成都七中2019年自主招生考试数学试题

合集下载

四川成都七中2019届高三文科数学下学期入学考试试卷(解析版)

四川成都七中2019届高三文科数学下学期入学考试试卷(解析版)

四川成都七中2019届高三文科数学下学期入学考试试卷一、选择题(本大题共12小题,共60.0分)1.已知i是虚数单位,若2+i=z(1-i),则z的共轭复数z−对应的点在复平面的()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.设集合A={y|y=3x,x∈R},B={y|y=√4−x2,x∈R},则A∩B=()A. [0,2]B. (0,+∞)C. (0,2]D. [0,2)3.函数f(x)=e|x|的大致图象是()x2−3A. B.C. D.4.执行如图所示的程序框图,则输出的k值为()A. 7B. 9C. 11D. 13⃗⃗⃗⃗⃗⃗ =()5.已知等边△ABC内接于⊙O,D为线段OA的中点,则BD第2页,共18页A. 23BA ⃗⃗⃗⃗⃗+16BC ⃗⃗⃗⃗⃗ B. 43BA ⃗⃗⃗⃗⃗−16BC ⃗⃗⃗⃗⃗ C. −23BA ⃗⃗⃗⃗⃗ +56BC ⃗⃗⃗⃗⃗ D. 23BA ⃗⃗⃗⃗⃗+13BC ⃗⃗⃗⃗⃗ 6. 某几何体的三视图如图所示,图中正方形的边长为2,四条用虚线表示的线段长度均相等,则该几何体的体积为( )A. 8−2π3 B. 8−2π C. 8−83π D. 8−8π7. 若函数f (x )=log a (2x 2+x )(a >0且a ≠1)在区间(0,12)内恒有f (x )>0,则f (x )的单调递增区间为( )A. (−∞,14)B. (−14,+∞)C. (0,+∞)D. (−∞,−12)8. 如图,边长为a 的正六边形内有六个半径相同的小圆,这六个小圆分别与正六边形的一边相切于该边的中点,且相邻的两个小圆互相外切,则在正六边形内任取一点,该点恰好取自阴影部分的概率为( )A. 9−√3π18 B. 9−4√3π18 C. 9−√3π27 D. 9−4√3π279. 如图,点A 为双曲线x 2a2-y 2b2=1(a >0,b >0)的右顶点,P 为双曲线上一点,作PB ⊥x 轴,垂足为B ,若A 为线段OB 的中点,且以A 为圆心,AP 为半径的圆与双曲线C 恰有三个公共点,则C 的离心率为( )A. √2B. √3C. 2D. √510. 已知cos (3π2-α)=2sin (α+π3),则tan (α+π6)=( )A. −√33B. −√39C. √33D. √3911.如图,在等腰Rt△ABC中,斜边AB=√2,D为直角边BC上的一点,将△ACD沿直AD折叠至△AC1D的位置,使得点C1在平面ABD外,且点C1在平面ABD上的射影H在线段AB上,设AH=x,则x的取值范围是()A. (1,√2)B. (√22,1) C. (12,√2) D. (0,1)12.设M,N是抛物线y2=x上的两个不同的点,O是坐标原点,若直线OM与ON的斜率之积为-12,则()A. |OM|+|ON|≥4√2B. MN为直径的圆的面积大于4πC. 直线MN过抛物线y2=x的焦点D. O到直线MN的距离不大于2二、填空题(本大题共4小题,共20.0分)13.设x,y满足约束条件{x−2y+3≥0x−y+1≥0y≥1,则z=-3x+4y的最大值为______.14.在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx-y-2m-1=0(m∈R)相切的所有圆中,半径最大的圆截y轴所得弦长为______.15.《数书九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白.与著名的海伦公式完全等价,由此可以看出我国古代具有很高的数学水平,其求法是“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实,一为从偶,开平方得积”,若把这段文字写成公式,即S=√14[c2a2−(c2+a2−b22)2],已知△ABC满足(sin A-sin B)(sin A+sin B)=sin A sin C-sin2C,且AB=2BC=2√2,则用以上给出的公式求得△ABC的面积为______.16.已知函数f(x)={x−2lnx,x>e−x2+6x+e2−5e−2,x≤e(其中e为自然对数的底数,且e≈2.718)若f (6-a2)>f(a),则实数a的取值范围是______.三、解答题(本大题共7小题,共82.0分)17.已知等比数列{a n}为递增数列,且a52=a10,2(a n+a n+2)=5a n+1,数列{b n}的前n项和为S n,b1=1,b n≠0,b n b n+1=4S n-1.(1)求数列{a n}和{b n}的通项公式;(2)设c n=a n b n,求数列{c n}的前n项和T n.18.为发挥体育在核心素养时代的独特育人价值,越来越多的中学已将某些体育项目纳入到学生的必修课程,甚至关系到是否能拿到毕业证,某中学计划在高一年级开设游泳课程,为了解学生对游泳的兴趣,某数学研究性学习小组随机从该校高一年级第4页,共18页学生中抽取100人进行调查,其中男生60人,且抽取的男生中对游泳有兴趣的占56,而抽取的女生中有15人表示对游泳没有兴趣.(Ⅰ)试完成下面的2×2列联表,并判断能否有99%的把握认为“对游泳是否有兴趣与性别有关”?有兴趣 没兴趣 合计男生 女生 合计(Ⅱ)已知在被抽取的女生中有6名高一(1)班的学生,其中3名对游泳有兴趣,现在从这6名学生中随机抽取3人,求至少有2人对游泳有兴趣的概率. K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)19. 如图,在四棱锥P -ABCD 中,AB ⊥PC ,AD ∥BC ,AD ⊥CD ,且PC =BC =2AD =2CD =2√2,PA =2. (Ⅰ)求证:PA ⊥平面ABCD ;(Ⅱ)在线段PD 上,是否存在一点M ,使得BM ∥平面AMC ,求PMPD 的值.20. 已知椭圆Γ:x 2a2+y 2b 2=1(a >b >0)的右焦点为F (1,0),上顶点为A .过F 且垂直于x 轴的直线l 交椭圆F 于B 、C 两点,若S △FOA S△COB =√22(1)求椭圆Γ的方程;(2)动直线m 与椭圆Γ有且只有一个公共点,且分别交直线1和直线x =2于M 、N 两点,试求|MF||NF|的值21. 已知a ∈R ,函数f (x )=x -ae x +1有两个零点x 1,x 2(x 1<x 2).(Ⅰ)求实数a 的取值范围; (Ⅱ)证明:e x 1+e x 2>2.22. 在直角坐标系xOy 中,曲线C 1的参数方程为{x =−12ty =2+√32t(t 为参数),以原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρ=√1+3sin 2θ, (Ⅰ)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(Ⅱ)设点M (0,2),曲线C 1与曲线C 2交于A ,B 两点,求|MA |•|MB |的值.23. 已知函数f (x )=|2x +1|-|x -2|.(1)画出函数f (x )的图象;(2)若关于x 的不等式x +2m +1≥f (x )有解,求实数m 的取值范围.答案和解析1.【答案】D【解析】解:由2+i=z(1-i),得z=,∴,则z的共轭复数z对应的点的坐标为(),在复平面的第四象限.故选:D.把已知等式变形,再由复数代数形式的乘除运算化简,求出z的坐标得答案.本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.2.【答案】C【解析】解:由y=3x,x∈R,得y>0,即A=(0,+∞),由y=,x∈R,得:0≤y≤2,即B=[0,2],即A∩B=(0,2],故选:C.分别求y=3x,x∈R,y=,x∈R的值域,得:A=(0,+∞),B=[0,2],再求交集即可.本题考查了求函数值域及交集的运算,属简单题.3.【答案】A【解析】解:f(-x)===f(x),则函数f(x)为偶函数,故排除CD,当x=1时,f(1)=<0,故排除B,故选:A.先判断函数偶函数,再求出f(1)即可判断第6页,共18页本题考查了函数图形的识别,关键掌握函数的奇偶性,和函数值,属于基础题4.【答案】C【解析】解:由题意,模拟执行程序框图,可得S=0,k=1满足条件S>-1,S=lg,k=3满足条件S>-1,S=lg+lg,k=5满足条件S>-1,S=lg+lg+lg,k=7满足条件S>-1,S=lg+lg+lg+lg,k=9满足条件S>-1,S=lg+lg+lg+lg+lg=lg(××××)=lg=-lg11,k=11不满足条件S>-1,退出循环,输出k的值为11.故选:C.由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量k 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.5.【答案】A【解析】解:如图所示设BC中点为E,则=+=+=+(+)=-+•=+.故选:A.根据题意画出图形,结合图形,利用平面向量的线性运算写出用、的表达式即可.本题考查了平面向量的线性表示与应用问题,是基础题.6.【答案】A【解析】解:根据几何体的三视图:该几何体是由一个边长为2正方体挖去一个底面半径为1,高为2的圆锥构成的不规则的几何体.所以:v=,=.故选:A.直接利用三视图,整理出几何体的构成,进一步利用几何体的体积公式求出结果.本题考查的知识要点:三视图的应用,几何体的体积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.7.【答案】D【解析】解:当x∈(0,)时,2x2+x∈(0,1),∴0<a<1,∵函数f(x)=log a(2x2+x)(a>0,a≠1)由f(x)=log a t和t=2x2+x复合而成,0<a<1时,f(x)=log a t在(0,+∞)上是减函数,所以只要求t=2x2+x>0的单调递减区间.t=2x2+x>0的单调递减区间为(-∞,-),∴f(x)的单调增区间为(-∞,-),故选:D.先求出2x2+x,(0,)的范围,再由条件f(x)>0判断出a的范围,再根据复合函数“同增异减”原则求f(x)单调区间.第8页,共18页本题考查复合函数的单调区间问题,复合函数的单调区间复合“同增异减”原则,在解题中勿忘真数大于0条件.8.【答案】C【解析】解:如图所示,边长为a的正六边形,则OA=OB=AB=a,设小圆的圆心为O',则O'C⊥OA,∴OC=a,∴O'C=a,OO'=a,∴OD=a,∴S阴影=12[×a•a-π•(a)2]=(-)a2,S正六边形=a2,∴点恰好取自阴影部分的概率P===,故选:C.分别求出正六边形和阴影部分的面积,作商即可.本题考查了几何概型问题,考查特殊图形面积的求法,是一道常规题.9.【答案】A【解析】解:由题意可得A(a,0),A为线段OB的中点,可得B(2a,0),令x=2a,代入双曲线的方程可得y=±b,可设P(2a,-b),由题意结合图形可得圆A经过双曲线的左顶点(-a,0),即|AP|=2a,即有2a=,可得a=b,e===,故选:A.设A的坐标(a,0),求得B的坐标,考虑x=2a,代入双曲线的方程可得P的坐标,再由圆A经过双曲线的左顶点,结合两点的距离公式可得a=b,进而得到双曲线的离心率.本题考查双曲线的方程和性质,主要是离心率的求法,考查方程思想和运算能力,属于中档题.10.【答案】B【解析】解:∵cos (-α)=2sin(α+),∴-sinα=2sinαcos +2cosαsin,则即-2sinα= cosα,∴tanα=-,∴tan(α+)===-,故选:B.由题意利用诱导公式、两角和正弦角公式求得tanα,再利用两角和正切公式求得结果.本题主要考查两角和差的三角公式、诱导公式的应用,属于基础题.11.【答案】B【解析】解:∵在等腰Rt△ABC中,斜边AB=,D为直角边BC上的一点,∴AC=BC=1,∠ACB=90°,将△ACD沿直AD折叠至△AC1D的位置,使得点C1在平面ABD外,且点C1在平面ABD上的射影H在线段AB上,设AH=x,∴AC1=AC=1,CD=C1D∈(0,1),∠AC1D=90°,CH⊥平面ABC,∴AH<AC1=1,故排除选项A和选项C;当CD=1时,B与D重合,AH=,当CD<1时,AH >=,第10页,共18页∵D为直角边BC上的一点,∴CD∈(0,1),∴x的取值范围是(,1).故选:B.推导出AC=BC=1,∠ACB=90°,AC1=AC=1,CD=C1D∈(0,1),∠AC1D=90°,CH⊥平面ABC,从而AH<AC1=1,当CD=1时,B与D重合,AH=,当CD <1时,AH>=,由此能求出x的取值范围.本题考查线段长的取值范围的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.12.【答案】D【解析】解:当直线MN的斜率不存在时,设M(,y0),N(,-y0),由斜率之积为,可得,即,∴MN的直线方程为x=2;当直线的斜率存在时,设直线方程为y=kx+m,联立,可得ky2-y+m=0.设M(x1,y1),N(x2,y2),则,,∴,即m=-2k.∴直线方程为y=kx-2k=k(x-2).则直线MN过定点(2,0).则O到直线MN的距离不大于2.故选:D.由已知分类求得MN所在直线过定点(2,0),结合选项得答案.本题考查抛物线的简单性质,考查直线与篇文章位置关系的应用,是中档题.13.【答案】5【解析】解:作出x,y满足约束条件,所示的平面区域,如图:作直线-3x+4y=0,然后把直线L向可行域平移,结合图形可知,平移到点A时z最大,由可得A(1,2),此时z=5.故答案为:5.先画出约束条件的可行域,利用目标函数z=-3x+4y的几何意义,求解目标函数的最大值.本题主要考查了线性规划的简单应用,解题的关键是:明确目标函数的几何意义.14.【答案】2【解析】解:圆心到直线的距离d==∴m=1时,圆的半径最大为,∴所求圆的标准方程为(x-1)2+y2=2.∴此时截y轴所得弦长为2故答案为:2.求出圆心到直线的距离d的最大值,求出所求圆的标准方程,即可求出半径最大的圆截y轴所得弦长.本题考查所圆的标准方程,考查点到直线的距离公式,考查学生的计算能力,比较基础.15.【答案】√3【解析】第12页,共18页解:∵AB=2BC=2,∴由题意可得:c=2a=2,a=,∵(sinA-sinB)(sinA+sinB)=sinAsinC-sin2C,∴由正弦定理可得:(a-b)(a+b)=ac-c2,可得:a2+c2-b2=ac,∴S===ac==.故答案为:.由题意可得:c=2a=2,a=,利用正弦定理化简已知等式可得a2+c2-b2=ac,根据题意利用三角形的面积公式即可计算得解.本题主要考查了正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.16.【答案】-3<a<2【解析】解:∵∴当x≤e时y=-(x-3)2+e2-5e+7∴x≤e时函数单调递增当x>e时y'=1->0恒成立,故x>e时函数单调递增,∵f(e)=e-2=e-2lne∴函数在R上为增函数.∴由f(6-a2)>f(a)得6-a2>a,解得-3<a<2故答案为-3<a<2利用二次函数的单调性,及导数工具,先探讨函数的单调性,然后利用条件列出不等式,即可解得a的范围.本题考查了函数单调性的性质及利用导数研究函数的单调性,在探讨分段函数的性质时注意分段研究.本题是个中档题.17.【答案】解:(1)设公比为q等比数列{a n}为递增数列,且a52=a10,首项为a1,则:a1q4⋅a1⋅q4=a1⋅q9,解得:a1=q,2(a n+a n+2)=5a n+1,所以:2q2-5q+2=0,第14页,共18页解得:q =2或12,由于数列为单调递增数列, 故:q =2,所以:a n =a 1⋅q n−1=2n ,数列{b n }的前n 项和为S n ,b 1=1,b n ≠0,b n b n +1=4S n -1①. 当n ≥2时,b n -1b n =4S n -1-1②, 整理得:b n -b n -1=2(常数),对n 分偶数和奇数进行分类讨论, 整理得:b n =2n -1故:c n =a n b n =(2n -1)•2n ,则:T n =1⋅21+3⋅22+⋯+(2n −1)⋅2n ①, 2T n =1⋅22+3⋅23+⋯+(2n −1)⋅2n+1②, ①-②得:-T n =2⋅2(2n −1)2−1−(2n −1)⋅2n+1−2,解得:T n =(2n −3)⋅2n+1+6. 【解析】(1)直接利用递推关系式求出数列的通项公式.(2)利用(1)的结论,进一步利用乘公比错位相减法求出数列的和. 本题考查的知识要点:数列的通项公式的求法及应用,乘公比错位相减法在数列求和中的应用,主要考查学生的运算能力和转化能力,属于基础题型.18.【答案】解:(1)2×2列联表如下,依题意,男生60人,故女生有100-60=40人, 对游泳感兴趣的男生有60×56=50人,则对游泳不感兴趣的男生有60-50=10人, 对游泳不感兴趣的女生有15人,故对游泳感兴趣的女生有40-15=25人,K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)=100(50×15−25×10)275×25×40×60≈5.556<6.635,故没有99%的把握认为对游泳是否有兴趣与性别有关(Ⅱ)设A ={6人抽取3人,至少有2人对游泳感兴趣},则P (A )=13C 32C+C 33C 63=1020=12.【解析】(Ⅰ)分别求出男女生感兴趣和不感兴趣的人数,填入表中即可.(Ⅱ)6人中有3人对游泳感兴趣,三人不感兴趣,用计数原理算出所有的抽取方法,计算出至少2人对游泳感兴趣的概率p 即可. 本题考查了独立性检验,古典概型的概率求法,属基础题.19.【答案】证明:(Ⅰ)∵在底面ABCD 中,AD ∥BC ,AD ⊥CD ,且BC =2AD =2CD =2√2, ∴AB =AC =2,BC =2√2, ∴AB ⊥AC ,又∵AB ⊥PC ,AC ∩PC =C ,AC ⊂平面PAC ,PC ⊂平面PAC ,∴AB ⊥平面PAC , ∴AB ⊥PA ,∵PA =AC =2,PC =2√2, ∴PA ⊥AC ,又∵PA ⊥AB ,AB ∩AC =A ,AB ⊂平面ABCD ,AC ⊂平面ABCD , ∴PA ⊥平面ABCD .解:(2)以A 为原点,AB ,AC ,AP 所成角分别为x ,y ,z 轴,建立空间直角坐标系, A (0,0,0),B (2,0,0),C (0,2,0),P (0,0,2),D (-1,1,0),设M (a ,b ,c ),PM⃗⃗⃗⃗⃗⃗ =λPD ⃗⃗⃗⃗⃗ ,λ∈[0,1], 则(a ,b ,c -2)=(-λ,λ,-2λ),∴M (-λ,λ,2-2λ),BM ⃗⃗⃗⃗⃗⃗ =(-λ-2,λ,2-2λ),AM ⃗⃗⃗⃗⃗⃗ =(-λ,λ,2-2λ),AC⃗⃗⃗⃗⃗ =(0,2,0), 设平面AMC 的法向量n⃗ =(x ,y ,z ), 则{n ⃗ ⋅AM ⃗⃗⃗⃗⃗⃗ =−λx +λy +(2−2λ)z =0n ⃗ ⋅AC ⃗⃗⃗⃗⃗ =2y =0,取x =1,得n ⃗ =(1,0,λ2−2λ), ∵BM ∥平面AMC ,∴BM ⃗⃗⃗⃗⃗⃗ ⋅n ⃗ =-λ-2+(2-2λ)•λ2−2λ=0,方程无解,∴在线段PD 上,不存在一点M ,使得BM ∥平面AMC .【解析】(Ⅰ)推导出AB ⊥AC ,AB ⊥PC ,从而AB ⊥平面PAC ,进而AB ⊥PA ,再求出PA ⊥AC ,PA ⊥AB ,由此能证明PA ⊥平面ABCD .(2)以A 为原点,AB ,AC ,AP 所成角分别为x ,y ,z 轴,建立空间直角坐标系,利用向量法能求出在线段PD 上,不存在一点M ,使得BM ∥平面AMC . 本题考查面面垂直的证明,考查满足线面平行的点是否存在的判断与求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理推论证能力、运算求解能力,是中档题.20.【答案】解:(1)易知,|BC|=2b 2a ,S △FOAS △COB=b2b 2a=a2b =√22,∴a =√2b ,c =√a 2−b 2=b ,所以,b =1,a =√2,第16页,共18页因此,椭圆Γ的方程为x 22+y 2=1;(2)设直线m 与椭圆Γ的切点为点P (x 0,y 0),则直线m 的方程为x 0x 2+y 0y =1,且有x 022+y 02=1,可得y 02=1−x 022,直线m 与直线l :x =1交于点M(1,2−x 02y 0),直线m 交直线x =2于点N(2,1−x 0y 0).所以,|MF|=|2−x 02y 0|,|NF|=√(2−1)2+(1−x0y 0)2=√1+x 02−2x 0+1y 02=√x 02−2x 0+1+1−x 022y 02=√x 022−2x 0+2y 02=√12(x 02−4x 0+4)y 02=√22⋅|2−x 0y 0|,因此,|MF||NF|=|2−x 0y 0|√22|2−x 0y 0|=√2.【解析】(1)由通径公式得出,结合已知条件得出,再由c=1,可求出a 、b 的值,从而得出椭圆的方程;(2)设切点为(x 0,y 0),从而可写出切线m 的方程为,进而求出点M 、N 的坐标,将切点坐标代入椭圆方程得出x 0与y 0之间的关系,最后利用两点间的距离公式可求出答案.本题考查直线与椭圆的综合,考查计算能力与推理能力,属于中等题. 21.【答案】解:(Ⅰ)f ′(x )=1-ae x ,①a ≤0时,f ′(x )>0,f (x )在R 上递增,不合题意,舍去,②当a >0时,令f ′(x )>0,解得x <-ln a ;令f ′(x )<0,解得x >-ln a ; 故f (x )在(-∞,-ln a )单调递增,在(-ln a ,+∞)上单调递减,由函数y =f (x )有两个零点x 1,x 2(x 1<x 2),其必要条件为:a >0且f (-ln a )=-ln a >0,即0<a <1,此时,-1<-ln a <2-2ln a ,且f (-1)=-1-ae +1=-ae <0,令F (a )=f (2-2ln a )=2-2ln a -e 2a+1=3-2ln a -e 2a,(0<a <1),则F ′(a )=-2a +e 2a2=e 2−2aa 2>0,F (a )在(0,1)上单调递增,所以,F (a )<F (1)=3-e 2<0,即f (2-2ln a )<0, 故a 的取值范围是(0,1). (Ⅱ)令f (x )=0⇒a =x+1e x ,令g (x )=x+1e x ,g ′(x )=-xe -x ,则g (x )在(-∞,0)单调递增,在(0,+∞)单调递减,由(Ⅰ)知0<a <1,故有-1<x 1<0<x 2, 令h (x )=g (-x )-g (x ),(-1<x <0),h (x )=(1-x )e x -(1+x )e -x ,(-1<x <0),h ′(x )=-xe x +xe -x =x (e -x -e x )<0, 所以,h (x )在(-1,0)单调递减,故h (x )>h (0)=0, 故当-1<x <0时,g (-x )-g (x )>0,所以g (-x 1)>g (x 1),而g (x 1)=g (x 2)=a ,故g (-x 1)>g (x 2), 又g (x )在(0,+∞)单调递减,-x 1>0,x 2>0, 所以-x 1<x 2,即x 1+x 2>0, 故ex 1+ex 2≥2√e x 1+x 2=2ex 1+x 22>2.【解析】(Ⅰ)利用导数研究单调性得f (x ) 的最大值为f (-lna )>0解得a 即可; (Ⅱ)先通过构造函数证明x 1+x 2>0,在用基本不等式可证. 本题考查了函数零点的判定定理,属难题.22.【答案】解:(Ⅰ)曲线C 1的参数方程为{x =−12ty =2+√32t (t 为参数), 由代入法消去参数t ,可得曲线C 1的普通方程为y =-√3x +2; 曲线C 2的极坐标方程为ρ=√1+3sin 2θ, 得ρ2=41+3sin 2θ,即为ρ2+3ρ2sin 2θ=4, 整理可得曲线C 2的直角坐标方程为x 24+y 2=1;(Ⅱ)将{x =−12ty =2+√32t (t 为参数), 代入曲线C 2的直角坐标方程x 24+y 2=1得13t 2+32√3t +48=0,利用韦达定理可得t 1•t 2=4813, 所以|MA |•|MB |=4813. 【解析】(Ⅰ)运用代入法,消去t ,可得曲线C 1的普通方程;由x=ρcosθ,y=ρsinθ,代入极坐标方程,即可得到所求直角坐标方程;第18页,共18页(Ⅱ)将直线的参数方程代入曲线C 2的直角坐标方程,运用参数的几何意义,由韦达定理可得所求之积.本题考查参数方程和普通方程的互化,极坐标方程和直角坐标方程的互化,考查直线参数方程的运用,以及韦达定理的运用,属于基础题. 23.【答案】解:(1)f (x )=|2x +1|-|x -2|={−x −3,x ≤−123x −1,−12<x <2x +3,x ≥2,画出y =f (x )的图象,如右图:(2)关于x 的不等式x +2m +1≥f (x )有解,即为2m +1≥f (x )-x , 由x ≥2时,y =f (x )-x =3;当-12<x <2时,y =f (x )-x =2x -1∈(-2,3);当x ≤-12时,y =f (x )-x =-2x -3∈[-2,+∞), 可得y =f (x )-x 的最小值为-2, 则2m +1≥-2, 解得m ≥-32. 【解析】(1)写出f (x )的分段函数式,画出图象;(2)由题意可得2m+1≥f (x )-x 的最小值,对x 讨论去绝对值,结合一次函数的单调性可得最小值,即可得到所求范围.本题考查绝对值不等式的解法和不等式有解的条件,注意运用分类讨论思想方法和分离参数法,考查单调性的运用:求最值,属于中档题.。

