算:;).(2)解方程:①4(x-1)2-9 =0;②8x3+125=0.26.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先计算16的算术平方根a,再计算a的平方根即可.【详解】∵4=,∴4的平方根为±2.故选C.【点睛】本题考查了实数的算术平方根,平方根,准确掌握这两个基本概念是解题的关键.2.D解析:D【分析】根据2ndf键是功能转换键列算式,然后解答即可.【详解】1==.4故选:D.【点睛】本题考查了利用计算器进行数的开方,是基础题,要注意2ndf键的功能.3.D解析:D【分析】根据平方根的定义求解.【详解】∵2±=81,(9)∴81的平方根是9±,故选:D.【点睛】此题考查平方根的定义,熟记定义并掌握平方计算是解题的关键.4.D解析:D【分析】根据二次根式的性质逐一判断即可;【详解】222=-=-A错误;8=B错误;=a C错误;=-=,故D正确;321故答案选D.【点睛】本题主要考查了二次根式的性质,结合平方差公式和完全平方公式计算是解题的关键.5.D解析:D【分析】根据二次根式的性质化简判断.【详解】A 、3=±,故该项不符合题意;B 3=,故该项不符合题意;C 3=,故该项不符合题意;D 3=,故该项符合题意;故选:D .【点睛】此题考查二次根式的化简,正确掌握二次根式的性质是解题的关键.6.D解析:D 【分析】是否为同类二次根式即可. 【详解】是同类二次根式,当a=122=是同类二次根式,故该项不符合题意;当a=8=是同类二次根式,故该项不符合题意;当a=18=是同类二次根式,故该项不符合题意;当a=28=不是同类二次根式,故该项符合题意;故选:D .【点睛】此题考查最简二次根式的定义,同类二次根式的定义,化简二次根式,正确化简二次根式是解题的关键.7.A解析:A【分析】根据数轴得b<a<0,判断a+b<0,即可化简绝对值及二次根式,计算加减法即可得到答案.【详解】由数轴得b<a<0,∴a+b<0,∴a b +=-a-b+a=-b ,故选:A .【点睛】此题考查数轴与数的表示,利用数轴比较数的大小,化简绝对值,化简二次根式,依据数轴化简绝对值及二次根式是解题的关键.8.C解析:C【分析】直接利用二次根式有意义的条件分析得出答案.【详解】∵∴x−1≥0,解得:x≥1.故选:C .【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.9.C解析:C【解析】 因为1a b ⨯==,故选C. 10.D解析:D【分析】利用平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质分别判断后即可确定正确的选项.【详解】解:①两条平行线直线被第三条直线所截,同位角相等,故错误;②0.01的算术平方根是0.1,故错误;③=17322+=,故错误; ④如果点P (3-2n ,1)到两坐标轴的距离相等,则n=1或n=2,故错误,故选D .【点睛】本题考查了命题与定理的知识,解题的关键是熟悉平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质,难度一般.11.B解析:B【分析】由二次根式的乘法、除法,二次根式的性质,分别进行判断,即可得到答案.【详解】解:A A错误;B=,故B正确;C==C错误;D3=,故D错误;故选:B.【点睛】本题考查了二次根式的乘法、除法,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.12.D解析:D【分析】根据平方根和算术平方根的定义判断即可.【详解】解:A. 4的平方根是±2,故错误,不符合题意;±2,故错误,不符合题意;C. -36没有算术平方根,故错误,不符合题意;D. 25的平方根是±5,故正确,符合题意;故选:D.【点睛】本题考查了平方根和算术平方根的概念,解题关键是熟悉相关概念,准确进行判断.二、填空题13.﹣3【分析】先根据非负数的性质列出方程组求出xy的值进而可求出x﹣y 的值【详解】解:∵+|2x﹣y|=0∴解得所以x﹣y=3﹣6=﹣3故答案为:-3【点睛】本题考查了二次根式的非负性绝对值的非负性根解析:﹣3【分析】先根据非负数的性质列出方程组,求出x、y的值,进而可求出x﹣y的值.【详解】解:∵+|2x﹣y|=0,∴3020xx y-=⎧⎨-=⎩,解得36 xy=⎧⎨=⎩.所以x﹣y=3﹣6=﹣3.故答案为:-3【点睛】本题考查了二次根式的非负性,绝对值的非负性,根据题意得到关于x 、y 的二元一次方程组,求出x 、y 的值是解题关键.14.【分析】根据已知将原式变形进而计算得出答案【详解】解:根据题意∵∴……∴=====故答案为:【点睛】此题主要考查了实数运算正确将原式变形是解题关键 解析:20202021-【分析】根据已知将原式变形进而计算得出答案.【详解】解:根据题意, ∵“a b ※”a b ab-=, ∴12※121(1)122-==--⨯,231123()2323-==--⨯※,……, ∴12233420202021++++※※※※ =122320202021122320202021---+++⨯⨯⨯ =11111(1)()()22320202021------- =111111(1)223320202021--+-+-+- =1(1)2021-- =20202021-. 故答案为:20202021-. 【点睛】此题主要考查了实数运算,正确将原式变形是解题关键. 15.10202550【分析】①由魔术数的定义分别对345三个数进行判断即可得到5为魔术数;②由题意根据魔术数的定义通过分析即可得到答案【详解】解:根据题意①把3写在1的右边得13由于13不能被3整除故3解析:10、20、25、50.【分析】①由“魔术数”的定义,分别对3、4、5三个数进行判断,即可得到5为“魔术数”; ②由题意,根据“魔术数”的定义通过分析,即可得到答案.【详解】解:根据题意,①把3写在1的右边,得13,由于13不能被3整除,故3不是魔术数;把4写在1的右边,得14,由于14不能被4整除,故4不是魔术数;把5写在1的右边,得15,写在2的右边得25,……由于个位上是5的数都能被5整除,故5是魔术数;故答案为:5;②根据题意,这个两位数的“魔术数”为x ,则1001001n x n x x+=+, ∴100n x为整数, ∵n 为整数, ∴100x为整数, ∴x 的可能值为:10、20、25、50; 故答案为:10、20、25、50.【点睛】本题考查了新定义的应用和整数的特点,解题的关键是熟练掌握新定义进行解题. 16.【分析】将已知式子分母有理数后先估算出的大小即可得到已知式子的整数部分与小数部分【详解】解:∵4<7<9∴2<<3即2+3<<3+3∴即实数的整数部分是则小数部分为故答案为:【点睛】本题考查了分母有解析:2 【分析】的大小即可得到已知式子的整数部分与小数部分.【详解】==, ∵4<7<9,∴2<3,即2+3<3+<3+3,∴532<<的整数部分是2a =,则小数部分为31222b =-=.