微生物数量测定.

合集下载

高中生物第1章微生物培养技术第3节测定微生物的数量学案中图版选修1

高中生物第1章微生物培养技术第3节测定微生物的数量学案中图版选修1

第三节测定微生物的数量一、测定微生物数量的方法测定微生物数量的方法可分为两类:直接计数法和间接计数法.前者常用的是显微镜直接计数法,这种方法是先将待测样品制成悬液,然后取一定量的悬液放在显微镜下进行计数。

该方法适用于纯培养悬浮液中各种单细胞菌体的计数。

后者最常用的是稀释平板计数法,需要将待测样品配制成均匀的系列稀释液并使其均匀分布于平板中的培养基内,经培养后统计培养基中出现的菌落数,从而推算出样品中的活菌数。

利用血球计数板测出的菌体数与平板计数法相比哪个多些?【提示】血球计数板测出的是全部菌体数,而平板计数法只能测出活菌数,而且比实际数偏少。

二、间接计数法的实验设计1.制备土壤稀释液取土壤表层5~10 cm处的土样.准确称取1 g土样,放入盛有99 mL无菌水的锥形瓶中,振荡20 min后制成102倍的稀释液.然后进行系列稀释,得到103、104、105、106倍的系列稀释菌液。

2.取样及倒平板3.培养4.观察记录(1)计数时对于细菌、放线菌以每个培养皿内有30~300个菌落为宜,霉菌以每个培养皿内有10~100个菌落为宜。

(2)计算每克样品菌数公式为:每克土壤样品菌数=错误!×稀释倍数.预习完成后,请把你认为难以解决的问题记录在下面的表格中问题1问题2问题3问题4一、微生物生长量的测定1.测重量法干重法:将单位体积待测的培养液离心后,用清水洗涤1~5次,放入干燥器中加热干燥,加热温度一般在100~105 ℃之间,再称重。

以细菌为例,一个细胞一般重约10-12~10-13g,也可在较低温度(如40 ℃)下进行真空干燥。

湿重法:将一定量的菌悬液离心或过滤,得到菌体,反复洗涤后称湿重,干重一般为湿重的20%~25%。

2.计数法(1)直接计数法这种方法是利用特定细菌计数板或血球计数板,在显微镜下计算一定容积里样品中微生物的数量。

此法的缺点是不能区分死菌与活菌。

计数板是一块特制的载玻片,上面有一个特定的面积1 mm2和高0。

微生物大小测定及计数

微生物大小测定及计数
答:放大倍数不相同,目镜测微尺每格代表的长度不同。
2、在不改变目镜和目镜测微尺,而改用不同放大倍数的物镜来测定同一菌体大小时,其测定结果是否相同,为什么?
答:测定结果不相同。因为在不同倍数的目镜下,细菌大小发生变化,而目镜测微尺每格大小不变,所以测定结果不同。
四、仪器和其他用品:载玻片、盖玻片、显微镜、镊子、接种环、血球计数板、显微测微尺、滴管、酒精灯
五、操作步骤:
1、微生物大小的测定
(1)取下显微镜右目镜,将目镜测微尺放在目镜镜筒内的隔板上,然后放上目镜透镜,将目镜装回镜筒。
(2)校正目镜测微尺:在低倍镜下调节焦距,当清晰看到镜台测微尺的刻度后,用推进器移动镜台测微尺,使两尺在某一区域内两线完全重合,然后分别输出两重合线之间镜台测微尺和目镜测微尺所占的格数。
(2)将血球计数板盖上盖玻片,用无菌毛细管吸取少量摇匀的酿酒酵母菌液,滴在盖玻片的一个顶点,待菌液从盖玻片另一对角流出为满。
(3)先在低倍镜下找到计数室,再用高倍镜计数。每小格内的菌数不能超过8个为宜。当每小格内的菌数过多时,适当稀释。
(4)任选5个中格计数(5个中格不可以挨着;酵母菌出芽计1个菌体;计数时,位于边线上的细胞,记上不记下,计左不计右)
(3)用同样的方法在高倍镜下和油镜下进行校正。并计算目镜测微尺每小格所代表的实际长度。
(4)制酵母菌玻片:用接种环取菌在蒸馏水中涂抹,加热干燥,用美兰染色1’30”,流水脱色,自然干燥。
(5)先在低倍镜和高倍镜下找到菌株,再在油镜下测出酵母菌的长度和宽度。重复3次并记下平均值。
2、酵母菌的显微计数
(1)将血球计数板洗净,再用95%乙醇棉球擦洗,自然干燥。
sdu
微生物大小及数量测定
一、实验目的:

微生物实验微生物数量和大小测定

微生物实验微生物数量和大小测定
目镜测微尺是一块可放入接目镜内旳圆形小玻 片,其中央有精确旳等分刻度。目镜测微尺每小 格所代表旳实际长度不同,需将其放在接目镜中 旳隔板上,测量前,必须先用镜台测微尺进行校 正。
目镜测微尺 镜台测微尺
1.利用镜台测微尺 测定目镜测微尺旳 每格绝对值
2.目镜测微尺每格 长度(um)=两 重叠线间镜台测微 尺格数×10/两重 叠线间目镜测微尺 格数
测定细胞数量旳常用措施 ➢稀释平板计数法 对样品稀释培养,据形成旳菌落数计数。 优点:活菌计数措施,对设备要求不高。 缺陷:操作复杂。
➢显微镜直接计数法 使用血球计数板在显微镜下直接计数。 优点:操作简便,计数直观。 缺陷:计数成果为活细菌和死菌体旳总和。
➢光电比浊法
光电比浊法是利用在一定旳范围内,微生物细 胞浓度与透光度成反比旳原理。当细菌细胞在 溶液中数量越多,浊度越大,在光电比色计中 测定时所吸收旳光线越多。
2、细胞大小旳测量
酵母菌悬液滴在载玻片上,盖上盖玻片,置显微镜 载物台上。用目镜测微尺测量细胞宽和长。
三、试验成果
1.计算出目镜测微尺校正成果(物10×和40×) 2.酵母菌大小测定酵母菌大小测定,选择5-8个 酵母菌,测定其40×大小范围。
四、思索题 p51 2(2)
试验(二) 微生物数量旳测定
微生物实验微生物数 量和大小测定
试验(一) 微生物大小旳测定
一、目旳要求
学习使用镜台测微尺和目镜测微尺;在显微镜下测定微生 物大小。
二、试验原理
镜台测微尺是中央部分刻有精确等分线旳载玻 片,一般是l mm等分为100格,每格长0.01 mm(即10 um) ,用于校正目镜测微尺每格旳相 对长度。
一、目旳要求
1、明确血细胞计数板计数旳原理。 2、掌握使用血细胞计数板进行微 生物计数旳措施。

实验七微生物数量的测定

实验七微生物数量的测定

实验七微生物数量的测定一、实验目的1.掌握在液态和固态培养基上进行微生物计数的方法。

2.掌握稀释系数的计算方法。

3.了解红外辐射计数器的检测功能和操作方法。

二、实验原理在液体培养基上进行微生物计数的方法属于定量分析中的一项基本技术,其主要原理为先将微生物和加有营养物质的液体平均混合,然后分别取出适当体积,经过一定的稀释,将其等量分配到不同的培养皿内,然后在液体培养基上进行生长,最后根据各个培养皿内微生物生长的数量来计算初始菌落的数目。

其中,常用的标准液体培养基有肉汤、营养琼脂、拟南芥培养基等。

但该方法存在的问题在于,微生物生长的速度会因培养基的不同而有很大区别,如在肉汤培养基上生长较慢,需要长达24小时才能形成充分的菌落,而在营养琼脂培养基上生长则较快,并且易于观察。

此外,该方法要求使用无菌技术,并且在取样时需要注意尽量避免空气中污染菌落的产生,否则将会导致不准确的计数结果。

2.微生物计数固体培养基法在固体培养基上进行微生物计数的方法是将微生物标本均匀涂于固体培养基上,然后生长出菌落进行计数。

与液体培养基相比,该方法在菌落的形成方面更直观,且繁殖数目相对更多,故计数更为准确。

常用的固体培养基有营养琼脂、马铃薯葡萄糖琼脂、血液琼脂等。

但该方法存在的问题在于,菌落大小、形状、颜色等因素均可能影响计数结果,在计数时需要注意与目测直接形状相同的菌落合并计算,否则会造成漏计或重复计数的情况。

稀释是将一定量的菌液,通过逐步加入相等体积的稀释液而逐渐降低其菌落总体载量的过程。

通过分析稀释液与菌落的比例,就可以得到相对菌落的绝对数量。

其中,稀释系数是指菌液按递减顺序与相应稀释液的混合比例。

4.红外辐射计数器红外辐射计数器是一种基于消光和反射原理的微生物计数仪器,其原理是通过辐射源向样品发射一定频率的红外辐射,并接收样品的反射光信号,在计算机系统的驱动下对数码化数据进行处理,最终得到表示原始样品生化物数量的结果。