四川省成都市成都七中2019届高三(文科)数学下学期入学考试试卷含答案

四川省成都市成都七中2019届高三(文科)数学下学期入学考试试卷含答案

A. 2
B. 3
C.2
D. 5
10、已知 cos(3π ) 2sin( π ) ,则 tan( π ) =( )
2
3
6
A. 3
B. 3
3
C.
3
D.
3
9
3
9
11. 点 A,B,C,D 在同一个球的球面上,AB=BC= 6 ,∠ABC=90°,若四面体 ABCD 体积的
最大值为 3,则这个球的表面积为( )
A.2π
B.4π
C.8π
D.16π
12、设 M , N 是抛物线 y2 x 上的两个不同的点, O 是坐标原点,若直线 OM 与 ON 的斜
率之积为 1 ,则( ) 2
A . OM ON 4 2
B .以 MN 为直径的圆的面积大于 4
C .直线 MN 过抛物线 y2 x 的焦点

A .第一象限 B . 第二象限 C .第三象限 D .第四象限
2、 设集合 A= y y 3x , x R , B= y y 4 x2 , x R ,则 A B= ( )
A . 0, 2 B . 0,
C . 0, 2 D . 0, 2
3、 函数 f (x) e x 的大致图像是( ) x2 3
成都七中高 2019 届高三下入学考试数学(文科)
(本试卷满分 150 分,考试时间 120 分钟)
一、 选择题(本大题 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有 一项是符合题目要求的)
1、
已知
i
是虚数单位,若
2

i

z(1
i)

2019年四川省成都七中自主招生数学试卷(含答案解析)

2019年四川省成都七中自主招生数学试卷(含答案解析)

2019年四川省成都七中自主招生数学试卷副标题一、选择题(本大题共12小题,共60.0分)1. 若M =5x 2−12xy +10y 2−6x −4y +13(x 、y 为实数),则M 的值一定是( )A. 非负数B. 负数C. 正数D. 零 2. 将一个棱长为m(m >2且m 为正整数)的正方体木块的表面染上红色,然后切成m 3个棱长为1的小正方体,发现只有一个表面染有红色的小正方体的数量是恰有两个表面染有红色的小正方体的数量的12倍,则m 等于( ) A. 16 B. 18 C. 26 D. 32 3. 已知6a 2−100a +7=0以及7b 2−100b +6=0,且ab ≠1,则ab 的值为( )A. 503B. 67C.1007D. 764. 若a =√3√2+√3+√5,b=2+√6−√10,则ab 的值为( )A. 12B. 14√2+√3√6+√105. 满足|ab|+|a −b|−1=0的整数对(a,b)共有( )A. 4个B. 5个C. 6个D. 7个6. 在凸四边形ABCD 中,E 为BC 边的中点,BD 与AE 相交于点O ,且BO =DO ,AO =2EO ,则S △ACD :S △ABD 的值为( ) A. 2:5 B. 1:3 C. 2:3 D. 1:27. 从1到2019连续自然数的平方和12+22+32+⋯+20192的个位数字是( )A. 0B. 1C. 5D. 9 8. 已知x +y +z =0,且1x+1+1y+2+1z+3=0,则代数式(x +1)2+(y +2)2+(z +3)2的值为( ) A. 3 B. 14 C. 16 D. 369. 将一枚六个面编号分别为1、2、3、4、5、6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为a ,第二次掷出的点数为b ,则使关于x 、y 的方程组{ax +by =22x +y =3,只有正数解的概率为( ) A. 112B. 16C. 518D. 133610. 方程3a 2−8a −3b −1=0,当a 取遍0到5的所有实数值时,则满足方程的整数b 的个数是( ) A. 12个 B. 13个 C. 14个 D. 15个11. 若一个三角形的三边和为40,且各边长均为整数,则符合条件的三角形的个数为( ) A. 31个 B. 32个 C. 33个 D. 34个12. 若关于x 的方程x 2+ax +b −3=0有实根,则a 2+(b −4)2的最小值为( )A. 0B. 1C. 4D. 9二、填空题(本大题共7小题,共52.0分)13.已知x=3+√132,则代数式x4−3x3−3x+1的值为______.14.在正十边形的10个顶点中,任取4个顶点,那么以这4个顶点为顶点的梯形有______个.15.在Rt△ABC中,∠C=90°,AC=1,BC=2,D为AB中点,E为边BC上一点,将△ADE沿DE翻折得到△A′DE,使△A′DE与△BDE重叠部分的面积占△ABE面积的14,则BE的长为______.16.已知关于x的方程√x2−2x+1−√x2−4x+4+2√x2−6x+9=m恰好有两个实数解,则m的取值范围为______.17.如图,PA切⊙O于点A,PE交⊙O于点F、E,过点A作AB⊥PO于点D,交⊙O于点B,连接DF,若sin∠BAO=23,PE=5DF,则PFPE=______.18.如图,四边形ABCD中,AB=AD=5,BC=DC=12,∠B=∠D=90°.M和N分别是线段AD和线段BC上的点,且满足BN=DM,则线段MN的最小值为______.19.若−12<x<1,x1+x−2x2=a0+a1x+a2x2+a3x3…+a n x n,则a2+a3=______.三、解答题(本大题共2小题,共38.0分)20.已知二次函数y=x2+(a−7)x+6,反比例函数y=ax(1)当a=2时,求这两个函数图象的交点坐标;(2)若这两个函数的图象的交点不止一个,且交点横、纵坐标都是整数,求符合条件的正整数a的值;(3)若这两个函数的交点都在直线x=12的右侧,求a的取值范围.21.已知:四边形ABCD中,点E、F分别为边AD、AB上的点,连接BE、DF相交于点G,且满足∠ADF=∠ABE(1)如图1,若DE=BG=n,cos∠AEB=23,GE=3,求AE的长(用含n的代数式表示);(2)如图2,若ABCD为矩形,G恰为BE中点,连接CG,AE=1,作点A关于BE,求DE的长.的对称点A′,A′到CG的距离为3√24答案和解析1.【答案】A【解析】解:M =5x 2−12xy +10y 2−6x −4y +13=4x 2−12xy +9y 2+y 2−4y +4+x 2−6x +9=(2x −3y)2+(y −2)2+(x −3)2≥0,故M 一定是非负数. 故选:A .通过配方法配出平方根,从而判断M 值的大小.本题考查了配方法的应用,熟练配方法的应用是解答此题的关键. 2.【答案】C【解析】解:将一个棱长为m(m >2且m 为正整数)的正方体木块的表面染上红色,然后切成m 3个棱长为1的小正方体,则只有一个表面染有红色的小正方体的数量为6(m −2)2, 恰有两个表面染有红色的小正方体的数量12(m −2),∵只有一个表面染有红色的小正方体的数量是恰有两个表面染有红色的小正方体的数量的12倍,∴6(m −2)2=12×12(m −2), 解得m 1=26,m 2=2(舍去), 故选:C .只有一个表面染有红色的小正方体的数量为6(m −2)2,恰有两个表面染有红色的小正方体的数量12(m −2),根据只有一个表面染有红色的小正方体的数量是恰有两个表面染有红色的小正方体的数量的12倍,即可得到m 的值. 本题主要考查了正方体,解决问题的关键是抓住表面涂色的正方体切割小正方体的特点:1面涂色的在面上,2面涂色的在棱长上,3面涂色的在顶点处,没有涂色的在内部,由此即可解决此类问题. 3.【答案】D【解析】解:∵7b 2−100b +6=0, ∴6×1b 2−100×1b+7=0,∵6a 2−100a +7=0,∴a 、1b 是方程6x 2−100x +7=0的两根, ∴由根与系数的关系可知:ab =76,故选:D .根据根与系数的关系即可求出答案. 本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型. 4.【答案】B【解析】解:a =√3√2+√3+√5√2+√3−√5√2+√3−√5=√3(√2+√3−√5)2√6=√2(√2+√3−√5)4=b4.∴ab =14. 故选:B . 将a 乘以√2+√3−√5√2+√3−√5可化简为关于b 的式子,从而得到a 和b 的关系,继而能得出ab 的值.本题考查二次根式的乘除法,有一定难度,关键是在分母有理化时要观察b的形式.5.【答案】C【解析】解:∵|ab|+|a−b|=1,∴0≤|ab|≤1,0≤|a−b|≤1,∵a,b是整数,∴|ab|=0,|a−b|=1或|a−b|=0,|ab|=1①当|ab|=0,|a−b|=1时,Ⅰ、当a=0时,b=±1,∴整数对(a,b)为(0,1)或(0,−1),Ⅱ、当b=0时,a=±1,∴整数对(a,b)为(1,0)或(−1,0),②当|a−b|=0,|ab|=1时,∴a=b,∴a2=b2=1,∴a=1,b=1或a=−1,b=−1,∴整数对(a,b)为(1,1)或(−1,−1),即:满足|ab|+|a−b|=1的所有整数对(a,b)为(0,1)或(0,−1)或(1,0)或(−1,0)或(1,1)或(−1,−1).∴满足|ab|+|a−b|−1=0的整数对(a,b)共有6个.故选:C.先判断出|ab|=0,|a−b|=1或|a−b|=0,|ab|=1,再借助a,b是整数即可得出结论.此题考查了绝对值,以及数对,分类讨论的思想,确定出|ab|=0,|a−b|=1或|a−b|= 0,|ab|=1是解题的关键.6.【答案】D【解析】解:如图,过点B作BF//AD交AE延长线于F,连接OC,∵BF//AD∴∠F=∠DAO∵BO=DO,∠BOF=∠DOA∴△FOB≌△AOD(AAS)∴FO=AO∵AO=2EO∴FO=2EO∴EO=EF,∵E为BC边的中点∴BE=CE∵∠BEF=∠CEO∴△BEF≌△CEO(SAS)∴∠BFE=∠COE∴BF//OCAD//OC∴S△ACD=S△AOD,∵BD=2OD∴S△ABD=2S△AOD,∴S△ABD=2S△ACD∴S△ACD:S△ABD=1:2;故选:D .过点B 作BF//AD 交AE 延长线于F ,连接OC ,先证明△FOB≌△AOD ,再证明△BEF≌△CEO ,可得AD//OC ,可得S △ACD =S △AOD ,由S △ABD =2S △AOD ,可得S △ACD :S △ABD =1:2;本题考查了全等三角形判定和性质,三角形面积,平行线间的距离等知识点,有一定的难度,解题关键是作平行线构造全等三角形. 7.【答案】A【解析】解:以2为指数的幂的末位数字是1,4,9,6,5,6,9,4,1,0依次循环的,∵2019÷10=201…9,(1+4+9+6+5+6+9+4+1+0)×201+(1+4+9+6+5+6+9+4+1) =45×201+45 =9045+45 =9090,∴12+22+32+42+⋯+20192的个位数字是0. 故选:A .由题中可以看出,故个位的数字是以10为周期变化的,用2019÷10,计算一下看看有多少个周期即可.此题主要考查了找规律,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的关键是找到以2为指数的末位数字的循环规律. 8.【答案】D【解析】解:∵x +y +z =0,且1x+1+1y+2+1z+3=0,[(x +1)2+(y +2)2+(z +3)2][12+12+12]≥[(1×(x +1)+1×(y +2)+1×(z +3)]2=(x +y +z +6)2(x +1)2+(y +2)2+(z +3)2≥36∴(x +1)2+(y +2)2+(z +3)2的值为36. 故选:D .根据已知条件可得x 、y 、z 的值即可求解.本题考查了分式的加减法,解决本题的关键是合理分析已知条件. 9.【答案】B【解析】解:①当a −2b =0时,方程组无解;②当a −2b ≠0时,方程组的解为由a 、b 的实际意义为1,2,3,4,5,6可得. 易知a ,b 都为大于0的整数,则两式联合求解可得x =3b−22b−a ,y =4−3a2b−a , ∵使x 、y 都大于0则有x =3b−22b−a >0,y =4−3a2b−a >0, ∴解得a <43,b >23或者a >43,b <23,∵a ,b 都为1到6的整数,∴可知当a 为1时b 只能是1,2,3,4,5,6;或者a 为2,3,4,5,6时b 无解, 这两种情况的总出现可能有6种; (1,1)(1,2)(1,3)(1,4)(1,5)(1,6),又掷两次骰子出现的基本事件共6×6=36种情况,故所求概率为=636=16, 故选:B .首先分两种情况:①当a −2b =0时,方程组无解;②当a −2b ≠0时,方程组的解为由a 、b 的实际意义为1,2,3,4,5,6可得.把方程组两式联合求解可得x =3b−22b−a ,y =4−3a2b−a ,再由x 、y 都大于0可得x =3b−22b−a >0,y =4−3a 2b−a>0,求出a 、b 的范围,列举出a ,b 所有的可能结果,然后求出有正数解时,所有的可能,进而求出概率.此题主要考查了列表法求概率,以及二元一次方程的解法,题目综合性较强. 10.【答案】B【解析】解:∵3a 2−8a −3b −1=0, ∴b =a 2−83a −13=(a −43)2−259,∵0≤a ≤5, ∴−43≤a −43≤113, ∴0≤(a −43)2≤1219, ∴−259≤(a −43)2−259≤969,即−259≤b ≤969,∴整数b =−2,−1,0,1,…,10,共13个,故选:B .首先将方程3a 2−8a −3b −1=0进行变形,变成用含a 的代数式表示b ,然后把含a 的代数式配方,再根据a 的取值求出b 的取值范围,由于是求b 的整数的个数,所以再找b 的取值范围内的整数解即可.此题主要考查了利用配方法求一元二次方程的整数根,做此题的关键是用含a 的代数式表示b ,然后根据a 的取值求b 的取值,综合性较强,难度不大. 11.【答案】C【解析】解:根据题意得三角形的三边都小于20, 设最小的两边为x ≤y ≤19,x +y >20 当x =2时,y =19, 当x =3时,y =18, 当x =4时,y =17,18, 当x =5时,y =16,17, 当x =6时,y =15,16,17, 当x =7时,y =14,15,16, 当x =8时,y =13,14,15,16, 当x =9时,y =12,13,14,15,当x =10时,y =11,12,13,14,15, 当x =11时,y =11,12,13,14, 当x =12时,y =12,13,14, 当x =13时,y =13,符合条件的三角形的个数为1+1+2+2+3+3+4+4+5+4+3+1=33, 故选:C .首首先根据三角形的两边之和大于第三边以及三边和为40长,得到三角形的三边都必须小于20;再结合三角形的两边之差小于第三边进行分析出所有符合条件的整数.本题考查了三角形三边关系,关键是列出约束条件.12.【答案】B【解析】解:由x2+ax+b−3=0知b关于a的函数解析式为b+ax+x2−3=0,∵a2+(b−4)2的最小值可看做点(a,b)到(0,4)距离的最小值,则两点的距离d=2√12+x2=2√x2+1=√x2+1≥1,∴点(a,b)到(0,4)距离的最小值为1,即a2+(b−4)2的最小值为1,故选:B.由x2+ax+b−3=0知b关于a的函数解析式为b+ax+x2−3=0,而a2+(b−4)2的最小值可看做点(a,b)到(0,4)距离的最小值,再根据点到直线的距离公式求解可得.本题主要考查两点间的距离公式,熟练掌握公式的定义是解题关键.13.【答案】2【解析】解:当x=3+√132时,原式=x4−3x3−3x+1=(x2)2−3x(x2+1)+1=[(3+√132)2]2−3×3+√132[(3+√132)2+1]+1=(11+3√132)2−3×3+√132×13+3√132+1=119+33√132−117+33√132+1=1+1=2.故答案为:2.将原式适当变形,再代入进行计算便可.本题主要考查了求整式的值,二次根式的计算,适当进行整式的变形,可以减小计算的难度.14.【答案】60【解析】解:设正十边形为A1A2 (10)以A1A2为底边的梯形有A1A2A3A10、A1A2A4A9、A1A2A5A8共3个.同理分别以A2A3、A3A4、A4A5、…、A9A10、A10A1为底边的梯形各有3个,这样,合计有30个梯形.以A1A3为底边的梯形有A1A3A4A10、A1A3A5A9共2个.同理分别以A2A4、A3A5、A4A6、…、A9A1、A10A2为底边的梯形各有2个,这样,合计有20个梯形.以A1A4为底边的梯形只有A1A4A5A101个.同理分别以A2A5、A3A6、A4A7、…、A9A2、A10A3为底边的梯形各有1个,这样,合计有10个梯形,则以4个顶点为顶点的梯形有:30+20+10=60(个),故答案为:60.分以A1A2为底边、A1A3为底边、A1A4为底边,根据梯形的概念、正多边形的性质解答.本题考查的是梯形的概念、正多边形的性质,灵活运用分情况讨论思想是解题的关键.15.【答案】√52【解析】解:如图,连接AA′,延长ED交AA′于点M∵∠C=90°,AC=1,BC=2,∴AB=√AC2+BC2=√5∵D为AB中点,∴AD=DB=√5 2∵将△ADE沿DE翻折得到△A′DE,∴AD=A′D,AE=A′E∴ED垂直平分AA′∴EM⊥AA′,∵AD=DB=AA′=√5 2∴△ABA′是直角三角形∴∠AA′B=90°,即AA′⊥A′B∴ME//A′B∴∠MEF=∠FA′B,∵△A′DE与△BDE重叠部分的面积占△ABE面积的14,∴S△DEF=14S△AEB,∴DF=14AB=12DB∴DF=FB,且∠MEF=∠FA′B,∠A′FB=∠EFD ∴△A′FB≌△EFD(AAS)∴EF=A′F,且DF=FB,∠EFB=∠A′FD∴△BFE≌△DFA′(SAS)∴AD=BE=√5 2故答案为:√52连接AA′,延长ED交AA′于点M,由勾股定理可求AB=√5,可得AD=DB=√52,由折叠的性质可得AD=A′D=DB,AE=A′E,可得AA′⊥A′B,EM⊥AA′,由题意可得DF= BF,由“AAS”可证△A′FB≌△EFD,可得EF=A′F,由“SAS”可得△BFE≌△DFA′,即可求BE的长.本题考查了翻折变换,勾股定理,直角三角形的判定和性质,全等三角形的判定和性质,证明△A′FB≌△EFD是本题的关键.16.【答案】1≤m<3或m>3【解析】解:原方程变形为:|x−1|−|x−2|+2|x−3|=m,①当x≥3时,x−1−(x−2)+2(x−3)=m,x=m+52≥3,∴m=2x−5,此时m≥1;②当2≤x<3时,x−1−(x−2)+2(3−x)=m,x=7−m 2∴m=7−2x,此时1<m≤3;③当1≤x<2时,x−1−(2−x)+2(3−x)=m,∴m=3(不符合题意);④当x<1时,1−x−(2−x)+2(3−x)=m,∴m=5−2x,此时m>3.恰好有两个实数解,所以1≤m<3或m>3,故答案为1≤m<3或m>3.解无理方程关键是要去掉根号,将其转化为整式方程.解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.本题主要考查无理方程,解题的关键是掌握二次根式的性质、绝对值的性质等知识点.17.【答案】310【解析】解:连接OE,如图,∵AB⊥PO,∴∠ADO=90°,在Rt△ADO中,sin∠DAO=ODOA =23,设OD=2x,OA=3x,∵PA切⊙O于点A,∴OA⊥PA,∴∠APO=∠OAD,在Rt△APO中,sin∠APO=OAOP =23,∴OP=32×3x=92x,∵∠APD=∠OPA,∴Rt△PAD∽Rt△POA,∴PD:PA=PA:PO,即PA2=PD⋅PO,∵PA切⊙O于点A,PE交⊙O于点F、∴PA2=PF⋅PE,∴PD⋅PO=PF⋅PE,即PF:PO=PD:PE,而∠DPF=∠EPO,∴△PDF∽△PEO,∴DFOE =PFPO,∴PF=92x3x⋅DF=32DF,而PE=5DF,∴PFPE =32DF5DF=310.故答案为310.连接OE,如图,利用正切的定义得到sin∠DAO=ODOA =23,则可设OD=2x,OA=3x,再根据切线的性质得OA⊥PA,所以∠APO=∠OAD,利用正弦的定义得到OP=92x,证明Rt△PAD∽Rt△POA,利用相似比得到PA2=PD⋅PO,而PA2=PF⋅PE,所以PD⋅PO=PF⋅PE,则可判断△PDF∽△PEO,利用相似比得到PF=32DF,然后利用PE=5DF可得到PFPE的值.本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了切线的性质和切割线定理.18.【答案】60√213【解析】解:连接BD交AC于H,作∠ABC的平分线BP,交AC于P,连接PD,作PE⊥BC于E,连接PM、PN,如图所示:则PN≥PE,在△ABC和△ADC中,{AB=AD BC=DC AC=AC,∴△ABC≌△ADC(SSS),∴∠BAP=∠DAP,在△ABP和△ADP中,{AB=AD∠BAP=∠DAP AP=AP,∴△ABP≌△ADP(SAS),∴∠ABP=∠ADP=12∠ABC=45°,BP=DP,∵∠ABP=∠NBP=12∠ABC=45°,∴∠NBP=∠MDP,在△NBP和△MDP中,{BN=DM∠NBP=∠MDP BP=DP,∴△NBP≌△MDP(SAS),∴PM=PN,∠BPN=∠DPM,∴∠BPD=∠MPN,∵BP=DP,PM=PN,∴∠BDP=∠DBP=∠MNP=∠NMP,∴△PMN∽△PBD,∴MNBD =PNBP≥PEPB,∵sin∠NBP=PEPB =sin45°=√22,∴MNBD ≥√22,∴MN≥√22BD,在△ABH和△ADH中,{AB=AD∠BAH=∠DAH AH=AH,∴△ABH≌△ADH(SAS),∴BH=DH,∠BHA=∠DHA=90°,AC=√AB2+BC2=√52+122=13,S△ABC=12AB⋅BC=12BH⋅AC,∴BH=AB⋅BCAC =5×1213=6013,∴BD=2BH=12013,∴MN≥√22×12013=60√213,∴线段MN的最小值为60√213,故答案为:60√213.连接BD交AC于H,作∠ABC的平分线BP,交AC于P,连接PD,作PE⊥BC于E,连接PM、PN,则PN≥PE,证明△ABC≌△ADC(SSS),得出∠BAP=∠DAP,证明△ABP≌△ADP(SAS),得出∠ABP=∠ADP=12∠ABC=45°,BP=DP,易证∠NBP=∠MDP,证明△NBP≌△MDP(SAS),得出PM=PN,∠BPN=∠DPM,推出∠BPD=∠MPN,证出∠BDP=∠DBP=∠MNP=∠NMP,得出△PMN∽△PBD,则MNBD =PNBP≥PEPB,由sin∠NBP=PEPB =sin45°=√22,推出MNBD≥√22,即MN≥√22BD,证明△ABH≌△ADH(SAS),得出BH=DH,∠BHA=∠DHA=90°,AC=√AB2+BC2=13,由S△ABC=1 2AB⋅BC=12BH⋅AC,求出BH=6013,得出BD=2BH=12013,即可得出结果.本题考查了相似三角形的判定与性质、全等三角形的判定与性质、勾股定理、三角函数等知识;本题综合性强,证明三角形相似和三角形全等是解题的关键. 19.【答案】2【解析】解:x =(1+x −2x 2)(a 0+a 1x +a 2x 2+a 3x 3…+a n x n ), 当x =0时,a 0=0,∴1=(1+x −2x 2)(a 1+a 2x +a 3x 2…+a n x n−1), 当x =0时,a 1=1,a 1+a 2=0,a 2+a 3−2a 1=0, ∴a 2=−1,a 3=3, ∴a 3+a 2=2, 故答案为2.先去分母,第一次赋值x =0求出a 0=0,再化简式子为1=(1+x −2x 2)(a 1+a 2x +a 3x 2…+a n x n−1),第二次赋值x =0,求出a 1=1,再由等式的性质得到a 1+a 2=0,a 2+a 3−2a 1=0即可求解.本题考查数字的变化规律;能够通过所给例子,找到式子的规律,给式子恰当的赋值运算是解题的关键.20.【答案】解:(1)联立y =x 2+(a −7)x +6,y =ax 并整理得:x 3+(a −7)x 2+6x −a =0…①,a =2时,上式为:(x −1)(x 2−4x +2)=0, 解得:x =1或2+√2或2−√2,故函数交点坐标为:(1,2)或(2+√2,2−√2)或(2+√2,2−√2); (2)①式中含有(x −1)的因式,即:(x −1)[x 2+(a −6)x +a]=0, 故其中一个根:x =1,a 为正整数,x 2+(a −6)x +a =0方程有一个到两个的根, △=(a −6)2−4a ≥0,交点横、纵坐标都是整数,则△一定是完全平方数(设为k), 即(a −6)2−4a =k 2(k 为非负整数), 整理得:(a −8)2−k 2=28,即:(a −8+k)(a −8−k)=28=4×7=2×14=1×28, 而a −8+k ≥a −8−k ,当a −8+k =7,a −8−k =4时,解得:a =13.5(舍去); 当a −8+k =14,a −8−k =2时,解得:a =16; 当a −8+k =28,a −8−k =1时,a =23.5(舍去); 故a =16;(3)两个函数的交点都在直线x =12的右侧,只会出现如下图所示的情况,两个函数三个交点在x =12的右侧,其中一个交点横坐标为x =1在x =12的右侧, 故只需要确定x 2+(a −6)x +a =0根的情况,只要左侧的根在x =12右侧即可, 解上述方程得:x =6−a±√a 2−16a+362,即6−a−√a2−16a+362>12,解得:a >116.故:a 的取值范围为:a >116.【解析】(1)联立y =x 2+(a −7)x +6,y =ax 并整理得:x 3+(a −7)x 2+6x −a =0,a =2时,上式为:(x −1)(x 2−4x +2)=0,即可求解;(2)(x −1)[x 2+(a −6)x +a]=0,故其中一个根:x =1,a 为正整数,x 2+(a −6)x +a =0方程有一个到两个的根,△=(a −6)2−4a ≥0,交点横、纵坐标都是整数,则△一定是完全平方数(设为k),即(a −6)2−4a =k 2(k 为非负整数),讨论确定a 的值; (3)两个函数的交点都在直线x =12的右侧,两个函数三个交点在x =12的右侧,其中一个交点横坐标为x =1在x =12的右侧,即6−a−√a2−16a+362>12,即可求解.本题考查的是二次函数与反比例函数的交点问题、根的判别式、整数的性质,涉及面较广,难度较大.21.【答案】解:(1)作GH ⊥AD 于H ,AI ⊥BE 于I , ∵GE =3,cos∠AEB =23,∴EH =2,HG =√5,设AE =3x ,则EI =2x ,AI =√5x ,∴GI =3−2x ,BI =BG +GI =n +3−2x , ∴DH =DE +EH =n +2, ∵∠ADF =∠ABE ,∴∠DHG =∠AIB =90°, ∴△GHD∽△AIB , ∴DH BI=HG AI,∴n+2n+3−2x =√5√5x , 解得:x =n+3n+4, ∴AE =3x =3n+9n+4;(2)如图2,连接AA′交BE 于M ,连接按个,作A′N ⊥CG 于N ,∵四边形ABCD 为矩形,G 恰为BE 中点,∴CG =DG ,∴∠GCD =∠GDC ,∴∠BCG =∠ADG =∠ABE =90°−∠CBG , ∴∠BCG +∠CBG =90°, ∴CG ⊥BE ,∵AA′⊥BE ,A′N ⊥CG , ∴四边形MA′NG 是矩形, ∴GM =A′N =3√24,设ME =x ,则AG =BG =GE =x +34√2, ∴AM 2=AG 2−GM 2=AE 2−EM 2=(x +3√24)2−(34√2)2=1−x 2, 解得:x =√24,∴BG =GE =ME +GM =√2, ∴BE =2√2,∵∠ABE =∠BCG , ∴△GCB∽△ABE , ∴BC BE =BG AE,∴2√2=√21, 解得:BC =4,∴AD =BC =4, ∴DE =AD −AE =4−1=3.【解析】(1)作GH ⊥AD 于H ,AI ⊥BE 于I ,根据已知条件得到EH =2,HG =√2,设AE =3x ,则EI =2x ,AI =√5x ,得到GI =3−2x ,BI =BG +GI =n +3−2x ,根据相似三角形的性质得到AE =3x =3n+9n+4;(2)如图2,连接AA′交BE 于M ,连接按个,作A′N ⊥CG 于N ,根据矩形的性质得到CG =DG ,求得∠GCD =∠GDC ,推出四边形MA′NG 是矩形,得到GM =A′N =3√24,设ME =x ,则AG =BG =GE =x +34√2,根据勾股定理列方程得到BG =GE =ME +GM =√2,求得BE =2√2,根据相似三角形的性质即可得到结论.本题考查了矩形的性质,相似三角形的判定和性质,轴对称的性质,勾股定理,正确的作出辅助线是解题的关键.。