故答案为:2,【点睛】本题考查了分母有理化,以及估算无理数的大小,熟练掌握估算无理数大小的方法是解题的关键.17.2022【分析】将原式化简为然后根据x 的不同取值求出y 的值最后把所有的y 值加起来即可【详解】解:当时当时当时∴当分别取时所有值的总和是:故答案是:2022【点睛】本题考查二次根式的化简解题的关键是掌解析:2022【分析】 将原式化简为23y x x =--+,然后根据x 的不同取值,求出y 的值,最后把所有的y 值加起来即可.【详解】解:3323y x x x x =+=+=--+,当2x ≥时,231y x x =--+=,当2x <时,2352y x x x =--+=-,当1x =时,523y =-=,∴当x 分别取1,2,3,,2020⋯时,所有y 值的总和是:312019320192022+⨯=+=. 故答案是:2022.【点睛】本题考查二次根式的化简,解题的关键是掌握二次根式的性质进行化简.18.【分析】无理数就是无限不循环小数理解无理数的概念一定要同时理解有理数的概念有理数是整数与分数的统称即有限小数和无限循环小数是有理数而无限不循环小数是无理数由此即可判定选择项【详解】由无理数的定义可知 解析:2【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】由无理数的定义可知,π故答案为:2.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.19.且【分析】根据二次根式中的被开方数是非负数分式分母不为0列出不等式解不等式得到答案【详解】解:由题意得x+2≥0x≠0解得x≥-2且x≠0故答案为:x≥-2且x≠0【点睛】本题考查了二次根式有意义的解析:2x ≥-且0x ≠【分析】根据二次根式中的被开方数是非负数、分式分母不为0列出不等式,解不等式得到答案.【详解】解:由题意得,x+2≥0,x≠0,解得,x≥-2且x≠0,故答案为:x≥-2且x≠0.【点睛】本题考查了二次根式有意义的条件、分式有意义的条件,掌握二次根式中的被开方数是非负数、分式分母不为0是解题的关键.20.【分析】先利用完全平方差公式求出的值再利用完全平方和公式求出的值最后利用平方差公式即可得【详解】则故答案为:【点睛】本题考查了完全平方公式平方差公式平方根熟记公式是解题关键解析:±【分析】 先利用完全平方差公式求出221m m +的值,再利用完全平方和公式求出1m m+的值,最后利用平方差公式即可得.【详解】 15m m -=, 22221252271m m m m ⎛⎫-+=+= ⎪⎭∴⎝+=, 22212279122m m m m +⎛⎫∴+= =⎪+⎝=⎭+,1m m∴+=,则22111m m m m m m ⎛⎫-= ⎪⎛⎫+-=± ⎪⎭⎝⎭⎝故答案为:±【点睛】本题考查了完全平方公式、平方差公式、平方根,熟记公式是解题关键.三、解答题21.(1)1-+;(2)44x y -,8.【分析】(1)先计算算术平方根和立方根,在加减即可;(2)先按整式运算法则化简,再代入求值.【详解】解:(1)原式233(32)=-+-+1=-+(2)原式()222221443352x xy y x xy xy y y x =++--+--⎛⎫⎡⎤ ⎪⎣⎦⎝÷⎭-()222221443252x xy y x xy y y x ⎛⎫=++--+-÷- ⎪⎝⎭()2122442x xy x x y ⎛⎫=-+÷-=- ⎪⎝⎭把4x =代入,原式44428=⨯-⨯=.【点睛】本题考查了立方根和算术平方根,整式的化简求值,解题关键是熟练运用二次根式和整式运算法则进行计算.22.(1)最小的“6级收缩数”为:1505,最大的“7级收缩数”为:7060;(2)这个“6级收缩数”为:2432、3323或6014【分析】(1)根据“a 级收缩数”的定义可写出所有的可能性,进而即可确定最小的“6级收缩数”以及最大的“7级收缩数”;(2)在第(1)问的基础上,结合条件“一个“6级收缩数”的千位数字与十位数字之积为6”将所拥有的可能性进行分类讨论,即可得到答案.【详解】解:(1)∵千位与百位的数字之和等于6,十位与个位的数字之和等于5∴千位与百位上的数字可能是0和6、1和5、2和4、3和3、4和2、5和1、6和0,十位与个位上的数字可能是0和5、1和4、2和3、3和2、4和1、5和0∴最小的“6级收缩数”为:1505;同理,∵千位与百位的数字之和等于7,十位与个位的数字之和等于6∴最大的“7级收缩数”为:7060.(2)设这个“6级收缩数”千位上的数字为x ,十位上的数字为y ,则这个“6级收缩数”百位上的数字为6x -,个位上的数字为615y y --=-∵09x ≤<,069x ≤-≤,09y ≤≤,059y ≤-≤∴06x ≤<,05y ≤≤∵6xy =∴当1x =时,6y =,不合题意舍去;当2x =时,3y =,符合题意,此时,百位是4,个位是2,为2432;当3x =时,2y =,符合题意,此时,百位是3,个位是3,为3323;当4x =时,32y =,不合题意舍去; 当5x =时,65y =,不合题意舍去; 当6x =时,1y =,符合题意,此时,百位是0,个位是4,为6014∴这个“6级收缩数”为:2432、3323或6014.【点睛】本题考查了新定义问题以及分类讨论的数学思想,认真审题是解题的关键.23.(1)2)2m =-【分析】(1)根据共轭二次根式的定义列等式可得a 的值;(2)根据共轭二次根式的定义列等式可得m 的值.【详解】解:(1)a 2是关于4的共轭二次根式,4=,a ∴==(2)23+与4+是关于2的共轭二次根式,(2)2∴++=,4∴+==4=-2m ∴=-.【点睛】本题考查了新定义共轭二次根式的理解和应用,并会用二次根据的性质进行计算.24.(1)2)【分析】(1)先利用二次根式的乘除法则运算,然后化简后合并;(2)先把二次根式化为最简二次根式,然后合并即可.【详解】解:(1=﹣=(2)原式==【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.25.(1)①5;②6-;(2)52x=或12x=-;②52x=-.【分析】(1)①先把各二次根式化为最简二次根式,然后合并后进行二次根式的除法运算;②根据平方差公式计算即可;(2)①将方程移项,再整理为2x a=的的形式,再根据平方根定义求解即可;②将方程移项,再整理为3x a=根据立方根定义求解即可;【详解】解:(1)解:①原式==5=.②原式1218=-6=-.(2)解:①原方程可化为29(1)4 x-=则312x-=或312x-=-,解得,52x=或12x=-.②原方程可化为3125 8x=-,解得,52x=-.【点睛】本题考查了平方根、立方根及实数的运算,主要考查学生的运算能力,题目比较好,解题关键是理解平方根、立方根的意义.26.-4【分析】利用立方根的定义、二次根式的乘法法则及二次根式的性质进行化简,再合并化简结果即可.【详解】=-+--1342=-.4【点睛】此题考查了实数的混合运算,掌握立方根的定义、二次根式的乘法法则以及二次根式的性质是解题的关键.。