实验七微生物数量的测定

实验七微生物数量的测定

五、实验报告
1、结果记录: 将计数结果记录下表。A表示五个中方格 中的总菌数。B稀释倍数为102。
注:1 mL菌液总数=A/5×25×104×B=5×107×A
五、实验报告
1、思考题: (1)在显微镜下直接测定微生物数量有什么优 缺点?
(2)根据你的体会,说明用血球计数板计数的误 差主要来自哪些方面?应如何尽量减少误差,力 求准确? (3)某单位要求知道一种干酵母粉的活菌存活率 请设计1-2种可行的检测方法。
5. 计算方法:
酵母菌细胞数/mL= (X1+X2+X3+X4+X5) 25(或16)X 10 X 1000 x 稀释倍数 X 5
6. 注意事项:压在方格线上的菌体,以压在底线和 右侧线上的菌体计入本格内;遇到有芽体的酵母时, 若芽体超过母体一半以上,就按单个酵母计数。 7. 计数完毕后,血球计数板要立即清洗干净,并用 吸水纸吸干,最后用擦镜纸擦干净,并放回盒内。
下次实验:微生物大小的测定
ห้องสมุดไป่ตู้
1. 取清洁无油的血球计数板(在显微镜下检查,如不 干净清水冲洗,不可用硬毛刷刷洗),在计数室上面 加盖玻片。
2. 取酵母菌液,摇匀,用滴管由盖玻片边缘滴一小滴, 使菌液自行渗入,计数室内不得有气泡。 3. 静止5min后,用低倍镜观察并将计数室移至视野 中央。 4. 在高倍镜下计数:随机计数五个中格的平均值, 然后求得每个中格的平均值。乘上16(或25)就得出 一大格中的总菌数,最后再换算到每mL菌液中的含菌 数。
实验七
微生物数量的测定
一、目的要求
1.明确血细胞计数板计数的原理 2.掌握使用血细胞计数板进行微生物计数的 方法。
二、基本原理
微生物个体生长的时间较短,很快进入分裂 繁殖阶段,个体生长难以测定。它们的生长一般 以繁殖即群体生长作为微生物生长的指标。群体 生长表现为细胞数目的增加或细胞物质的增加。 测定数目的方法有显微镜直接计数法、平板计数 法、光电比浊法等。 显微镜直接计数法是将小量待测样品的悬浮液 置于一种特别的具有确定面积和容积的载玻片上, 于显微镜下直接计数的一种简便、快速、直观的 方法。

