新能源机动车核心技术详解-电池包和BMS-VCU-MCU

合集下载

纯电动汽车整车控制器(vcu)研究

纯电动汽车整车控制器(vcu)研究

车辆工程技术 2 车辆技术纯电动汽车整车控制器(VCU)研究宋述铨(天津优控智行科技有限公司,天津 300000)摘 要:电动汽车主要由电池管理系统(BMS),整车控制系统(VCS),以及电机控制器(MCU)等构成。

整车控制器(VCU)是电动汽车的重要控制结构,对汽车的各种信息进行检测、对车内通信网络和异常信息进行监控等,能够提高整车驾驶性能,进行制动能量回馈完善能源管理。

提升整车舒适性,使用户获得完美体验。

关键词:纯电动汽车;整车控制器;完美体验 随着社会的发展与科技的进步,各个城市的汽车使用户喷井式增加。

传统的内燃机汽车消耗石油,排出大量废气,使得城市的空气质量不断下降。

纯电动汽车由于不使用传统化石能源,对环境不造成污染,受到人们的青睐。

随着科技的进步,电动汽车的核心技术不断地革新与突破,逐渐完善的城市基础设施提供了有利的帮助,电动汽车已经成为潜力股,逐步取代传统汽车变为可能。

本文从汽车结构出发,结合整车信息传输过程,设计了整车控制器的软硬件结构。

1 整车电控系统组成 整车电控系统主要由整车控制器VCU为核心,通过硬线信号指挥各控制器使能,通过CAN总线信号控制储能系统、电机系统等关键总成执行相应的上下电动作以及扭矩指令。

最终完成整车的驾驶运行以及高压充电。

其中,低压部分完成车辆控制器供电和信号采集通讯。

高压部分通过高压线束将动力电池的电能传输到空调压缩机、电动机等高压供电设备,实现动力电能的传输。

其中电机、电池、电控系统被称为“三电”系统,主要包括:1.1 整车控制器 整车控制器系统为整车的运行大脑,具有高可靠性、高运行效率、逻辑缤密性。

整车控制系统上电后首先运行初始化程序并且自检,在自身没有问题后驱动端口使能储能系统、电机系统上电。

储能系统和电机系统完成上电后同样分别进行上电自检。

所有系统自检无故障且驾驶员有上高压指令时,整车控制系统通过总线驱动储能系统、电机系统完成上高压动作。

1.2 储能系统 储能系统包括动力电池组和BMS管理单元。

简谈整车控制器 VCU

简谈整车控制器 VCU

1.概述整车控制器VCU(Vehicle control unit)作为新能源车中央控制单元,是整个控制系统的核心。

VCU 采集电机及电池状态、加速踏板信号、制动踏板信号及其它执行器传感器控制器信号,根据驾驶员的驾驶意图综合分析并做出相应判定后,监控下层的各部件控制器的动作,它负责汽车的正常行驶、制动能量回馈、整车发动机及动力电池的能量管理、网络管理、故障诊断及处理、车辆状态监控等,从而保证整车在较好的动力性、较高经济性及可靠性状态下正常稳定的工作。

可以说整车控制器性能的优劣直接决定了新能源汽车整车性能的好坏,起到了中流砥柱的作用。

2.发展过程整车控制器可谓是起源于传统汽车,落地于新能源汽车。

传统汽车包含发动机控制器、变速箱控制器、车身控制器、底盘控制器等,各控制器是由不同的Tier1 提供,为解决各自零部件的功能及性能指标而定制设计。

比如EMS 是解决发动机燃油经济性、排放法规及热处理等。

变速箱是解决操作杆与齿轮动作的相互协调及切换。

各自独立控制车辆某一部分,无法总体考虑整车性能与功能需求。

因此部分OEM 为了实现整车定制功能、个性化设计、摆脱国外Tier1高昂的开发费及开发周期,有了整车控制器最初的概念设想。

由于国内电控技术起步晚,OEM对国外Tier1的控制力不足,直到新能汽车快速发展,混合动力迫切需要解决燃油动力系统与电池动力系统之间的有效协调,纯电动车需要解决整车动力管理,因此明确了整车控制器的概念及功能定义,奠定了VCU 获得的高速发展的基础。

传统汽车E/E 架构传统汽车E/E 架构行业分析新能源起步阶段,大概在2012-2015年诞生了第一代VCU产品。

技术来源于传统汽车电控ECU,以发动机控制器及车身控制器为主要技术来源。

行业典型产品有德尔福的HCU-2、联电的VCU、大陆的H300及普华第一代VCU-1。

VCU-1 是普华软件与国内知名OEM 合作开发,采用主从的硬件解决方案,AUTOSAR3.1.5软件平台,是国内最早自主AUTOSAR 软硬一体化的VCU 解决方案。

电动汽车VCU和BMS集成控制器硬件设计

电动汽车VCU和BMS集成控制器硬件设计

一、概述
整车控制器是纯电动汽车控制系统的核心,它负责接收驾驶员的控制指令,根 据车辆的运行状态和电池的电量等信息,控制车辆的加速、减速、制动等动作, 同时还要监控电池的状态和充电情况,保证车辆的安全性和续航能力。
二、硬件设计
1、中央控制单元
中央控制单元是整车控制器的核心部件,它负责处理各种传感器和开关量信号, 根据车辆的运行状态和驾驶员的意图,控制车辆的加速、减速、制动等动作。 同时,中央控制单元还要与电池管理系统、充电控制系统等其他部件进行通信, 实现整车信息的实时监控和控制。
5、通信接口:BMS需要与VCU、充电桩等其他设备进行数据交换。因此,需要 配置相应的通信接口,如CAN、LIN等。考虑到电池管理系统的通信需求和数 据安全性,应选择具有高速、稳定、安全的通信接口。
6、故障诊断和处理单元:BMS应具备故障诊断和处理能力,能够对电池组进行 实时监测和故障预警。因此,需要配置相应的故障诊断和处理单元,包括故障 检测、故障处理、故障记录等功能。
电动汽车VCU和BMS集成控 制器硬件设计
目录
01 一、VCU硬件设计
03
三、VCU和BMS的集成 设计
02 二、BMS硬件设计 04 参考内容
随着环保意识的不断提高和电动汽车技术的不断发展,电动汽车在交通领域的 应用越来越广泛。作为电动汽车的关键部分,车辆控制单元(VCU)和电池管 理系统(BMS)的集成控制对于整车的性能和安全性具有至关重要的意义。本 次演示将探讨电动汽车VCU和BMS集成控制器的硬件设计。
(4)安全保护措施:采用防电击、防泄漏等安全保护措施确保人员的安全。
3、可维护性设计
可维护性是指控制系统出现故障时容易维修和恢复的程度。在硬件设计过程中, 应考虑以下几点:

新能源汽车关键技术简介_(纯电)

新能源汽车关键技术简介_(纯电)
12
3、高压控制盒
高压控制盒主要用于 对动力电池中储存的电 能进行输出及分配,实 现对支路用电器件的切 断和保护。
高压控制盒共有5出 接线口,分别连接快充 、动力电池、电机控制 器和其它高压接插件。
13
高压控制盒—高压附件插件
A:DC/DC 电源正极 B:PTC 电源正极 C:压缩机电源正极 D:PTC-A 组负极 E:充电机电源正极 F:充电机电源负极 G:DC/DC 电源负极 H:压缩机电源负极 J:PTC-B 组负极 L:互锁信号线
11 动力电池故障指示灯
12 动力电池断开指示灯
13 系统故障灯
31
上汽荣威E50纯电动汽车基本组成
32
一、充电系统(动力电池系统)
由动力电池组件、车载充电器、高压配电单元、快充口 (直流)、慢充口(交流)、电池冷却系统等组成。
33
充电系统控制设计
34
高压配电单元
高压配电单元用于分 配电能。
整车控制器在下电前会存储行车过程中发生的故障信息。
29
3、电控系统故障诊断及处理 电控系统根据电机、电池、EPS、DC/DC等零部件故障、
整车CAN网络故障及VCU硬件故障进行综合判断,确定整车 的故障等级,并进行相应的控制处理。
等级 一级 二级 三级
四级
名称 致命故障 严重故障 一般故障
轻微故障
还有:电池管理控制器、电池高压电力分配单元、 电池检测模块、电池采集和均匀模块(大模块由2个采 集模块;小模块由1个采集模块)、高低压插件、水冷 却系统等
37
二、电驱系统
主要由电动机组件、电力电子箱组件、减速器组件、电驱 冷却系统组成;主要功能是驱动汽车行驶和制动能量回收。
38

解读电池管理系统BMS的作用及特点

解读电池管理系统BMS的作用及特点

解读电池管理系统BMS的作用及特点随着新能源概念的普及推广,新能源汽车也逐步走入了千家万户,新能源汽车作为寻常百姓的新购车选择已经开始侵占着原本属于传统燃油汽车的市场,作为目前新能源汽车最大的市场,中国的企业依靠着新能源汽车首次与国外企业站在同一起跑线,不断涌现的新技术新工艺,让中国的新能源汽车行业有了更充足的底气去放眼世界,心系未来。

提到传统燃油汽车的核心关键自然离不开俗称的三大件:发动机、底盘以及变速箱,在这三大件上,中国技术落后以德日美为首的国外汽车厂商已是共识。

而在新能源电动汽车上也有俗称的三大件:电池、电机和电控,由于新能源电动汽车在全球范围内仍是较新的行业,各国企业的起步相差并不大,这也让我国企业在汽车这个1886年发明至今的多用途动力驱动工具上拥有了与国外企业一较高下的条件。

本文重点给大家介绍新能源电动汽车三大件里的电控(业内普遍称之为电池管理系统BMS)。

新能源电动汽车与传统燃油汽车最大的区别是用动力电池作为动力驱动,而作为衔接电池组、整车系统和电机的重要纽带,电池管理系统BMS的重要性不言而喻,国内外许多新能源车企都将电池管理系统作为企业最核心的技术来看待,最著名的例子就是大家耳熟能详的特斯拉,特斯拉的电动汽车三大件中,电池来自于松下,电机来自于台湾供应商,而只有电池管理系统是特斯拉自主研发的核心技术,2008年-2015年期间特斯拉所申请的核心知识产权大都与电池管理系统相关,由此可见电池管理系统对于新能源汽车的重要性。

而国内,电池管理系统BMS的研发生产主要集中在这三类企业:1、新能源汽车厂商,代表企业:比亚迪2、电池PACK厂商,代表企业:沃特玛、普莱德3、专业BMS厂商,代表企业:惠州亿能、深圳国新动力电池管理系统BMS到底有什么作用?电池管理系统BMS是一个本世纪才诞生的新产品,因为电化学反应的难以控制和材料在。

电池管理系统BMS架构及功能知识介绍

电池管理系统BMS架构及功能知识介绍

电池管理系统BMS架构及功能知识介绍新能源车与传统汽车最⼤的区别是⽤电池作为动⼒驱动,所以动⼒电池是新能源车的核⼼。

电动汽车的动⼒输出依靠电池,⽽电池管理系统BMS(BatteryManagementSystem)则是其中的核⼼,是对电池进⾏监控和管理的系统,通过对电压、电流、温度以及SOC等参数采集、计算,进⽽控制电池的充放电过程,实现对电池的保护,提升电池综合性能的管理系统,是连接车载动⼒电池和电动汽车的重要纽带。

国外公司BMS做的⽐较好的有联电、⼤陆、德尔福、AVL和FEV等等,现在基本上都是按照AUTOSAR架构以及ISO26262功能安全的要求来做,软件功能更多,可靠性和精度也较⾼。

国内很多主机⼚也都有⾃主开发的BMS产品并应⽤,前期在功能和性能上与国外⼀流公司相差甚远,但随着国内电池和BMS技术的快速发展差距正在逐步缩⼩,希望不久的将来能够实现成功追赶甚⾄超越。

BMS主要包括硬件、底层软件和应⽤层软件三部分。

硬件1、架构BMS 硬件的拓扑结构分为集中式和分布式两种类型:(1)集中式是将所有的电⽓部件集中到⼀块⼤的板⼦中,采样芯⽚通道利⽤最⾼且采样芯⽚与主芯⽚之间可以采⽤菊花链通讯,电路设计相对简单,产品成本⼤为降低,只是所有的采集线束都会连接到主板上,对BMS的安全性提出更⼤挑战,并且菊花链通讯稳定性⽅⾯也可能存在问题。

⽐较合适电池包容量⽐较⼩、模组及电池包型式⽐较固定的场合。

(2)分布式包括主板和从板,可能⼀个电池模组配备⼀个从板,这样的设计缺点是如果电池模组的单体数量少于12个会造成采样通道浪费(⼀般采样芯⽚有12个通道),或者2-3个从板采集所有电池模组,这种结构⼀块从板中具有多个采样芯⽚,优点是通道利⽤率较⾼,节省成本,系统配置的灵活性,适应不同容量、不同规格型式的模组和电池包。