八年级(上)数学第二章:“实数”专题训练之计算

八年级(上)数学第二章:“实数”专题训练之计算

八年级(上)数学第二章:“实数”专题训练之计算姓名:___________一、计算题(共39小题)1.计算:+|-2|+-(-).2.已知实数x,y满足关系式+|y2-1|=0.(1)求x,y的值;(2)判断是有理数还是无理数?并说明理由.3.计算:.4.(1)解方程:(x+1)2=64;(2)计算:(-2)3×+×()2-.5.已知直角三角形两边x,y的长满足+|y2-5y+6|=0,求第三边的长.6.已知x-2的平方根是±2,5y+32的立方根是-2.(1)求x3+y3的平方根.(2)计算:|2-的值.7.已知一个数的平方根是3a+2和a+10,求a的值.8.计算:.9.已知2x-y的算术平方根为4,-2是y的立方根,求-2xy的平方根.10.已知:x3+3=-,求x.11.计算:(1)+-(2)|-2|-(-)-|-|12.计算:|-2|+(4-π)0-+(-1)-2017.13.计算:(1)-12014-×(-)-2+(π-)0-|-4|+(2)(a2b-2ab2-b3)÷b-(a+b)(a-b).14.计算:(1)(π-2013)0-()-2+|-4|;(2)4(a+2)(a+1)-7(a+3)(a-3).15.计算:|-2|+-(-1)2017.16.(1)化简:(-x3)2+(2x2)3+(x-3)-2 (2)计算:-+(-1)0.17.计算:(1)÷-×+(2)(3+2)(3-2)-(-)2.18.计算:(1)3-(+)(2)(1-2)(1+2)-(-1)2.19.计算:(1)(+)-(-)(2)(+)÷.20.计算:.21.计算:(1)-(+)÷×(2)(-4)-(3-2)(3)(3+)(3-)-(-1)2 (4)(-+1)(-1)-+.22.计算:2×.23.计算:(1)-2(2)(3-2)2 (3)+5 (4)(+)×-2.24.计算:(1)(2)()()-.25.(1)÷-×+(2)先化简再求值:•(x-1),其中x=+1.26.计算:(1)(2).27.计算:.28.计算:(1)(2).29.若+2=b+2,求a+b的平方根.30.计算:(1)-+(2)(-)²-(-)(+)31.(1)计算:(-)-(+);(2)计算(2-)2+(+2)÷.32.计算:-()-1-+|-2| 33.计算:(-)2+(+3)(-3).34.计算:(1)--4(2)×+÷-.35.计算()-(+) 36.计算:(-1)101+(π-3)0+()-1-.37.计算:(1)(2).38计算:(1)5+;(2)÷×.答案1.【答案】解:原式=-2+2-+3+=3.2.【答案】解:(1)由题意,得,解得:;(2)当x=2,y=1时,=,是无理数.当x=2,y=-1时,==2,是有理数.3.【答案】解:,=,=,=.4.【答案】解:(1)∵(x+1)2=64,∴x+1=±8,当x+1=8时,x=7;当x+1=-8时,x=-9.(2)(-2)3×+×()2-.=(-8)×4+(-4)×-3=-32-1-3=-365.【答案】解:由题意得,x2-4=0,y2-5y+6=0,解得,x=±2,y=2或3,当2、3是两条直角边时,第三边==,当2、2是两条直角边时,第三边==2,当2是直角边,3是斜边时,第三边==.6.【答案】解:(1)由题意得:x-2=4,5y+32=-8,解得:x=6,y=-8,则原式=216-512=-296,无平方根;(2)原式=|2-|-|+2|+=-2--2+=-3.7.【答案】解:根据题意得:3a+2+a+10=0,移项合并得:4a=-12,解得:a=-3.8.【答案】解:原式=3+3-8-5=-7.9.【答案】解:∵2x-y的算术平方根为4,-2是y的立方根,∴2x-y=16,y=-8,解得:x=4,则-2xy=64,64的平方根是±8.10.【答案】解:方程整理得:x3=-,开立方得:x=-.11.【答案】解:(1)原式=8-3-7=-2;(2)原式=2--+-=2-2.12.【答案】解:|-2|+(4-π)0-+(-1)-2017=2+1-2-1=013.【答案】解:(1)原式=-1-3×4+1-4+3=-1-12+1-4+3=-13;(2)原式=a2-2ab-b2-a2+b2=-2ab.14.【答案】解:原式=-4=-215.【答案】解:(1)原式=1-9+4=-4;(2)原式=4(a2+3a+2)-7(a2-9)=4a2+12a+8-7a2+63=-3a2+12a+71.16.【答案】解:原式=2-2+1=1.17.【答案】解:(1)原式=x6+8x6+x6=10x6;(2)原式=-2+1=1-.18.【答案】解:(1)原式=-+2=4-+2=4+;(2)原式=18-12-(3-2+2)=6-5+2=1+2.19.【答案】解:(1)原式=3-2-=;(2)原式=1-12-(3-2+1)=-11-4+2=-15+2.20.【答案】解:(1)原式=5+3-3+2=2+5;(2)原式=(4+)÷2=2+.21.【答案】解:,=6-3---4,=6-4-(+)-3,=2-4-3,=-2-3,22.【答案】解:(1)原式=-(+)××=-(+)×=-1-=-1;(2)原式=4--+=3;(3)原式=9-5-(3-2+1)=4-4+2=2;(4)原式=-(3-2+1)-3-(+2)=-4+2-3--2=2--9.23.【答案】解:原式=(2××),=.24.【答案】解:(1)原式=2-=;(2)原式=18-12+4=22-12;(3)原式=+5=7+5=12;(4)原式=(4+)×-=4+1-.25.【答案】解:(1)原式=4-2+12=14;(2)原式=2-1-(3-4+4)=1-3+4-4=4-6.26.【答案】解:(1)原式=-+2=4-+2=4+;(2)原式=•(x-1)=,当x=+1时,原式==.27.【答案】解:(1)原式=-+2=4-+2=4+;(2)原式=5-++1=6+.28.【答案】解:原式=÷×3=××3=9.29.【答案】解:(1)原式=2-+3--1+-2=;(2)原式=[(2-)+][(2-)-]=(2-)2-()2=24-12+3-2=25-12.30.【答案】解:+2=b+2,a-5≥0,10-2a≥0,a=5,b+2=0b=-2,a+b=5+(-2)=3.所以a+b的平方根是±.31.【答案】解:(1)原式=-+=;(2)原式=12-+18-(6-5)=30--1=29-.32.【答案】解:(1)原式=2---=- ;(2)原式=12-12+6++2=18-12+3+2=18-7.33.【答案】解:原式=2-4-+2-=-2.34.【答案】解:原式=3-2+2+5-9 =1-2.35.【答案】解:(1)原式=4-5-=-2;(2)原式=+-4=2+2-4=2-2.36.【答案】解:原式=2---=- .37.【答案】解:原式=-1+1+2-(-1)=3-.38.【答案】解:(1)原式===;(2)原式=== .。

八年级数学重点题型强化训练09 实数专题(解析版)

八年级数学重点题型强化训练09 实数专题(解析版)

八年级数学重点题型强化训练09
——实数专题
A.7B.71+
【答案】D
【分析】先根据正方形的面积求出正方形的边长
A.AB上B.BC上
A.第①段B.第②段
C
【答案】32
【分析】本题考查算术平方根,立方根,关键是掌握立方根,算术平方根的定义,根据算术平方根的定义
【答案】852
+/528+
【分析】本题考查流程图与二次根式的运算,关键是理解流程图.按照流程图中的运算顺序进行即可.
【答案】25
【分析】此题考查了实数的运算,根据运算程序列式计算,然后与10
掌握运算法则是解题的关键.
【答案】2
【分析】本题考查了算术平方根,先看懂数值转换器,若输入一个数,求出的这个数的算术平方根,若结
【答案】3
【分析】根据代数式求值依次分析得到输出结果的情况,然后分析得出规律,再根据规律即可解答.【详解】解:第一次输出结果为24;第二次输出结果为
【答案】34-
x=-代入流程图进行运算即可.
【分析】直接将64
【答案】32
【答案】33
【分析】如果一个正数x的平方等于a,即2x a
=,那么这个正数【答案】8±
(1)当输入的x 值为5时,则输出的y 值为 ;
(2)若输出的y 是5且10100x £<,则输入的x 的值为
.。