微生物数量的测定

微生物数量的测定


1mL菌液中总菌数 1mL菌液中总菌数 =A/5*25*104*B=50000*A*B 1mL菌液中总菌数 1mL菌液中总菌数 =A/5*16*104*B=32000*A*B 其中B为稀释倍数. 其中B为稀释倍数.
注意事项
对于出芽的酵母菌,芽体 对于出芽的酵母菌, 出芽的酵母菌 达到母细胞大小一半时, 达到母细胞大小一半时, 即可作为两个菌体计算. 即可作为两个菌体计算.
计数方法
使用血球计数板计数时,通常数 个中方格的总菌 使用血球计数板计数时,通常数5个中方格的总菌 然后求每个中方格的平均值, 数A,然后求每个中方格的平均值,再乘上大方格 计数室)中方格的数量, (计数室)中方格的数量,就得出一个大方格中的 总菌数.数两个大方格总菌数,平均后, 总菌数.数两个大方格总菌数,平均后,再换算成 每毫升菌液中微生物细胞的数量. 每毫升菌液中微生物细胞的数量. 计算: 计算:
微生物数量的测定
微生物的生长通常以群体的生长作为指标.群体生长表现 微生物的生长通常以群体的生长作为指标. 为细胞数目的增加或者细胞物质的增加. 为细胞数目的增加或者细胞物质的增加. 测定微生物数量的主要方法: 测定微生物数量的主要方法: 显微镜直接计数法(不辨死活) 显微镜直接计数法(不辨死活) 平板菌落计数法(形成菌落的微生物) 平板菌落计数法(形成菌落的微生物) P32 光电比浊法(不用于颜色太深的样品) 光电比浊法(不用于颜色太深的样品) 测定细胞重量法(测定丝状真菌生长量) 测定细胞重量法(测定丝状真菌生长量) 测定细胞总氮量或总碳量(适于浓度较高的样品) 测定细胞总氮量或总碳量(适于浓度较高的样品) ......
血球计数板是一块特制的载玻片, 血球计数板是一块特制的载玻片, 其上由四条槽构成三个平台; 其上由四条槽构成三个平台;中 间较宽的平台又被一短横槽隔成 两半, 两半,每一边的平台上各列有一 个方格网. 个方格网. 每个方格网共分为九个大方格, 每个方格网共分为九个大方格, 中间的大方格即为计数室. 中间的大方格即为计数室. 计数室的刻度一般有两种规格: 计数室的刻度一般有两种规格: 一种是一个大方格分成25 25个中方 一种是一个大方格分成25个中方 格,而每个中方格又分成16个小 而每个中方格又分成16个小 16 方格; 方格;另一种是一个大方格分成 16个中方格 个中方格, 16个中方格,而每个中方格又分 25个小方格 个小方格. 成25个小方格. 无论是哪一种规格的计数板, 无论是哪一种规格的计数板,每一个大方格中的小方格都是 400个 每一个大方格边长为lmm lmm, 400个.每一个大方格边长为lmm,则每一个大方格的面积为 盖上盖玻片后,盖玻片与载玻片之间的高度为0.lmm 0.lmm, lmm2,盖上盖玻片后,盖玻片与载玻片之间的高度为0.lmm,所 以计数室的容积为0.lmm 万分之一毫升) 以计数室的容积为0.lmm3(万分之一毫升).