四川省成都七中2019届高三数学下学期入学考试试题(含解析)

四川省成都七中2019届高三数学下学期入学考试试题(含解析)

四川省成都七中2019届高三数学下学期入学考试试题(含解析)一、选择题(本大题共12小题,共60. 0分)1.已知是虚数单位,若,则的共轭复数对应的点在复平面的( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】把已知等式变形,再由复数代数形式的乘除运算化简,求出z的坐标得答案.【详解】解:由2+i=z(1﹣i),得z,∴,则z的共轭复数z对应的点的坐标为(),在复平面的第四象限.故选:D.【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.2.设集合,,则( )A. B. C. D.【答案】C【解析】【分析】分别求y=3x,x∈R,y,x∈R的值域,得:A=(0,+∞),B=[0,2],再求交集即可.【详解】解:由y=3x,x∈R,得y>0,即A=(0,+∞),由y,x∈R,得:0≤y≤2,即B=[0,2],即A∩B=(0,2],故选:C.【点睛】本题考查了求函数值域及交集的运算,考查指数函数与幂函数的图象与性质,属简单题.3.函数的大致图象是( )A. B. C. D.【答案】A【解析】【分析】根据函数的奇偶性及取特殊值,进行排除即可得答案.【详解】由题意得,函数,则函数为偶函数,图象关于y轴对称,故排除C、D,又由当时,,故排除B,故选:A.【点睛】本题主要考查了函数图象的识别,其中解答中熟练应用函数的奇偶性,以及特殊点的函数值进行排除求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.4.执行如图所示的程序框图,则输出的值为( )A. 7B. 9C. 11D. 13【答案】C【解析】第一次:,第二次:,第三次:,第四次:,第五次:,此时不满足条件,所以输出k=115.已知等边内接于,为线段的中点,则=( )A. B. C. D.【答案】A【解析】【分析】根据题意画出图形,结合图形,利用平面向量的线性运算写出用、的表达式即可.【详解】解:如图所示,设BC中点为E,则()•.故选:A.【点睛】本题考查了平面向量的线性表示与应用问题,是基础题.6.某几何体的三视图如图所示,图中正方形的边长为2,四条用虚线表示的线段长度均相等,则该几何体的体积为( )A. B. C. D.【答案】A【解析】【分析】直接利用三视图,还原出原几何体,进一步利用几何体的体积公式求出结果.【详解】根据几何体的三视图:该几何体是由一个边长为2正方体挖去一个底面半径为1,高为2的圆锥构成的不规则的几何体.所以:v,.故选:A.【点睛】本题考查的知识要点:三视图的应用,几何体的体积公式的应用,主要考查学生的运算能力和空间想象能力,属于基础题型.7.二项式的展开式中的系数是,则( )A. 1B.C.D.【答案】B【解析】【分析】求得二项展开式中的通项公式,令,解得,代入即可求解,得到答案.【详解】由题意,二项式的展开式中的通项公式,令,解得,所以含项的系数为,解得故选:B.【点睛】本题主要考查了二项式定理的应用,其中解答中熟练求解二项展开式的通项,准确得出的值是解答的关键,着重考查了运算与求解能力,属于基础题.8.如图所示,边长为的正六边形内有六个半径相同的小圆,这六个小圆分别与正六边形的一边相切于该边的中点,且相邻的两个小圆互相外切,则在正六边形内任取一点,该点恰好取自阴影部分的概率为( )A. B. C. D.【答案】C【解析】【分析】分别求出正六边形和阴影部分的面积,作商即可.【详解】如图所示,边长为a的正六边形,则OA=OB=AB=a,设小圆的圆心为O',则O'C⊥OA,∴OC a,∴O'C a,OO'a,∴OD a,∴S阴影=12[a•aπ•(a)2]=()a2,S正六边形a2,∴点恰好取自阴影部分的概率P,故选:C.【点睛】本题考查了几何概型问题,考查特殊图形面积的求法,是一道常规题.9.如图所示,点为双曲线的右顶点,为双曲线上一点,作轴,垂足为,若为线段的中点,且以为圆心,为半径的圆与双曲线恰有三个公共点,则的离心率为( )A. B. C. 2 D.【答案】A【解析】【分析】设A的坐标(a,0),求得B的坐标,考虑x=2a,代入双曲线的方程可得P的坐标,再由圆A经过双曲线的左顶点,结合两点的距离公式可得a=b,进而得到双曲线的离心率.【详解】由题意可得A(a,0),A为线段OB的中点,可得B(2a,0),令x=2a,代入双曲线的方程可得y=±b,可设P(2a,b),由题意结合图形可得圆A经过双曲线的左顶点(﹣a,0),即|AP|=2a,即有2a,可得a=b,e,故选:A.【点睛】本题考查双曲线的方程和性质,主要是离心率的求法,考查方程思想和运算能力,属于中档题.10.已知,则( )A. B. C. D.【答案】B【解析】【分析】利用三角恒等变换的公式,化简求得,得到,再利用两角和的正切函数的公式,即可求解.【详解】由题意,因为,所以,则即,即,又由,故选:B.【点睛】本题主要考查了三角函数的化简求值问题,其中解答中熟记两角和与差的三角函数的基本公式,合理、准确化简计算是解答的关键,着重考查了推理与运算能力,属于基础题.11.如图所示,在等腰中,斜边,为直角边上的一点,将沿直折叠至的位置,使得点在平面外,且点在平面上的射影在线段上,设,则的取值范围是( )A. B. C. D.【答案】B【解析】【分析】推导出AC=BC=1,∠ACB=90°,AC1=AC=1,CD=C1D∈(0,1),∠AC1D=90°,CH⊥平面ABC,从而AH<AC1=1,当CD=1时,B与D重合,AH,当CD<1时,AH,由此能求出x的取值范围.【详解】解:∵在等腰Rt△ABC中,斜边AB,D为直角边BC上的一点,∴AC=BC=1,∠ACB=90°,将△ACD沿直AD折叠至△AC1D的位置,使得点C1在平面ABD外,且点C1在平面ABD上的射影H在线段AB上,设AH=x,∴AC1=AC=1,CD=C1D∈(0,1),∠AC1D=90°,CH⊥平面ABC,∴AH<AC1=1,故排除选项A和选项C;当CD=1时,B与D重合,AH,当CD<1时,AH,∵D为直角边BC上的一点,∴CD∈(0,1),∴x的取值范围是(,1).故选:B.【点睛】本题考查线段长的取值范围的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.12.设是抛物线上的两个不同的点,是坐标原点,若直线与的斜率之积为,则( )A. B. 为直径的圆的面积大于C. 直线过抛物线的焦点D. 到直线的距离不大于2【答案】D【解析】【分析】由已知分类求得MN所在直线过定点(2,0),结合选项得答案.【详解】解:当直线MN的斜率不存在时,设M(,y0),N(,﹣y0),由斜率之积为,可得,即,∴MN的直线方程为x=2;当直线的斜率存在时,设直线方程为y=kx+m,联立,可得ky2﹣y+m=0.设M(x1,y1),N(x2,y2),则,,∴,即m=﹣2k.∴直线方程为y=kx﹣2k=k(x﹣2).则直线MN过定点(2,0).则O到直线MN的距离不大于2.故选:D.【点睛】本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,是中档题.二、填空题(本大题共4小题,共20.0分)13.设满足约束条件,则的最大值为______.【答案】5【解析】【分析】根据不等式组画出可行域,结合图像得到最值.【详解】作出x,y满足约束条件,所示的平面区域,如图:作直线-3x+4y=0,然后把直线l向可行域平移,结合图形可知,平移到点时z最大,由此时z=5.故答案为:5.【点睛】利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(型)、斜率型(型)和距离型(型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值。

2019年四川省成都七中自主招生考试数学试卷(含详细解析)

2019年四川省成都七中自主招生考试数学试卷(含详细解析)

自主招生考试数学试卷一、选择题(共10小题,每小题6分,满分60分)1.(6分)有一个角为60°的菱形,边长为2,其内切圆面积为()A.B.C.D.2.(6分)若方程组的解为(a,b,c),则a+b+c=()A.1 B.0 C.﹣1 D.23.(6分)圆O1与圆O2半径分别为4和1,圆心距为2,作圆O2的切线,被圆O1所截得的最短弦长为()A.﹣1 B.8 C.2D.24.(6分)如下图,梯形ABCD中,AD∥BC,AC与BD交于O,记△AOD、△ABO、△BOC的面积分别为S1、S2、S3,则S1+S3与2S2的大小关系为()A.无法确定B.S1+S3<2S2C.S1+S3=2S2D.S1+S3>2S25.(6分)关于x的分式方程2k﹣4+仅有一个实数根,则实数k的取值共有()A.1个B.2个C.3个D.4个6.(6分)两本不同的语文书、两本不同的数学书和一本英语书排放在书架上,若同类书不相邻,英语书不放在最左边,则排法的种数为()A.32 B.36 C.40 D.447.(6分)若a=,则的值的整数部分为()A.1 B.2 C.3 D.48.(6分)在圆内接四边形ABCD中,∠BAD、∠ADC的角平分线交于点E,过E作直线MN平行于BC,与AB、CD交于M、N,则总有MN=()A.BM+DN B.AM+CN C.BM+CN D.AM+DN9.(6分)由若干个边长为1的小正方形组成一个空间几何体(小正方形可以悬空),其三视图如图,则这样的小正方体至少应有()A.8个B.10个C.12个D.14个10.(6分)正方体ABCD的边长为1,点E在边AB上,BE=,BF=,动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,而当碰到正方形顶点时沿入射路径反弹,当点P第一次返回E时,P所经过的路程为()A.B.C.2D.二、填空题(共8小题,每小题6分,满分48分)11.(6分)对任意实数k,直线y=kx+(2k+1)恒过一定点,该定点的坐标是.12.(6分)如图,圆锥母线长为2,底面半径为,∠AOB=135°,经圆锥的侧面从A到B的最短距离为.13.(6分)设(3x﹣2)6=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6,那么a1+a2+a3+a4+a5+a6=.14.(6分)如图,向正五边形ABCDE区域内均匀掷点,落在五边形FGHJK区域内的概率为.15.(6分)函数y=kx﹣1与y=x2的图象交于两点(x1,y1)(x2,y2),若+=18,则k=.16.(6分)在△ABC中,∠C=90°,D、E分别是BC、CA上的点,且BD=AC,AE=CD,BE、AD相交于点P,则∠BPD=.17.(6分)函数y=2+的最大值为.18.(6分)若x≥y≥z,则(2x+1)(2y+1)(2z+1)=13xyz的正整数解(x,y,z)为.三、解答题(共2小题,满分42分)19.(22分)正方形ABCD边长为2,与函数x=(x>0)的图象交于E、F两点,其中E位于线段CD上,正方形ABCD可向右平移,初始位置如图所示,此时,△DEF的面积为.正方形ABCD在向右平移过程中,位于线段EF上方部分的面积记为S,设C点坐标为(t,0)(1)求k的值;(2)试写出S与t的函数关系式及自变量t的取值范围;(3)若S=2,求t的值;(4)正方形ABCD在向右平移过程中,是否存在某些位置,沿线段EF折叠,使得D点恰好落在BC边上?若存在,确定这些位置对应t的值得大致范围(误差不超过0.1);若不存在,说明理由.20.(20分)(1)求函数y=|x﹣1|+|x﹣3|的最小值及对应自变量x的取值;(2)求函数y=|x﹣1|+|x﹣2|+|x﹣3|的最小值及对应自变量x的取值;(3)求函数y=|x﹣1|+|x﹣2|+…+|x﹣n|的最小值及对应自变量x的取值;(4)求函数y=|x﹣1|+|2x﹣1|+…+|8x﹣1|+|9x﹣1|的最小值及对应自变量x 的取值.2017年四川省成都七中自主招生考试数学试卷参考答案与试题解析一、选择题(共10小题,每小题6分,满分60分)1.(6分)有一个角为60°的菱形,边长为2,其内切圆面积为()A.B.C.D.【解答】解:过A作AE⊥BC,如图所示:∵菱形ABCD的边长为2,∠ABC═60°,∴∠BAE=30°,∴BE=AB=1,∴AE=BE=,∴内切圆半径为,∴内切圆面积=π•()2=;故选:A.2.(6分)若方程组的解为(a,b,c),则a+b+c=()A.1 B.0 C.﹣1 D.2【解答】解:,②×5﹣①得:14y+3z=﹣17④,②×2﹣③得:5y+2z=﹣7⑤④×2﹣⑤×3得:13y=﹣13,解得:y=﹣1,把y=﹣1代入⑤得:z=﹣1,把y=﹣1,z=﹣1代入②得:x=2,则(a,b,c)=(2,﹣1,﹣1),则a+b+c=2﹣1﹣1=0.故选:B.3.(6分)圆O1与圆O2半径分别为4和1,圆心距为2,作圆O2的切线,被圆O1所截得的最短弦长为()A.﹣1 B.8 C.2D.2【解答】解:∵圆O1与圆O2半径分别为4和1,圆心距为2,∴4﹣1>2,故两圆内含,不妨设截得的弦为AB,切点为C,连接O1A,连接O1O2,O2C,∵半径确定,∴弦心距越小,则弦越长,∵AB是⊙O2的切线,∴O2C⊥AB,∴当O1、O2、C在一条线上时,弦AB最短,由题意可知OC1=2+1=3,AO1=4,在Rt△ACO1中,由勾股定理可得AC==,∴AB=2AC=2,故选:C.4.(6分)如下图,梯形ABCD中,AD∥BC,AC与BD交于O,记△AOD、△ABO、△BOC的面积分别为S1、S2、S3,则S1+S3与2S2的大小关系为()A.无法确定B.S1+S3<2S2C.S1+S3=2S2D.S1+S3>2S2【解答】解:∵AD∥BC,∴△AOD∽△COB,∴=,∵△AOD与△AOB等高,∴S1:S2=AD:BC=a:b,∴S1=S2,S3=S2,∴S1+S3=(+)S2=S2,∵a≠b,∴a2+b2>2ab,∴>2,∴S1+S3>2S2,故选:D.5.(6分)关于x的分式方程2k﹣4+仅有一个实数根,则实数k的取值共有()A.1个B.2个C.3个D.4个【解答】解:方程两边都乘x(x+2)得,(2k﹣4)x(x+2)+(k+1)(x+2)=x (k﹣5),整理得,(k﹣2)x2+(2k﹣1)x+k+1=0.①当k﹣2≠0时,∵△=(2k﹣1)2﹣4(k﹣2)(k+1)=9>0,∴一元二次方程(k﹣2)x2+(2k﹣1)x+k+1=0有两个不相等的实数根.∵关于x的分式方程2k﹣4+仅有一个实数根,而x(x+2)=0时,x=0或﹣2,∴x=0时,k+1=0,k=﹣1,此时方程﹣3x2﹣3x=0的根为x=0或﹣1,其中x=0是原方程的增根,x=﹣1是原方程的根,符合题意;x=﹣2时,4(k﹣2)﹣2(2k﹣1)+k+1=0,k=5,此时方程3x2+9x+6=0的根为x=﹣2或﹣1,其中x=﹣2是原方程的增根,x=﹣1是原方程的根,符合题意;即k=﹣1或5;②当k﹣2=0,即k=2时,方程为3x+3=0,解得x=﹣1,符合题意;即k=2.综上所述,若关于x的分式方程2k﹣4+仅有一个实数根,则实数k的取值为﹣1或5或2,共有3个.故选:C.6.(6分)两本不同的语文书、两本不同的数学书和一本英语书排放在书架上,若同类书不相邻,英语书不放在最左边,则排法的种数为()A.32 B.36 C.40 D.44【解答】解:设从左向右位置为①,②,③,④,⑤,∵英语书不在最左边,∴最左边①有4种取法,∵同类书不相邻,∴②有3种取法,③有两种取法,④有两种取法,⑤有一种取法,共4×3×2×2×1=48,但是英语书排在第②位置时,只能是语文、英语、数学、语文、数学,或者数学、英语、语文、数学、语文,故英语书排在第②位置时只有8种情况,故种情况为48﹣8=40种,故选:C.7.(6分)若a=,则的值的整数部分为()A.1 B.2 C.3 D.4【解答】解:∵==﹣=﹣=﹣,∴=﹣+﹣+﹣=﹣∵a=,∴==4,0<a27<a3=()3=<,∴<1﹣a27<1,∴1<<2,∴的值的整数部分为2.故选:B.8.(6分)在圆内接四边形ABCD中,∠BAD、∠ADC的角平分线交于点E,过E作直线MN平行于BC,与AB、CD交于M、N,则总有MN=()A.BM+DN B.AM+CN C.BM+CN D.AM+DN【解答】解:如图,在NM上截取NF=ND,连结DF,AF∴∠NFD=∠NDF,∵A,B,C,D四点共圆,∴∠ADC+∠B=180°,∵MN∥BC,∴∠AMN=∠B,∴∠AMN+∠ADN=180°,∴A,D,N,M四点共圆,∴∠MND+∠MAD=180°,∵AE,DE分别平分∠BAD,∠CDA,∴∠END+2∠DFN=∠END+2∠DAE=180°,∴∠DFN=∠DAE,∴A,F,E,D四点共圆,∴∠DEN=∠DAF,∠AFM=∠ADE,∴∠MAF=180°﹣∠DAF﹣∠MND=180°﹣∠DEN﹣∠MND=∠EDN=∠ADE=∠AFM,∴MA=MF,∴MN=MF+NF=MA+ND.故选:D.9.(6分)由若干个边长为1的小正方形组成一个空间几何体(小正方形可以悬空),其三视图如图,则这样的小正方体至少应有()A.8个B.10个C.12个D.14个【解答】解:综合三视图,我们可以得出,这个几何模型的底层至少有3个小正方体,第二层至少有3个小正方体,第三层至少有3个小正方体,则这样的小正方体至少应有3+3+3=9个,选项中10是满足条件最小的数字.故选:B.10.(6分)正方体ABCD的边长为1,点E在边AB上,BE=,BF=,动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,而当碰到正方形顶点时沿入射路径反弹,当点P第一次返回E时,P所经过的路程为()A.B.C.2D.【解答】解:根据已知中的点E,F的位置,可知入射角的正切值为,第一次碰撞点为F,在反射的过程中,根据入射角等于反射角及平行关系的三角形的相似可得第二次碰撞点为M,在DA上,且DM=DA,第三次碰撞点为N,在DC上,且DN=DC,第四次碰撞点为G,在CB上,且CG=BC,第五次碰撞点为H,在DA上,且AH=AD,第六次碰撞点为Z,在AB上,且AZ=AD,第七次碰撞点为I,在BC上,且BI=AD,第八次碰撞点为D,再反方向可到E,由勾股定理可以得出EF=HZ==,FM=GH=ID=,MN=NG=,ZI=,P所经过的路程为(×2+×3+×2+)×2=.故选:B.二、填空题(共8小题,每小题6分,满分48分)11.(6分)对任意实数k,直线y=kx+(2k+1)恒过一定点,该定点的坐标是(﹣2,1).【解答】解:∵y=kx+(2k+1)∴y=k(x+2)+1,∴图象恒过一点是(﹣2,1),故答案为(﹣2,1).12.(62,底面半径为,∠AOB=135°,经圆锥的侧面从A到B的最短距离为2.【解答】解:如右图所示,是圆锥侧面展开的一部分,∵圆锥母线长为2,底面半径为,∠AOB=135°,∴,作AD⊥SB于点D,∵SA=SB=2,∴展开的扇形所对的圆心角为,∴在Rt△SAD中,AD=SD=,∴BD=SB﹣SD=2﹣,∴AB==,故答案为:2.13.(6分)设(3x﹣2)6=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6,那么a1+a2+a3+a4+a5+a6= 1﹣26.【解答】解:由题意可知a0=(﹣2)6,令x=1,则1=a0+a1+a2+a3+a4+a5+a6,因此a1+a2+a3+a4+a5+a6=1﹣a0=1﹣(﹣2)6=1﹣26.故答案为:1﹣26.14.(6分)如图,向正五边形ABCDE区域内均匀掷点,落在五边形FGHJK区域内的概率为.【解答】解:正五边形ABCDE,∴∠BAE=∠ABC=BCD=∠CDE∠AED=108°,AB=BC=CD=DE=AE,∴△ABC≌△ABE,∴AC=BE,同理:△ABH≌△△BCG≌△AJE,∴AH=CG=JE,∴HJ=HG,同理:FG=FK=JK=HG,∴五边形HGFKJ是正五边形,∴正五边形HGFKJ∽正五边形ACBDE,设HE=CD=a,HJ=x,由题意,△HAB∽△ABE,∴,∴x=∴落在五边形FGHJK区域内的概率为=,故答案为.15.(6分)函数y=kx﹣1与y=x2的图象交于两点(x1,y1)(x2,y2),若+=18,【解答】解:∵函数y=kx﹣1与y=x2的图象交于两点(x1,y1)(x2,y2),∴,消去y得x2﹣kx+1=0,∴x1+x2=k,x1x2=1,∴+====18,∴k(k2﹣2)﹣k=18,解答k=3.故答案为3.16.(6分)在△ABC中,∠C=90°,D、E分别是BC、CA上的点,且BD=AC,AE=CD,BE、AD相交于点P,则∠BPD=45°.【解答】解:作AF∥CD,DF∥AC,AF交DF于点F,∴四边形ACDF是平行四边形.∵∠C=90°∴四边形ACDF是矩形,∴CD=AF,AC=DF,∠EAF=∠FDB=∠AFD=90°.∵BD=AC,AE=CD∴△BDF和△AEF是等腰直角三角形,∴∠AFE=∠DFB=45°,∴∠DFE=45°,∴∠EFB=90°.∴∠EFB=∠AFD.∴△BDF∽△AEF,∵∠EFB=∠AFD,∴△ADF∽△EBF∴∠PAF=∠PEF∴∠APE=∠AFE∵∠AFE=45°∴∠APE=45°17.(6分)函数y=2+的最大值为.【解答】解:根据题意得:,解得:1≤x≤2,由柯西不等式得:y=2+≤•=×=(当且仅当2=,即x=时,取等号),故函数y=2+的最大值为.故答案为:.18.(6分)若x≥y≥z,则(2x+1)(2y+1)(2z+1)=13xyz的正整数解(x,y,z)为(45,7,1)或(19,9,1).【解答】解:∵(2x+1),(2y+1),(2z+1)都是奇数,∴x,y,z都是奇数,∵(2x+1)(2y+1)(2z+1)=13xyz,∴(2+)(2+)(2+)=13,∵x≥y≥z,如果z≥3,那么(2+)(2+)(2+)≤(2+)2=<13,∴z=1,∴3(2x+1)(2y+1)=13xy,化简得:xy=6(x+y)+3,则x==6+,∵39的因子有:1,3,12,39,∴y﹣6=1,3,13,39,∴y=7,9,19,45,∴x的对应只有:45,19,9,7,∵x>y,∴正整数解(x,y,z)为:(45,7,1)或(19,9,1).故答案为:(45,7,1)或(19,9,1).三、解答题(共2小题,满分42分)19.(22分)正方形ABCD边长为2,与函数x=(x>0)的图象交于E、F两点,其中E位于线段CD上,正方形ABCD可向右平移,初始位置如图所示,此时,△DEF的面积为.正方形ABCD在向右平移过程中,位于线段EF上方部分的面积记为S,设C点坐标为(t,0)(1)求k的值;(2)试写出S与t的函数关系式及自变量t的取值范围;(3)若S=2,求t的值;(4)正方形ABCD在向右平移过程中,是否存在某些位置,沿线段EF折叠,使得D点恰好落在BC边上?若存在,确定这些位置对应t的值得大致范围(误差不超过0.1);若不存在,说明理由.=(2﹣)2=,【解答】解:(1)由题设可知S△DEF解得k=1或7(不合题意,舍去),∴k=1;(2)①如图1,当2≤t≤时,因为C点坐标为(t,0),所以E点坐标为(t,),所以DE=2﹣,而F点坐标为(,2),所以DF=t﹣,所以S=DE•DF=(2﹣)(t﹣)=t+﹣1;②如图2,当t>时,此时OB=t﹣2,所以F点的坐标为(t﹣2,),所以AF=2﹣,所以S=•2•(DE+AF)=•2•(2﹣+2﹣)=4﹣﹣;(3)当2≤t≤时,DE和DF随t的增大而增大,S也类似,故当t=时S有最大值为<2,所以S=2只可能发生在t>时,令4﹣﹣=2,解得t=;(4)①如图3,当2≤t≤时,假设位置存在,由对称性知Rt△FDE∽Rt△DCD1,因为DE=D1E,则有=,其中D1C==,整理得:t(t﹣1)=4,解得t=>,与假设矛盾,所以当2≤t≤时,不存在;②如图4,当t>时,假设位置存在,过F作直线FG∥x轴交CD于G,由对称性可知Rt△FGE≌Rt△DCD1,DE=D1E,所以GE=D1C,而GE=﹣,整理可得t(t﹣1)(t﹣2)2=1,设y=t(t﹣1)(t﹣2)2,当t>2时,y随t的增大而增大,取t=2.5,则y=0.9375<1,取t=2.6,则y=1.4976>1,利用试值法可以判断位置存在且唯一,对应的t的取值在2.5和2.6之间.20.(20分)(1)求函数y=|x﹣1|+|x﹣3|的最小值及对应自变量x的取值;(2)求函数y=|x﹣1|+|x﹣2|+|x﹣3|的最小值及对应自变量x的取值;(3)求函数y=|x﹣1|+|x﹣2|+…+|x﹣n|的最小值及对应自变量x的取值;(4)求函数y=|x﹣1|+|2x﹣1|+…+|8x﹣1|+|9x﹣1|的最小值及对应自变量x 的取值.【解答】解:(1)函数y=|x﹣1|+|x﹣3|的最小值的几何意义是数轴上x到1和3两点距离之和的最小值,∵两点之间线段最短,∴当1<x<3时,y min=|3﹣1|=2,(2)∵y=|x﹣1|+|x﹣2|+|x﹣3|=(|x﹣1|+|x﹣3|)+|x﹣2|,当x=2时,|x﹣2|有最小值,∴结合(1)的结论得出,当x=2时,y min=2+0=2,(3)当n为偶数时,y=|x﹣1|+|x﹣2|+…+|x﹣n|=(|x﹣1|+|x﹣n|)+(|x﹣2|+|x﹣(n﹣1)|)+…+(|x﹣|+|x﹣(+1)|),由(1)知,当<x<+1时,|x﹣1|+|x﹣n|有最小值n﹣1,|x﹣2|+|x﹣(n﹣1)|有最小值(n﹣1)﹣2=n﹣3,…2019年四川省成都七中自主招生考试数学试卷(含详细解析)|x﹣|+|x ﹣(+1)|有最小值1,∴当<x<+1时,y min=1+3+5+…+(n ﹣3)+(n﹣1)=,当n为奇数时,y=|x﹣1|+|x﹣2|+…+|x﹣n|=(|x﹣1|+|x﹣n|)+(|x﹣2|+|x ﹣(n﹣1)|)+…+(|x﹣|+|x ﹣(+1)|)+|x﹣|,由(1)知,当x=时,|x﹣1|+|x﹣n|有最小值n﹣1,|x﹣2|+|x﹣(n﹣1)|有最小值(n﹣1)﹣2=n﹣3,…|x﹣|+|x﹣(+1)|有最小值1,|x﹣|的最小值为0,∴当x=时,ymin=0+2+4+…+(n﹣3)+(n﹣1)=,(4)类似(3)的做法可知,y=|x﹣a1|+|x﹣a2|+…+|x﹣a n|,如果n为偶数时,当时,y有最小值,如果n为奇数时,当x=时,y有最小值;∵y=|x﹣1|+|2x﹣1|+…+|8x﹣1|+|9x ﹣1|=++…++|x﹣1|∴共有9+8+7+…+2+1=45项,为奇数.∴当x=时,ymin=|﹣1|+|﹣1|+…+|﹣1|+|﹣1|=第21页(共21页)。