专题14-12 《实数》计算题(专项练习)(基础篇100题)-2021-2022学年八年级数学上册

专题14-12 《实数》计算题(专项练习)(基础篇100题)-2021-2022学年八年级数学上册

专题14.12 《实数》计算题(专项练习)(基础篇100题)1.计算:2.计算:(π﹣3.14)0(﹣1)2020﹣(﹣12)﹣1. 34.计算:21|2|⎛-+ ⎝5.计算:120201(1)3-⎛⎫-+ ⎪⎝⎭6262--.7.计算8.计算:0|1|(1)π---9.计算:|-2|10.计算:21||2-11.()20211--12.计算:20(2)|3|(6)----.13.计算:0( 3.14)π-+14.计算(12|--; (225|2-.1501)|3|--16.计算:0213+33⎛⎫--- ⎪⎝⎭.17.计算:()0223 3.14π----.18.计算:()()2222-. 19.计算:(1)()23-+(22020210.2122.计算:(1(2))32. 23.计算(1(2)24.计算题:(1(2)2112524⎡⎤⎛⎫⎛⎫-⨯-÷-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦25.计算:()232---.26.计算:())0222--+-+.27.计算:)10113-⎛⎫+ ⎪⎝⎭28.(1π-(2)解方程:()38127x +=29.求下列各式中的x 的值:(1)2490x -=(2)()3164x -=30.计算:22020(5)(1)--.31.计算:(12(2)(23233.计算:(1)2341132⎛⎫--+- ⎪⎝⎭;(2)904056384572.5︒︒︒︒''-+- 34.计算(10|2|(2021)π-+(2)2(3(1++35()10132π-⎛⎫+- ⎪⎝⎭. 36.计算:(1)43(6)-+--(2)2(1)42(1)--++-37123-⎛⎫-+ ⎪⎝⎭ 38.计算:(1(2)39.(1)计算0212)()2-+; (2)已知2824x =,求x 的值.40.计算:(1) (2)(2-41.计算(1(2)1|42.计算:(1(2)1)(343.计算:2)44)21 45.计算:1031(2)|3|93π-⎛⎫⎛⎫+-+-- ⎪ ⎪⎝⎭⎝⎭46.求下列各式中的x 值:(1)169x 2=144;(2)(x -2)2-36=0.47.计算:1).48+ .49.计算:11|2|1)2-⎛⎫-+- ⎪⎝⎭. 50.计算:201332-⎛⎫+- ⎪⎝⎭.51.化简:(1(2(3(452.化简求值:(1(2)23)3)+.53.若a ,b+a +a b 的值.54.计算:()225243⎛⎫--+÷-⎪⎝⎭ 55.计算:201811-+ 56.先化简,再求值:22()()()2x y x y x y x +++--,其中xy = 5758.计算下列各题:(112(2)计算:6×(π﹣2019)0﹣|5|﹣(12)﹣259.计算:(1)(2)2×(1-1)2;60.先化简,再求值:()()()()22412121x x x x x ---++-,其中x =61的矩形的面积,若该三角形的62.先化简,再求值:2222222a ab b a ab a b a a b-+-÷--+,其中a ,b 满足2(2)0a -=.63.64.计算:22()()19(6)2-+--+-÷.65.计算+2﹣ 66.已知x ﹣2的一个平方根是﹣2,2x +y ﹣1的立方根是3,求x +y 的算术平方根.67168 69.计算:(2)|1+702 .71.计算:-.7221+ 73.计算:(1(201211()32---74.计算:()2301(2018)312π-⎛⎫-+--+- ⎪⎝⎭.75.计算:76.求值: (1)已知(x ﹣1)2=4,求x 的值;(22+)77.计算:-+÷78.求下列各式的值:(1)(2)-32+3| 79.化简求值:2(23)(23)(2)4(3)x x x x +--+++,其中x =80.解方程:(1)216(1)10x +-=;(2)解方程:38(1)270x -+=;(33-;(4(21.-- 81.计算:(1);(2)22-1)0.82.计算:101()1)2sin 4523-++︒+.83.计算:2(2)1-841-.85.化简:(211)2)+.86.计算:871.88.计算:(1)(-2-1)2;89.化简下列各式:(1);;(3).90.计算:|﹣2|(﹣1)×(﹣3)91()11--.92.计算:()2022π+---. 93.求下列各式中x 的值.(1)225312x +=;(2)()331240x ++=;9495()20201-962.97.计算:|﹣(﹣1)2.98(π﹣3)0﹣23|992. 100.计算:(1)+ 2|(2参考答案1.【分析】先化简二次根式,再计算二次根式的加减运算即可得.解:原式==【点拨】本题考查了二次根式的加减运算,熟练掌握二次根式的运算法则解题关键.2.7【分析】直接利用指数幂的运算性质、算术平方根的性质化简得出答案.解:(π﹣3.14)0(﹣1)2020﹣(﹣12)﹣1=1+3+1+2=7【点拨】本题考查了实数的运算,包括0指数和负指数、算术平方根、乘方,解题关键是准确化简各数,再进行计算.3.1【分析】先算二次根式的乘除法,再算减法,即可求解.解:原式=54-=1.【点拨】本题主要考查二次根式的混合运算,掌握二次根式的运算法则,是解题的关键.4.【分析】运用一个数的平方的相反数,绝对值的计算,三次方根的概念,算术平方根的概念进行计算即可解:原式=1 12(3)3⎛⎫-+-⨯-⎪⎝⎭=11=【点拨】本题考查了个数的平方的相反数,绝对值的计算,三次方根的概念,算术平方根的概念,实数的混合运算,注意符号的正负是解题的关键.5.2.【分析】()202011,-= 1133-⎛⎫= ⎪⎝⎭, ,代入求解即可.解:原式132=+-2=.【点拨】本题考查负数的偶数次幂运算、有理数的负指数幂运算、立方根的运算,根据相关运算原则计算是解题关键.6.4.,-6=6,计算出结果.解:原式2644=+-=故答案为:4.【点拨】本题主要考查了实数的混合运算,关键是开三次方与绝对值的计算. 7.7.【分析】先计算立方根、算术平方根,再计算有理数的加减即可得.解:原式27=-+52=+,7=.【点拨】本题考查了立方根、算术平方根等知识点,熟练掌握各定义和运算法则是解题关键.8.【分析】直接利用绝对值的性质,零指数幂的性质和二次根式的性质分别化简得出答案.解:原式=1-1+=【点拨】本题考查实数运算,正确利用绝对值的性质,零指数幂的性质和二次根式的性质化简求出各数是解题关键.9.【分析】先算绝对值,化简二次根式,再算加减法,即可求解.解:原式=2+【点拨】本题主要考查二次根式的运算,熟练掌握二次根式的性质以及合并同类二次根式法则,是解题的关键.10.3.【分析】根据二次根式的运算法则即可求出答案.解:原式=1133 22+-=.【点拨】本题考查实数的运算,熟练运用运算法则是解题的关键.11.5-【分析】直接利用二次根式的性质以及立方根的性质、有理数的乘方运算法则分别化简得出答案.解:原式131=--5=-【点拨】此题主要考查了实数运算,正确化简各数是解题关键.12.6【分析】根据有理数的乘方,绝对值的意义,二次根式的乘法,零指数幂分别计算,再进行有理数的加减混合运算即可.解:原式4341=-++6=.【点拨】此题考查了实数的混合运算,根据有理数的乘方,绝对值的意义,二次根式的乘法,零指数幂,计算出各个项的值是本题的关键.13.-4【分析】利用零指数幂的性质以及立方根的性质和二次根式的性质分别化简,即可;解:原式=1﹣3﹣2=﹣4;【点拨】本题考查实数的混合运算,关键在熟练掌握立方根和二次根式的最简化形式;14.(1(2)8【分析】(1)直接利用二次根式的性质以及绝对值的性质分别化简得出答案;(2)直接利用绝对值的性质、二次根式的性质、立方根的性质、绝对值的性质分别化简得出答案.解:(1﹣(3+2﹣=5﹣(2)原式=5+522﹣(-52)=8【点拨】此题主要考查了实数运算,二次根式的性质,正确化简各数是解题关键. 15.1【分析】任何非零实数的零次幂为1,负数的绝对值等于它的相反数,9的算术平方根为3,然后进行有理数的加减法计算.01)|3|--=3+1-3=1.【点拨】本题主要考查了实数的运算.掌握熟练掌握运算法则是解题关键. 16.8【分析】根据绝对值,二次根式化简,零指数幂,乘方4个考点逐一计算,然后根据实数的运算法则求得计算结果.解:原式=3﹣3﹣1+9=8.【点拨】本题考查了绝对值,二次根式化简,零指数幂,乘方,实数的混合运算;关键在于掌握好相关的基础知识.17.2【分析】根据平方,绝对值,零指数幂,二次根式化简4个考点逐一计算,然后根据实数运算法则进行计算即可得出答案.解:原式=-4+3-1= 2.【点拨】本题考查了含有乘方实数的加减乘除混合运算,解题的关键是熟悉掌握运算法则,以及运算顺序.18.【分析】利用平方差公式计算即可.解:()()2222-=()()()()2222⎡⎤⎡⎤+-⎣⎦⎣⎦=4⨯=【点拨】本题考查了二次根式的混合运算,解题的关键是掌握运算法则.19.(1)7+(2【分析】(1)直接利用立方根的性质以及绝对值的性质、有理数的乘方运算法则化简得出答案;(2)直接利用二次根式的混合运算法则计算得出答案.解:(1)原式92=+7=+(2)原式==【点拨】本题主要考查了立方根的性质、绝对值的性质、有理数的乘方运算法则、二次根式的混合运算法则,熟练掌握这些运算法则是解题的关键.20.0【分析】直接利用立方根的性质、二次根式的性质、零指数幂的性质分别化简,然后再进行加减计算即可.解:原式=﹣2+3﹣1=0.【点拨】本题考查了实数的运算、立方根、二次根式、零指数幂等知识,正确化简各数是解题的关键.21.3【分析】根据二次根式的乘法法则运算.=3=3.【点拨】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式加减运算,再合并即可,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性,选择恰当的解题途径,往往能事半功倍.22.(1);(21.7【分析】(1)先分别对二次根式化简,再相加减即可;(2)先利用多项式的乘法计算,再合并即可.解:(1)原式-(2)原式=561.【点拨】本题考查二次根式的混合运算.