土壤微生物数量测定方法

土壤微生物数量测定方法

土壤微生物数量测定方法土壤微生物是指生活在土壤中的微小生物,包括细菌、真菌、放线菌、古菌等。

土壤微生物在土壤的生物地球化学循环、有机质分解、养分转换和植物健康等过程中起着重要的作用。

因此,对土壤微生物数量的准确测定具有重要意义。

本文将介绍一些常用的土壤微生物数量测定方法。

1.瓶培法:将适量的土壤样品与适量的培养基混合,在37°C下培养约24小时,然后通过平板计数法或最凼稀释法进行测定。

2.膜过滤法:将土壤提取液通过特定孔径的膜过滤器滤过,然后将膜放置在培养基上进行细菌的生长,最后进行计数。

3.间接法:通过测定土壤样品的可培养细菌指标,如氧化还原酶、脱氢酶等的活性,从而推算出土壤中的细菌数量。

4.分子生物学方法:通过PCR扩增土壤DNA中的细菌基因,如16SrRNA基因,再通过测定PCR产物进行细菌数量的测定。

1.直接镜检法:直接在显微镜下观察土壤样品中的真菌,通过计数来估算真菌的数量。

2.平板计数法:将土壤样品均匀撒在培养基上,通过培养方法使真菌生长形成菌落,最后进行计数。

3.膜过滤法:与细菌数量测定相似,将土壤提取液通过膜过滤器滤过,然后将膜放置在适当的培养基上进行真菌的生长,最后进行计数。

4.分子生物学方法:通过PCR扩增土壤DNA中的真菌基因,如18SrRNA基因,再通过测定PCR产物进行真菌数量的测定。

1.直接镜检法:直接在显微镜下观察土壤样品中的放线菌,通过计数来估算放线菌的数量。

2.平板计数法:将土壤样品均匀撒在培养基上,通过培养方法使放线菌生长形成菌落,最后进行计数。

3.膜过滤法:与细菌和真菌数量测定类似,将土壤提取液通过膜过滤器滤过,然后将膜放置在适当的培养基上进行放线菌的生长,最后进行计数。

4.分子生物学方法:通过PCR扩增土壤DNA中的放线菌基因,如16SrRNA基因,再通过测定PCR产物进行放线菌数量的测定。

通过上述方法测定土壤中微生物的数量,可以了解土壤微生物对土壤生态系统功能的影响,并为土壤质量评价和科学合理利用提供依据。

测定微生物总数的方法

测定微生物总数的方法

测定微生物总数的方法测定微生物总数是微生物学研究中的一项重要任务,它可以帮助我们了解微生物在环境中的分布和数量。

本文将介绍几种常用的测定微生物总数的方法。

一、直接计数法直接计数法是最直接、最常用的测定微生物总数的方法之一。

它通过使用显微镜观察样品中的微生物细胞数目来进行测定。

具体操作步骤如下:1. 取一定量的样品,如水样、土壤样等,制备适当的稀释液。

2. 取适量的稀释液滴于玻璃片上,用显微镜观察。

3. 在显微镜下,使用目镜和物镜进行放大观察,并使用计数室或计数网格进行计数。

4. 统计不同视野中的微生物数量,并计算平均值,从而得到微生物总数。

二、培养法培养法是一种常用的测定微生物总数的方法,它通过将微生物样品在培养基上培养并生长,然后观察和计数生长的菌落数来进行测定。

具体操作步骤如下:1. 取适量的样品,如空气、食品、药品等,制备适当的稀释液。

2. 取一定量的稀释液接种于含有富营养物的培养基上。

3. 将培养基培养在适当的温度和湿度条件下,使微生物生长繁殖。

4. 观察培养基上生长的菌落,并进行计数。

5. 根据计数结果,计算微生物总数。

三、膜过滤法膜过滤法是一种常用的测定微生物总数的方法,它通过将微生物样品过滤到膜上,然后将膜放置在培养基上进行培养和生长,最后观察和计数生长的菌落数来进行测定。

具体操作步骤如下:1. 取一定量的样品,如水样、食品样等,制备适当的稀释液。

2. 将稀释液通过膜过滤装置过滤到膜上。

3. 将膜放置在含有富营养物的培养基上进行培养和生长。

4. 观察培养基上生长的菌落,并进行计数。

5. 根据计数结果,计算微生物总数。

四、荧光显微镜法荧光显微镜法是一种高级的测定微生物总数的方法,它通过将微生物样品染色,并利用荧光显微镜观察和计数荧光染色的微生物细胞来进行测定。