2、功能硬件的设计和具体选型要结合整车及电池系统的功能需求,通⽤的功能主要包括采集功能(如电压、电流、温度采集)、充电⼝检测(CC和CC2)和充电唤醒(CP和A+)、继电器控制及状态诊断、绝缘检测、⾼压互锁、碰撞检测、CAN通讯及数据存储等要求。

一文带你看懂新能源汽车电池管理系统

一文带你看懂新能源汽车电池管理系统

一文带你看懂新能源汽车电池管理系统2012年6月,特斯拉电动汽车ModelS正式上市,续驶里程为483km。

这是世界第一款真正实用的长续驶里程纯电动汽车,给人们带来了对纯电动汽车的巨大信心,鼓励更多的高性能电动汽车不断推出。

Model S实现长续驶里程的最核心技术,应是特斯拉创新设计的电池管理系统(Battery Management System, BMS)。

一辆电动汽车的动力蓄电池由成百上千块电芯(也称单体电池)组成,比如特斯拉Model S的电池组就由7000多块电芯组成。

尽管电池制造工艺已经让各个电芯之间的差异化缩小,但是电芯之间仍然存在内阻、容量、电压等差异,使用中容易出现散热不均或过度充放电等现象。

时间一长,就很可能导致电池损坏甚至爆炸的危险。

因此,必须为动力蓄电池配备一套具有针对性的电池管理系统,像管家那样照料电池,保证电池处于正常工作状态。

一、蓄电池管理系统的组成蓄电池管理系统在硬件上可以分为主控模块和从控模块两大部分。

蓄电池管理系统主要由数据采集单元(采集模块)、中央处理单元(主控模块)、显示单元、均衡单元检测模块(电流传感器、电压传感器、温度传感器、漏电检测)、控制部件(熔断器、继电器)等组成。

中央处理单元由高压控制电路、主控板等组成;数据采集单元由温度采集模块、电压采集模块等组成,它们一般采用CAN总线技术实现相互间的信息通信。

1.主控模块主控盒。

主控盒是动力蓄电池管理系统的控制中心,用来控制总正继电器、加热继电器以及预充继电器,还通过CAN总线与VCU进行通信。

下图为特斯拉model 3主控盒电路板。

2.从控模块从控盒。

从控盒用来分别采集左右动力蓄电池组的蓄电池单体电压和动力蓄电池模组温度,然后通过CAN总线将信息输送给主控盒。

下图为特斯拉model 3从控盒电路板。

二、蓄电池管理系统的分类随着对于磷酸铁锂动力蓄电池一致性较差、三元锂热失控风险更大的问题暂时还不能完全解决,动力电池厂商的工程师们,除了在动力电池包结构上改进,工艺和散热要求提高之外,对BMS 的功能也提出了新的要求。

新能源汽车之心——电驱动系统的三大件介绍

新能源汽车之心——电驱动系统的三大件介绍

新能源汽车之心——电驱动系统的三大件介绍电驱动系统是新能源汽车核心系统之一,其性能决定了爬坡能力、加速能力以及最高车速等汽车行驶的主要性能指标。

无论是BEV(纯电动汽车)、HEV/PHEV(串并联结构)和燃料电池汽车均需要电驱动系统驱动车辆。

目前纯电动汽车行业电驱动系统主流模式是将电机、电机控制器和减速器集成,构成三合一电驱动系统电驱动系统的三大件—电机、电控和减速器:驱动电机是利用电磁感应原理实现电能向机械能的转换,驱动车辆行驶。

当车辆减速时,车轮带动电机运转为电池组充电,实现机械能向电能转换。

驱动电机主要由定子、转子、机壳、连接器、旋转变压器等零部件组成。

电机控制器基于功率半导体的硬件及软件设计,对驱动电机的工作状态进行实时控制,并持续丰富其他控制功能。

电机控制器主要由控制软件、IGBT 模块、车用膜电容器、印刷线路板(PCB)及微控制单元(MCU)等器件组成。

减速器则通过齿轮组降低输出转速提高输出扭矩,以保证电驱动系统持续运行在高效区间。

减速器由输入轴、中间轴、差速器及轴承等零部件组成。

电驱动系统的集成化趋势:电驱动系统设计经历了独立式、二合一、三合一和多合一的发展阶段。

独立式指电机、电控、减速器及其他附件独立存在,这种模式主要存在于早期电动车产品,优点是技术简单,缺点是占据空间大。

二合一方案则是将电机与减速器集成设计,三合一则是将电控、电机和减速器集成设计,三合一是目前电驱动系统的主流方案。

电驱系统集成更多功能是大势所趋,如华为即将推出的电驱动系统 DriveONE 系统,该系统集成了 MCU(微控制单元)、电机、减速器、DCDC(直流变换器)、OBC(车载充电机)、PDU (电源分配单元)、BCU(电池控制单元)七大部件,实现了机械部件和功率部件的深度融合。

电驱动效率由驱动电机、控制器、减速器的运行效率共同决定,是衡量电驱动系统性能的重要指标。

电驱动系统较高的峰值效率、高效区间占比可以使同等条件下新能源汽车行驶相同里程耗电量更少,有利于车辆续航里程的增加,是新能源汽车整车厂商和用户最为关注的技术指标。

纯电动汽车整车控制器(VCU)详细介绍

纯电动汽车整车控制器(VCU)详细介绍

纯电动汽车整车控制器(VCU)详细介绍嘿,伙计们!今天我要给大家讲讲一个非常酷的东西——纯电动汽车整车控制器(VCU)。

别看它是个小小的东西,但它可是电动汽车的大脑,负责控制着整个车辆的运行呢!让我们一起来揭开它神秘的面纱吧!咱们来了解一下什么是VCU。

VCU是英文“Vehicle Control Unit”的缩写,翻译成中文就是“车辆控制单元”。

它是一种专门用于控制电动汽车的电子设备,可以实现对电池管理系统、电机控制系统、辅助系统等多种功能的综合控制。

有了VCU,电动汽车就可以像传统汽车一样行驶了!那么,VCU到底是怎么工作的呢?其实很简单,它就像是一个指挥家,指挥着电动汽车的各个部件协同工作。

当驾驶员踩下油门时,VCU会接收到这个信号,然后通过电池管理系统向电机控制系统发送指令,让电机产生动力;VCU还会根据车辆的速度、加速度等参数,调整能量回收系统的工作状态,确保电池的能量得到最大限度的利用。