(1)中能正确对二次根式化简是解题关键;(2)中正确运用多项式乘多项式法则计算是解题关键.23.(1(2)0【分析】(1)首先化简二次根式,然后再合并同类二次根式即可;(2)利用平方差计算乘法,再计算加减即可.解:(1)原式=(2)原式222=--=5﹣3﹣2=0.【点拨】本题考查的是二次根式的化简,二次根式的混合运算,平方差公式的运用,掌握二次根式的混合运算是解题的关键.24.(1)10;(2) 3.-【分析】(1)先计算被开方数,再利用算术平方根的含义求解即可得到答案;(2)先计算括号内的乘方,再计算括号内的减法,把除法转化为乘法,最后计算乘法运算即可得到答案.解:(110,(2)2112524⎡⎤⎛⎫⎛⎫-⨯-÷-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ ()12544⎛⎫=-⨯⨯- ⎪⎝⎭ ()85444⎛⎫=-⨯- ⎪⎝⎭()3434=⨯-=- 【点拨】本题考查的是算术平方根的含义,含乘方的有理数的混合运算,掌握以上知识是解题的关键.25.7【分析】先算平方、绝对值、二次根式化简,再计算加减法即可求解.解:原式=9-4+2=7.【点拨】本题考查了实数的运算,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握平方、二次根式、绝对值等知识点的运算.26.5【分析】先用去括号、绝对值、零次幂的相关知识化简,然后计算即可.解:原式=2215++=.【点拨】本题考查了实数的综合运算能力,解决此类题的关键在于熟练掌握零指数幂、绝对值、去括号等知识点.27.2+【分析】先计算零次幂,负整数指数幂,二次根式的化简,再计算加减运算,从而可得答案.解:原式132=+-+=2+【点拨】本题考查的是零次幂,负整数指数幂,二次根式的化简,合并同类二次根式,掌握以上知识是解题的关键.28.(1)5π+;(2)12x =. 【分析】(1)先计算开平方,开立方,绝对值,再依次计算加减即可;(2)等式两边同时除以8,再让方程两边同时开立方,即可求解.解:(1)原式()23π=--+,23π=++,5π=+;(2)()32718x +=, 312x +=, 解得:12x =. 【点拨】本题考查了实数的运算、平方根、立方根、绝对值的意义、利用立方根解方程,解题的关键是熟练掌握以上知识点.29.(1)32x =±;(2)5x = 【分析】(1) 移项后两边同时开平方即可求解;(2)开立方,化为一元一次方程即可求解.解:()21490x -= 解:249x =294x =.3x=±2()()3x-=2164x-=解:14x=5【点拨】本题考查了学生开平方、立方的能力,也考查了解方程的方法.30.22【分析】按照平方、算术平方根、乘方法则进行计算即可.-+解:原式=2541=22.【点拨】本题考查了平方、算术平方根、乘方的运算,解题关键是熟练掌握相关法则并准确进行计算.31.(1)5;(2)1【分析】(1)根据平方根和立方根的概念求解即可;(2)根据平方根和立方根的概念求解即可.=-+=;解:(1)原式6325=--=.(2)原式6321【点拨】本题考查平方根和立方根的概念,属于基础题,计算过程中细心即可.32.【分析】先利用二次根式的乘除法则运算,然后合并即可.⨯解:原式22==故答案为:【点拨】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.33.(1)10;(2)1519'︒【分析】(1)根据有理数的混合运算法则和算术平方根的运算法则进行计算; (2)根据角度的运算法则进行计算.解:(1)原式1142711627104=--÷+=--+=; (2)原式89604056384572301519'''''=︒-︒+︒-︒=︒.【点拨】本题考查有理数的混合运算,算术平方根的计算,角度的计算,解题的关键是掌握这些计算方法.34.(1)1;(2)10+【分析】(1)原式利用二次根式的化简,绝对值以及零指数幂法则计算即可得到结果;(2)原式利用完全平方公式,以及平方差公式计算即可得到结果.解:(10|2(2021)π-+=21=1;(2)2(3(1++=2129++-=10+【点拨】本题考查了二次根式的混合运算,零指数幂,熟练掌握运算法则是解题的关键. 35.12- 【分析】先将每一部分化简,然后再合并计算即可求解解:原式32212=--+ 12=- 【点拨】本题考查了二次根式、负指数幂、立方根、零指数幂四个考点,解题的关键是熟练掌握这四部分内容,能准确对每一部分进行化简36.(1)5;(2)1.【分析】(1)先把运算统一为省略加号的和的形式,再计算即可得到答案;(2)先分别计算乘方运算,算术平方根,绝对值,再进行加减运算即可. 解:(1)43(6)-+--436=-++49=-+5=(2)2(1)42(1)--++- 13421=+-+-1=【点拨】本题考查的是有理数的加减运算,有理数的乘方,算术平方根,绝对值的含义,掌握以上知识是解题的关键.37.3【分析】分别化简各项,再作加减法.123-⎛⎫-+ ⎪⎝⎭=32=3322- =3 【点拨】本题考查了二次根式的混合运算,解题的关键是掌握运算法则.38.(1)(2)5【分析】(1)分别化简各项,再作加减法;(2)利用平方差公式展开,再计算.解:(1==(2)=(22-=83-=5 【点拨】本题考查了二次根式的混合运算,解题的关键是掌握运算法则.39.(1)7;(2)x =【分析】(1)利用算术平方根的定义,零指数幂,负整数指数幂进行化简,然后再计算加法即可;(2)方程整理后,利用平方根定义开方即可求出答案.解:(1)原式214=++7=;(2)方程整理得:23x =,开方得:x =.【点拨】本题考查了实数的运算,算术平方根,平方根,零指数幂,负整数指数幂,掌握运算法则是解题的关键.40.(1)0;(2)-5【分析】(1)分别化简各项,再相减;(2)先算括号和乘法,再算加减法.解:(1)==0;(2)(2-=436--=-5【点拨】本题考查了二次根式的混合运算,解题的关键是掌握运算法则.41.(1)72;(21 【分析】(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果.(2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.解:(1,353=-+,27=.2(2)1|,=,1=.1【点拨】本题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,要从高级到低级,即先乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外有理数的运算律在实数范围内仍然适用.42.(1)-(2)2-.2【分析】(1)先把二次根式华为最简二次根式,然后合并即可;(2)先利用多项式乘多项式展开,然后合并即可.解:(1,=,=;2(2)1)(3=+53=-2.【点拨】本题考查了二次根式的混合运算,先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往事半功倍.43.12-【分析】根据单项式乘以多项式的运算法则把括号展开,再化简,然后合并同类项即可解:原式15=-153=-12=-【点拨】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.44.12-【分析】由题意利用二次根式的性质结合完全平方差公式进行运算即可得出答案.)21()31=-84=+-12=-【点拨】本题考查二次根式的运算,熟练掌握算术平方根化简以及完全平方差公式是解题的关键.45.3【分析】先分别化简各项,再作加减法.解:1031(2)|3|93π-⎛⎫⎛⎫+-+--⎪ ⎪⎝⎭⎝⎭=9831-+-=3【点拨】本题考查了实数的混合运算,解题的关键是掌握运算法则和运算顺序.46.(1)x=±1213;(2)x=8或x=-4.【解析】【分析】(1)移项后,根据平方根定义求解;(2)移项后,根据平方根定义求解.解:(1)169x2=144,移项得:x2=144 169,解得:x=±12 13.(2)(x-2)2-36=0,移项得:(x-2)2=36,开方得:x-2=6或x-2=-6解得:x=8或x=-4.故答案为:(1)x=±1213;(2)x=8或x=-4.【点拨】本题考查利用平方根解方程,解答此题的关键是掌握平方根的概念.47.(1)(2)17【解析】【分析】(1)先对二次根式化简,然后进行减法运算;(2)运用平方差公式进行计算.解:解:(1)原式3.(2)原式2-12=18-1=17.【点拨】本题考查了二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.48.8-解:试题分析:第一项运用乘法分配律进行计算;第二项运用平方差公式进行计算即可. 试题解析:原式=5-+15-12=8-49.【分析】利用乘法公式以及负指数幂的性质和绝对值的性质分别化简进而得出答案.解:11|2|1)2-⎛⎫+- ⎪⎝⎭22(51)=+--2251=+-+=故答案为【点拨】本题考查二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后进行二次根式的加减运算.也考查了负整数指数幂.50.【解析】【分析】直接利用零指数幂的性质、负指数幂的性质以及绝对值的性质、二次根式的性质分别化简得出答案.解:原式143=++=【点拨】此题主要考查了实数运算,正确化简各数是解题关键.51.(1);(2);(3;(4. 【解析】试题分析:(1化简;(2(3(4试题解析:(1==;(2=(3==;(4552.(1(2)16- 【解析】分析:(1)根据二次根式的性质,化简各二次根式,然后合并同类二次根式即可; (2)利用完全平方公式和平方差公式化简,然后合并即可.详解:(123=53(2)))2333+=5--9=16-【点拨】:此题主要考查了二次根式的混合运算,利用二次根式的性质,乘法公式进行计算,关键是利用二次根式的性质化简和最简二次根式的、同类二次根式的确定.53.1.解:试题分析:首先化简各式,进而得出,a b 的值,即可得出答案.== 因为a b 、都为有理数,所以2104a b ==,, 所以021 1.4a b ⎛⎫== ⎪⎝⎭ 54.0【分析】根据绝对值的性质、立方根的性质以及实数的运算法则化简计算即可.解:原式=5-3+4-6=0【点拨】本题考查实数的混合运算,解题的关键是:掌握先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.55.