具体操作步骤如下:1. 取一定量的样品,如水样、食品样等,制备适当的稀释液。

2. 取适量的稀释液滴于载玻片上,进行定性或定量染色。

微生物数量的测定方法

微生物数量的测定方法

微生物数量的测定方法微生物数量的测定方法微生物是一类微小的生物体,包括细菌、真菌、病毒等。

它们广泛存在于自然界中的土壤、水体、空气中,也存在于人体内外。

了解微生物的数量对于环境监测、食品安全、医学诊断等领域具有重要意义。

本文将介绍几种常用的微生物数量测定方法。

1. 直接计数法直接计数法是最直接、最常用的微生物数量测定方法之一。

它通过显微镜观察和计数来确定微生物的数量。

首先,将待测样品制备成适当的悬浮液,然后在显微镜下观察,并使用计数器进行计数。

这种方法适用于细菌和酵母等较大的微生物。

但是,由于显微镜观察需要较高的技术水平和时间,所以无法快速测量大量样品。

2. 培养法培养法是一种常用的微生物数量测定方法,它通过培养微生物并计数生长的菌落来确定数量。

首先,将待测样品制备成适当的培养基,然后在恰当的温度和湿度条件下培养一段时间。

培养基中的微生物会形成可见的菌落,通过计数菌落的数量来确定微生物的数量。

这种方法适用于大部分微生物,但是它需要一定的培养时间,并且某些微生物可能无法在常规培养基上生长。

3. 膜过滤法膜过滤法是一种常用的微生物数量测定方法,它通过将待测样品过滤到膜上,并将膜培养在适当的培养基上来确定数量。

首先,将待测样品通过特定孔径的过滤器过滤,然后将过滤后的膜放置在培养基上培养。

培养基中的微生物会在膜上形成可见的菌落,通过计数菌落的数量来确定微生物的数量。

这种方法适用于水样、空气样等液态和气态样品。

4. 分子生物学方法分子生物学方法是一种新兴且快速发展的微生物数量测定方法。

它通过检测和分析微生物DNA或RNA来确定数量。

常用的分子生物学方法包括聚合酶链反应(PCR)、实时荧光定量PCR(qPCR)等。

这些方法可以快速、准确地测定微生物的数量,并且可以检测到少量微生物。

但是,分子生物学方法需要一定的实验设备和技术,并且对样品预处理要求较高。

总结起来,微生物数量的测定方法有直接计数法、培养法、膜过滤法和分子生物学方法等。

土壤微生物生物量的测定方法

土壤微生物生物量的测定方法

土壤微生物生物量的测定方法1.直接计数法:直接计数法是通过显微镜观察土壤样品中微生物数量来测定土壤微生物生物量。

常用的直接计数法包括滴定法、薄层计数法和电镜计数法。

滴定法是将土壤样品溶解后,通过滴定法来计数微生物细胞的数量。

滴定法主要包括用荧光假单胞菌(Pseudomonas fluorescens)作为参比菌,将细菌与土壤样品混合,经一系列稀释后进行滴定。

通过观察滴定液中菌落的数量,可以推算出原始土壤样品中微生物的生物量。

薄层计数法是将土壤样品制成薄层,然后在显微镜下进行计数。

这种方法可以直接观察微生物的形态特征,通过计算单位面积上微生物的数量来估算微生物生物量。

电镜计数法是利用电镜的高分辨率特性,观察土壤样品中微生物的形态和数量。

这种方法可以观察到更小的微生物和微生物的形态细节,但是操作复杂,成本较高。

2.间接测定法:间接测定法通过测定土壤中微生物活性代谢产物来估算微生物生物量。

常用的间接测定法包括ATP测定法、细胞膜脂肪酸测定法和氮素代谢产物测定法等。

ATP测定法是通过测定土壤中的三磷酸腺苷(ATP)含量来估算微生物生物量。

微生物的ATP含量与其生物量有一定的关系,因此可以通过测定ATP含量来间接估算土壤微生物生物量。

细胞膜脂肪酸测定法是通过测定土壤样品中微生物细胞膜中的脂肪酸含量来估算微生物生物量。

微生物细胞膜中的脂肪酸种类和含量与微生物群落的组成和数量有关,因此可以通过测定脂肪酸的含量来间接估算微生物生物量。