四川省成都市第七中学2019届高三上学期入学考试数学(文)试题(解析版)

四川省成都市第七中学2019届高三上学期入学考试数学(文)试题(解析版)

四川省成都市第七中学2019届高三上学期入学考试数学(文)试题(解析版)一、选择题(本大题共12小题,共60.0分)1. i 是虚数单位,复数31i i-+的虚部是( ) A. 2iB. 2i -C. 2D. 2-【答案】C 【解析】解:i 是虚数单位, 复数()()()()31324121112i i i i i i i i ----===-++-, 复数的虚部为:2.故选:C .利用复数的运算法则和复数的定义即可得出复数的虚部.本题考查了复数的运算法则和复数的基本概念,属于基础题.2. 已知集合{1,A =-0,1,2},1{|1}B x x=<,则(A B ⋂= ) A. {}0,1B. {}1,2C. {}1,0-D. {}1,2- 【答案】D 【解析】解:由111x x⇒或0x <, 即{1B x x =或0}x <,{1,A =-0,1,2},{}1,2A B ∴⋂=-,故选:D .求出集合,利用集合的交集定义进行计算即可.本题主要考查集合的基本运算,求出集合的等价条件是解决本题的关键.3. 命题“00x ∃>,001x e x -<”的否定是(( )A. 0x ∀>,1x e x ->B. 0x ∀<,1x e x ->C. 0x ∀>,1x e x -≥D. 0x ∀≤,1x e x -≥【答案】C 【解析】解:因为特称命题的否定是全称命题,所以:命题“00x ∃>,001x e x -<”的否定是0x ∀>,1x e x -≥.故选:C .利用特称命题的否定是全称命题写出结果即可. 本题考查命题的否定,特称命题与全称命题的否定关系,是基本知识的考查.4. 现在,人们出行非常注重绿色交通方式,第一种方式:骑单车或步行,第二种方式:乘地铁或公交.经统计,在某校采用绿色交通方式上学的学生中,只需第一种方式的概率为0.3,只需第二种方式的概率为0.5,则两种方式都需要的概率是( )A. 0.15B. 0.2C. 0.25D. 0.8【答案】B 【解析】解:人们出行非常注重绿色交通方式,第一种方式:骑单车或步行, 第二种方式:乘地铁或公交.经统计,在某校采用绿色交通方式上学的学生中,只需第一种方式的概率为0.3,只需第二种方式的概率为0.5,则两种方式都需要的概率是10.30.50.2p =--=.故选:B .利用对立事件概率计算公式直接求解.本题考查概率的求法,考查互斥事件概率计算公式等基础知识,考查运算求解能力,是基础题.5. 若平面向量a ,b 满足()2a b b -⊥,则下列各式恒成立的是( ) A. a b a += B. a b b += C. a b a -= D. a b b -= 【答案】C 【解析】解:()2a b b -⊥()20a b b ∴-⋅= 即22a b b ⋅=。

成都七中2019学年上期2019级半期考试数学试卷

成都七中2019学年上期2019级半期考试数学试卷

成都七中2019学年上期2019级半期考试数学试卷(参考答案)考试时间:120分钟 总分:150分一.选择题(每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求.)CDBA DACB BCAC二、填空题:本大题共4小题,每题4分,共16分,把答案填在题中的横线上 13. {x|x<3,且x≠0} 14. [-1,1]15. (1,3) 16. ① ② ④三.解答题(17-21每小题12分,22题14分,共74分.解答应写出文字说明,证明过程或演算步骤.)17.解:(1)由0x 1x 1>-+,得01x 1x <-+,则1x 1<<-, ∴}1x 1|x {A <<-=. ……3分由0x 3≥-,得3x ≤,}3x |x {B ≤=. ……6分(2)}1x 1|x {B A <<-= ; ……9分又}1x ,1x |x {A C R ≥-≤=或,C R B={x|x>3},∴}3x |x {)B C ()A C (R R >= . ……12分18.解:(1)由04mx x 2=++有实根,得016m 2≥-=∆,则4m -≤或4m ≥; ……2分由0m 2x 2x 2=-+有实根,得0m 84≥+=∆,则21m -≥. ……4分 综上得4m -≤或21m -≥. ……6分 (2)由⎩⎨⎧>-=<-=-0m 23)1(g 0m 2)2(g ,得⎪⎩⎪⎨⎧<>23m 0m ,则23m 0<< . ……12分 19.解:当1x 0≤<时,x A P =,2x )x (f = ; ……2分 当2x 1≤<时,2)1x (1AP -+=,1)1x ()x (f 2+-= ; ……4分 当3x 2≤<时,2)x 3(1AP -+=,1)3x ()x (f 2+-=; ……6分 当4x 3≤<时,x 4A P -=,2)x 4()x (f -= . ……8分∴⎪⎪⎩⎪⎪⎨⎧∈-∈+-∈+-∈=4)(3,x )4x (]3,2(x 1)3x (]2,1(x 1)1x (]1,0(x x y 2222. ……10分……12分 20.解:令x 2t =,则22)(2+-=at at t g (4t 41≤≤) 当0a =时,32)(≠=t g ,舍去a=0; ……4分 当0a ≠时,a t a t g -+-=2)1()(2;当a>0时,328)4()(max =+==a g t g ,∴81a =. ……7分 当a<0时,32)(max =-=a t g ,∴1a -=. ……10分 综上,81a =或1a -=. ……12分 21.解:(1)由x≠0,f(x)为奇函数,得0)x (f )x (f =+- ∴2c=0,即c=0,xb ax )x (f +=. 又f(x)的图象过A 、B ,则⎪⎩⎪⎨⎧-=+=+12b a 21b a ,解得⎩⎨⎧=-=2b 1a . ∴x2x )x (f +-= (x≠0). ……4分 x(2)证明:设任意x 1,x 2∈(0,+∞),且x 1<x 2. ∴2112221121x 2x 2)x x ()x 2x ()x 2x ()x (f )x (f -+-=+--+-=- 211212x x )x x (2)x x (-+-= 212112x x )2x x )(x x (+-=. 由x 1,x 2∈(0,+∞),得x 1x 2>0,x 1x 2+2>0. 由x 1<x 2,得0x x 12>-.∴0)x (f )x (f 21>-,即)x (f )x (f 21>. ∴函数x2x )x (f +-=在(0,+∞)上为减函数. ……8分 (3)由f(x)为奇函数,知f(x)在(0,∞-)也为减函数. 当]1,2[x --∈时,1)1(f )x (f min -=-= 当]2,1[x ∈时,1)2(f )x (f min -==综上,1)x (f min -=,从而1|1t |≤-∴2t 0≤≤. ……12分22.解:(1)由函数n mx x f +=)(的图像经过点A (1,2),B (-1,0), 得2=+n m ,0-=+n m ,解得1==n m ,从而1)(+=x x f . ……2分 由函数x p x h 2)(=(p>0)与函数1)(+=x x f 的图像只有一个交点, 得 012-=+x p x ,0442=-=∆p ,又0>p ,从而1=p ,()h x ∴=x ≥0). ……4分(2)2()11)F x x =-= (x ≥0).1=,即1x =时,min ()0F x =. ……6分 )x (F 在[0,1]为减函数,在[1,)+∞为增函数. ……8分(3)原方程可化为x 4log x a log )1x (log 224---=-, 即()x 41x log x 4log )1x (log 21x a log 2222-⋅-=-+-=-. ⎪⎩⎪⎨⎧+--=<<<⇔⎪⎪⎩⎪⎪⎨⎧--=->->->-⇔5)3x (a a x 4x 1)x 4)(1x (x a 0x a 0x 401x 2 . ……10分 令5)3x (y 2+--=,y=a.如图所示,①当4a 1≤<时,原方程有一解a 53x --=; ②当5a 4<<时,原方程有两解a 53x 1--=,a 53x 2-+=; ③当a=5时,原方程有一解x=3; ④当1a ≤或5a >时,原方程无解. ……14分。

成都七中2018-2019学年度下期高三入学考试数学(理)试题

成都七中2018-2019学年度下期高三入学考试数学(理)试题
成都七中高 2019 届高三下入学考试数学(理科)
(本试卷满分 150 分,考试时间 120 分钟)
一、 选择题(本大题 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有 一项是符合题目要求的)
1、
已知
i
是虚数单位,若
2

i

z(1
i)
,则
z
的共轭复数

z
对应的点在复平面的(
.
4、 执行如右图所示的程序框图,则输出的 k 为
A. 7
B. 8
C. 9
D. 10
5、 已知等边△ABC 内接于圆 O , D 为线段 OA 的中点,则 BD ( )
A . 2 BA 1 BC 36
B . 4 BA 1 BC 36
C . 2 BA 5 BC 36
D . 2 BA 1 BC 33
A. 2
B. 3
C.2
D. 5
10、已知 cos(3π ) 2sin( π ) ,则 tan( π ) =( )
2
3
6
3
3
3
3
A.
B.
C.
D.
3
9
3
9
C1
11、如图,在等腰 Rt△ABC 中,斜边 AB 2 ,D 为直角边 BC 上
A
的一点,将△ACD 沿直线 AD 折叠至△AC1D 的位置,使得点 C1 在
B H
D
平面 ABD外,且点 C1 在平面 ABD 上的射影 H 在线段 AB 上,设
C
AH x ,则 x 的取值范围是( )
A . 1, 2
B .

2019年四川省成都七中自主招生数学试卷(含答案解析)

2019年四川省成都七中自主招生数学试卷(含答案解析)