接下来,我们再来聊聊VCU的一些重要功能。

首先就是电池管理系统。

这个系统负责监控和管理电动汽车的电池,确保电池在良好的状态下运行。

它可以实时监测电池的剩余电量、充电状态、温度等参数,并根据这些信息制定相应的充放电策略。

这样一来,不仅可以延长电池的使用寿命,还能提高电动汽车的续航里程。

其次就是电机控制系统。

这个系统负责控制电动机的转速和扭矩,从而实现对车辆的驱动。

VCU会根据驾驶员的需求和车辆的状态,向电机控制系统发送指令,让电动机产生合适的动力输出。

VCU还会对电机的工作状态进行监控和保护,防止因为过载或故障导致的损坏。

最后就是辅助系统。

这个系统包括了很多辅助功能,比如空调、音响、照明等。

VCU会根据驾驶员的需求和车辆的状态,向这些系统发送指令,实现各种功能的切换和调节。

这样一来,即使在没有发动机的情况下,电动汽车也可以享受到舒适便捷的驾驶体验。

VCU是电动汽车的核心部件之一,它的存在使得电动汽车变得更加智能、高效和环保。

新能源汽车的六大核心技术-2020

新能源汽车的六大核心技术-2020

新能源汽车的六大核心技术2020年目 录新能源汽车的结构和工作原理 二、 新能源汽车的六大核心技术三、1.动力电池及管理技术2.驱动电机及控制技术3.整车控制技术4.整车轻量化技术5.整车能量管理技术新能源汽车的分类 一、一、新能源汽车的分类由车载可充电蓄电池或其它能量储存装置提供电能、由电机驱动的汽车(BEV )。

采用燃料电池作为电源的电动汽车称为燃料电池电动汽车(Fuel Cell Electric Vehicle ,FCEV )。

新能源汽车混合动力电动汽车纯电动汽车燃料电池汽车其他新能源汽车如燃气汽车、太阳能汽车由两种和两种以上的储能器、能源或转换器作为驱动能源,其中至少有一种能提供电能的车辆称为混合动力电动汽车(Hybrid Electric Vehicle,简称HEV )由机械、电子、能源、计算机、信息技术等集成目 录新能源汽车的结构和工作原理 二、 新能源汽车的六大核心技术三、1.动力电池及管理技术2.驱动电机及控制技术3.整车控制技术4.整车轻量化技术5.整车能量管理技术新能源汽车的分类 一、内燃机+电能燃料电池+蓄电池 燃料电池+电容+太阳能 燃料电池+电容(飞轮)蓄电池燃料电池 储能器电容飞轮•按动力组合形式分类混合动力电动汽车①微度混合动力电动汽车(Micro HEV )以发动机为主要动力源,电动机的峰值功率和发动机的额定功率比≤5%,只具备停车停机功能的混合动力电动汽车。

②轻度混合动力电动汽车(Mild HEV )以发动机为主要动力源,电动机作为辅助动力,电动机的峰值功率和发动机的额定功率比为5%~15%,电动机可向车辆行驶系统提供辅助驱动力矩,但不能单独驱动车辆行驶的混合动力电动汽车。

③中度混合动力电动汽车(Medium HEV )以发动机和/或电动机为动力源,电动机的峰值功率和发动机的额定功率比为15%~40%,低速时可电机独立驱动的混合动力电动汽车。

④重度/全混合动力电动汽车(Full HEV )以发动机和/或电动机为动力源,电动机的峰值功率和发动机的额定功率比大•按混合程度分类•按混合燃料分类油电混合、油液混合•按混合位置分类变速箱前置、变速箱后置串联单一的动力装置,两个以上能量源工作原理并联工作原理•发动机单独驱动•驱动电机单独驱动•发动机和驱动电机混合驱动混联工作原理内燃机系统和电机驱动系统各有一套机械变速机构两个电机系统:发电机和电机驱动系统行星齿轮机构:功率分流混合动力电动汽车.典型工况纯电动汽车.分类①铅酸电池电动汽车 ②锂离子电池电动汽车 ③镍-氢电池电动汽车等•按照蓄电池的种类不同分类 ①直流电动机驱动的电动汽车 ②交流电动机驱动的电动汽车 ③双电动机驱动的电动汽车 ④电动轮电动汽车•按动力驱动控制系统的结构型式不同分类电动汽车纯电动汽车(EV )混合动力电动汽(HEV )插电式(PHEV )非插电式结构工作原理纯蓄电池作为动力源,使用辅助电力源有超级电容器或发电机组,用来改善起动性能和增加续驶里程。