氮素代谢产物测定法是通过测定土壤样品中微生物氮素代谢产物的含量来估算微生物生物量。

微生物的氮素代谢活动与其生物量有关,因此可以通过测定氮素代谢产物的含量来间接估算微生物生物量。

3.分子生物学方法:分子生物学方法是利用PCR技术对土壤样品中微生物的DNA或RNA进行扩增和测定来估算微生物生物量。

常用的分子生物学方法包括引物扩增法、荧光原位杂交法和高通量测序法等。

引物扩增法是通过设计特定的引物对微生物的DNA或RNA进行扩增,并通过PCR反应的产物数量来估算微生物生物量。

微生物数量测定

微生物数量测定

微生物数量测定在我们生活的这个世界中,微生物无处不在。

从土壤到空气,从水体到生物体内部,微生物都扮演着至关重要的角色。

为了更好地了解微生物在各种环境中的分布和作用,对微生物数量的测定就显得尤为重要。

微生物数量的测定方法多种多样,每种方法都有其特点和适用范围。

下面,我们就来详细介绍几种常见的微生物数量测定方法。

直接计数法是较为简单直观的一种方法。

其中,血球计数板法就是常用的直接计数手段之一。

血球计数板是一块特制的厚玻璃片,上面刻有小方格。

将微生物样品经过适当稀释后,滴入血球计数板的小方格中,在显微镜下直接计数一定体积内的微生物细胞数量。

这种方法的优点是直观、快速,但缺点是不能区分死细胞和活细胞,而且对于一些微小的微生物可能难以准确计数。

涂片染色法也是直接计数的一种方式。

将微生物样品均匀地涂抹在载玻片上,经过染色处理后,在显微镜下观察并计数。

通过不同的染色方法,可以区分不同类型的微生物,从而更有针对性地进行计数。

然而,这种方法比较耗时,而且对于数量众多的微生物样本,计数工作会变得相当繁琐。

间接计数法中,平板菌落计数法应用广泛。

其基本原理是将样品进行系列稀释,然后取适量稀释液涂布在固体培养基平板上,经过培养后,统计平板上形成的菌落数。

通常,一个菌落代表一个活菌,通过计算菌落数,再乘以稀释倍数,就可以得出样品中的活菌数量。

这种方法的优点是能够区分活菌和死菌,而且准确性相对较高,但操作过程较为复杂,需要严格控制操作条件,以避免污染和误差。

此外,还有比浊法用于微生物数量的测定。

微生物在生长过程中会导致培养液的浊度发生变化,通过测定培养液的浊度,可以间接反映微生物的生长量和数量。

这种方法操作简便、快速,但对于颜色较深或含有杂质的培养液,可能会影响测定结果的准确性。

在实际应用中,选择合适的微生物数量测定方法取决于多种因素。

首先要考虑的是测定的目的。

如果只是想快速了解微生物的大致数量,直接计数法可能就足够了;如果需要准确测定活菌数量,平板菌落计数法可能更合适。

微生物大小与数量的测定实验报告

微生物大小与数量的测定实验报告

微生物大小与数量的测定实验报告一、实验目的本次实验旨在掌握使用显微镜测量微生物大小的方法,以及学会运用血球计数板对微生物数量进行测定。

通过实验操作和数据处理,深入了解微生物的形态特征和种群密度,为后续的微生物学研究打下基础。

二、实验原理(一)微生物大小的测定微生物细胞的大小是微生物的基本特征之一。

使用显微镜测微尺可以较为准确地测量微生物细胞的长度、宽度和直径等参数。

显微镜测微尺包括目镜测微尺和镜台测微尺。

目镜测微尺是一块可放在目镜内的圆形小玻片,上面刻有刻度;镜台测微尺是一块特制的载玻片,中央有精确的刻度,用于校正目镜测微尺。

(二)微生物数量的测定血球计数板是一种专门用于计算较大单细胞微生物数量的工具。

它由一块特制的厚玻璃片制成,玻片上有四个槽构成三个平台。

中间的平台又被一短横槽隔成两半,每半边上面各刻有一个方格网。

方格网上刻有 9 个大方格,其中只有中间的一个大方格为计数室。

计数室的刻度一般有两种规格,一种是一个大方格分成 16 个中方格,而每个中方格又分成 25 个小方格;另一种是一个大方格分成 25 个中方格,而每个中方格又分成 16 个小方格。