2019年四川省成都七中自主招生数学试卷副标题一、选择题(本大题共12小题,共60.0分)1. 若M =5x 2−12xy +10y 2−6x −4y +13(x 、y 为实数),则M 的值一定是( )A. 非负数B. 负数C. 正数D. 零 2. 将一个棱长为m(m >2且m 为正整数)的正方体木块的表面染上红色,然后切成m 3个棱长为1的小正方体,发现只有一个表面染有红色的小正方体的数量是恰有两个表面染有红色的小正方体的数量的12倍,则m 等于( ) A. 16 B. 18 C. 26 D. 32 3. 已知6a 2−100a +7=0以及7b 2−100b +6=0,且ab ≠1,则ab 的值为( )A. 503B. 67C.1007D. 764. 若a =√3√2+√3+√5,b=2+√6−√10,则ab 的值为( )A. 12B. 14√2+√3√6+√105. 满足|ab|+|a −b|−1=0的整数对(a,b)共有( )A. 4个B. 5个C. 6个D. 7个6. 在凸四边形ABCD 中,E 为BC 边的中点,BD 与AE 相交于点O ,且BO =DO ,AO =2EO ,则S △ACD :S △ABD 的值为( ) A. 2:5 B. 1:3 C. 2:3 D. 1:27. 从1到2019连续自然数的平方和12+22+32+⋯+20192的个位数字是( )A. 0B. 1C. 5D. 9 8. 已知x +y +z =0,且1x+1+1y+2+1z+3=0,则代数式(x +1)2+(y +2)2+(z +3)2的值为( ) A. 3 B. 14 C. 16 D. 369. 将一枚六个面编号分别为1、2、3、4、5、6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为a ,第二次掷出的点数为b ,则使关于x 、y 的方程组{ax +by =22x +y =3,只有正数解的概率为( ) A. 112B. 16C. 518D. 133610. 方程3a 2−8a −3b −1=0,当a 取遍0到5的所有实数值时,则满足方程的整数b 的个数是( ) A. 12个 B. 13个 C. 14个 D. 15个11. 若一个三角形的三边和为40,且各边长均为整数,则符合条件的三角形的个数为( ) A. 31个 B. 32个 C. 33个 D. 34个12. 若关于x 的方程x 2+ax +b −3=0有实根,则a 2+(b −4)2的最小值为( )A. 0B. 1C. 4D. 9二、填空题(本大题共7小题,共52.0分)13.已知x=3+√132,则代数式x4−3x3−3x+1的值为______.14.在正十边形的10个顶点中,任取4个顶点,那么以这4个顶点为顶点的梯形有______个.15.在Rt△ABC中,∠C=90°,AC=1,BC=2,D为AB中点,E为边BC上一点,将△ADE沿DE翻折得到△A′DE,使△A′DE与△BDE重叠部分的面积占△ABE面积的14,则BE的长为______.16.已知关于x的方程√x2−2x+1−√x2−4x+4+2√x2−6x+9=m恰好有两个实数解,则m的取值范围为______.17.如图,PA切⊙O于点A,PE交⊙O于点F、E,过点A作AB⊥PO于点D,交⊙O于点B,连接DF,若sin∠BAO=23,PE=5DF,则PFPE=______.18.如图,四边形ABCD中,AB=AD=5,BC=DC=12,∠B=∠D=90°.M和N分别是线段AD和线段BC上的点,且满足BN=DM,则线段MN的最小值为______.19.若−12<x<1,x1+x−2x2=a0+a1x+a2x2+a3x3…+a n x n,则a2+a3=______.三、解答题(本大题共2小题,共38.0分)20.已知二次函数y=x2+(a−7)x+6,反比例函数y=ax(1)当a=2时,求这两个函数图象的交点坐标;(2)若这两个函数的图象的交点不止一个,且交点横、纵坐标都是整数,求符合条件的正整数a的值;(3)若这两个函数的交点都在直线x=12的右侧,求a的取值范围.21.已知:四边形ABCD中,点E、F分别为边AD、AB上的点,连接BE、DF相交于点G,且满足∠ADF=∠ABE(1)如图1,若DE=BG=n,cos∠AEB=23,GE=3,求AE的长(用含n的代数式表示);(2)如图2,若ABCD为矩形,G恰为BE中点,连接CG,AE=1,作点A关于BE,求DE的长.的对称点A′,A′到CG的距离为3√24答案和解析1.【答案】A【解析】解:M =5x 2−12xy +10y 2−6x −4y +13=4x 2−12xy +9y 2+y 2−4y +4+x 2−6x +9=(2x −3y)2+(y −2)2+(x −3)2≥0,故M 一定是非负数. 故选:A .通过配方法配出平方根,从而判断M 值的大小.本题考查了配方法的应用,熟练配方法的应用是解答此题的关键. 2.【答案】C【解析】解:将一个棱长为m(m >2且m 为正整数)的正方体木块的表面染上红色,然后切成m 3个棱长为1的小正方体,则只有一个表面染有红色的小正方体的数量为6(m −2)2, 恰有两个表面染有红色的小正方体的数量12(m −2),∵只有一个表面染有红色的小正方体的数量是恰有两个表面染有红色的小正方体的数量的12倍,∴6(m −2)2=12×12(m −2), 解得m 1=26,m 2=2(舍去), 故选:C .只有一个表面染有红色的小正方体的数量为6(m −2)2,恰有两个表面染有红色的小正方体的数量12(m −2),根据只有一个表面染有红色的小正方体的数量是恰有两个表面染有红色的小正方体的数量的12倍,即可得到m 的值. 本题主要考查了正方体,解决问题的关键是抓住表面涂色的正方体切割小正方体的特点:1面涂色的在面上,2面涂色的在棱长上,3面涂色的在顶点处,没有涂色的在内部,由此即可解决此类问题. 3.【答案】D【解析】解:∵7b 2−100b +6=0, ∴6×1b 2−100×1b+7=0,∵6a 2−100a +7=0,∴a 、1b 是方程6x 2−100x +7=0的两根, ∴由根与系数的关系可知:ab =76,故选:D .根据根与系数的关系即可求出答案. 本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型. 4.【答案】B【解析】解:a =√3√2+√3+√5√2+√3−√5√2+√3−√5=√3(√2+√3−√5)2√6=√2(√2+√3−√5)4=b4.∴ab =14. 故选:B . 将a 乘以√2+√3−√5√2+√3−√5可化简为关于b 的式子,从而得到a 和b 的关系,继而能得出ab 的值.本题考查二次根式的乘除法,有一定难度,关键是在分母有理化时要观察b的形式.5.【答案】C【解析】解:∵|ab|+|a−b|=1,∴0≤|ab|≤1,0≤|a−b|≤1,∵a,b是整数,∴|ab|=0,|a−b|=1或|a−b|=0,|ab|=1①当|ab|=0,|a−b|=1时,Ⅰ、当a=0时,b=±1,∴整数对(a,b)为(0,1)或(0,−1),Ⅱ、当b=0时,a=±1,∴整数对(a,b)为(1,0)或(−1,0),②当|a−b|=0,|ab|=1时,∴a=b,∴a2=b2=1,∴a=1,b=1或a=−1,b=−1,∴整数对(a,b)为(1,1)或(−1,−1),即:满足|ab|+|a−b|=1的所有整数对(a,b)为(0,1)或(0,−1)或(1,0)或(−1,0)或(1,1)或(−1,−1).∴满足|ab|+|a−b|−1=0的整数对(a,b)共有6个.故选:C.先判断出|ab|=0,|a−b|=1或|a−b|=0,|ab|=1,再借助a,b是整数即可得出结论.此题考查了绝对值,以及数对,分类讨论的思想,确定出|ab|=0,|a−b|=1或|a−b|= 0,|ab|=1是解题的关键.6.【答案】D【解析】解:如图,过点B作BF//AD交AE延长线于F,连接OC,∵BF//AD∴∠F=∠DAO∵BO=DO,∠BOF=∠DOA∴△FOB≌△AOD(AAS)∴FO=AO∵AO=2EO∴FO=2EO∴EO=EF,∵E为BC边的中点∴BE=CE∵∠BEF=∠CEO∴△BEF≌△CEO(SAS)∴∠BFE=∠COE∴BF//OCAD//OC∴S△ACD=S△AOD,∵BD=2OD∴S△ABD=2S△AOD,∴S△ABD=2S△ACD∴S△ACD:S△ABD=1:2;故选:D .过点B 作BF//AD 交AE 延长线于F ,连接OC ,先证明△FOB≌△AOD ,再证明△BEF≌△CEO ,可得AD//OC ,可得S △ACD =S △AOD ,由S △ABD =2S △AOD ,可得S △ACD :S △ABD =1:2;本题考查了全等三角形判定和性质,三角形面积,平行线间的距离等知识点,有一定的难度,解题关键是作平行线构造全等三角形. 7.【答案】A【解析】解:以2为指数的幂的末位数字是1,4,9,6,5,6,9,4,1,0依次循环的,∵2019÷10=201…9,(1+4+9+6+5+6+9+4+1+0)×201+(1+4+9+6+5+6+9+4+1) =45×201+45 =9045+45 =9090,∴12+22+32+42+⋯+20192的个位数字是0. 故选:A .由题中可以看出,故个位的数字是以10为周期变化的,用2019÷10,计算一下看看有多少个周期即可.此题主要考查了找规律,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的关键是找到以2为指数的末位数字的循环规律. 8.【答案】D【解析】解:∵x +y +z =0,且1x+1+1y+2+1z+3=0,[(x +1)2+(y +2)2+(z +3)2][12+12+12]≥[(1×(x +1)+1×(y +2)+1×(z +3)]2=(x +y +z +6)2(x +1)2+(y +2)2+(z +3)2≥36∴(x +1)2+(y +2)2+(z +3)2的值为36. 故选:D .根据已知条件可得x 、y 、z 的值即可求解.本题考查了分式的加减法,解决本题的关键是合理分析已知条件. 9.【答案】B【解析】解:①当a −2b =0时,方程组无解;②当a −2b ≠0时,方程组的解为由a 、b 的实际意义为1,2,3,4,5,6可得. 易知a ,b 都为大于0的整数,则两式联合求解可得x =3b−22b−a ,y =4−3a2b−a , ∵使x 、y 都大于0则有x =3b−22b−a >0,y =4−3a2b−a >0, ∴解得a <43,b >23或者a >43,b <23,∵a ,b 都为1到6的整数,∴可知当a 为1时b 只能是1,2,3,4,5,6;或者a 为2,3,4,5,6时b 无解, 这两种情况的总出现可能有6种; (1,1)(1,2)(1,3)(1,4)(1,5)(1,6),又掷两次骰子出现的基本事件共6×6=36种情况,故所求概率为=636=16, 故选:B .首先分两种情况:①当a −2b =0时,方程组无解;②当a −2b ≠0时,方程组的解为由a 、b 的实际意义为1,2,3,4,5,6可得.把方程组两式联合求解可得x =3b−22b−a ,y =4−3a2b−a ,再由x 、y 都大于0可得x =3b−22b−a >0,y =4−3a 2b−a>0,求出a 、b 的范围,列举出a ,b 所有的可能结果,然后求出有正数解时,所有的可能,进而求出概率.此题主要考查了列表法求概率,以及二元一次方程的解法,题目综合性较强. 10.【答案】B【解析】解:∵3a 2−8a −3b −1=0, ∴b =a 2−83a −13=(a −43)2−259,∵0≤a ≤5, ∴−43≤a −43≤113, ∴0≤(a −43)2≤1219, ∴−259≤(a −43)2−259≤969,即−259≤b ≤969,∴整数b =−2,−1,0,1,…,10,共13个,故选:B .首先将方程3a 2−8a −3b −1=0进行变形,变成用含a 的代数式表示b ,然后把含a 的代数式配方,再根据a 的取值求出b 的取值范围,由于是求b 的整数的个数,所以再找b 的取值范围内的整数解即可.此题主要考查了利用配方法求一元二次方程的整数根,做此题的关键是用含a 的代数式表示b ,然后根据a 的取值求b 的取值,综合性较强,难度不大. 11.【答案】C【解析】解:根据题意得三角形的三边都小于20, 设最小的两边为x ≤y ≤19,x +y >20 当x =2时,y =19, 当x =3时,y =18, 当x =4时,y =17,18, 当x =5时,y =16,17, 当x =6时,y =15,16,17, 当x =7时,y =14,15,16, 当x =8时,y =13,14,15,16, 当x =9时,y =12,13,14,15,当x =10时,y =11,12,13,14,15, 当x =11时,y =11,12,13,14, 当x =12时,y =12,13,14, 当x =13时,y =13,符合条件的三角形的个数为1+1+2+2+3+3+4+4+5+4+3+1=33, 故选:C .首首先根据三角形的两边之和大于第三边以及三边和为40长,得到三角形的三边都必须小于20;再结合三角形的两边之差小于第三边进行分析出所有符合条件的整数.本题考查了三角形三边关系,关键是列出约束条件.12.【答案】B【解析】解:由x2+ax+b−3=0知b关于a的函数解析式为b+ax+x2−3=0,∵a2+(b−4)2的最小值可看做点(a,b)到(0,4)距离的最小值,则两点的距离d=2√12+x2=2√x2+1=√x2+1≥1,∴点(a,b)到(0,4)距离的最小值为1,即a2+(b−4)2的最小值为1,故选:B.由x2+ax+b−3=0知b关于a的函数解析式为b+ax+x2−3=0,而a2+(b−4)2的最小值可看做点(a,b)到(0,4)距离的最小值,再根据点到直线的距离公式求解可得.本题主要考查两点间的距离公式,熟练掌握公式的定义是解题关键.13.【答案】2【解析】解:当x=3+√132时,原式=x4−3x3−3x+1=(x2)2−3x(x2+1)+1=[(3+√132)2]2−3×3+√132[(3+√132)2+1]+1=(11+3√132)2−3×3+√132×13+3√132+1=119+33√132−117+33√132+1=1+1=2.故答案为:2.将原式适当变形,再代入进行计算便可.本题主要考查了求整式的值,二次根式的计算,适当进行整式的变形,可以减小计算的难度.14.【答案】60【解析】解:设正十边形为A1A2 (10)以A1A2为底边的梯形有A1A2A3A10、A1A2A4A9、A1A2A5A8共3个.同理分别以A2A3、A3A4、A4A5、…、A9A10、A10A1为底边的梯形各有3个,这样,合计有30个梯形.以A1A3为底边的梯形有A1A3A4A10、A1A3A5A9共2个.同理分别以A2A4、A3A5、A4A6、…、A9A1、A10A2为底边的梯形各有2个,这样,合计有20个梯形.以A1A4为底边的梯形只有A1A4A5A101个.同理分别以A2A5、A3A6、A4A7、…、A9A2、A10A3为底边的梯形各有1个,这样,合计有10个梯形,则以4个顶点为顶点的梯形有:30+20+10=60(个),故答案为:60.分以A1A2为底边、A1A3为底边、A1A4为底边,根据梯形的概念、正多边形的性质解答.本题考查的是梯形的概念、正多边形的性质,灵活运用分情况讨论思想是解题的关键.15.【答案】√52【解析】解:如图,连接AA′,延长ED交AA′于点M∵∠C=90°,AC=1,BC=2,∴AB=√AC2+BC2=√5∵D为AB中点,∴AD=DB=√5 2∵将△ADE沿DE翻折得到△A′DE,∴AD=A′D,AE=A′E∴ED垂直平分AA′∴EM⊥AA′,∵AD=DB=AA′=√5 2∴△ABA′是直角三角形∴∠AA′B=90°,即AA′⊥A′B∴ME//A′B∴∠MEF=∠FA′B,∵△A′DE与△BDE重叠部分的面积占△ABE面积的14,∴S△DEF=14S△AEB,∴DF=14AB=12DB∴DF=FB,且∠MEF=∠FA′B,∠A′FB=∠EFD ∴△A′FB≌△EFD(AAS)∴EF=A′F,且DF=FB,∠EFB=∠A′FD∴△BFE≌△DFA′(SAS)∴AD=BE=√5 2故答案为:√52连接AA′,延长ED交AA′于点M,由勾股定理可求AB=√5,可得AD=DB=√52,由折叠的性质可得AD=A′D=DB,AE=A′E,可得AA′⊥A′B,EM⊥AA′,由题意可得DF= BF,由“AAS”可证△A′FB≌△EFD,可得EF=A′F,由“SAS”可得△BFE≌△DFA′,即可求BE的长.本题考查了翻折变换,勾股定理,直角三角形的判定和性质,全等三角形的判定和性质,证明△A′FB≌△EFD是本题的关键.16.【答案】1≤m<3或m>3【解析】解:原方程变形为:|x−1|−|x−2|+2|x−3|=m,①当x≥3时,x−1−(x−2)+2(x−3)=m,x=m+52≥3,∴m=2x−5,此时m≥1;②当2≤x<3时,x−1−(x−2)+2(3−x)=m,x=7−m 2∴m=7−2x,此时1<m≤3;③当1≤x<2时,x−1−(2−x)+2(3−x)=m,∴m=3(不符合题意);④当x<1时,1−x−(2−x)+2(3−x)=m,∴m=5−2x,此时m>3.恰好有两个实数解,所以1≤m<3或m>3,故答案为1≤m<3或m>3.解无理方程关键是要去掉根号,将其转化为整式方程.解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.本题主要考查无理方程,解题的关键是掌握二次根式的性质、绝对值的性质等知识点.17.【答案】310【解析】解:连接OE,如图,∵AB⊥PO,∴∠ADO=90°,在Rt△ADO中,sin∠DAO=ODOA =23,设OD=2x,OA=3x,∵PA切⊙O于点A,∴OA⊥PA,∴∠APO=∠OAD,在Rt△APO中,sin∠APO=OAOP =23,∴OP=32×3x=92x,∵∠APD=∠OPA,∴Rt△PAD∽Rt△POA,∴PD:PA=PA:PO,即PA2=PD⋅PO,∵PA切⊙O于点A,PE交⊙O于点F、∴PA2=PF⋅PE,∴PD⋅PO=PF⋅PE,即PF:PO=PD:PE,而∠DPF=∠EPO,∴△PDF∽△PEO,∴DFOE =PFPO,∴PF=92x3x⋅DF=32DF,而PE=5DF,∴PFPE =32DF5DF=310.故答案为310.连接OE,如图,利用正切的定义得到sin∠DAO=ODOA =23,则可设OD=2x,OA=3x,再根据切线的性质得OA⊥PA,所以∠APO=∠OAD,利用正弦的定义得到OP=92x,证明Rt△PAD∽Rt△POA,利用相似比得到PA2=PD⋅PO,而PA2=PF⋅PE,所以PD⋅PO=PF⋅PE,则可判断△PDF∽△PEO,利用相似比得到PF=32DF,然后利用PE=5DF可得到PFPE的值.本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了切线的性质和切割线定理.18.【答案】60√213【解析】解:连接BD交AC于H,作∠ABC的平分线BP,交AC于P,连接PD,作PE⊥BC于E,连接PM、PN,如图所示:则PN≥PE,在△ABC和△ADC中,{AB=AD BC=DC AC=AC,∴△ABC≌△ADC(SSS),∴∠BAP=∠DAP,在△ABP和△ADP中,{AB=AD∠BAP=∠DAP AP=AP,∴△ABP≌△ADP(SAS),∴∠ABP=∠ADP=12∠ABC=45°,BP=DP,∵∠ABP=∠NBP=12∠ABC=45°,∴∠NBP=∠MDP,在△NBP和△MDP中,{BN=DM∠NBP=∠MDP BP=DP,∴△NBP≌△MDP(SAS),∴PM=PN,∠BPN=∠DPM,∴∠BPD=∠MPN,∵BP=DP,PM=PN,∴∠BDP=∠DBP=∠MNP=∠NMP,∴△PMN∽△PBD,∴MNBD =PNBP≥PEPB,∵sin∠NBP=PEPB =sin45°=√22,∴MNBD ≥√22,∴MN≥√22BD,在△ABH和△ADH中,{AB=AD∠BAH=∠DAH AH=AH,∴△ABH≌△ADH(SAS),∴BH=DH,∠BHA=∠DHA=90°,AC=√AB2+BC2=√52+122=13,S△ABC=12AB⋅BC=12BH⋅AC,∴BH=AB⋅BCAC =5×1213=6013,∴BD=2BH=12013,∴MN≥√22×12013=60√213,∴线段MN的最小值为60√213,故答案为:60√213.连接BD交AC于H,作∠ABC的平分线BP,交AC于P,连接PD,作PE⊥BC于E,连接PM、PN,则PN≥PE,证明△ABC≌△ADC(SSS),得出∠BAP=∠DAP,证明△ABP≌△ADP(SAS),得出∠ABP=∠ADP=12∠ABC=45°,BP=DP,易证∠NBP=∠MDP,证明△NBP≌△MDP(SAS),得出PM=PN,∠BPN=∠DPM,推出∠BPD=∠MPN,证出∠BDP=∠DBP=∠MNP=∠NMP,得出△PMN∽△PBD,则MNBD =PNBP≥PEPB,由sin∠NBP=PEPB =sin45°=√22,推出MNBD≥√22,即MN≥√22BD,证明△ABH≌△ADH(SAS),得出BH=DH,∠BHA=∠DHA=90°,AC=√AB2+BC2=13,由S△ABC=1 2AB⋅BC=12BH⋅AC,求出BH=6013,得出BD=2BH=12013,即可得出结果.本题考查了相似三角形的判定与性质、全等三角形的判定与性质、勾股定理、三角函数等知识;本题综合性强,证明三角形相似和三角形全等是解题的关键. 19.【答案】2【解析】解:x =(1+x −2x 2)(a 0+a 1x +a 2x 2+a 3x 3…+a n x n ), 当x =0时,a 0=0,∴1=(1+x −2x 2)(a 1+a 2x +a 3x 2…+a n x n−1), 当x =0时,a 1=1,a 1+a 2=0,a 2+a 3−2a 1=0, ∴a 2=−1,a 3=3, ∴a 3+a 2=2, 故答案为2.先去分母,第一次赋值x =0求出a 0=0,再化简式子为1=(1+x −2x 2)(a 1+a 2x +a 3x 2…+a n x n−1),第二次赋值x =0,求出a 1=1,再由等式的性质得到a 1+a 2=0,a 2+a 3−2a 1=0即可求解.本题考查数字的变化规律;能够通过所给例子,找到式子的规律,给式子恰当的赋值运算是解题的关键.20.【答案】解:(1)联立y =x 2+(a −7)x +6,y =ax 并整理得:x 3+(a −7)x 2+6x −a =0…①,a =2时,上式为:(x −1)(x 2−4x +2)=0, 解得:x =1或2+√2或2−√2,故函数交点坐标为:(1,2)或(2+√2,2−√2)或(2+√2,2−√2); (2)①式中含有(x −1)的因式,即:(x −1)[x 2+(a −6)x +a]=0, 故其中一个根:x =1,a 为正整数,x 2+(a −6)x +a =0方程有一个到两个的根, △=(a −6)2−4a ≥0,交点横、纵坐标都是整数,则△一定是完全平方数(设为k), 即(a −6)2−4a =k 2(k 为非负整数), 整理得:(a −8)2−k 2=28,即:(a −8+k)(a −8−k)=28=4×7=2×14=1×28, 而a −8+k ≥a −8−k ,当a −8+k =7,a −8−k =4时,解得:a =13.5(舍去); 当a −8+k =14,a −8−k =2时,解得:a =16; 当a −8+k =28,a −8−k =1时,a =23.5(舍去); 故a =16;(3)两个函数的交点都在直线x =12的右侧,只会出现如下图所示的情况,两个函数三个交点在x =12的右侧,其中一个交点横坐标为x =1在x =12的右侧, 故只需要确定x 2+(a −6)x +a =0根的情况,只要左侧的根在x =12右侧即可, 解上述方程得:x =6−a±√a 2−16a+362,即6−a−√a2−16a+362>12,解得:a >116.故:a 的取值范围为:a >116.【解析】(1)联立y =x 2+(a −7)x +6,y =ax 并整理得:x 3+(a −7)x 2+6x −a =0,a =2时,上式为:(x −1)(x 2−4x +2)=0,即可求解;(2)(x −1)[x 2+(a −6)x +a]=0,故其中一个根:x =1,a 为正整数,x 2+(a −6)x +a =0方程有一个到两个的根,△=(a −6)2−4a ≥0,交点横、纵坐标都是整数,则△一定是完全平方数(设为k),即(a −6)2−4a =k 2(k 为非负整数),讨论确定a 的值; (3)两个函数的交点都在直线x =12的右侧,两个函数三个交点在x =12的右侧,其中一个交点横坐标为x =1在x =12的右侧,即6−a−√a2−16a+362>12,即可求解.本题考查的是二次函数与反比例函数的交点问题、根的判别式、整数的性质,涉及面较广,难度较大.21.【答案】解:(1)作GH ⊥AD 于H ,AI ⊥BE 于I , ∵GE =3,cos∠AEB =23,∴EH =2,HG =√5,设AE =3x ,则EI =2x ,AI =√5x ,∴GI =3−2x ,BI =BG +GI =n +3−2x , ∴DH =DE +EH =n +2, ∵∠ADF =∠ABE ,∴∠DHG =∠AIB =90°, ∴△GHD∽△AIB , ∴DH BI=HG AI,∴n+2n+3−2x =√5√5x , 解得:x =n+3n+4, ∴AE =3x =3n+9n+4;(2)如图2,连接AA′交BE 于M ,连接按个,作A′N ⊥CG 于N ,∵四边形ABCD 为矩形,G 恰为BE 中点,∴CG =DG ,∴∠GCD =∠GDC ,∴∠BCG =∠ADG =∠ABE =90°−∠CBG , ∴∠BCG +∠CBG =90°, ∴CG ⊥BE ,∵AA′⊥BE ,A′N ⊥CG , ∴四边形MA′NG 是矩形, ∴GM =A′N =3√24,设ME =x ,则AG =BG =GE =x +34√2, ∴AM 2=AG 2−GM 2=AE 2−EM 2=(x +3√24)2−(34√2)2=1−x 2, 解得:x =√24,∴BG =GE =ME +GM =√2, ∴BE =2√2,∵∠ABE =∠BCG , ∴△GCB∽△ABE , ∴BC BE =BG AE,∴2√2=√21, 解得:BC =4,∴AD =BC =4, ∴DE =AD −AE =4−1=3.【解析】(1)作GH ⊥AD 于H ,AI ⊥BE 于I ,根据已知条件得到EH =2,HG =√2,设AE =3x ,则EI =2x ,AI =√5x ,得到GI =3−2x ,BI =BG +GI =n +3−2x ,根据相似三角形的性质得到AE =3x =3n+9n+4;(2)如图2,连接AA′交BE 于M ,连接按个,作A′N ⊥CG 于N ,根据矩形的性质得到CG =DG ,求得∠GCD =∠GDC ,推出四边形MA′NG 是矩形,得到GM =A′N =3√24,设ME =x ,则AG =BG =GE =x +34√2,根据勾股定理列方程得到BG =GE =ME +GM =√2,求得BE =2√2,根据相似三角形的性质即可得到结论.本题考查了矩形的性质,相似三角形的判定和性质,轴对称的性质,勾股定理,正确的作出辅助线是解题的关键.。

成都七中数学考试题及答案

成都七中数学考试题及答案

成都七中数学考试题及答案成都七中作为中国四川省内知名的重点中学,其数学考试题目通常具有较高的难度和创新性。

以下是一套模拟的成都七中数学考试题及答案,仅供参考。

一、选择题(每题4分,共20分)1. 下列哪个选项不是实数集R的子集?A. 有理数集QB. 整数集ZC. 无理数集D. 复数集C答案:D2. 若函数\( f(x) = x^2 - 4x + 4 \),则\( f(2) \)的值为:A. 0B. 4C. 8D. -4答案:A3. 已知三角形ABC的三个内角分别为A、B、C,若\( \sin A + \sinB + \sinC = 2 \),则三角形ABC的类型是:A. 直角三角形B. 等边三角形C. 等腰三角形D. 钝角三角形答案:B4. 一个圆的半径为1,圆心到直线的距离为0.5,那么直线与圆的位置关系是:A. 相离B. 相切C. 相交D. 直线经过圆心答案:B5. 已知等差数列的前n项和为S,若\( S_{10} = 100 \),且\( a_1 = 2 \),则第10项\( a_{10} \)的值为:A. 12B. 14C. 16D. 18答案:A二、填空题(每题5分,共15分)6. 若\( \cos \alpha = \frac{4}{5} \),且\( \alpha \)为锐角,则\( \sin \alpha = \frac{3}{5} \)。

7. 一个长方体的长、宽、高分别为a、b、c,若体积为120,且a=4b,则c的值为\( \frac{15}{b} \)。

8. 已知\( e^x = 3 \),则\( x = \ln 3 \)。

三、解答题(共65分)9.(15分)证明:若\( a, b, c \)为正数,且\( a + b + c = 1 \),则\( \sqrt{a} + \sqrt{b} + \sqrt{c} \leq \frac{3}{2} \)。

证明:略10.(20分)已知函数\( f(x) = \ln(x) + x^2 \),求\( f(x) \)在区间[1, e]上的最大值和最小值。

2019届四川省成都市第七中学高三上学期入学考试数学(文)试题(解析版)

2019届四川省成都市第七中学高三上学期入学考试数学(文)试题(解析版)

四川省成都市第七中学2019届高三上学期入学考试数学(文)试题一、选择题(本大题共12小题,共60.0分)1.i是虚数单位,复数的虚部是A. 2iB.C. 2D.【答案】C【解析】解:i是虚数单位,复数,复数的虚部为:2.故选:C.利用复数的运算法则和复数的定义即可得出复数的虚部.本题考查了复数的运算法则和复数的基本概念,属于基础题.2.已知集合0,1,,,则A. B. C. D.【答案】D【解析】解:由或,即或,0,1,,,故选:D.求出集合,利用集合的交集定义进行计算即可.本题主要考查集合的基本运算,求出集合的等价条件是解决本题的关键.3.命题“,”的否定是A. ,B. ,C. ,D. ,【答案】C【解析】解:因为特称命题的否定是全称命题,所以:命题“,”的否定是,.故选:C.利用特称命题的否定是全称命题写出结果即可.本题考查命题的否定,特称命题与全称命题的否定关系,是基本知识的考查.4.现在,人们出行非常注重绿色交通方式,第一种方式:骑单车或步行,第二种方式:乘地铁或公交经统计,在某校采用绿色交通方式上学的学生中,只需第一种方式的概率为,只需第二种方式的概率为,则两种方式都需要的概率是A. B. C. D.【答案】B【解析】解:人们出行非常注重绿色交通方式,第一种方式:骑单车或步行,第二种方式:乘地铁或公交.经统计,在某校采用绿色交通方式上学的学生中,只需第一种方式的概率为,只需第二种方式的概率为,则两种方式都需要的概率是.故选:B.利用对立事件概率计算公式直接求解.本题考查概率的求法,考查互斥事件概率计算公式等基础知识,考查运算求解能力,是基础题.5.若平面向量,满足,则下列各式恒成立的是A. B. C. D.【答案】C【解析】解:即即故选:C.先由得出,再将等式两边同时加运算即可本题考查了向量数量积的性质和运算,并考查了向量垂直的充要条件6.已知平面,直线m,n满足,,则“”是“”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】解:,,当时,成立,即充分性成立,当时,不一定成立,即必要性不成立,则“”是“”的充分不必要条件.故选:A.根据线面平行的定义和性质以及充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,根据线面平行的定义和性质是解决本题的关键,是基础题.7.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为参考数据:,,A. 12B. 24C. 36D. 48【答案】B【解析】解:模拟执行程序,可得:,,不满足条件,,,不满足条件,,,满足条件,退出循环,输出n的值为24.故选:B.列出循环过程中S与n的数值,满足判断框的条件即可结束循环.本题考查循环框图的应用,考查了计算能力,注意判断框的条件的应用,属于基础题.8.在等比数列中,,且,则A. 4B. 8C. 16D. 32【答案】C【解析】解:在等比数列中,,且,,解得,.故选:C.利用等比数列通项公式列出方程组,求出首项和公比,由此能求出.本题考查等比数列的第11项的求法,考查等比数列的性质等基础知识,考查运算求解能力,是基础题.9.设的内角A,B,C的对边分别为a,b,c,且,则的大小为A. B. C. D.【答案】C【解析】解:,由正弦定理可得:,可得:,可得:,,,,解得:,,.故选:C.由正弦定理,内角和定理,两角和的正弦函数公式化简已知等式可得,结合,可求,结合范围,可求A的值.本题主要考查了正弦定理,内角和定理,两角和的正弦函数公式在解三角形中的应用,考查了转化思想,属于基础题.10.若函数的图象关于原点对称,则实数a等于A. B. C. 1 D. 2【答案】A【解析】解:根据题意,函数的图象关于原点对称,即函数为奇函数,则有,即,变形可得:,解可得;故选:A.根据题意,由函数奇偶性的定义可得数为奇函数,则有,即,变形解可得a的值,即可得答案.本题考查函数的奇偶性的性质以及应用,注意奇函数的定义,属于基础题.11.如图是函数其中,的部分图象,则的值为A. B. C. D.【答案】B【解析】解:根据函数其中,的部分图象,可得,求得,再根据五点法作图可得,,函数,则,故选:B.由周期求出,由五点法作图求出的值,可得的解析式,再利用诱导公式求的值.本题主要考查由函数的部分图象求解析式,由周期求出,由五点法作图求出的值,利用诱导公式求三角函数的值,属于基础题.12.经过点的直线l与两条坐标轴的正半轴分别交于A、B两点,则的最小值为A. 2B.C.D. 4【答案】D【解析】解:设直线l:,,令,可得,令,可得,得,.则,当且仅当,由,可得时,取最小值4,故选:D.设直线l的点斜式方程,求出A,B两点的坐标,代入的解析式,使用基本不等式,求出最小值,注意检验等号成立条件.本题考查了直线的点斜式方程,以及基本不等式的应用:求最值,考查运算能力,属于中档题.二、填空题(本大题共4小题,共20.0分)13.设,,则事件A:发生的概率为______.【答案】【解析】解:设,,基本事件总数构成的几何区域是以1为边长的正方形OABC,事件A:,,事件A构成的可行域区域是,事件A:发生的概率为:.正方形故答案为:.设,,则基本事件总数构成的几何区域是以1为边长的正方形OABC,事件A:,构成的可行域区域是,由此利用几何概型能求出事件A 发生的概率.本题考查概率的求法,考查几何概型、古典概型的计算等基础知识,考查运算求解能力,考查数形结合思想,是中档题.14.某几何体的三视图如图所示,则该几何体的体积为______【答案】【解析】解:根据几何体的三视图,得出该几何体是圆柱,挖去一部分,如图.结合图中数据它的体积故答案为:.根据几何体的三视图,得出该几何体是圆柱,挖去一部分,结合图中数据求出它的体积.本题考查了空间几何体三视图的应用问题,解题的关键是根据三视图得出几何体的结构特征,是基础题目.15.求值:______.【答案】【解析】解:.故答案为:.化切为弦,通分后利用两角和的余弦变形,然后展开倍角公式得答案.本题考查三角函数的化简求值,考查倍角公式与两角和的余弦,是中档题.16.若双曲线的左支上存在点P与右焦点F关于其中一条渐近线对称,则该双曲线的离心率为______.【答案】【解析】解:过右焦点F且垂直渐近线的直线方程为:,联立渐近线方程与,解之可得,故对称中心的点坐标为,,由中点坐标公式可得对称点的坐标为,,将其代入双曲线的方程可得,结合,化简可得,故可得.故答案为:.求出过焦点F且垂直渐近线的直线方程,联立渐近线方程,解方程组可得对称中心的点的坐标,代入双曲线方程结合,由离心率公式解出e即得.本题考查双曲线的简单性质,涉及离心率的求解和对称问题,属中档题.三、解答题(本大题共7小题)17.设等差数列的前n项和为,已知.Ⅰ求和;Ⅱ求证:,.【答案】解:Ⅰ设等差数列的公差为d,则,解得,,;证明:Ⅱ由,.【解析】根据题意可得,由方程组得出,,求解即可得出通项公式和求和公式.,根利用裂项求和法能求出数列的前n项和,放缩证明即可.本题考查数列的通项公式和前n项和的求法,是中档题,解题时要认真审题,注意裂项求和法的合理运用.18.如图,在三棱柱中,,,.Ⅰ求证:;Ⅱ若平面平面,且,求该三棱柱的体积.【答案】证明:取AB的中点O,连结OC,,,,,,是正三角形,,又,平面,又平面,C.解:Ⅱ平面平面,,平面ABC,,,,又,,,,该三棱柱的体积.【解析】取AB的中点O,连结OC,,推导出,,从而平面,由此能证明C.Ⅱ推导出平面ABC,,由此能求出该三棱柱的体积.本题考查线线垂直的证明,考查三棱柱的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.19.大型中华传统文化电视节目《中国诗词大会》以“赏中华诗词,寻文化基因,品生活之美”为宗旨,深受广大观众喜爱,各基层单位也通过各种形式积极组织、选拔和推荐参赛选手某单位制定规则如下:凡报名参赛的诗词爱好者必须先后通过笔试和面试,方可获得入围CCTV正赛的推荐资格;笔试成绩不低于85分的选手进入面试,面试成绩最高的3人获得推荐资格在该单位最近组织的一次选拔活动中,随机抽取了一个笔试成绩的样本,并据此绘制成频率分布直方图如图左同时,也绘制了所有面试成绩的茎叶图如图右,单位:分.Ⅰ估计该单位本次报名参赛的诗词爱好者的总人数;Ⅱ若从面试成绩高于不含中位数的选手中随机选取2人,求其中至少有一人获得推荐资格的概率.【答案】解:Ⅰ由频率分布直方图知笔试成绩不低于85分的频率为:,又由茎叶图知参加面试的人数为15,估计该单位本次报名参赛的诗词爱好者的总人数为人.Ⅱ面试成绩高于不含中位数分的选手有7人,其中获得推荐资格的有3人,设为a,b,c,d,E,F,G,从中随机抽取2人,共有21种不同结果,分别为:,,,,,,,,,,,,,,,,,,,,,其中,不含推荐资格的人选有6种情况,其中至少有一人获得推荐资格的概率.【解析】Ⅰ由频率分布直方图得到笔试成绩不低于85分的频率为,由茎叶图知参加面试的人数为15,由此能估计该单位本次报名参赛的诗词爱好者的总人数.Ⅱ面试成绩高于不含中位数分的选手有7人,其中获得推荐资格的有3人,设为a,b,c,d,E,F,G,从中随机抽取2人,利用列举法能求出其中至少有一人获得推荐资格的概率.本题考查频率分布直方图、茎叶图的应用,考查概率的求法,考查列举法等基础知识,考查运算求解能力,考查函数与方程思想,是基础题20.设动圆P经过点,且与圆G:为圆心相切.Ⅰ求动圆圆心P的轨迹E;Ⅱ设经过F的直线l与轨迹E交于A、B两点,且满足的点H也在轨迹E上,求直线l的方程.【答案】解:Ⅰ圆G的圆心,半径为,由圆P与圆G相切,得,由椭圆定义知:动圆圆心P的轨迹E是以F,G为焦点且长轴长为的椭圆,其方程为.Ⅱ设直线l的方程为一定存在,代入,并整理,得:,恒成立,设,,则,设,由,得,即,点H在轨迹E上,,即,解得,舍负.直线l的方程为.【解析】Ⅰ圆G的圆心,半径为,由圆P与圆G相切,推导出动圆圆心P 的轨迹E是以F,G为焦点且长轴长为的椭圆,由此能求出结果.Ⅱ设直线l的方程为一定存在,代入,得:,利用根的判别式、韦达定理,结合已知条件能求出直线l的方程.本题考查动圆圆心的轨迹的求法,考查直线方程的求法,考查圆、椭圆、直线方程、韦达定理、向量知识等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.21.已知函数,其中a为常数,为自然对数的底数.Ⅰ当时,求经过原点且与曲线相切的直线方程;Ⅱ当时,函数的最小值为,求的最大值.【答案】解:Ⅰ当时,,,设切点坐标为,则切线方程为,将代入可得,解得,故经过原点且与曲线相切的直线方程为,即,Ⅱ,由,解得,由,解得,函数在上单调递增,在单调递减,函数在上最小值只可能在或处取得,若,此时,此时,满足题意,若,则,解得,此时,矛盾,故时,函数在上单调递增,在单调递减,的最大值为.【解析】Ⅰ设切点坐标为,则切线方程为,将代入即可求出t的值,可的切线方程,Ⅱ先求导函数的单调区间,则可得函数在上最小值只可能在或处取得,根据函数的最小值为,求出,再求出最大值即可.本题考查了导数的几何意义和导数和函数的最值的关系,考查了运算能力和转化能力,属于中档题22.在平面直角坐标系xOy中,直线l的参数方程为其中t为参数,且,在以O为极点、x轴的非负半轴为极轴的极坐标系两种坐标系取相同的单位长度中,曲线C的极坐标方程为,设直线l经过定点P,且与曲线C交于A、B两点.Ⅰ求点P的直角坐标及曲线C的直角坐标方程;Ⅱ求证:不论a为何值时,为定值.【答案】解:Ⅰ直线l的参数方程为其中t为参数,且,时,得点,即点P的直角坐标为;又曲线C的极坐标方程为,,,,即曲线C的直角坐标方程为;Ⅱ证明:将直线l的参数方程代入,整理得,其中,,,;;即不论a为何值时,都为定值1.【解析】Ⅰ由题意求得直线l过定点,化曲线C的极坐标方程为直角坐标方程即可;Ⅱ将直线l的参数方程代入曲线C的直角坐标方程,根据参数t的几何意义,利用根与系数的关系求得为定值.本题考查了参数方程与极坐标的应用问题,也考查了直线与抛物线的方程与应用问题,是中档题.23.已知不等式的解集为M.Ⅰ求M;Ⅱ设m为M中的最大元素,正数a,b满足,求的最大值.【答案】解:Ⅰ设函数,则为所求.Ⅱ由已知,,则,故的最大值为当且仅当,即,时取等【解析】Ⅰ分3段去绝对值解不等式,再相并;Ⅱ先平方求出最大值,再开方.本题考查了绝对值不等式的解法,属中档题.。