新能源汽车的核心技术有哪些

新能源汽车的核心技术有哪些

新能源汽车的核心技术有哪些随着全球环境保护呼声的日益高涨,新能源汽车正成为汽车行业的热门话题。

与传统汽车相比,新能源汽车采用了一系列新兴的技术,以实现更高的能源利用效率和更低的碳排放。

本文将介绍新能源汽车的核心技术,并分析其对环保的积极意义。

一、电池技术电池技术是新能源汽车的核心之一。

电池是驱动电动汽车的重要能源储存装置,其性能直接决定了新能源汽车的续航里程和使用寿命。

目前,锂离子电池是最常用的电池技术,具有高能量密度、长循环寿命和较低的自放电率。

然而,锂离子电池还存在续航里程有限、充电时间长和成本高等问题。

因此,新型电池技术如固态电池和燃料电池的研发也备受关注,有望在解决上述问题的同时,提高新能源汽车的性能。

二、电动驱动技术电动驱动技术是新能源汽车的核心之二。

相比传统内燃机,电机驱动具有高效率、低噪音和零排放的特点。

电动驱动系统由电机、控制器和传动装置组成。

电机是电动汽车的动力源,根据不同的车型和功率需求,可采用直流电机或交流电机。

控制器负责调整电机的转速和扭矩输出,以满足驾驶员的需求。

传动装置根据车辆的不同需求,有单速传动、多速传动和无级变速等不同的设计。

通过不断提升电动驱动技术,新能源汽车在性能和驾驶体验上正逐渐接近传统汽车。

三、智能控制技术智能控制技术是新能源汽车的核心之三。

智能控制系统能够通过感知、决策和执行等环节,实现对车辆能量管理、动力分配和系统优化的精确控制。

其中感知系统包括传感器和摄像头等装置,用于收集车辆和环境信息。

决策系统则通过算法和模型,根据收集到的信息做出智能决策。

最后,执行系统将决策结果转化为动作,控制车辆运行。

智能控制技术的应用可以提高新能源汽车的行驶安全性、能源效率和用户体验。

四、充电技术充电技术是新能源汽车的核心之四。

电动汽车的续航里程直接与充电设施的覆盖范围和充电速度相关。

目前,有慢充和快充两种充电方式,慢充适用于长时间停放的场景,而快充则能迅速补充电力。

为提高充电效率和用户体验,快充充电桩的覆盖面积正逐渐扩大,同时充电设备的智能化和远程监控技术也得到了广泛应用。

新能源汽车核心技术详解:电池包和BMS、VCU、-MCU

新能源汽车核心技术详解:电池包和BMS、VCU、-MCU

新能源汽车核心技术详解:电池包和BMS、VCU、MCU导读:为了使新能源爱好者和初级研发人员更好地了解新能源汽车的核心技术,北汽福田新能源系统开发部部长杨伟斌结合研发过程中的经验总结,从新能源汽车分类、模块规划、电控技术和充电设施等方面进行了分析。

2014年国内新能源汽车产销突破8万辆,发展态势喜人。

为了使新能源爱好者和初级研发人员更好地了解新能源汽车的核心技术,笔者结合研发过程中的经验总结,从新能源汽车分类、模块规划、电控技术和充电设施等方面进行了分析.1 新能源汽车分类在新能源汽车分类中,“弱混、强混”与“串联、并联”不同分类方法令非业内人士感到困惑,其实这些名称是从不同角度给出的解释、并不矛盾。

1.1消费者角度消费者角度通常按照混合度进行划分,可分为起停、弱混、中混、强混、插电和纯电动,节油效果和成本增等指标加如表1所示。

表中“-”表示无此功能或较弱、“+"个数越多表示效果越好,从表中可以看出随着节油效果改善、成本增加也较多.表1 消费者角度分类1.2技术角度图1 技术角度分类技术角度由简到繁分为纯电动、串联混合动力、并联混合动力及混联混合动力,具体如图1所示。

其中P0表示BSG(Belt starter generator,带传动启停装置)系统,P1代表ISG(Integrated starter generator,启动机和发电机一体化装置)系统、电机处于发动机和离合器之间,P2中电机处于离合器和变速器输入端之间,P3表示电机处于变速器输出端或布置于后轴,P03表示P0和P3的组合。

从统计表中可以看出,各种结构在国内外乘用或商用车中均得到广泛应用,相对来说P2在欧洲比较流行,行星排结构在日系和美系车辆中占主导地位,P03等组合结构在四驱车辆中应用较为普遍、欧蓝德和标致3008均已实现量产。

新能源车型选择应综合考虑结构复杂性、节油效果和成本增加,例如由通用、克莱斯勒和宝马联合开发的三行星排双模系统,尽管节油效果较好,但由于结构复杂且成本较高,近十年间的市场表现不尽如人意。

新能源汽车的核心:三电系统详解

新能源汽车的核心:三电系统详解

新能源汽车的核心:三电系统详解新能源汽车区别于传统车最核心的技术是“三电”,包括电驱动,电池,电控。

下面详细讲解一下三电基础知识:一、电池电池是与化学、机械工业、电子控制等相关的一个行业。

电池的关键在电芯,电芯最重要的材料便是正负极、隔膜、电解液。

正极材料广为熟知的有磷酸铁锂、钴酸锂、锰酸锂、三元、高镍三元。

动力电池是非常“年轻”的产品,1996年通用推出EV-1采用的是铅酸电池,它是现代电动汽车架构雏形,从铅酸电池到日系混动的镍氢电池,再到现在流行的锂电池,也才20多年。

从第四批《新能源汽车推广应用推荐车型目录》新能源乘用车配置电池来看,32款车型采用了17家企业的电池,其中16家是电池厂商,另外一家是长安新能源的,这说明其它乘用车的动力电池直接外购,包括电芯、电池组与电池管理系统等。

大部分自主品牌主机厂都没有自己的电芯与电池组设计能力跨国车企,虽然没有自己的电芯,但是它们却坚持自己设计生产电池组件与管理系统,这是为了加强动力电池的核心竞争力。

与大多自主品牌的差别是,即使不采用这家的电芯,它们可以换个电芯品牌照样能够设计电池组,核心技术还是掌握在自己手里。

但是我们更关心的是动力电池,也是就新能源汽车中的能量来源目前动力电池中,镍氢电池面临淘汰,铅酸电池全凭保有量在支撑,故目前以锂电池最为主要。

(如下图)先介绍几个重要概念能量密度方面电池肯定不如汽油,但是究竟差别多大呢?一箱50L的汽油可以大概跑600km续航同样里程的电动车需要多少电池呢?(如下图)下表列出了四类锂电池的主要性能指标差别从表中可以看出,四类电池各有优劣。

那各汽车厂商究竟是凭什么选择其中某种电池呢?哪种电池又将是未来的主流呢?数码电子产品对锂电池安全性要求不高,钴酸锂电池最合适3C领域,特斯拉敢于使用此类电池也是未来得到超强的续航能力,但是同时其安全性能要打些折扣。