【解析】分析:收下根据立方根、算术平方根、绝对值、立方根的性质求出各式的值,然后进行求和得出答案.详解:原式 15123=-++-=.【点拨】:本题主要考查的是实数的计算,属于基础问题.解决这个问题的核心就是要明确各种计算法则.56.2xy ;【分析】根据完全平方公式、平方差公式、整式的加减运算法则进行运算即可,最后代入数据即可求解.解:原式2222222x xy y x y x =+++--2xy =,将x =y =原式2==故答案为:【点拨】本题考查了完全平方公式、平方差公式的运算,实数的化简求值,熟练掌握公式及运算法则是解决此类题的关键.572【分析】先对二次根式进行化简,然后再进行二次根式的加减运算.解:原式=+【点拨】本题主要考查二次根式的加减,熟练掌握二次根式的加减运算是解题的关键.58.(1)4(2)2【解析】【分析】(1)先进行二次根式的乘法运算、乘方计算再进行减法计算即可.(2)先计算乘方,然后计算计算乘法、去绝对值,最后从左向右依次计算即可.解:(11﹣)==4;(2)原式=﹣4=2【点拨】本题考查了实数的混合运算,熟练掌握运算法则是正确解题的关键59.(1)-1;(2)2;-4【分析】根据二次根式的混合运算法则先去括号,再进行乘除后加减依次进行计算即可.解:解(1=-1.(2)2×(1=2-=2.-1)2=32-(2-2-=9-5-1=(9-5-3-2-2=3-(7-)-4.【点拨】此题主要考查二次根式的混合运算,解题的关键是熟知二次根式的运算法则. 60.2x 3+,5.【分析】先利用整式的乘除与加减运算化简代数式,再代入求值即可.解:()()()()22412121x x x x x ---++- 222444441x x x x x =-+-++-2 3.x =+当x =2(3 5.=+=【点拨】本题考查的是整式的化简求值,二次根式的乘方运算,掌握整式加减乘除运算是解题的关键.61【分析】首先利用矩形的面积计算方法求得三角形的面积,根据三角形的面积公式:S 12=ah 列式计算即可求解.解:223==.答:这条边上的高为3. 【点拨】本题考查了二次根式的混合运算,掌握矩形和三角形的面积计算方法是解决问题的关键.62.1a b-+,-1 【分析】根据平方差公式进行变形,再根据分式混合运算法则进行计算,再根据平方差公式的性质和二次根式的性质进行求解,即可得到答案. 解:原式2()2()()()a b a a b a b a a b a b-=-+--+ 12a b a b=-++ 1a b =-+,∵a ,b 满足2(2)0a -=,∵20a -=,10b +=,2a =,1b =-,原式1121=-=--. 【点拨】本题考查平方差公式和二次根式的性质,解题的关键是掌握平方差公式和二次根式的性质.63.1146. 【解析】【分析】将原式中的二次根式和三次根式先化简,然后按照“先乘除,后加减”的原则计算即可.=9+4-72×(-13) =13+76 =1146. 【点拨】本题二次根式、立方根的化简,及二次根式的混合运算.64.13.【分析】分别运算每一项然后再求解即可.解:22()()19(6)2-+--+-÷1693=++-13=.【点拨】本题考查实数的运算,熟练掌握实数的运算法则是解题的关键.65.(1;(2) 【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先根据完全平方公式和平方差公式计算,然后合并即可.解:(1)原式=(2)原式=8(53)+-=82+=6+.【点拨】本题考查了二次根式的混合运算.先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.66【分析】根据x ﹣2的一个平方根是﹣2,可以得到x 的值,根据2x +y ﹣1的立方根是3,可以得到y 的值,从而可以求得x +y 的算术平方根.解:∵x ﹣2的一个平方根是﹣2,∵x ﹣2=4,解得:x =6.∵2x +y ﹣1的立方根是3,∵2x +y ﹣1=27.∵x =6,∵y =16,∵x +y =22,∵x +y即x +y【点拨】本题考查了立方根、平方根、算术平方根,解题的关键是明确立方根、平方根、算术平方根的定义.67.103【分析】原式利用算术平方根,立方根,绝对值的代数意义,以及二次根式性质计算即可得到结果.解:原式=7-1+13=103 【点拨】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.68.0【解析】【分析】根据二次根式的混合运算的法则计算即可.解:原式=0.【点拨】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.69.(1);(2 1.【分析】(1)直接合并同类二次根式即可;(2)先根据绝对值的性质去掉绝对值符号,再合并同类二次根式即可.解:(1)原式=(3+=(211.【点拨】本题考查二次根式的加减法.70.10【分析】根据平方根运算法则、立方根运算法则及绝对值性质,进行代数式求值2=-++9322=10故答案为:10【点拨】本题考查了平方根运算法则、立方根运算法则及绝对值性质.71.【分析】先化简,然后去括号合并同类二次根式即可.解:原式=(-(=【点拨】本题考查了二次根式的加减运算,应先把各个二次根式化成最简二次根式,然后再去括号合并同类二次根式即可.72.0【分析】原式第一项利用立方根的定义化简,第三项利用了平方根定义化简,最后一项利用绝对值的代数意义化简,计算即可得到结果.21+-=-231231=-+-=.【点拨】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.73.(1)(2)0【解析】【分析】(1)先算二次根式的除法和乘法,然后化成最简二次根式,再合并同类二次根式即可;(2)先化简二次根式、零次幂、负指数幂、绝对值,再合并同类二次根式即可;解:(1)原式=﹣+2=4+(2)原式=2﹣×+1﹣(﹣1)﹣2=2﹣+1﹣+1﹣2=2﹣2=0【点拨】本题考查了实数的运算,用到的知识点有二次根式的乘、除法,零指数幂和负整数指数幂,绝对值的化简,二次根式的合并,熟练掌握实数的运算法则是解答本题的关键.74.1【分析】根据零指数幂、负整数指数幂、绝对值、乘方的意义逐项化简,然后按有理数的加减法计算.解:原式=1431+--=1.【点拨】本题考查了实数的运算,熟练掌握零指数幂、负整数指数幂、绝对值、乘方的意义是解答本题的关键.75.20 3【分析】根据二次根式的乘除运算法则计算即可.解:==20 3【点拨】本题考查了二次根式的乘除运算,解题的关键是掌握运算法则.76.(1)x=3或x=﹣1;(2)2【分析】(1)根据一个数的平方根的求法,可得x﹣1=2或x﹣1=﹣2,据此求出x的值是多少即可.(22+)即可.解:(1)∵(x﹣1)2=4,∵x﹣1=2或x﹣1=﹣2,解得:x=3或x=﹣1,即x的值是3或﹣1.(2)原式=2+2【点拨】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.77.2+解:试题分析:先把各二次根式化为最简二次根式,再利用多项式除以单项式的法则进行计算.试题解析:原式=((562⨯⨯==+78.(1) -1; (2) -8【分析】(1)先算立方根和算术平方根,再求差即可;(2)先分别求乘方、绝对值、算术平方根,再计算和差.解:(1)原式=2-3=-1.(2) 解:原式=-9+32=-8【点拨】本题考查了实数的混合运算,熟练掌握实数的运算顺序及立方根、算术平方根的意义是解答本题的关键.79.231x -,5【分析】利用平方差公式,完全平方公式和去括号的法则对原式进行展开化简,然后将x 解:原式=22(49)(44)412x x x x --++++=224944412x x x x ----++=231x -将x ==3×2-1=5.【点拨】本题考查了平方差公式,完全平方公式和去括号,掌握运算法则是解题关键.80.(1)53,44x x =-=-;(2)12x =-;(3)0;(4)4-. 【分析】(1)由题意先移项化简,进而开平方即可求出方程的解;(2)由题意先移项化简,进而开立方即可求出方程的解;(3)根据题意开立方、去绝对值后进而合并同类项即可;(4)根据题意开立方、开平方、去绝对值以及去括号后进而合并同类项即可.解:(1)216(1)10x +-=216(1)1x +=21(1)16x += 114x +=± 5344x x =-=-,; (2)38(1)270x -+=38(1)27x -=-327(1)8x -=- 312x -=- 12x =-;(33-235=+0=;(4(21-=-+4921=-.4【点拨】本题考查解方程以及开立方、开平方、去绝对值,熟练掌握平方根和立方根的性质进行解方程是解题的关键.81.(1)(2)(3)(4.【分析】根据二次根式的公式化简即可.解:(1) 原式-(2) 原式(3) 原式(4) 原式【点拨】本题考查二次根式的计算,注意合并同类二次根式.82.6.【解析】【分析】利用负指数幂的性质以及零指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案=+++解:原式3122=426=.【点拨】此题主要考查了实数运算,正确化简各数是解题关键83【分析】利用乘方的意义、绝对值的代数意义、立方根定义计算即可得到结果.解:原式=413-【点拨】本题考查实数的运算.84.3【分析】根据立方根与平方根的意义以及绝对值的意义计算.1=371-+=3【点拨】本题考查了实数的混合运算运算,正确理解平方根与立方根的意义是解题的关键.85.8-解:【分析】运用平方差公式和完全平方公式可求出结果.【详解】解:原式=2﹣1+3﹣=8﹣【【点拨】】本题考核知识点:整式运算.解题关键点:熟记平方差公式和完全平方公式.86.2【分析】先化简二次根式,然后再进行二次根式的加减乘除运算即可.解:=2=2【点拨】本题主要考查二次根式的混合运算,熟练掌握二次根式的混合运算是解题的关键.87【分析】首先计算开方和去绝对值,然后从左向右依次计算,求出算式的值是多少即可.解:原式=3﹣1【点拨】本题综合考查了立方根、算术平方根和绝对值的运算,解决本题的关键是牢牢记住公式和法则,按规定的顺序计算即可.88.(1)12;(2)(3)(4)4【分析】根据二次根式的运算法则与整式的乘法法则依次计算即可.。