2019届四川省成都市第七中学高三上学期入学考试数学(理)试题(解析版)

2019届四川省成都市第七中学高三上学期入学考试数学(理)试题(解析版)

四川省成都市第七中学2019届高三上学期入学考试数学(理)试题(解析版)一、选择题(本大题共12小题,共60.0分)1.若复数为纯虚数其中i是虚数单位,则实数a的值为A. B. C. 1 D. 2【答案】D【解析】解:为纯虚数,,即.故选:D.利用复数代数形式的乘除运算化简,再由实部为0且虚部不为0列式求解.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.2.设集合0,1,,,则的真子集个数为A. 1B. 3C. 5D. 7【答案】B【解析】解:由<1得,-1<0,>0,x>1或x<0,B=B={x|x>1或x<0,又A=(-1,0,1,2},A∩B=,,则A∩B的真子集个数22-1=3,故选:B.先将<1变形为>,再求解集,然后由n元集合真子集个数为2n-1即可.本小题考查了方式不等式的解法,集合的子集个数3.若平面向量,满足,则下列各式恒成立的是A. B. C. D.【答案】C【解析】解:即即故选:C.先由得出,再将等式两边同时加运算即可本题考查了向量数量积的性质和运算,并考查了向量垂直的充要条件4.已知平面,直线m,n满足,,则“”是“”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】解:,,当时,成立,即充分性成立,当时,不一定成立,即必要性不成立,则“”是“”的充分不必要条件.故选:A.根据线面平行的定义和性质以及充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,根据线面平行的定义和性质是解决本题的关键,是基础题.5.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为参考数据:,,A. 12B. 24C. 36D. 48【答案】B【解析】解:模拟执行程序,可得:,,不满足条件,,,不满足条件,,,满足条件,退出循环,输出n的值为24.故选:B.列出循环过程中S与n的数值,满足判断框的条件即可结束循环.本题考查循环框图的应用,考查了计算能力,注意判断框的条件的应用,属于基础题.6.若,则的最小值是A. 1B.C. 2D. 4【答案】D【解析】解:,,则,当且仅当时取等号,此时最小值是4,故选:D.由,可得,从而即可求解本题主要考查了利用基本不等式求解最值,属于基础试题7.设的内角A,B,C的对边分别为a,b,c,且,则的大小为A. B. C. D.【答案】C【解析】解:,由正弦定理可得:,可得:,可得:,,,,解得:,,.故选:C.由正弦定理,内角和定理,两角和的正弦函数公式化简已知等式可得,结合,可求,结合范围,可求A的值.本题主要考查了正弦定理,内角和定理,两角和的正弦函数公式在解三角形中的应用,考查了转化思想,属于基础题.8.若函数的图象关于原点对称,则实数a等于A. B. C. 1 D. 2【答案】A【解析】解:根据题意,函数的图象关于原点对称,即函数为奇函数,则有,即,变形可得:,解可得;故选:A.根据题意,由函数奇偶性的定义可得数为奇函数,则有,即,变形解可得a的值,即可得答案.本题考查函数的奇偶性的性质以及应用,注意奇函数的定义,属于基础题.9.在的展开式中,已知各项系数之和为64,则的系数是A. 10B. 20C. 30D. 40【答案】B【解析】解:在的展开式中,令,可得展开式各项系数之和为,,则,则的系数是,故选:B.令,可得展开式各项系数之和为,由此求得n的值再把按照二项式定理展开,可得的系数.本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.10.如图是函数其中,的部分图象,则的值为A. B. C. D.【答案】B【解析】解:根据函数其中,的部分图象,可得,求得,再根据五点法作图可得,,函数,则,故选:B.由周期求出,由五点法作图求出的值,可得的解析式,再利用诱导公式求的值.本题主要考查由函数的部分图象求解析式,由周期求出,由五点法作图求出的值,利用诱导公式求三角函数的值,属于基础题.11.若双曲线上存在点P与右焦点F关于其渐近线对称,则该双曲线的离心率为A. B. C. 2 D.【答案】D【解析】解:过右焦点F且垂直渐近线的直线方程为:,联立渐近线方程与,解之可得,,故对称中心的点坐标为,由中点坐标公式可得对称点的坐标为,将其代入双曲线的方程可得,结合,化简可得,故可得.故选:D.求出过焦点F且垂直渐近线的直线方程,联立渐近线方程,解方程组可得对称中心的点的坐标,代入双曲线方程结合,由离心率公式解出e即得.本题考查双曲线的简单性质,涉及离心率的求解和对称问题,属中档题.12.在体育选修课排球模块基本功发球测试中,计分规则如下满分为10分:每人可发球7次,每成功一次记1分;若连续两次发球成功加分,连续三次发球成功加1分,连续四次发球成功加分,以此类推,,连续七次发球成功加3分假设某同学每次发球成功的概率为,且各次发球之间相互独立,则该同学在测试中恰好得5分的概率是A. B. C. D.【答案】C【解析】解:该同学在测试中恰好得5分包含两种情况:一种是四次发球功,且连续两次发球成功的情况出现两次,概率为:,一种是四次发球成功,且连续三次发球成功,概率为:,该同学在测试中恰好得5分的概率是.故选:C.该同学在测试中恰好得5分包含两种情况:一种是四次发球功,且连续两次发球成功的情况出现两次;一种是四次发球成功,且连续三次发球成功由此能求出该同学在测试中恰好得5分的概率.本题考查概率的求法,考查相互独立事件概率乘法公式、互斥事件概率加法公式等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.二、填空题(本大题共4小题,共20.0分)13.如图,EFGH是圆O的内接正方形,将一颗豆子随机扔到圆O内,记事件A:“豆子落在正方形EFGH内”,事件B:“豆子落在扇形阴影部分内”,则条件概率______.【答案】【解析】解:如图,EFGH是圆O的内接正方形,将一颗豆子随机扔到圆O内,记事件A:“豆子落在正方形EFGH内”,事件B:“豆子落在扇形阴影部分内”,设正方形边长为a,,,条件概率.故答案为:.设正方形边长为a,求出,,条件概率,由此能求出结果.本题考查概率的求法,考查条件概型等基础知识,考查运算求解能力,考查化归与转化思想,是基础题.14.某几何体的三视图如图所示,则该几何体的体积为______【答案】【解析】解:根据几何体的三视图,得出该几何体是圆柱,挖去一部分,如图.结合图中数据它的体积故答案为:.根据几何体的三视图,得出该几何体是圆柱,挖去一部分,结合图中数据求出它的体积.本题考查了空间几何体三视图的应用问题,解题的关键是根据三视图得出几何体的结构特征,是基础题目.15.______.【答案】8【解析】解:原式.故答案为:8原式分子第二项利用同角三角函数间的基本关系化简,分母第一项利用二倍角的余弦函数公式化简,分子分母乘以,分子利用两角和与差的正弦函数公式化简,分母利用二倍角的正弦函数公式化简,约分即可得到结果.此题考查了二倍角的正弦、余弦函数公式,两角和与差的正弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.16.有如下结论:若无穷等比数列的公比q满足,则它的各项和.已知函数,则的图象与x轴围成的所有图形的面积之和为______.【答案】4【解析】解:当时,,与x轴围成的封闭图形面积为:;当时,故当时,函数图象与x轴围成的封闭图形长扩大2倍,高缩小到,故面积为:;同理,当时,函数图象与x轴围成的封闭图形面积为:;故的图象与x轴围成的所有图形的面积构成一个首项为,公比为的无穷等比数列,故的图象与x轴围成的所有图形的面积之和,故答案为:4.由已知可得的图象与x轴围成的所有图形的面积构成一个首项为,公比为的无穷等比数列,进而得到答案.本题考查的知识点是等比数列求和,定积分,函数图象和性质,难度中档.三、解答题(本大题共7小题)17.已知数列满足,且,其中.Ⅰ求的通项公式;Ⅱ求证:.【答案】解:Ⅰ数列满足,且,即,由累加法得,故的通项公式为,.证明Ⅱ由,.【解析】Ⅰ利用累加法即可求出通项公式,Ⅱ利用放缩法和裂项求和即可证明本题考查了通项公式的求法和放缩法和裂项求和证明不等式,属于中档题18.如图,在三棱柱中,,,.Ⅰ求证:;Ⅱ若平面平面,且直线与平面ABC所成角为,求二面角的余弦值.【答案】证明:Ⅰ取AB中点O,连结OC,OA,,,,,为正三角形,,,平面,又平面,C.解:Ⅱ由平面平面及,得,即,设,则,,如图建立空间直角坐标系,则0,,,0,,,0,,由,得平面的一个法向量为,平面的法向量0,,,二面角的大小为钝角,二面角的余弦值为.【解析】Ⅰ取AB中点O,连结OC,OA,则,,从而平面,由此能证明C.Ⅱ由平面平面及,得,从而,设,则,,建立空间直角坐标系,利用向量法能求出二面角的余弦值.本题考查线线垂直的证明,考查二面角的余弦值的求法,考查运算求解能力,考查函数与方程思想,考查化归与转化思想,是中档题.19.大型中华传统文化电视节目《中国诗词大会》以“赏中华诗词,寻文化基因,品生活之美”为宗旨,深受广大观众喜爱,各基层单位也通过各种形式积极组织、选拔和推荐参赛选手某单位制定规则如下:凡报名参赛的诗词爱好者必须先后通过笔试和面试,方可获得入围CCTV正赛的推荐资格;笔试成绩不低于85分的选手进入面试,面试成绩最高的3人获得推荐资格在该单位最近组织的一次选拔活动中,随机抽取了一个笔试成绩的样本,据此绘制成频率分布直方图如图同时,也绘制了所有面试成绩的茎叶图如图2,单位:分.Ⅰ估计该单位本次报名参赛的诗词爱好者的总人数;Ⅱ若从面试成绩高于不含中位数的选手中随机选取3人,设其中获得推荐资格的人数为,求随机变量的分布列及数学期望.【答案】解:Ⅰ由频率分布直方图知笔试成绩不低于85分的频率为,由茎叶图知参加面试的人数为15人,所以估计该单位本次报名参赛的诗词爱好者的总人数为人;Ⅱ面试成绩高于不含中位数的选手有7人,其中获得推荐资格的有3人;所以从7人中随机选取3人,获得推荐资格的人数,1,2,3;计算,,,;所以随机变量的分布列为:数学期望为.【解析】Ⅰ由频率分布直方图求出对应的频率,利用茎叶图估算所求的总人数;Ⅱ根据题意知的可能数值,计算对应的概率值,写出分布列,求出数学期望值.本题考查了频率分布直方图与数学期望的计算问题,是中档题.20.设动圆P经过点,且与圆G:为圆心相切.Ⅰ求动圆圆心P的轨迹E;Ⅱ设经过F的直线与轨迹E交于A、B两点,且满足的点H也在轨迹E上,求四边形GAHB的面积.【答案】解:Ⅰ圆G的圆心,半径为,由圆P与圆G相切,得,由椭圆定义可知,动圆圆心P的轨迹是以F,G为焦点且长轴长为的椭圆,其方程为.Ⅱ设直线l的方程为,一定存在,代入,并整理得,恒成立,设,,则,.设,由,得,即,又点H在轨迹E上,故,即,解得,舍负,平行四边形GAHB的面积:,代入,得四边形GAHB的面积.【解析】Ⅰ圆G的圆心,半径为,由圆P与圆G相切,利用椭圆定义可知,动圆圆心P的轨迹是以F,G为焦点且长轴长为的椭圆,由此能求出结果.Ⅱ设直线l的方程为,一定存在,代入,并整理得,由此利用根据的判别式、韦达定理、向量知识,结合已知条件能求出四边形GAHB的面积.本题考查动圆的圆心的轨迹方程的求法,考查四边形面积的求法,考查圆、椭圆、直线方程、韦达定理、弦长公式公式等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.21.已知函数,其中a为常数,为自然对数的底数.Ⅰ若在区间上的最小值为1,求a之值;Ⅱ若“,使”为假命题,求a的取值范围.【答案】解:Ⅰ的导数为,由时,,递增;由时,,递减,可得处取得最大值,即有的最小值只能在或处取得.若,可得,此时,矛盾;若,解得,此时,成立,综上可得;Ⅱ若“,使”为假命题,可得,为真,,可得即恒成立,设,,由,在递增,,,可得在存在零点t,即有,即,即,当时,,即,递减;当时,,即,递增,可得,可得.【解析】Ⅰ求得的导数,可得单调区间和最值,由题意可得的最小值只能在或处取得分别解方程即可得到所求值;Ⅱ若“,使”为假命题,可得,为真,由参数分离和构造函数法,结合导数判断单调性和函数零点存在定理,即可得到所求范围.本题考查导数的运用:求单调性和极值、最值,考查转化思想和分类讨论思想方法,构造函数法,考查化简运算能力和推理能力,属于难题.22.在平面直角坐标系xOy中,直线l的参数方程为其中t为参数,且,在以O为极点、x轴的非负半轴为极轴的极坐标系两种坐标系取相同的单位长度中,曲线C的极坐标方程为,设直线l经过定点P,且与曲线C交于A、B两点.Ⅰ求点P的直角坐标及曲线C的直角坐标方程;Ⅱ求证:不论a为何值时,为定值.【答案】解:Ⅰ直线l的参数方程为其中t为参数,且,时,得点,即点P的直角坐标为;又曲线C的极坐标方程为,,,,即曲线C的直角坐标方程为;Ⅱ证明:将直线l的参数方程代入,整理得,其中,,,;;即不论a为何值时,都为定值1.【解析】Ⅰ由题意求得直线l过定点,化曲线C的极坐标方程为直角坐标方程即可;Ⅱ将直线l的参数方程代入曲线C的直角坐标方程,根据参数t的几何意义,利用根与系数的关系求得为定值.本题考查了参数方程与极坐标的应用问题,也考查了直线与抛物线的方程与应用问题,是中档题.23.已知不等式的解集为M.Ⅰ求M;Ⅱ设m为M中的最大元素,正数a,b满足,求的最大值.【答案】解:Ⅰ设函数,则为所求.Ⅱ由已知,,则,故的最大值为当且仅当,即,时取等【解析】Ⅰ分3段去绝对值解不等式,再相并;Ⅱ先平方求出最大值,再开方.本题考查了绝对值不等式的解法,属中档题.。

成都七中育才学校初2019 届九年级上期入学考试数学试题

成都七中育才学校初2019 届九年级上期入学考试数学试题

初2019届九年级上数学入学考试题命题人:郑文钊 审题人: 薛成权、黄典平班级: 姓名: 学号:A 卷(100分)一、选择题(每小题3分,共30分) 1.不等式2x+4>0的解集是( )A .x >2B .x <2C .x >-2 D.x <-22.观察下列各式:①2a+b和a+b ;②)(5b a m -和b a +-;③)(3b a +和b a --;④22y x - 和22y x +;其中有公因式的是( )A .①②B .②③C .③④ D.①④ 3.已知=(a ≠0,b ≠0),下列变形错误的是( )A .=B .2a=3bC .=D .3a=2b 4.如图,菱形ABCD 中,对角线AC ,BD 相交于点O ,若AB=5,AC=6,则BD 的长是( ) A .8B .7C .4D .35.方程2650x x +-=的左边配成完全平方后所得方程为 ( )A.14)3(2=-x B. 2(3)4x += C. ()5.062=+x D.14)3(2=+x .6.若分式3342-+-x x x 的值为0,则x 的值为( )A .3B .1C .3或1D .3-7.如图,已知DE ∥BC ,EF ∥AB ,则下列比例式中错误的是( ) A .AC AE AB AD = B.FB EA CF CE = C.BDAD BC DE =D.CB CFAB EF = 8.如图,将△ABC 绕点A 逆时针旋转100°,得到△ADE .若点D 在线段BC 的延长线上,则∠B 的大小为( )A .30°B .40°C .50°D .60°9.如图小正方形边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )A B C D10.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF ,连接AE 、BF 相交于点O ,下列结论:①AE=BF;②AO=OE;③AE⊥BF;④S △AOB =S 四边形DFOE ,其中正确的有( ) A .1个 B .2个 C .3个 D .4个OCBEFDAAB二、填空题(每小题4分,共16分)11.分解因式:39a a - = ;12. 已知关于x 的不等式组无解,则a 的取值范围是 ;13.已知△ABC ∽△A ′B ′C ′,且相似比为4:3,两个三角形的面积之差为21㎝2,则△ABC 的面积为 ;14.小明借助没有刻度的直尺,按照下图的顺序作出了∠O 的平分线OP ,他这样做的数学原理是 .三、解答题15.(每小题5分)(1)解方程:322=-x x (2)解方程:.4161222-=-+-x x x16.(每小题6分)(1)解不等式组,并写出该不等式组的最大整数解.⎪⎩⎪⎨⎧->+≥--13215)2(35x x x x(2)先化简,再求值:x x x x x x x x 343196342222--÷⎪⎪⎭⎫ ⎝⎛-++-+-,其中22-=x .17.(6分)已知关于x 的方程04222=+++k kx x 有两个相等的实数根,求k 的值.18.(8分)如图:已知在平行四边形ABCD 中,E 、F 是对角线BD 上的两点,BE=DF ,点G 、H 分别在BA和DC 的延长线上且AG=CH ,连结GE 、EH 、HF 、FG . 求证:四边形GEHF 是平行四边形.19.(8分)甲、乙两地相距300公里,一辆货车与一辆轿车都从甲地开往乙地,货车比轿车早出发5小时,轿车比货车晚到30分钟,已知轿车与货车的速度比为5∶2. (1)求两车的速度;(2)由于石油资源紧缺,93#的汽油价由原来的3.15元/升涨到现在3.40元/升,若该辆货车行驶100公里耗油10升,每天从甲、乙往返..一次,则该辆货车现在一个月(30天)用油款比原来多多少元?HGFED C B A20.(10分)如图1,正方形ABCD 中,AB=6,将一块直角三角板放在正方形ABCD 上,使三角板的直角顶点与D 点重合.三角板的一边交AB 于点P ,另一边交BC 的延长线于点Q . (1)求证:DP=DQ ;(2)如图2,小明在图1的基础上作∠PDQ 的平分线DE 交BC 于点E ,连接PE ,他发现PE 和QE 存在一定的数量关系,请猜测他的结论并予以证明;(3)如图3,固定三角板直角顶点在D 点不动,转动三角板,使三角板的一边交AB 的延长线于点P ,另一边交BC 的延长线于点Q ,仍作∠PDQ 的平分线DE 交BC 延长线于点E ,连接PE ,若AB :AP=3:4,请帮小明算出△DEP 的面积.B 卷一、填空题(20分)21.若一元二次方程()2220x a x a -++=的两个实数根分别是3b 、,则a b +=_________.22.如图,直线y=kx+b 经过A (﹣1,1)和B (﹣,0)两点,则关于x 的不等式组0<kx+b <﹣x 的解集为 .23.当m _______________时,关于x 的方程)3)(2(321+-+=+--+x x m x x x x x 的解是负数.24.如图,在△ABC 中,∠ACB=90°,∠A=30°,BC=1.过点C 作CC 1⊥AB 于C 1,过点C 1作C 1C 2⊥AC 于C 2,过点C 2作C 2C 3⊥AB 于C 3,…,按此作发进行下去,则AC n = .25.如图,在矩形ABCD 中,AB=2,BC=,两顶点A 、B 分别在平面直角坐标系的x 轴、y 轴的正半轴上滑动,点C 在第一象限,连接OC ,则当OC 为最大值时,点C 的坐标是 .二、解答题(30分) 26.(8分)某企业在生产甲、乙两种节能产品时需用A 、B 两种原料,生产每吨节能产品所需原料的数量如下表所示;销售甲、乙两种产品的利润m (万元)与销售量n (吨)之间的函数关系如图所示.已知该企业生产了甲种产品x 吨和乙种产品y 吨,共用去A 原料200吨. (1)写出x 与y 满足的关系式;(2)为保证生产的这批甲种、乙种产品售后的总利润不少于220万元,那么至少要用B 原料多少吨?)27.(10分)在梯形ABCD 中,AB∥CD,∠BCD=90°,且AB=1,BC=CD=2,.对角线AC 和BD 相交于点O ,等腰直角三角板的直角顶点落在梯形的顶点C 上,使三角板绕点C 旋转.(1)如图1,当三角板旋转到点E 落在BC 边上时,线段DE 与BF 的位置关系是 ,数量关系是 ; (2)继续旋转三角板,旋转角为α.请你在图2中画出图形,并判断(1)中结论还成立吗?如果成立请加以证明;如果不成立,请说明理由;。