锰酸锂电池因其不偏不倚的特征赢得动力电池最大的市场占有率,虽然其能量密度不如钴酸锂和三元锂,但其他综合性能相当出色。

纯电动汽车整车控制器VCU技术要求

纯电动汽车整车控制器VCU技术要求

纯电动汽车整车控制器VCU技术要求目录1. 概述 (5)2. 术语 (5)3.1定义 (5)3.2缩略语 (5)3. 开发流程 (5)4.1VCU控制策略开发流程 (5)4.2VCU控制策略开发需求输入 (6)4.3VCU控制策略开发交付物 (6)4. VCU软件功能需求 (6)5.上下电功能需求 (7)6.1功能概述 (7)6.2功能实现描述 (7)6.2.1上电功能逻辑图 (7)6.2.2上电功能需求 (8)6.2.3下电功能逻辑图 (9)6.2.4下电功能需求 (10)6.挡位管理功能需求 (10)7.1功能概述 (10)7.2功能实现描述 (10)7.2.1功能逻辑图 (10)7.2.2功能需求 (11)7.驾驶员需求扭矩计算功能需求 (11)8.1功能概述 (11)8.2功能实现描述 (11)8.2.1功能逻辑图 (11)8.2.2功能需求 (12)8.蠕行功能需求 (14)9.1功能概述 (14)9.2功能实现描述 (14)9.2.1功能逻辑图 (14)9.2.2功能需求 (14)9.驱动扭矩控制功能需求 (15)10.1功能概述 (15)10.2功能实现描述 (15)10.2.1功能逻辑图 (15)10.2.2功能需求 (15)10.高压能量管理功能需求 (16)11.1功能概述 (16)11.2功能实现描述 (16)11.2.1功能逻辑图 (16)11.2.2功能需求 (16)11.充电管理功能需求 (17)12.1功能概述 (17)12.2功能实现描述 (17)12.2.1充电上电功能逻辑图 (17)12.2.2充电上电功能需求 (18)12.2.3充电下电功能逻辑图 (18)12.2.4充电下电功能需求 (19)12.滑行能量回收功能需求 (19)13.1功能概述 (19)13.2功能实现描述 (19)13.2.1功能逻辑图 (19)13.2.2功能需求 (20)13.制动能量回收功能需求 (21)14.1功能概述 (21)14.2功能实现描述 (21)14.2.1功能逻辑图 (21)14.2.2功能需求 (21)14.最高车速计算功能需求 (22)15.1功能概述 (22)15.2功能实现描述 (22)15.2.1功能逻辑图 (22)15.2.2功能需求 (22)15.辅助控制功能需求 (23)16.1功能概述 (23)16.2功能实现描述 (23)16.2.1功能逻辑图 (23)16.2.2功能需求 (23)16.故障诊断功能需求 (24)16.1功能概述 (24)16.2功能实现描述 (24)16.2.1功能逻辑图 (24)16.2.2功能需求 (24)1.概述该技术要求书定义了整车控制策略的技术要求,仅作为纯电动汽车策略开发技术交流的依据,同时指导自主开发整车控制策略方案制定及实施。

新能源汽车整车电控系统详解

新能源汽车整车电控系统详解

新能源汽车整车电控系统详解新能源汽车电控系统,狭义上指的是整车控制器,广义上讲,则包括整车控制器、电池管理系统、驱动电机控制器等。

新能源汽车电控系统组成简图汽车上的这些控制器通过CAN网络来通信。

CAN,全称为“Controller Area Network”,即控制器局域网,是国际上应用最广泛的现场总线之一。

最初,CAN被设计作为汽车环境中的微控制器通讯,在车载各电子控制装置ECU之间交换信息,形成汽车电子控制网络。

比如:发动机管理系统、变速箱控制器、仪表装备、电子主干系统中,均嵌入CAN控制装置。

整车控制VCU车辆行驶过程中,需要一个与驾驶员进行指令互动的窗口,这个窗口就是整车控制器VCU(Vehicle control unit),VCU负责接收来自驾驶员的各种驾驶操作指令和配置功能操作的需求,如上电、加速、制动踏板等各种信号,并结合车辆其它系统发出的操作指令或协控信息,以及各部件传感器反馈的各种车况信号,实现对整车和各部件工况的分析,形成可以确保车辆安全行驶的指令,以达到各个控制系统器执行动作的目的。