八年级上册数学试卷实数

八年级上册数学试卷实数

一、选择题(每题5分,共25分)1. 下列实数中,有理数是()A. √2B. πC. 2.5D. 3/42. 若x=3,则下列等式中正确的是()A. x²=9B. x³=27C. x⁴=81D. x⁵=2433. 下列各数中,绝对值最小的是()A. -2B. -1C. 0D. 14. 下列各数中,正数是()A. -1/2B. 1/2C. -1D. 05. 若a、b是实数,且a+b=0,则下列结论正确的是()A. a、b都是正数B. a、b都是负数C. a、b一正一负D. a、b一正一零二、填空题(每题5分,共25分)6. 实数-3的相反数是______,绝对值是______。

7. 若x=-2,则x²=______,x³=______。

8. 绝对值大于3的实数是______,小于-3的实数是______。

9. 若a、b是实数,且a²=b²,则a+b=______。

10. 下列各数中,有理数是______,无理数是______。

三、解答题(共50分)11. (10分)求下列各数的相反数和绝对值。

(1)-5 (2)√312. (10分)已知x=-2,求下列各式的值。

(1)x² (2)x³ (3)x⁴13. (10分)判断下列各数的有理性。

(1)√2 (2)π (3)3/414. (10分)若a、b是实数,且a²=b²,求a+b的值。

15. (10分)求下列各式的值。

(1)|2x-3| (2)|x+1|-|x-1|四、简答题(共5分)16. 简述实数的分类。

答案:一、选择题:1. C2. B3. C4. B5. D二、填空题:6. 3 57. 4 -88. -∞,3 (-∞,-3)9. 0 10. 3/4,√2,π三、解答题:11. (1)-5的相反数是5,绝对值是5。

(2)√3的相反数是-√3,绝对值是√3。

人教版八年级上册实数练习题

人教版八年级上册实数练习题

实数练习题一、填空题1.4 的平方根是 .2.-27 的立方根是 .3.23-的相反数地 ,绝对值是 .4.一个正数的算术平方根与立方根是同一个数,则这个数是 .5.在数轴上,到原点距离为5个单位的点表示的数是 .6.不小于2154的最小整数是 . 7.若实数 a 、b 满足212()02a b -++=,则 ab = .8.1.4的绝对值等于 .9.当x 时,代数式2x+6的值没有平方根;10.若0|2|1=-++y x ,则x+y= ;11.立方根是-8的数是 , 64的立方根是 。

12.如果x 、y 满足|2|+++x y x =0,则x= ,y= ;13.若12112--+-=x x y ,则xy 的值为二、选择题1.已知正方形的边长为a ,面积为S ,则( )A .S =B .±a =C .a =D .a S =±2.算术平方根等于它本身的数( )A 、不存在;B 、只有1个;C 、有2个;D 、有无数多个;3.下列说法正确的是( )A .a 的平方根是±a ;B .a 的算术平方根是a ;C .a 的算术立方根3a ;D .-a 的立方根是-3a .4.如果a 、b 两数在数轴上的位置如图所示,则a . -1. 0b .. 1.()2b a +的算术平方根是( );A 、a+b ;B 、a-b ;C 、b-a ;D 、-a-b ;5.如果-()21x -有平方根,则x 的值是( ) A 、x ≥1;B 、x ≤1;C 、x=1;D 、x ≥0;6.如果一个自然数的算术平方根是n ,则下一个自然数的算术平方根是( )A 、n+1;B 、2n +1;CD 。

7. 下列各式中,不正确的是( )><> 5=-8.若a<0,则a a 22等于( )A 、21B 、21-C 、±21D 、0三、解答题1.已知a 、b 满足5-a +2a -5=b+4,求ab 的值2.计算:40083321633⨯---36662101010++-22120123-914420045243⨯⨯⨯ 83122)10(973.0123+--⨯-3.已知A=x 3x y ++的算术平方根,B=2x y -2x y +的立方根,试求B -A 的立方根.4.已知:3+-y x 与1-+y x 互为相反数,求x+y 的算术平方根5.已知51|3a-b-7|+32-+b a =0求(b+a)a 的平方根。

八年级数学上册第4章实数专题训练9比较实数大小的常用方法习题课件新版苏科版

八年级数学上册第4章实数专题训练9比较实数大小的常用方法习题课件新版苏科版

“>”“<”或“=”)
1
2
3
4
5
6
7
8
9
10
11
7. [2024高邮期末]比较
解:∵


与 的大小.







- =
<0,∴
< .





1
2
3
4
5
6
7
8
9
10
11
方法五
作商比较法
8. 【母题教材P104交流】用“>”或“<”填空:



> -



1
2
3
4
5
6
7
8
9
10
11
第4章
专题训练9
实数
比较实数大小的常用方法
方法一
直接比较法


1. [2023无锡锡山区期中]在- ,- ,0,2四个数中,最
大的数是(
A
)
A. 2
C.
B. 0



D. -
1
2
3
4
5
6
7
8
9
10
11

2. [2024南京秦淮区期中]比较大小:-
1
2
3
4
5
6
7
8
9
10

11
.
方法二
是(
A
)
A. <1<
C.





B. <
<1
D.

八年级数学上册 2 实数专题训练(三)实数的大小比较 (新版)北师大版

八年级数学上册 2 实数专题训练(三)实数的大小比较 (新版)北师大版

专题训练(三) 实数的大小比较方法1 直接比较法对于a和b类型的题目,要比较它们的大小,只要比较被开方数,被开方数的值越大,根式的值越大.1.比较13和17的大小.方法2 放缩法用放缩法比较实数的大小的基本思想方法是:把要比较的两个数进行适当的放大或缩小,使复杂的问题得以简化,来达到比较两个实数的大小的目的.2.比较3和10的大小.3.比较7+2与57-2的大小.方法3 因式内移法将根号外的正因式移入根号内,从而转化为比较被开方数的大小.4.比较27与33的大小.方法4 作差(商)法对于一个是带有无理数的分式,另一个是分数或小数,通常采用作差(商)法比较大小.5.比较32与42-1的大小.方法5 平方法 一般地,当a >0,b >0时,若a 2>b 2,则a >b ;若a 2=b 2,则a =b ;若a 2<b 2,则a <b.7.比较53和8的大小.8.比较58与64的大小.参考答案1.因为13<17,所以13<17.2.因为9<10,所以9<10.即3<10.3.因为2<7<3,7<57<8,所以7+2<3+2=5,57-2>7-2=5,所以7+2<57-2.4.因为27=22×7=28,33=32×3=27.因为28>27,所以28>27,即27>3 3.5.因为32-(42-1)=1-2<0,所以32<42-1.6.因为34÷38=34×83=23=43>1,所以34>38.7.因为(53)2=75,82=64,75>64,所以53>8.8.因为(58)2=2564,(64)2=616=2464,2564>2464,所以58>64.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实数专题训练一. 学习目标1、了解无理数和实数的概念;会对实数按照一定的标准进行分类,培养分类能力。

2、了解分类的标准与分类结果的相关性,进一步了解体会“集合”的含义。

3、了解实数范围内相反数、倒数数和绝对值的意义。

4、了解数轴上的点与实数一一对应,能用数轴上的点来表示无理数。

二. 教学重点与难点1、 有理数的分类;数轴、相反数、绝对值及有理数的运算。

2、 关于绝对值的化简;有理数的混合运算;符号情况;规律探索题。

3、 绝对值的化简;运算时符号的错误;规律探索无从下手。

三. 考点分析1. 算术平方根、平方根、立方根的性质。

2. 算术平方根、平方根、立方根的性质。

3. 创新思维题。

四.知识体系与典型例题分析【无理数】1. 定义:无限不循环小数的小数叫做无理数;注:它必须满足“无限”以及“不循环”这两个条件。

2. 常见无理数的几种类型:(1)特殊意义的数,如:圆周率π以及含有π的一些数,如:2-π,3π等;(2)特殊结构的数(看似循环而实则不循环):如:2.010 010 001 000 01…(两个1之间依次多1个0)等。