成都七中育才2019学年九年级下期入学考试数学试卷及答案

成都七中育才2019学年九年级下期入学考试数学试卷及答案

七中Y才2018-2019学年九年级下期入学考试数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)方程x2﹣x+3=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根2.(3分)某几何体的三视图如图,则该几何体是()A.圆柱B.圆锥C.长方体D.三棱柱3.(3分)如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB等于()A.20°B.25°C.35°D.45°4.(3分)将二次函数y=x2﹣4x+1化成y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+1B.y=(x﹣4)2﹣3C.y=(x﹣2)2﹣3D.y=(x+2)2﹣3 5.(3分)下列事件中,是随机事件的是()A.任意画两个直角三角形,这两个三角形相似B.相似三角形的对应角相等C.⊙O的半径为5,OP=3,点P在⊙O外D.直径所对的圆周角为直角6.(3分)如图,在平面直角坐标系xOy中,点P(4,3),OP与x轴正半轴的夹角为α,则tanα的值为()A.B.C.D.7.(3分)如图是一个反比例函数的图象,它的表达式可能是()A.y=x2B.C.D.8.(3分)二次函数y=x 2﹣2x,若点A(﹣1,y 1),B (2,y 2)是它图象上的两点,则y 1与y 2的大小关系是()A.y 1<y 2B.y 1=y 2C.y 1>y 2D.不能确定9.(3分)如图,点D、E 分别在△ABC 的AB、AC 边上,下列条件中:①∠ADE=∠C;②=;③=.使△ADE 与△ACB 一定相似的是()A.①②B.②③C.①③D.①②③10.(3分)在平面直角坐标系xOy 中,四条抛物线如图所示,其解析式中的二次项系数一定小于1的是()A.y 1B.y 2C.y 3D.y 4二、填空题(共4小题,每小题4分,满分16分)11.(4分)方程x 2﹣3x=0的根为.12.(4分)若反比例函数的图象经过点(﹣1,2),则k 的值是.13.(4分)如图,⊙O 的直径AB 垂直于弦CD,垂足为E,如果∠B=60°,AO=4,那么CD的长为.14.(4分)在平面直角坐标系xOy内有三点:(0,﹣2),(1,﹣1),(2.17,0.37).则过这三个点(填“能”或“不能”)画一个圆,理由是.三、解答题(共6小题,满分48分)15.(6分)(1)计算;(2)解不等式.16.(6分)解方程:﹣=1.17.(8分)为提升学生的艺术素养,学校计划开设四门艺术选修课:A.书法;B.绘画;C.乐器;D.舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).将数据进行整理,并绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有多少人?扇形统计图中∠α的度数是多少?(2)请把条形统计图补充完整;(3)学校为举办2018年度校园文化艺术节,决定从A.书法;B.绘画;C.乐器;D.舞蹈四项艺术形式中选择其中两项组成一个新的节目形式,请用列表法或树状图求出选中书法与乐器组合在一起的概率.18.(8分)2018年10月23日,港珠澳大桥正式开通,成为横亘在伶仃洋上一道靓丽的风景.大桥主体工程隧道的东、西两端各设置了一个海中人工岛,来衔接桥梁和海底隧道,西人工岛上的A点和东人工岛上的B点间的距离约为5.6千米,点C是与西人工岛相连的大桥上的一点,A,B,C在一条直线上.如图,一艘观光船沿与大桥段垂直的方向航行,到达P点时观测两个人工岛,分别测得与观光船航向的夹角∠DPA=18°,∠DPB=53°,求此时观光船到大桥AC段的距离PD的长.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.33,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33.)19.(10分)如图,直线y=ax﹣4(a≠0)与双曲线y=(k≠0)只有一个公共点A(1,﹣2).(1)求k与a的值;(2)在(1)的条件下,如果直线y=ax+b(a≠0)与双曲线y=(k≠0)有两个公共点,直接写出b的取值范围.20.(10分)如图,△ABC 内接于⊙O,弦CD 平分∠ACB,点E 为弧AD 上一点,连接CE、DE,CD 与AB 交于点N.(1)如图1,求证:∠AND=∠CED;(2)如图2,AB 为⊙O 直径,连接BE、BD,BE 与CD 交于点F,若2∠BDC=90°﹣∠DBE,求证:CD=CE;(3)如图3,在(2)的条件下,连接OF,若BE=BD+4,BC=,求线段OF 的长.四、填空题(共5小题,每小题4分,满分20分)21.(4分)已知x 1,x 2是一元二次方程x 2﹣2x﹣5=0的两个实数根,则x 12+x 22+3x 1x 2=.22.(4分)如图,AG∥BC,如果AF:FB=3:5,BC:CD=3:2,那么AE:EC=.23.(4分)如图,A.B 是双曲线y=上的两点,过A 点作AC⊥x 轴,交OB 于D 点,垂足为C.若△ADO 的面积为1,D 为OB 的中点,则k 的值为.24.(4分)如图,已知点A(12,0),O为坐标原点,P是线段OA上任一点(不含端点O、A).二次函数y1的图象过P、O两点.二次数y2的图象过P、A两点,它的开口均向下,顶点分别为B、C.射线OB与射线AC相交于点D.用当OD=AD=9时,这两个二次函数的最大值之和等于.25.(4分)如图,以G(0,1)为圆心,半径为2的圆与x轴交于A、B两点,与y轴交于C,D两点,点E为⊙O上一动点,CF⊥AE于F,则弦AB的长度为;当点E在⊙O 的运动过程中,线段FG的长度的最小值为.五、解答题(共3小题,满分30分)26.(8分)小哲的姑妈经营一家花店,随着越来越多的人喜爱“多肉植物”,姑妈也打算销售“多肉植物”.小哲帮助姑妈针对某种“多肉植物”做了市场调查后,绘制了以下两张图表:(1)如果在三月份出售这种植物,单株获利元;(2)请你运用所学知识,帮助姑妈求出在哪个月销售这种多肉植物,单株获利最大?(提示:单株获利=单株售价﹣单株成本)27.(10分)已知在△ABC中,AB=AC,∠BAC=α,直线l经过点A(不经过点B或点C),点C关于直线l的对称点为点D,连接BD,CD.(1)如图1,①求证:点B,C,D在以点A为圆心,AB为半径的圆上.②直接写出∠BDC的度数(用含α的式子表示)为.(2)如图2,当α=60°时,过点D作BD的垂线与直线l交于点E,求证:AE=BD;(3)如图3,当α=90°时,记直线l与CD的交点为F,连接BF.将直线l绕点A旋转,当线段BF的长取得最大值时,直接写出tan∠FBC的值.28.(12分)如图,在平面直角坐标系中,直线分别交x轴,y轴于点A,B,抛物线y=﹣x2+bx+c经过点A,B,点P是x轴上一个动点,过点P作垂直于x轴的直线分别交抛物线和直线AB于点E和点F.设点P的横坐标为m.(1)求这条抛物线所对应的函数表达式.(2)点P在线段OA上时,若以B、E、F为顶点的三角形与△FPA相似,求m的值;(3)若E、F、P三个点中恰有一点是其它两点所连线段的中点(三点重合除外),称E、F、P三点为“共诸点”.直接写出E、F、P三点成为“共诸点”时m的值.七中Y才2018-2019学年九年级下期入学考试数学试卷参考答案1.【解答】解:∵a=1,b=﹣1,c=3,∴△=b2﹣4ac=(﹣1)2﹣4×1×3=﹣11<0,所以方程没有实数根.故选:C.2.【解答】解:∵几何体的主视图和俯视图都是宽度相等的长方形,∴该几何体是一个柱体,∵俯视图是一个圆,∴该几何体是一个圆柱;故选:A.3.【解答】解:∵OA⊥OB,∴∠AOB=90°,由圆周角定理得,∠ACB=∠AOB=45°,故选:D.4.【解答】解:y=x2﹣4x+1=(x2﹣4x+4)+1﹣4=(x﹣2)2﹣3.所以把二次函数y=x2﹣4x+1化成y=a(x﹣h)2+k的形式为:y=(x﹣2)2﹣3.故选:C.5.【解答】解:A、任意画两个直角三角形,这两个三角形相似是随机事件;B、相似三角形的对应角相等是必然事件;C、⊙O的半径为5,OP=3,点P在⊙O外是不可能事件;D、直径所对的圆周角为直角是必然事件;故选:A.6.【解答】解:过P作PN⊥x轴于N,PM⊥y轴于M,则∠PMO=∠PNO=90°,∵x轴⊥y轴,∴∠MON=∠PMO=∠PNO=90°,∴四边形MONP是矩形,∴PM=ON,PN=OM,∵P(4,3),∴ON=PM=4,PN=3,∴tanα==,故选:C.7.【解答】解:∵函数是反比例函数,且双曲线在二四象限,∴k<0,故解析式s 满足k<0的双曲线即可,故选:B.8.【解答】解:当x=﹣1时,y 1=x 2﹣2x=3;当x=2时,y 2=x 2﹣2x=0;∵3>0,∴y 1>y 2,故选:C.9.【解答】解:∵∠DAE=∠BAC,∴当ADE=∠C 时,△ADE∽△ACB;当=时,△ADE∽△ACB.故选:C.10.【解答】解:由图象可知:开口都是向上,二次项系数都大于0,函数y 1的开口最大,大于y 2,函数y 3的开口小于y 2,函数y 4的开口等于y 2∵抛物线y 2的顶点为(0,﹣1),与x 轴的一个交点为(1,0),根据待定系数法求得y 2=x 2﹣1,则二次项的系数为1,故解析式中的二次项系数一定小于1的是y 1故选:A.11.【解答】解:因式分解得,x(x﹣3)=0,解得,x 1=0,x 2=3.故答案为:x 1=0,x 2=3.12.【解答】解:∵图象经过点(﹣1,2),∴k=xy=﹣1×2=﹣2.故答案为:﹣2.13.【解答】解:连接OC,∵AB 是⊙O 的直径,∴∠ACB=90°,∵∠B=60°,∴∠A=30°,∴∠EOC=60°,∴∠OCE=30°∵AO=OC=4,∴OE=OC=2,∴CE==2,∵直径AB垂直于弦CD,∴CE=DE,∴CD=2CE=4,故答案为:4.14.【解答】解:设经过(0,﹣2),(1,﹣1)的直线解析式为y=kx+b,则,解得.所以经过(0,﹣2),(1,﹣1)的直线解析式为y=x﹣2;当x=2.17时,y=2.17﹣2=0.17≠0.37,所以点(2.17,0.37)不在经过(0,﹣2),(1,﹣1)的直线上,即三点:(0,﹣2),(1,﹣1),(2.17,0.37)不在同一直线上,所以过这三个点能画一个圆.故答案为能,因为这三点不在一条直线上.15.【解答】解:(1)原式=4×+1﹣2﹣1=2+1﹣2﹣1=0;(2).由①得x>﹣4,由②得x≤﹣1.不等式的解集是﹣4<x≤﹣1.16.【解答】解:方程两边同乘(x+1)(x﹣1),得(x+1)2﹣4=(x+1)(x﹣1),整理得2x﹣2=0,解得x=1.检验:当x=1时,(x+1)(x﹣1)=0,所以x=1是增根,应舍去.∴原方程无解.17.【解答】解:(1)本次调查的学生总人数为4÷10%=40人,∠α=360°×(1﹣10%﹣20%﹣40%)=108°;(2)C科目人数为40×(1﹣10%﹣20%﹣40%)=12人,补全图形如下:(3)画树状图为:共有12种等可能的结果数,其中恰好是书法与乐器组合在一起的结果数为2,所以书法与乐器组合在一起的概率为=.18.【解答】解:在Rt△DPA中,∵tan∠DPA=,∴AD=PD•tan∠DPA,在Rt△DPB中,∵tan∠DPB=,∴BD=PD•tan∠DPB,∴AB=BD﹣AD=PD•(tan∠DPB﹣tan∠DPA),∵AB=5.6,∠DPB=53°,∠DPA=18°,即5.6=(tan53°﹣tan18°)•PD,∴PD==5.6,则此时观光船到大桥AC段的距离PD的长为5.6千米.19.【解答】解:(1)∵直线y=ax﹣4与双曲线y=只有一个公共点A(1,﹣2),∴,解得:,故k=﹣2,a=2;(2)若直线y=2x+b(a≠0)与双曲线y=﹣有两个公共点,则方程组有两个不同的解,即2x+b=﹣有两个不相等的解,整理得:2x2+bx+2=0,△=b2﹣16>0,解得:b<﹣4,或b>4.20.【解答】(1)证明:如图1,连接BE.∵∠CED=∠CEB+∠DEB,∠AND=∠CAB+∠ACD,…(1分);∵CD是∠ACB的平分线,∴∠ACD=∠BCD=∠DEB,∵∠CAB=∠CEB,…(2分)∴∠CAB+∠ACD=∠CEB+∠DEB,即∠CED=∠AND;…(3分)(2)如图2,∵2∠BDC=90﹣∠DBE,∴∠BDC+∠DBE=90°﹣∠BDC=∠CFB,∵∠BDC=∠BAC,∵AB是直径,∴∠ACB=90,∴∠BAC+∠CBN=90°,∴∠CBN=90°﹣∠BAC=90°﹣∠BDC,∴∠CFB=∠CBN,…(4分)∴∠CFB+∠ABE=∠CBN+∠ABE,∴∠CNB=∠CBE=∠CDE,由(1)知:∠CNB=∠AND=∠CED,∴∠CDE=∠CED,…(5分);∴CE=CD…(6分);(3)如图3,过C作CM⊥BE,CK⊥DB,∴∠CME=∠CKD=90°,∠CEM=∠CDK,CE=CD,∴△CEM≌△CDK,∴EM=DK,CM=CK,∴△CMB≌△CKB,∴BM=BK,∴BE﹣BD=BM+EM﹣BD=BM+DK﹣BD=BM+BK=2BM=4,BM=2,Rt△BCM中,∵BC=2,∴CM===6…(7分);作FH⊥BC于点H,FH交CM于点G,∵∠FCB=45°,CH=FH,∴△CGH≌△FHB,∴CG=BF,设FM=x,∴CG=BF=x+2,GM=6﹣(x+2)=4﹣x,tan∠GFM=tan∠MCB==,∴x=3,FM=3,CF=3…(1分);∵△CBF∽△EDF(可以用正切值相等),∴,作EQ⊥DF交DF于点Q,设FQ=3k,EQ═6k,则DQ=2k,EF=3k,DE=2k,∴BE=5+3k,BD=BE﹣4=3k+1,作DP⊥BE交于点P,∵∠PED=∠BCD=45°,∴PD=PE=DE=2k,PB=BE﹣PE=5+k…(8分);在Rt△PDB中,PB2+PD2=DB2,即(5+k)2+(2k)2=(3k+1)2,∴k=,∴DF=5k=3=CF,BD=3k+1=10,…(9分);∴OF⊥CD,连接OD,∴∠AOD=∠BOD=90°,∴OD=BD=5,在Rt△ODF中,OF2=OD2﹣DF2=50﹣45=5,∴OF=…(10分);21.【解答】解:根据题意得x 1+x 2=2,x 1x 2=﹣5,x 12+x 22+3x 1x 2=(x 1+x 2)2+x 1x 2=22+(﹣5)=﹣1.故答案为﹣1.22.【解答】解:∵AG∥BC,∴△AGF∽△BDF,∴==,设AG=3k,BD=5k,∵=,∴=∴CD=2k,∵AG∥CD,∴△AGE∽△CDE,∴===,故答案为3:2.23.【解答】解:过点B 作BE⊥x 轴于点E,∵D 为OB 的中点,∴CD 是△OBE 的中位线,即CD=BE.设A(x,),则B(2x,),CD=,AD=﹣,∵△ADO 的面积为1,∴AD•OC=1,(﹣)•x=1,解得k=,故答案是:.24.【解答】解:过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,∵BF⊥OA,DE⊥OA,CM⊥OA,∴BF∥DE∥CM,∵OD=AD=9,DE⊥OA,∴OE=EA=OA=6,由勾股定理得:DE==3.设P(2x,0),根据二次函数的对称性得出OF=PF=x,∵BF∥DE∥CM,∴△OBF∽△ODE,△ACM∽△ADE,∴=,=,∵AM=PM=(OA﹣OP)=(12﹣2x)=6﹣x,即=,=,解得:BF=,CM=3﹣x,∴BF+CM=3.故答案为:3.25.【解答】解:作GM⊥AC于M,连接AG.∵GO⊥AB,∴OA=OB,在Rt△AGO中,∵AG=2,OG=1,∴AG=2OG,OA==,∴∠GAO=30°,AB=2AO=2,∴∠AGO=60°,∵GC=GA,∴∠GCA=∠GAC,∵∠AGO=∠GCA+∠GAC,∴∠GCA=∠GAC=30°,∴AC=2OA=2,MG=CG=1,∵∠AFC=90°,∴点F在以AC为直径的⊙M上,当点F在MG的延长线上时,FG的长最小,最小值=FM﹣GM=﹣1.故答案为2,﹣1.26.【解答】解:(1)从左图看,3月份售价为5元,从右图看,3月份的成本为4元,则每株获利为5﹣4=1(元),故:答案为1;(2)设直线的表达式为:y=kx+b(k≠0),1把点(3,5)、(6,3)代入上式得:,解得:,∴直线的表达式为:y=﹣x+7;1=a(x﹣m)2+n,设:抛物线的表达式为:y2=a(x﹣6)2+1,∵顶点为(6,1),则函数表达式为:y2把点(3,4)代入上式得:4=a(3﹣6)2+1,解得:a=,=(x﹣6)2+1,则抛物线的表达式为:y2∴y 1﹣y 2=﹣x+7﹣(x﹣6)2﹣1=﹣x 2+x﹣6,∵﹣<0,∴x=5时,函数取得最大值,故:5月销售这种多肉植物,单株获利最大.27.【解答】证明:(1)①如图1,连接DA,并延长DA 交BC 于点M,∵点C 关于直线l 的对称点为点D,∴AD=AC,且AB=AC,∴AD=AB=AC,∴点B,C,D 在以点A 为圆心,AB 为半径的圆上②∵AD=AB=AC∴∠ADB=∠ABD,∠ADC=∠ACD,∵∠BAM=∠ADB+∠ABD,∠MAC=∠ADC+∠ACD,∴∠BAM=2∠ADB,∠MAC=2∠ADC,∴∠BAC=∠BAM+∠MAC=2∠ADB+2∠ADC=2∠BDC=α∴∠BDC=故答案为:α(2)如图2,连接CE,∵∠BAC=60°,AB=AC∴△ABC 是等边三角形∴BC=AC,∠ACB=60°,∵∠BDC=∴∠BDC=30°,∵BD⊥DE,∴∠CDE=60°,∵点C关于直线l的对称点为点D,∴DE=CE,且∠CDE=60°∴△CDE是等边三角形,∴CD=CE=DE,∠DCE=60°=∠ACB,∴∠BCD=∠ACE,且AC=BC,CD=CE,∴△BCD≌△ACE(SAS)∴BD=AE,(3)如图3,取AC的中点O,连接OB,OF,BF,∵在△BOF中,BO+OF≥BC∴当点O,点B,点F三点共线时,BF最长,如图,过点O作OH⊥BC,∵∠BAC=90°,AB=AC,∴BC=AC,∠ACB=45°,且OH⊥BC,∴∠COH=∠HCO=45°,∴OH=HC,∴OC=HC,∵点O是AC中点,∴AC=2HC,∴BC=4HC,∴BH=BC﹣HC=3HC∴tan∠FBC==28.【解答】解:(1)直线分别交x轴,y轴于点A,B,则点A、B的坐标分别为(4,0)、(0,2),即c=2,则抛物线表达式为:y=﹣x2+bx+2,将点A的坐标代入上式并解得:b=,故抛物线的表达式为:y=﹣x2+x+2;(2)tan∠OAB==,点P的横坐标为m,则点E、F的坐标分别为:(m,﹣m2+m+2)、(m,﹣m+2),①当∠EBF为直角时,以B、E、F为顶点的三角形与△FPA相似,则∠BEF=∠OAB,则tan∠BEF=,则BE2=4BF2,即:m2+(﹣m2+m+2m﹣2)2=4[m2+(﹣m+2﹣2)2],解得:m=或(舍去);②当∠BEF为直角时,则EF=BE,同理可得:m=;综上,m=或;(3)点P的横坐标为m,则点E、F的坐标分别为:(m,﹣m2+m+2)、(m,﹣m+2),①当点P在y轴左侧时,即m≤0,则点E、P可能是中点,当点E是中点时,由中点公式得:2(﹣m2+m+2)=m﹣m+2,解得:m=(不合题意的值已舍去),当点P是中点时,同理可得:m=;②当点P在y轴右侧时,则点F是中点,同理可得:m=;综上,m=或或.。

2019年四川省成都七中自主招生数学试卷

2019年四川省成都七中自主招生数学试卷

2019年四川省成都七中自主招生数学试卷一.选择题(每小题只有一个正确答案,每小题5分,共60分)1.(5分)若财=5盘・12AyhlO『・6x・4)+13<a>),为实数),则M的值一定是()A.非负数B.负数C.正数D.零2.(5分)将一个校长为m(m>2且〃'为正整数)的正方体木块的表面染上红色,然后切成勿3个棱长为]的小正方体,发现只有一个表面染有红色的小正方体的数量是恰有两个表面染有红色的小正方体的数量的12倍,则川等于()A.16B.18C.26D.323.(5分)己知-100^+7=0以及7疽・100X6=0,且沥尹1,则史的值为(bA.亚B.1C.现D.1_37764.(5分)若】=l人=2+捅-插•则三的值为()V2W3+V5bA1B1c1 D.124■■显淄5.(5分)满足\abW\u・bl・1=0的整数对(s力)共有(〉A.4个B.5个C.6个D.7个6.(5分)在凸四边形ABCD中,E为B C边的中点,与AE相交于点0.且80=00,AO=2EO,则SA4CD:的值为()A.2:5B.1:3C.2:3D.1:27.(5分)从1到2019连续自然数的平方和12+224-324--+20192的个位数字是<)A.0B.1C.5D.98.(5分)已知x+y+z=0,且口一口一口一二0・则代数式(x+1)2+(>+2)2+(z+3)2的值为()x+1y+2z+3A.3B.14C.16D.369.(5分)将一枚六个面编号分别为1、2、3、4、5、6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为“,第二次掷出的点数为机则使关于]“的方程组[ax4-by=2.R有正数解的概率为()[2e=3A.工B.AC.且D.迫12 6 183610.(5分)方程3疽-8“-3b-1=0,当取遍0到5的所有实数值时,则满足方程的整数b的个数是()A.12个B.13个C.14个D.15个11.(5分)若一个三角形的三边和为40,且各边长均为整数,则符合条件的三角形的个数为()A.31个B.32个C.33个D. 34个12.(5分)若关于x的方程x2+ux+h-3=0有实根.则"?+(b-4)?的最小值为()A.0B.1C. 4D.9二、填空题<13-16®,每题7分:17.19题,每题8分,共52分)13.(7分)已知工=壬些,则代数式/-3?-3好1的值为214.(7分)在正十边形的10个顶点中,任取4个顶点,那么以这4个顶点为顶点的梯形有个.15.(7分)在Rt^ABC中,ZC=90°,AC=1,BC=2,D为AB中点,E为边BC上一点,将△ADE沿DE翻折得到DE,使ZkA'OE与△&)£:重叠部分的面积占dBE面积的则既的长为・16.(7分)已知关于尤的方程序云代-序打4+才启慕9血恰好有两个实数解•则〃,的取值范国为.17.(8分)如图,所切于点A・PE交。

2019年四川省成都七中自主招生考试数学试卷(含详细解析)

2019年四川省成都七中自主招生考试数学试卷(含详细解析)