VCU协调控制的高低压部件新能源汽车电动化的动力总成增加了很多高低压电气部件。

VCU 是新能源汽车驱动系统控制的“大脑”,成熟的系统软件在提高运行效率、降低能耗排放、提高故障后处理的鲁棒性等方面都发挥着重要作用。

是电动化动力总成系统解决方案真正落地的核心能力之一。

作为车辆驱动协调控制系统的核心控制器,VCU需要负责整车状态协调、驾驶员驾驶需求实现等最基本也是最重要的功能。

因此VCU 软件的完善度直接影响了车辆运行的稳定性和行驶安全性。

随着“域融合”的概念推广,越来越多的新功能也逐渐被融合到VCU控制器中,例如:跟充电相关的AC/DC车辆端充电主控功能,以及跟底盘相关的电动四驱控制功能。

从系统功能划分角度考虑,可以把VCU的功能划分为:车辆系统、传动系统、电力系统、热管理系统,以及OBD诊断、通讯、安全监控等系统功能。

新能源电池包组成 -回复

新能源电池包组成 -回复

新能源电池包组成-回复新能源电池包是由多个电池单体组成的,其设计构成了电动汽车和可再生能源系统的核心部分。

本文将逐步解释新能源电池包的组成部分和各组件的功能,以帮助读者更好地了解电池包的工作原理。

第一部分:电池单体新能源电池包的核心是电池单体,这是电力储存的基本单位。

电池单体通常是锂离子电池,其能量密度高、充放电效率高,因此被广泛应用于电动汽车和可再生能源领域。

电池单体的具体化学成分可以根据不同的厂商和应用需求而有所不同。

第二部分:电池管理系统(BMS)电池管理系统是一个关键组成部分,它负责监控、控制和保护整个电池包。

BMS可以管理电池的温度、电流、电压和状态等参数,以确保电池的安全和性能。

它还能够实时监测电池的健康状态,并在需要时进行自动调节或报警。

BMS还可以提供电池剩余容量的估计和预测,以帮助用户合理规划电池的使用。

第三部分:电池冷却系统新能源电池包在工作过程中会产生大量的热量,为了保持电池单体的最佳工作温度,需要一个有效的冷却系统。

这个系统通常由冷却板、冷却剂和冷却风扇等组件组成。

冷却系统可以帮助电池包快速散热,确保电池温度在合理的范围内。

过高的温度会降低电池性能和寿命,甚至引发安全问题。

第四部分:电池包壳体电池包壳体是用于保护电池单体和其他组件的外壳,起到防护和支撑作用。

这个壳体通常由金属材料或高强度塑料制成,以确保电池组件在正常使用和意外情况下的安全性。

第五部分:连接电缆和插头电池包内部各组件之间需要通过电缆进行连接。

连接电缆的材料需要具备良好的导电性和绝缘性能,以确保电流传输的稳定性和安全性。

同样重要的是插头,它是连接电池包与车辆或能源系统的接口,必须具备可靠的接触和防护功能。

第六部分:功率电子器件新能源电池包中还需要一些功率电子器件,用于实现电池与车辆或能源系统之间的能量转换和控制。

这些器件包括直流-直流(DC-DC)变换器和直流-交流(DC-AC)变换器等。

DC-DC变换器用于调节电池单体输出的电压和电流,以适应特定负载的需求。

乘用车电池包组成结构

乘用车电池包组成结构

乘用车电池包是电动汽车的核心组成部分,它主要由以下几个主要部分组成:
1. 电池单体:这是电池包的基本构成单元,可以是锂离子电池、镍氢电池、铅酸电池等。

电池单体通过串并联的方式组合成电池模块,以满足车辆对电压和容量的要求。

2. 电池管理系统(BMS):它是电池包的大脑,负责监控和控制电池的充放电状态、温度、电压等,确保电池安全、高效地工作。

BMS还负责平衡电池单体之间的电量,防止因电量不一致而引起的问题。

3. 热管理系统:电动汽车电池在充放电过程中会产生大量热量,热管理系统通过冷却液、风冷或者热管等技术,确保电池工作在合适的温度范围内,以提高性能和延长寿命。

4. 结构件:包括电池包的外壳、框架等,它们为电池包提供机械保护,并确保电池包的稳定性。

这些结构件通常由高强度材料制成,以承受车辆在行驶过程中的各种力学冲击。

5. 电气连接组件:包括高压连接器、低压连接器等,它们确保电池与车辆其他电气系统(如电机、逆变器、车载充电器等)之间的可靠连接。

6. 安全装置:如熔断器、气体释放装置等,它们在电池发生异常时切断电路,防止事故扩大。

7. 控制单元:除了BMS之外,电池包可能还包括其他控制单元,如充电控制单元,它们协同工作,确保电池包的优化运行。

8. 传感器:如温度传感器、电压传感器等,它们提供电池工作状态的实时数据,供BMS 和其他控制单元使用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新能源汽车核心技术详解:电池包和BMS、VCU、 MCU电子创新网| 2001-15-20 11:542014年国内新能源汽车产销突破8万辆,发展态势喜人。

为了使新能源爱好者和初级研发人员更好地了解新能源汽车的核心技术,笔者结合研发过程中的经验总结,从新能源汽车分类、模块规划、电控技术和充电设施等方面进行了分析。

1 新能源汽车分类在新能源汽车分类中,“弱混、强混”与“串联、并联”不同分类方法令非业内人士感到困惑,其实这些名称是从不同角度给出的解释、并不矛盾。

1.1消费者角度消费者角度通常按照混合度进行划分,可分为起停、弱混、中混、强混、插电和纯电动,节油效果和成本增等指标加如表1所示。

表中“-”表示无此功能或较弱、“+”个数越多表示效果越好,从表中可以看出随着节油效果改善、成本增加也较多。

1.2技术角度图1 技术角度分类技术角度由简到繁分为纯电动、串联混合动力、并联混合动力及混联混合动力,具体如图1所示。

其中P0表示BSG(Belt starter generator,带传动启停装置)系统,P1代表ISG(Integrated starter generator,启动机和发电机一体化装置)系统、电机处于发动机和离合器之间,P2中电机处于离合器和变速器输入端之间,P3表示电机处于变速器输出端或布置于后轴,P03表示P0和P3的组合。

从统计表中可以看出,各种结构在国内外乘用或商用车中均得到广泛应用,相对来说P2在欧洲比较流行,行星排结构在日系和美系车辆中占主导地位,P03等组合结构在四驱车辆中应用较为普遍、欧蓝德和标致3008均已实现量产。

新能源车型选择应综合考虑结构复杂性、节油效果和成本增加,例如由通用、克莱斯勒和宝马联合开发的三行星排双模系统,尽管节油效果较好,但由于结构复杂且成本较高,近十年间的市场表现不尽如人意。

2 新能源汽车模块规划尽管新能源汽车分类复杂,但其中共用的模块较多,在开发过程中可采用模块化方法,共享平台、提高开发速度。

总体上讲,整个新能源汽车可分为三级模块体系、如图2所示,一级模块主要是指执行系统,包括充电设备、电动附件、储能系统、发动机、发电机、离合器、驱动电机和齿轮箱。

二级模块分为执行系统和控制系统两部分,执行部分包括充电设备的地面充电机、集电器和车载充电机,储能系统的单体、电箱和PACK,发动机部分的气体机、汽油机和柴油机,发电机的永磁同步和交流异步,离合器中的干式和湿式,驱动电机的永磁同步和交流异步,齿轮箱部分的有级式自动变速器(包括AMT、AT和DCT等)、行星排和减速齿轮;二级模块的控制系统包括BMS、ECU、GCU、CCU、MCU、TCU 和VCU,分别表示电池管理系统、发动机电子控制单元、发电机控制器、离合器控制单元、电机控制器、变速器控制系统和整车控制器。

三级模块体系中,包括电池单体的功率型和能量型,永磁和异步电机的水冷和风冷形式,控制系统的三级模块主要包括硬件、底层和应用层软件。

图2三级模块体系根据功能和控制的相似性,三级模块体系的部分模块可组成纯电动(含增程式)、插电并联混动和插电混联混动三种平台架构,例如纯电动(含增程式)由充电设备、电动附件、储能系统、驱动电机和齿轮箱组成。

各平台模块的通用性较强,采用平台和模块的开发方法,可共享核心部件资源,提升新能源系统的安全性和可靠性,缩短周期、降低研发及采购成本。

3 新能源三大核心技术在三级模块体系和平台架构中,整车控制器(VCU)、电机控制器(MCU)和电池管理系统(BMS)是最重要的核心技术,对整车的动力性、经济性、可靠性和安全性等有着重要影响。

3.1 VCUVCU是实现整车控制决策的核心电子控制单元,一般仅新能源汽车配备、传统燃油车无需该装置。

VCU通过采集油门踏板、挡位、刹车踏板等信号来判断驾驶员的驾驶意图;通过监测车辆状态(车速、温度等)信息,由VCU判断处理后,向动力系统、动力电池系统发送车辆的运行状态控制指令,同时控制车载附件电力系统的工作模式;VCU具有整车系统故障诊断保护与存储功能。

图3为VCU的结构组成,共包括外壳、硬件电路、底层软件和应用层软件,硬件电路、底层软件和应用层软件是VCU的关键核心技术。

图3 VCU组成VCU硬件采用标准化核心模块电路( 32位主处理器、电源、存储器、CAN )和VCU专用电路(传感器采集等)设计;其中标准化核心模块电路可移植应用在MCU和BMS,平台化硬件将具有非常好的可移植性和扩展性。

随着汽车级处理器技术的发展,VCU从基于16位向32位处理器芯片逐步过渡,32位已成为业界的主流产品。

底层软件以AUTOSAR汽车软件开放式系统架构为标准,达到电子控制单元(ECU)开发共平台的发展目标,支持新能源汽车不同的控制系统;模块化软件组件以软件复用为目标,以有效提高软件质量、缩短软件开发周期。