(3)无理数与有理数的和差结果都是无理数。

如:2-π是无理数(4)无理数乘或除以一个不 为0的有理数结果是无理数。

如2π,(5)开方开不尽的数,如:39,5,2等;应当要注意的是:带根号的数不一定是无理数,如:9等;无理数也不一定带根号,如:π)3.有理数与无理数的区别:(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。

例:(1)下列各数:①3.141、②0.33333……、③75-、④π、⑤252.±、⑥32-、⑦0.3030003000003……(相邻两个3之间0的个数逐次增加2)、其中是有理数的有____;是无理数的有___。

(填序号)(2)有五个数:0.125125…,0.1010010001…,-π,4,32其中无理数有( )个【算术平方根】:1. 定义:如果一个正数x 的平方等于a ,即a x =2,那么,这个正数x 就叫做a 的算术平方根,记为:“a ”,读作,“根号a ”,其中,a 称为被开方数。

例如32=9,那么9的算术平方根是3,即39=。

特别规地,0的算术平方根是0,即00=,负数没有算术平方根2.算术平方根具有双重非负性:(1)若a 有意义,则被开方数a 是非负数。

(2)算术平方根本身是非负数。

3.算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。

因此,算术平方根只有一个值,并且是非负数,它只表示为:a ;而平方根具有两个互为相反数的值,表示为:a ±。

例:(1)下列说法正确的是 ( )A .1的立方根是1±;B .24±=;(C )、81的平方根是3±;( D )、0没有平方根;(2)下列各式正确的是( )A 、981±=B 、14.314.3-=-ππC 、3927-=-D 、235=-(3)2)3(-的算术平方根是 。

(4)若x x -+有意义,则=+1x ___________。

(5)已知△ABC 的三边分别是,,,c b a 且b a ,满足0)4(32=-+-b a ,求c 的取值范围。

(6)(提高题)如果x 、y 分别是4- 3 的整数部分和小数部分。

求x - y 的值.平方根:1.定义:如果一个数x 的平方等于a ,即a x =2,那么这个数x 就叫做a 的平方根;,我们称x 是a 的平方(也叫二次方根),记做:)0(≥±=a a x2.性质:(1)一个正数有两个平方根,且它们互为相反数;(2)0只有一个平方根,它是0本身; (3)负数没有平方根例(1)若x 的平方根是±2,则x= ;的平方根是 (2)当x 时,x 23-有意义。

(3)一个正数的平方根分别是m 和m-4,则m 的值是多少?这个正数是多少?3. 的性质与22)0()(a a a ≥(1)77)0()22=≥=)如:(a a a (2)||2a a =中,a 可以取任意实数。

如5|5|52==3|3-|3-2==)(例:1.求下列各式的值(1)27 (2)27-)( (3)249-)(2.已知1)12-=-a a (,那么a 的取值范围是 。

3.已知2<x <3,化简=-+|3|)-22x x ( 。

【立方根】1.定义:一般地,如果以个数x 的立方等于a ,即x 3=a,那么这个数x 就叫做a 的立方根(也叫做三次方根)记为3a ,读作,3次根号a 。

如23=8,则2是8的立方根,0的立方根是0。

2.性质:正数的立方根的正数;0的立方根是0;负数的立方根是负数。

立方根是它本身的数有0,1,-1.例:(1)64的立方根是(2)若9.28,89.233==ab a ,则b 等于(3)下列说法中:①3±都是27的立方根,②y y =33,③64的立方根是2,④()4832±=±。

其中正确的有 ( ) A 、1个 B 、2个 C 、3个D 、4个比较两个数的大小:方法一:估算法。

如3<10<4 方法二:作差法。

如a >b 则a-b >0. 方法三:乘方法.如比较3362与的大小。

例:比较下列两数的大小(1) 2123-10与 (2)5325与 【实数】定义:(1)有理数与无理数统称为实数。

在实数中,没有最大的实数,也没有最小的实数;绝对值最小的实数是0,最大的负整数是-1。

(2)实数也可以分为正实数、0负实数。

实数的性质:实数a 的相反数是-a ;实数a 的倒数是a1(a ≠0);实数a 的绝对值|a|=⎩⎨⎧<-≥)0()0(a a a a ,它的几何意义是:在数轴上的点到原点的距离。

实数的大小比较法则:实数的大小比较的法则跟有理数的大小比较法则相同:即正数大于0,0大于负数;正数大于负数;两个正数,绝对值大的就大,两个负数,绝对值大的反而小。

(在数轴上,右边的数总是大于左边的数)。

对于一些带根号的无理数,我们可以通过比较它们的平方或者立方的大小。

实数的运算:在实数范围内,可以进行加、减、乘、除、乘方、开方六种运算。

运算法则和运算顺序与有理数的一实数与数轴的关系:每个实数与数轴上的点是一一对应的(1)每个实数可以以用数轴上的一个点来表示。

(2)数轴上的每个点都表示已个实数。

例:(1)下列说法正确的是( );A 、任何有理数均可用分数形式表示 ;B 、数轴上的点与有理数一一对应 ;C 、1和2之间的无理数只有2 ;D 、不带根号的数都是有理数。

(2)a ,b 在数轴上的位置如图所示,则下列各式有意义的是( )A 、b a -B 、abC 、b a +D 、a b -(3)比较大小(填“>”或“<”).-, 76______67,215- 21, (4)数 2,3-- 的大小关系是 ( )A. 32<-<-B. 32-<<-C. 23-<<-D.32-<-<(5)将下列各数:51,3,8,23---,用“<”连接起来;______________________________________。

(6)若2,3==b a ,且0<ab ,则:b a -= 。

【二次根式】定义:形如)(0≥a a 的式子叫做二次根式,a 叫做被开方数注意:(1)从形式上看二次根式必须有二次根号“”,如9是二次根式,而9=3,3显然就不是二次根式。

(2)被开方数a 可以是数,也可以是代数式。

若a 是数,则这个数必须是非负数;若a 是代数式,则这个代数式的取值必须是非负数,否则没有意义。

例:下列根式是否为二次根式(1)3- (2)||3- (3)a - (4)32-- 二次根式的性质:性质1:)0,0(.≥≥=b a b a ab 积的算术平方根等于积中各因式的算术平方根的积,运用这个性质也可以对二次根式进行化简。

性质2:)0,0.( b a ba b a ≥= 商的算术平方根等于被除数的算术平方根除以除数的算术平方根。

最简二次根式:被开方数中不含分母,也不含能开得尽方的因数或因式,这样的二次根式,叫做最简二次根式。

例:1.化简:(1)1512⨯ (2))0(2724≥b b a (3)x94 2.计算:32278115.041--+ 323811613125.0⎪⎭⎫ ⎝⎛-+-3.已知:()()064.01,121732-=+=-y x ,求代数式3245102y y x x ++--的值。

6.(提高题)观察下列等式:回答问题:①2111111112111122=+-+=++②6111212113121122=+-+=++③12111313114131122=+-+=++,…… (1)根据上面三个等式的信息,请猜想2251411++的结果; (2)请按照上式反应的规律,试写出用n 表示的等式,并加以验证。

六.随堂练习一、重点考查题型:1.-1的相反数的倒数是2.已知|a+3|+b+1 =0,则实数(a+b )的相反数3.数-3.14与-Л的大小关系是4.和数轴上的点成一一对应关系的是5.和数轴上表示数-3的点A 距离等于2.5的B 所表示的数是6.在实数中Л,-25,0, 3 ,-3.14, 4 无理数有 个 7.一个数的绝对值等于这个数的相反数,这样的数是( )(A )非负数 (B )非正数 (C )负数 (D )正数8.若x <-3,则|x +3|= 。

9.下列说法正确是( )(A ) 有理数都是实数 (B )实数都是有理数(B ) 带根号的数都是无理数 (D )无理数都是开方开不尽的数10.实数在数轴上的对应点的位置如图,比较下列每组数的大小:(1) c-b 和d-a(2) bc 和ad二、考点训练:*1.判断题:(1)如果a 为实数,那么-a 一定是负数;( )(2)对于任何实数a与b,|a-b|=|b-a|恒成立;()(3)两个无理数之和一定是无理数;()(4)两个无理数之积不一定是无理数;()(5)任何有理数都有倒数;()(6)最小的负数是-1;()(7)a的相反数的绝对值是它本身;()(8)若|a|=2,|b|=3且ab>0,则a-b=-1;()2.把下列各数分别填入相应的集合里-|-3|,21.3,-1.234,-227,0,-9 ,-3-18, -Л2,8 , ( 2 -3 )0,3-2,ctg45°,1.2121121112......中无理数集合{}负分数集合{}整数集合{}非负数集合{}*3.已知1<x<2,则|x-3|+(1-x)2 = 。

相关文档
最新文档