自主招生考试数学试卷一、选择题(共10小题,每小题6分,满分60分)1.(6分)有一个角为60°的菱形,边长为2,其内切圆面积为()A.B.C.D.2.(6分)若方程组的解为(a,b,c),则a+b+c=()A.1 B.0 C.﹣1 D.23.(6分)圆O1与圆O2半径分别为4和1,圆心距为2,作圆O2的切线,被圆O1所截得的最短弦长为()A.﹣1 B.8 C.2D.24.(6分)如下图,梯形ABCD中,AD∥BC,AC与BD交于O,记△AOD、△ABO、△BOC的面积分别为S1、S2、S3,则S1+S3与2S2的大小关系为()A.无法确定B.S1+S3<2S2C.S1+S3=2S2D.S1+S3>2S25.(6分)关于x的分式方程2k﹣4+仅有一个实数根,则实数k的取值共有()A.1个B.2个C.3个D.4个6.(6分)两本不同的语文书、两本不同的数学书和一本英语书排放在书架上,若同类书不相邻,英语书不放在最左边,则排法的种数为()A.32 B.36 C.40 D.447.(6分)若a=,则的值的整数部分为()A.1 B.2 C.3 D.48.(6分)在圆内接四边形ABCD中,∠BAD、∠ADC的角平分线交于点E,过E作直线MN平行于BC,与AB、CD交于M、N,则总有MN=()A.BM+DN B.AM+CN C.BM+CN D.AM+DN9.(6分)由若干个边长为1的小正方形组成一个空间几何体(小正方形可以悬空),其三视图如图,则这样的小正方体至少应有()A.8个B.10个C.12个D.14个10.(6分)正方体ABCD的边长为1,点E在边AB上,BE=,BF=,动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,而当碰到正方形顶点时沿入射路径反弹,当点P第一次返回E时,P所经过的路程为()A.B.C.2D.二、填空题(共8小题,每小题6分,满分48分)11.(6分)对任意实数k,直线y=kx+(2k+1)恒过一定点,该定点的坐标是.12.(6分)如图,圆锥母线长为2,底面半径为,∠AOB=135°,经圆锥的侧面从A到B的最短距离为.13.(6分)设(3x﹣2)6=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6,那么a1+a2+a3+a4+a5+a6=.14.(6分)如图,向正五边形ABCDE区域内均匀掷点,落在五边形FGHJK区域内的概率为.15.(6分)函数y=kx﹣1与y=x2的图象交于两点(x1,y1)(x2,y2),若+=18,则k=.16.(6分)在△ABC中,∠C=90°,D、E分别是BC、CA上的点,且BD=AC,AE=CD,BE、AD相交于点P,则∠BPD=.17.(6分)函数y=2+的最大值为.18.(6分)若x≥y≥z,则(2x+1)(2y+1)(2z+1)=13xyz的正整数解(x,y,z)为.三、解答题(共2小题,满分42分)19.(22分)正方形ABCD边长为2,与函数x=(x>0)的图象交于E、F两点,其中E位于线段CD上,正方形ABCD可向右平移,初始位置如图所示,此时,△DEF的面积为.正方形ABCD在向右平移过程中,位于线段EF上方部分的面积记为S,设C点坐标为(t,0)(1)求k的值;(2)试写出S与t的函数关系式及自变量t的取值范围;(3)若S=2,求t的值;(4)正方形ABCD在向右平移过程中,是否存在某些位置,沿线段EF折叠,使得D点恰好落在BC边上?若存在,确定这些位置对应t的值得大致范围(误差不超过0.1);若不存在,说明理由.20.(20分)(1)求函数y=|x﹣1|+|x﹣3|的最小值及对应自变量x的取值;(2)求函数y=|x﹣1|+|x﹣2|+|x﹣3|的最小值及对应自变量x的取值;(3)求函数y=|x﹣1|+|x﹣2|+…+|x﹣n|的最小值及对应自变量x的取值;(4)求函数y=|x﹣1|+|2x﹣1|+…+|8x﹣1|+|9x﹣1|的最小值及对应自变量x 的取值.2017年四川省成都七中自主招生考试数学试卷参考答案与试题解析一、选择题(共10小题,每小题6分,满分60分)1.(6分)有一个角为60°的菱形,边长为2,其内切圆面积为()A.B.C.D.【解答】解:过A作AE⊥BC,如图所示:∵菱形ABCD的边长为2,∠ABC═60°,∴∠BAE=30°,∴BE=AB=1,∴AE=BE=,∴内切圆半径为,∴内切圆面积=π•()2=;故选:A.2.(6分)若方程组的解为(a,b,c),则a+b+c=()A.1 B.0 C.﹣1 D.2【解答】解:,②×5﹣①得:14y+3z=﹣17④,②×2﹣③得:5y+2z=﹣7⑤④×2﹣⑤×3得:13y=﹣13,解得:y=﹣1,把y=﹣1代入⑤得:z=﹣1,把y=﹣1,z=﹣1代入②得:x=2,则(a,b,c)=(2,﹣1,﹣1),则a+b+c=2﹣1﹣1=0.故选:B.3.(6分)圆O1与圆O2半径分别为4和1,圆心距为2,作圆O2的切线,被圆O1所截得的最短弦长为()A.﹣1 B.8 C.2D.2【解答】解:∵圆O1与圆O2半径分别为4和1,圆心距为2,∴4﹣1>2,故两圆内含,不妨设截得的弦为AB,切点为C,连接O1A,连接O1O2,O2C,∵半径确定,∴弦心距越小,则弦越长,∵AB是⊙O2的切线,∴O2C⊥AB,∴当O1、O2、C在一条线上时,弦AB最短,由题意可知OC1=2+1=3,AO1=4,在Rt△ACO1中,由勾股定理可得AC==,∴AB=2AC=2,故选:C.4.(6分)如下图,梯形ABCD中,AD∥BC,AC与BD交于O,记△AOD、△ABO、△BOC的面积分别为S1、S2、S3,则S1+S3与2S2的大小关系为()A.无法确定B.S1+S3<2S2C.S1+S3=2S2D.S1+S3>2S2【解答】解:∵AD∥BC,∴△AOD∽△COB,∴=,∵△AOD与△AOB等高,∴S1:S2=AD:BC=a:b,∴S1=S2,S3=S2,∴S1+S3=(+)S2=S2,∵a≠b,∴a2+b2>2ab,∴>2,∴S1+S3>2S2,故选:D.5.(6分)关于x的分式方程2k﹣4+仅有一个实数根,则实数k的取值共有()A.1个B.2个C.3个D.4个【解答】解:方程两边都乘x(x+2)得,(2k﹣4)x(x+2)+(k+1)(x+2)=x (k﹣5),整理得,(k﹣2)x2+(2k﹣1)x+k+1=0.①当k﹣2≠0时,∵△=(2k﹣1)2﹣4(k﹣2)(k+1)=9>0,∴一元二次方程(k﹣2)x2+(2k﹣1)x+k+1=0有两个不相等的实数根.∵关于x的分式方程2k﹣4+仅有一个实数根,而x(x+2)=0时,x=0或﹣2,∴x=0时,k+1=0,k=﹣1,此时方程﹣3x2﹣3x=0的根为x=0或﹣1,其中x=0是原方程的增根,x=﹣1是原方程的根,符合题意;x=﹣2时,4(k﹣2)﹣2(2k﹣1)+k+1=0,k=5,此时方程3x2+9x+6=0的根为x=﹣2或﹣1,其中x=﹣2是原方程的增根,x=﹣1是原方程的根,符合题意;即k=﹣1或5;②当k﹣2=0,即k=2时,方程为3x+3=0,解得x=﹣1,符合题意;即k=2.综上所述,若关于x的分式方程2k﹣4+仅有一个实数根,则实数k的取值为﹣1或5或2,共有3个.故选:C.6.(6分)两本不同的语文书、两本不同的数学书和一本英语书排放在书架上,若同类书不相邻,英语书不放在最左边,则排法的种数为()A.32 B.36 C.40 D.44【解答】解:设从左向右位置为①,②,③,④,⑤,∵英语书不在最左边,∴最左边①有4种取法,∵同类书不相邻,∴②有3种取法,③有两种取法,④有两种取法,⑤有一种取法,共4×3×2×2×1=48,但是英语书排在第②位置时,只能是语文、英语、数学、语文、数学,或者数学、英语、语文、数学、语文,故英语书排在第②位置时只有8种情况,故种情况为48﹣8=40种,故选:C.7.(6分)若a=,则的值的整数部分为()A.1 B.2 C.3 D.4【解答】解:∵==﹣=﹣=﹣,∴=﹣+﹣+﹣=﹣∵a=,∴==4,0<a27<a3=()3=<,∴<1﹣a27<1,∴1<<2,∴的值的整数部分为2.故选:B.8.(6分)在圆内接四边形ABCD中,∠BAD、∠ADC的角平分线交于点E,过E作直线MN平行于BC,与AB、CD交于M、N,则总有MN=()A.BM+DN B.AM+CN C.BM+CN D.AM+DN【解答】解:如图,在NM上截取NF=ND,连结DF,AF∴∠NFD=∠NDF,∵A,B,C,D四点共圆,∴∠ADC+∠B=180°,∵MN∥BC,∴∠AMN=∠B,∴∠AMN+∠ADN=180°,∴A,D,N,M四点共圆,∴∠MND+∠MAD=180°,∵AE,DE分别平分∠BAD,∠CDA,∴∠END+2∠DFN=∠END+2∠DAE=180°,∴∠DFN=∠DAE,∴A,F,E,D四点共圆,∴∠DEN=∠DAF,∠AFM=∠ADE,∴∠MAF=180°﹣∠DAF﹣∠MND=180°﹣∠DEN﹣∠MND=∠EDN=∠ADE=∠AFM,∴MA=MF,∴MN=MF+NF=MA+ND.故选:D.9.(6分)由若干个边长为1的小正方形组成一个空间几何体(小正方形可以悬空),其三视图如图,则这样的小正方体至少应有()A.8个B.10个C.12个D.14个【解答】解:综合三视图,我们可以得出,这个几何模型的底层至少有3个小正方体,第二层至少有3个小正方体,第三层至少有3个小正方体,则这样的小正方体至少应有3+3+3=9个,选项中10是满足条件最小的数字.故选:B.10.(6分)正方体ABCD的边长为1,点E在边AB上,BE=,BF=,动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,而当碰到正方形顶点时沿入射路径反弹,当点P第一次返回E时,P所经过的路程为()A.B.C.2D.【解答】解:根据已知中的点E,F的位置,可知入射角的正切值为,第一次碰撞点为F,在反射的过程中,根据入射角等于反射角及平行关系的三角形的相似可得第二次碰撞点为M,在DA上,且DM=DA,第三次碰撞点为N,在DC上,且DN=DC,第四次碰撞点为G,在CB上,且CG=BC,第五次碰撞点为H,在DA上,且AH=AD,第六次碰撞点为Z,在AB上,且AZ=AD,第七次碰撞点为I,在BC上,且BI=AD,第八次碰撞点为D,再反方向可到E,由勾股定理可以得出EF=HZ==,FM=GH=ID=,MN=NG=,ZI=,P所经过的路程为(×2+×3+×2+)×2=.故选:B.二、填空题(共8小题,每小题6分,满分48分)11.(6分)对任意实数k,直线y=kx+(2k+1)恒过一定点,该定点的坐标是(﹣2,1).【解答】解:∵y=kx+(2k+1)∴y=k(x+2)+1,∴图象恒过一点是(﹣2,1),故答案为(﹣2,1).12.(62,底面半径为,∠AOB=135°,经圆锥的侧面从A到B的最短距离为2.【解答】解:如右图所示,是圆锥侧面展开的一部分,∵圆锥母线长为2,底面半径为,∠AOB=135°,∴,作AD⊥SB于点D,∵SA=SB=2,∴展开的扇形所对的圆心角为,∴在Rt△SAD中,AD=SD=,∴BD=SB﹣SD=2﹣,∴AB==,故答案为:2.13.(6分)设(3x﹣2)6=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6,那么a1+a2+a3+a4+a5+a6= 1﹣26.【解答】解:由题意可知a0=(﹣2)6,令x=1,则1=a0+a1+a2+a3+a4+a5+a6,因此a1+a2+a3+a4+a5+a6=1﹣a0=1﹣(﹣2)6=1﹣26.故答案为:1﹣26.14.(6分)如图,向正五边形ABCDE区域内均匀掷点,落在五边形FGHJK区域内的概率为.【解答】解:正五边形ABCDE,∴∠BAE=∠ABC=BCD=∠CDE∠AED=108°,AB=BC=CD=DE=AE,∴△ABC≌△ABE,∴AC=BE,同理:△ABH≌△△BCG≌△AJE,∴AH=CG=JE,∴HJ=HG,同理:FG=FK=JK=HG,∴五边形HGFKJ是正五边形,∴正五边形HGFKJ∽正五边形ACBDE,设HE=CD=a,HJ=x,由题意,△HAB∽△ABE,∴,∴x=∴落在五边形FGHJK区域内的概率为=,故答案为.15.(6分)函数y=kx﹣1与y=x2的图象交于两点(x1,y1)(x2,y2),若+=18,【解答】解:∵函数y=kx﹣1与y=x2的图象交于两点(x1,y1)(x2,y2),∴,消去y得x2﹣kx+1=0,∴x1+x2=k,x1x2=1,∴+====18,∴k(k2﹣2)﹣k=18,解答k=3.故答案为3.16.(6分)在△ABC中,∠C=90°,D、E分别是BC、CA上的点,且BD=AC,AE=CD,BE、AD相交于点P,则∠BPD=45°.【解答】解:作AF∥CD,DF∥AC,AF交DF于点F,∴四边形ACDF是平行四边形.∵∠C=90°∴四边形ACDF是矩形,∴CD=AF,AC=DF,∠EAF=∠FDB=∠AFD=90°.∵BD=AC,AE=CD∴△BDF和△AEF是等腰直角三角形,∴∠AFE=∠DFB=45°,∴∠DFE=45°,∴∠EFB=90°.∴∠EFB=∠AFD.∴△BDF∽△AEF,∵∠EFB=∠AFD,∴△ADF∽△EBF∴∠PAF=∠PEF∴∠APE=∠AFE∵∠AFE=45°∴∠APE=45°17.(6分)函数y=2+的最大值为.【解答】解:根据题意得:,解得:1≤x≤2,由柯西不等式得:y=2+≤•=×=(当且仅当2=,即x=时,取等号),故函数y=2+的最大值为.故答案为:.18.(6分)若x≥y≥z,则(2x+1)(2y+1)(2z+1)=13xyz的正整数解(x,y,z)为(45,7,1)或(19,9,1).【解答】解:∵(2x+1),(2y+1),(2z+1)都是奇数,∴x,y,z都是奇数,∵(2x+1)(2y+1)(2z+1)=13xyz,∴(2+)(2+)(2+)=13,∵x≥y≥z,如果z≥3,那么(2+)(2+)(2+)≤(2+)2=<13,∴z=1,∴3(2x+1)(2y+1)=13xy,化简得:xy=6(x+y)+3,则x==6+,∵39的因子有:1,3,12,39,∴y﹣6=1,3,13,39,∴y=7,9,19,45,∴x的对应只有:45,19,9,7,∵x>y,∴正整数解(x,y,z)为:(45,7,1)或(19,9,1).故答案为:(45,7,1)或(19,9,1).三、解答题(共2小题,满分42分)19.(22分)正方形ABCD边长为2,与函数x=(x>0)的图象交于E、F两点,其中E位于线段CD上,正方形ABCD可向右平移,初始位置如图所示,此时,△DEF的面积为.正方形ABCD在向右平移过程中,位于线段EF上方部分的面积记为S,设C点坐标为(t,0)(1)求k的值;(2)试写出S与t的函数关系式及自变量t的取值范围;(3)若S=2,求t的值;(4)正方形ABCD在向右平移过程中,是否存在某些位置,沿线段EF折叠,使得D点恰好落在BC边上?若存在,确定这些位置对应t的值得大致范围(误差不超过0.1);若不存在,说明理由.=(2﹣)2=,【解答】解:(1)由题设可知S△DEF解得k=1或7(不合题意,舍去),∴k=1;(2)①如图1,当2≤t≤时,因为C点坐标为(t,0),所以E点坐标为(t,),所以DE=2﹣,而F点坐标为(,2),所以DF=t﹣,所以S=DE•DF=(2﹣)(t﹣)=t+﹣1;②如图2,当t>时,此时OB=t﹣2,所以F点的坐标为(t﹣2,),所以AF=2﹣,所以S=•2•(DE+AF)=•2•(2﹣+2﹣)=4﹣﹣;(3)当2≤t≤时,DE和DF随t的增大而增大,S也类似,故当t=时S有最大值为<2,所以S=2只可能发生在t>时,令4﹣﹣=2,解得t=;(4)①如图3,当2≤t≤时,假设位置存在,由对称性知Rt△FDE∽Rt△DCD1,因为DE=D1E,则有=,其中D1C==,整理得:t(t﹣1)=4,解得t=>,与假设矛盾,所以当2≤t≤时,不存在;②如图4,当t>时,假设位置存在,过F作直线FG∥x轴交CD于G,由对称性可知Rt△FGE≌Rt△DCD1,DE=D1E,所以GE=D1C,而GE=﹣,整理可得t(t﹣1)(t﹣2)2=1,设y=t(t﹣1)(t﹣2)2,当t>2时,y随t的增大而增大,取t=2.5,则y=0.9375<1,取t=2.6,则y=1.4976>1,利用试值法可以判断位置存在且唯一,对应的t的取值在2.5和2.6之间.20.(20分)(1)求函数y=|x﹣1|+|x﹣3|的最小值及对应自变量x的取值;(2)求函数y=|x﹣1|+|x﹣2|+|x﹣3|的最小值及对应自变量x的取值;(3)求函数y=|x﹣1|+|x﹣2|+…+|x﹣n|的最小值及对应自变量x的取值;(4)求函数y=|x﹣1|+|2x﹣1|+…+|8x﹣1|+|9x﹣1|的最小值及对应自变量x 的取值.【解答】解:(1)函数y=|x﹣1|+|x﹣3|的最小值的几何意义是数轴上x到1和3两点距离之和的最小值,∵两点之间线段最短,∴当1<x<3时,y min=|3﹣1|=2,(2)∵y=|x﹣1|+|x﹣2|+|x﹣3|=(|x﹣1|+|x﹣3|)+|x﹣2|,当x=2时,|x﹣2|有最小值,∴结合(1)的结论得出,当x=2时,y min=2+0=2,(3)当n为偶数时,y=|x﹣1|+|x﹣2|+…+|x﹣n|=(|x﹣1|+|x﹣n|)+(|x﹣2|+|x﹣(n﹣1)|)+…+(|x﹣|+|x﹣(+1)|),由(1)知,当<x<+1时,|x﹣1|+|x﹣n|有最小值n﹣1,|x﹣2|+|x﹣(n﹣1)|有最小值(n﹣1)﹣2=n﹣3,…2019年四川省成都七中自主招生考试数学试卷(含详细解析)|x﹣|+|x ﹣(+1)|有最小值1,∴当<x<+1时,y min=1+3+5+…+(n ﹣3)+(n﹣1)=,当n为奇数时,y=|x﹣1|+|x﹣2|+…+|x﹣n|=(|x﹣1|+|x﹣n|)+(|x﹣2|+|x ﹣(n﹣1)|)+…+(|x﹣|+|x ﹣(+1)|)+|x﹣|,由(1)知,当x=时,|x﹣1|+|x﹣n|有最小值n﹣1,|x﹣2|+|x﹣(n﹣1)|有最小值(n﹣1)﹣2=n﹣3,…|x﹣|+|x﹣(+1)|有最小值1,|x﹣|的最小值为0,∴当x=时,ymin=0+2+4+…+(n﹣3)+(n﹣1)=,(4)类似(3)的做法可知,y=|x﹣a1|+|x﹣a2|+…+|x﹣a n|,如果n为偶数时,当时,y有最小值,如果n为奇数时,当x=时,y有最小值;∵y=|x﹣1|+|2x﹣1|+…+|8x﹣1|+|9x ﹣1|=++…++|x﹣1|∴共有9+8+7+…+2+1=45项,为奇数.∴当x=时,ymin=|﹣1|+|﹣1|+…+|﹣1|+|﹣1|=第21页(共21页)。

第七中学209届高三数学上学期入学考试试题理含解析

第七中学209届高三数学上学期入学考试试题理含解析
【详解】根据题意,由正弦定理可得: ,
即 ,因为 ,
,
, , ,
解得 , , 。
故选:C
【点睛】本题考查利用正弦定理边化角和两角和的正弦公式求三角形内角;属于中档题、常考题型。
8.若函数 的图象关于原点对称,则实数 等于( )
A。 B. C. 1D。 2
【答案】A
【解析】
【分析】
由题意知,函数 为奇函数,利用 ,化简整理即可求出实数 。
(Ⅱ)根据题意知, 可能的取值为 ,计算对应概率,列出分布列,代入数学期望公式求解即可.
【详解】(Ⅰ)由频率分布直方图知,笔试成绩不低于85分的频率为 ,
【答案】
【解析】
【分析】
利用与面积有关的几何概型公式求出 ,然后代入条件概率公式 即可求解。
【详解】
如图,设正方形边长为 ,由几何概型的概率公式可得,
(A) , ,
由条件概率公式可得, .
故答案为:
【点睛】本题考查与面积有关的几何概型和条件概率的求解;熟练掌握概率公式是求解本题的关键;属于中档题、常考题型.
联立渐近线方程 与 ,
解之可得 , ,故对称中心的点坐标为 , ,
设点 ,由中点坐标公式可得
,解得 ,
所以对称点 的坐标为 , ,
将点 代入双曲线的方程可得 ,
结合 ,化简可得 ,故可得 .
故选:D
【点睛】本题主要考查双曲线的几何性质,两直线的位置关系,意在考查学生对数学知识的熟练掌握程度和综合运用能力、运算能力;属于中档题.
11.若双曲线 上存在点 与右焦点 关于其渐近线对称,则该双曲线的离心率( )
A。 B. C. 2D。
【答案】D
【解析】
【分析】

2019年成都某天府七中招生数学真卷(一)

2019年成都某天府七中招生数学真卷(一)

2019年成都某天府七中招生数学真卷(一)(满分:100分 时间:60分钟)一、填空题(每小题2分,共20分)1.规定()()21a b a a a b =⨯+-+-△,则()()211110++=△△_________。

2.甲、乙、丙三个数的平均数是70,:2:3=甲乙,:4:5=乙丙,则乙数是_________。

3.高相等的一个圆柱和圆锥的底面直径之比为1:3,它们的体积之比是_________。

4.把一根绳子分别等分折成5股和6股,如果折成5股比6股长20厘米,那么这根绳子的长度是_________厘米。

5.甲、乙两人带着同样多的钱,用他们全部的钱买了圆珠笔,甲拿走了16支,乙拿走了10支。

回家后甲补给乙10.8元,每支圆珠笔的价格是_________元。

6.有一批货物,第一次运出了20%,第二次运出了26吨,这时余下的货物的吨数与运出的货物的吨数的比是3:4,则余下_________吨货物。

7.轮船发生漏水事故,立即安装两台抽水机向外抽水,此时已漏进600桶水。

一台抽水机每分钟抽水18桶,另一台抽水机每分钟抽水14桶,50分钟抽完,每分钟漏进_________桶水。

8.一条小街上顺次安装10盏路灯,为了节约用电又不影响路面照明,要关闭除首末两灯以外的8盏灯中的4盏灯,但被关的灯不能相邻,共有_________种不同的关法。

9.一辆货车每小时行70千米,相当于客车速度的一现两车同时从甲、乙两地相对开出,结果在距中点50千米处相遇,甲、乙两地相距_________千米。

10.李老师买国库券x 元,定期5年,年利率是4.14%,到期时她一共可得到本金和利息_________元。

二、选择题(每小题2分,共20分)1.电影门票30元一张,降价后观众增加1倍,收入增加13,则一张门票降价( )。

A .25元 B .20元 C .15元 D .10元2.对于数a 、b 、c 、d ,规定,2a b c d ab c d =-+,,,,已知1357x =,,,则x 是( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都七中2019年自主招生考试
数学
(时间120分钟,满分150分)
一、选择题(每小题只有一个正确答案,每小题5分,共60分)
1. 若22
512106413
M x xy y x y(x,y为实数),则M的值一定是
(A)非负数(B)负数(C)正数(D)零
2. 将一个棱长为m(2
m且m为正整数)的正方体木块的表面染上红色,然后切成3m个棱长为1的小正方体,发现只有一个表面染有红色的小正方体的数量是恰好有两个表面染有红色的小正方体的数量的12倍,则m的值为
(A)16 (B)18 (C)26 (D)32
3. 已知2
610070
a a以及2
710060
b b,且1
ab,则a
b
的值为
(A)50
3
(B)
6
7
(C)
100
7
(D)
7
6
4. 若
3
235
a,2610
b,则
a
b
的值为
(A)1
2
(B)
1
4
(C
23
(D
610
5. 满足10
ab a b的整数对(,)
a b共有
(A)4个(B)5个(C)6个(D)7个
6. 在凸四边形ABCD中,E为BC边的中点,BD与AE相交于点O,且BO=DO,AO=2EO,则S△ACD: S△ABD的值为
(A)2:5(B)1:3(C)2:3(D)1:2
7. 从1到2019连续自然数的平方和2222
1232019的个位数字是
(A)0 (B)1 (C)5 (D)9
8. 已知0
x y z,且
111
123
x y z
,则代数式222
(1)(2)(3)
x y z的值为
(A)3 (B)14 (C)16 (D)36
9. 将一枚六个面编号分别是1,2,3,4,5,6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的
点数为a,第二次掷出的点数为b,则使关于x,y的方程组
2
23
ax by
x y
只有正数解的概率为
(A)
1
12
(B)
1
6
(C)
5
18
(D)
13
36
10. 方程2
38310
a a b,当a取遍0到5的所有实数值时,则满足方程的整数b的个数是
(A)12个(B)13个(C)14个(D)15个11. 若一个三角形的三边和为40,且各边长均为整数,则符合条件的三角形的个数为
(A)31个(B)32个(C)33个(D)34个12. 若关于x的方程230
x ax b有实根,则22
(4)
a b的最小值为
(A)0 (B)1 (C)4 (D)9
二、填空题(13~16题,每题7分;17~19题,每题8分,共52分)
13. 已知
313
2
x,则代数式43
331
x x x的值为______.
14. 在正十边形的10个顶点中,任取4个顶点,那么以这4个顶点为顶点的梯形有______个.
15. 在Rt△ABC中,∠C=90°,AC=1,BC=2,D为AB中点,E为边BC上一点,将△ADE沿DE翻折得
到△'A DE,使△'A DE与△BDE重叠部分的面积占△ABE面积的1
4
,则BE的长为______.
第15题图第17题图第18题图
16. 已知关于x 222
2144269
x x x x x m恰好有两个实数解,则m的取值范围为___.
17. 如图,P A切⊙O于点A,PE交⊙O于点F,E,过点A作AB ⊥PO于点D,交⊙O 于点B,连接DF,

2
sin
3
BAO,5
PE DF,则
PF
PE
______.
18. 如图,四边形ABCD中,AB=AD=5,BC=DC=12,∠B=∠D=90°. M和N分别是线段AD 和线段BC上的点,且满足BN=DM,则线段MN的最小值为______.
19. 若1
1
2
x,23
0123
2
12
n
n
x
a a x a x a x a x
x
x
,则
23
a a______. B
A P
三、解答题(20题18分,21题20分,共38分) 20. 已知二次函数2(7)6y
x a x ,反比例函数a y
x
. (1)当2a 时,求这两个函数图象的交点坐标;
(2)若这两个函数的图象的交点不止一个,且交点横,纵坐标都是整数,求符合条件的正整数a 的值; (3)若两个函数的交点都在直线1
2
x 的右侧,求a 的取值范围.
21. 已知,四边形ABCD中,点E,F分别为AD,AB上的点,连接BE,DF相交于点G,且满足ADF ABE.
(1)如图1,若DE=BG=n,
2
cos
3
AEB,GE=3,求AE的长(用含n的代数式表示);
(2)如图2,若四边形ABCD为矩形,G恰为BE的中点,连接CG,AE=1,作点A关于BE的对称点'A,
'A到CG
DE的长.
图1 图2
D
F。

相关文档
最新文档