应用层软件按照V型开发流程、基于模型开发完成,有利于团队协作和平台拓展;采用快速原型工具和模型在环(MIL)工具对软件模型进行验证,加快开发速度;策略文档和软件模型均采用专用版本工具进行管理,增强可追溯性;驾驶员转矩解析、换挡规律、模式切换、转矩分配和故障诊断策略等是应用层的关键技术,对车辆动力性、经济性和可靠性有着重要影响。

3.2 MCUMCU是新能源汽车特有的核心功率电子单元,通过接收VCU的车辆行驶控制指令,控制电动机输出指定的扭矩和转速,驱动车辆行驶。

实现把动力电池的直流电能转换为所需的高压交流电、并驱动电机本体输出机械能。

同时,MCU具有电机系统故障诊断保护和存储功能。

MCU由外壳及冷却系统、功率电子单元、控制电路、底层软件和控制算法软件组成,具体结构如图4所示。

图4 MCU组成MCU硬件电路采用模块化、平台化设计理念(核心模块与VCU同平台),功率驱动部分采用多重诊断保护功能电路设计,功率回路部分采用汽车级IGBT模块并联技术、定制母线电容和集成母排设计;结构部分采用高防护等级、集成一体化液冷设计。

与VCU类似,MCU底层软件以AUTOSAR开放式系统架构为标准,达到ECU 开发共同平台的发展目标,模块化软件组件以软件复用为目标。

应用层软件按照功能设计一般可分为四个模块:状态控制、矢量算法、需求转矩计算和诊断模块。

其中,矢量算法模块分为MTPA控制和弱磁控制。

MCU关键技术方案包括:基于32位高性能双核主处理器;汽车级并联IGBT技术,定制薄膜母线电容及集成化功率回路设计,基于AutoSAR架构平台软件及先进SVPWM PMSM控制算法;高防护等级壳体及集成一体化水冷散热设计。

表3为世界主流MCU硬件供应商的技术参数,代表着MCU的发展动态。

3.3 电池包和BMS电池包是新能源汽车核心能量源,为整车提供驱动电能,它主要通过金属材质的壳体包络构成电池包主体。

模块化的结构设计实现了电芯的集成,通过热管理设计与仿真优化电池包热管理性能,电器部件及线束实现了控制系统对电池的安全保护及连接路径;通过BMS实现对电芯的管理,以及与整车的通讯及信息交换。

电池包组成如图5所示,包括电芯、模块、电气系统、热管理系统、箱体和BMS。

BMS能够提高电池的利用率,防止电池出现过充电和过放电,延长电池的使用寿命,监控电池的状态。

图5 电池包组成BMS是电池包最关键的零部件,与VCU类似,核心部分由硬件电路、底层软件和应用层软件组成。

但BMS硬件由主板(BCU)和从板(BMU)两部分组成,从版安装于模组内部,用于检测单体电压、电流和均衡控制;主板安装位置比较灵活,用于继电器控制、荷电状态值(SOC)估计和电气伤害保护等。

BMU硬件部分完成电池单体电压和温度测量,并通过高可靠性的数据传输通道与BCU 模块进行指令及数据的双向传输。

BCU 可选用基于汽车功能安全架构的32 位微处理器完成总电压采集、绝缘检测、继电器驱动及状态监测等功能。

底层软件架构符合AUTOSAR标准,模块化开发容易实现扩展和移植,提高开发效率。

应用层软件是BMS的控制核心,包括电池保护、电气伤害保护、故障诊断管理、热管理、继电器控制、从板控制、均衡控制、SOC估计和通讯管理等模块,应用层软件架构如图6所示。

图6 应用层软件架构表4为国内外主流BMS供应商的技术参数,代表着BMS的发展动态。

4 充电设施充电设施不完善是阻碍新能源汽车市场推广的重要因素,对特斯拉成功的解决方案进行分析,并提出新能源汽车的充电解决方案、剖析充电系统组成。

4.1 特斯拉充电方案分析特斯拉超级充电器代表了当今世界最先进的充电技术,它为MODEL S充电的速度远高于大多数充电站,表5为特斯拉电池和充电参数。

特斯拉具有5种充电方式,采用普通110/220V市电插座充电,30小时充满;集成的10kW充电器,10小时充满;集成的20kW充电器,5小时充满;一种快速充电器可以装在家庭墙壁或者停车场,充电时间可缩短为5小时;45分钟能充80%的电量、且电费全免,这种快充装置仅在北美市场比较普遍。

特斯拉使用太阳能电池板遮阳棚的充电站,既可以抵消能源消耗又能够遮阳。

与在加油站加油需要付费不同,经过适当配置的MODEL S 可以在任何开放充电站免费充电。

特斯拉充电技术特点可总结如下两点:1)特斯拉充电站加入了太阳能充电技术,这一技术使充电站尽可能使用清洁能源,减少对电网的依赖,同时也减少了对电网的干扰,国内这一技术也能实现。

2)特斯拉充电时间短也不足为奇,特斯拉的充电机容量大90~120kWh,充电倍率0.8C,跟普通快充一样,并没有采用更大的充电倍率,所以不会影响电池寿命;20分钟充到40%,就能满足续航要求,主要原因是电池容量大。

4.2 充电解决方案图7充电系统组成图7为一种可参考的新能源汽车充电解决方案,充电系统组成:配电系统(高压配电柜、变压器、无功补偿装置和低压开关柜)、充电系统(充电柜和充电机终端)以及储能系统(储能电池与逆变器柜)。

无功补偿装置解决充电系统对电网功率因数影响,充电柜内充电机一般都具备有源滤波功能、解决谐波电流和功率因数问题。

储能电池和逆变器柜解决老旧配电系统无法满足充电站容量要求、并起到削峰填谷作用,在不充电时候进行储能,大容量充电且配电系统容量不足时释放所储能量进行充电。

如果新建配电系统容量足够,储能电池和逆变器柜可以不选用。

风力发电和光伏发电为充电系统提供清洁能源,尽量减少从电网取电。

5 总结从消费者和技术角度分别对新能源汽车结构进行归纳分类,分析各种结构的优势,以及国内外各主机厂的应用情况。

分析新能源汽车的模块组成和平台架构,详细介绍了三级模块体系中相关的执行系统和控制系统。

分析VCU、MCU和BMS的结构组成及关键技术,以及世界主流供应商的技术参数和发展动态。

对特斯拉成功的解决方案进行分析,并提出新能源汽车的充电解决方案。

相关文档
最新文档