但无论哪种规格,每个大方格的边长均为 1 毫米,盖上盖玻片后,计数室的容积是一定的。

因此,在一定体积的菌液中,通过计算微生物在计数室中的数量,就可以换算出菌液中微生物的数量。

三、实验材料与仪器(一)材料枯草芽孢杆菌、酿酒酵母的菌悬液。

(二)仪器显微镜、目镜测微尺、镜台测微尺、血球计数板、盖玻片、滴管、擦镜纸、吸水纸等。

四、实验步骤(一)微生物大小的测定1、安装目镜测微尺将目镜测微尺装入目镜的隔板上,注意有刻度的一面朝下。

2、校正目镜测微尺(1)将镜台测微尺置于载物台上,先用低倍镜观察,找到镜台测微尺的刻度线。

(2)移动镜台测微尺,使镜台测微尺与目镜测微尺的刻度线平行,并使两者的“0”刻度线重合。

(3)换用高倍镜观察,找出两尺再次重合的刻度线。

分别记录目镜测微尺和镜台测微尺在重合线段内各自的格数。

微生物量碳氮测定方法

微生物量碳氮测定方法

微生物量碳氮测定方法微生物量、碳氮测定方法是研究微生物数量和代谢活性的关键手段,可用于土壤、水体和生物体等环境中的微生物研究。

常用的微生物量、碳氮测定方法包括显微镜计数法、流式细胞术、气体产量法、碳氮比测定法等。

下面将详细介绍这些方法的原理和操作步骤。

一、显微镜计数法显微镜计数法通过显微镜观察和计数微生物的数量来测定微生物量。

其原理是将样品置于显微镜下,在显微镜下观察样品中的微生物数量,并进行计数。

根据计数结果以及标定样品数量的因数,可以推算出样品中微生物的数量。

显微镜计数法的操作步骤如下:1.获取样本并制备薄片。

根据需要采集样本,并将样本制备成薄片或涂片。

可以使用高温固定、化学固定或热固定等方法固定样本。

2.显微镜观察和计数。

将固定的样本放入显微镜下,通过放大镜头观察样本中的微生物,并进行计数。

为了避免重复计数和遗漏计数,可以使用方格计数器。

3.根据计数结果计算微生物量。

根据计数结果以及标定样品数量的因数,可以推算出样品中的微生物数量。

通常计算结果以每克(或每升)样品中的微生物数量表示。

二、流式细胞术流式细胞术是用于计数、分类和分析微生物的一种高通量、高精读的方法。

其原理是将样品中的微生物通过细胞色素或抗原标记,通过流式细胞仪进行激光扫描,扫描到的细胞信号通过计算机进行分析,从而得到微生物的数量、大小和类型等信息。

流式细胞术的操作步骤如下:1.准备样品和染色。

根据需要采集样本,并给样本进行染色。

染色可以使用细胞色素或抗原标记法,将需要测定的微生物区分出来。

2.流式细胞仪扫描。

将染色的样品装入流式细胞仪中,通过激光扫描仪器扫描染色的细胞,并记录扫描到的细胞信号。

3.数据分析。

通过计算机分析扫描到的细胞信号,得到微生物的数量、大小和类型等信息。

三、气体产量法气体产量法是通过测定微生物代谢过程中产生的气体来间接测定微生物的数量和代谢活性。

常用的气体产量法有氧呼吸测定法和甲烷产量测定法。

气体产量法的操作步骤如下:1.准备培养基和反应器。

微生物显微镜的直接计数法和微生物大小测定

微生物显微镜的直接计数法和微生物大小测定
1.酵母菌细胞总数测定
(1)先将计数板盖上盖片在显微镜下,从低倍找到计数器位 置,不动。
(2)将稀释好菌悬液摇匀,用滴管吸入由盖玻片边缘滴入让 其自行渗透,使室充满(不宜过多,也不可有气泡)。
微生物显微镜的直接计数法和微生物大小测定
第8页
(3)静止3-5分钟,先在低倍镜观察,然后换成高倍 镜进行计数。样品不宜太浓或太稀,最好每小格 控制在5-10个菌体为宜,计数需要重复二次。取 平均值。先后二次误差太大,需再重复计数。
2.微生物大小测定
பைடு நூலகம்
微生物显微镜的直接计数法和微生物大小测定
第5页
微生物显微镜的直接计数法和微生物大小测定
第6页
三、器材
显微镜;血球计数板;手揿计数器;盖玻片; 目镜测微尺;镜台测微尺。
酵母菌菌悬液; 枯草杆菌和金黄色葡萄球菌染色标本。
微生物显微镜的直接计数法和微生物大小测定
第7页
四、操作步骤
在计数时,通常以五个中方格总菌数(每个中方格中数四 个小方格)即20个小方格总菌数(求平均值)。
比如:设20个小方格中总菌数为A,悬液稀释度B,那么 大格(0.1立方毫米总菌数) A/20×400×B。
微生物显微镜的直接计数法和微生物大小测定
第3页
微生物显微镜的直接计数法和微生物大小测定
第4页
测量枯草杆菌长和宽及金黄色葡萄球菌直径。
微生物显微镜的直接计数法和微生物大小测定
第12页
五、试验结果
1、P48题1 2、P92题1
微生物显微镜的直接计数法和微生物大小测定
第13页
六、思索题
1、依据你体会,用血球计数板误差主要来自 那些方面?应怎样防止误差,力争准确?
2、当接目镜不变,目镜测微尺也不变,只改 变接物镜,目镜测微尺每格所量镜台上物体 实际长度是否相同?为何?

微生物细胞大小与数量的测定

微生物细胞大小与数量的测定

微生物细胞大小与数量的测定一、实验目的1. 了解显微镜测定微生物大小与血球计数板测定微生物数量的原理。

2. 学习并掌握显微镜下测定微生物细胞大小的技术,包括目镜测微尺、镜台测微尺的校正技术与测定细胞大小的技术。

3. 了解血球计数板的结构,学习并掌握血球计数板计数微生物数量的技术,包括样品的点样、菌数计数的方法与计算。

二、实验原理1.微生物大小测定原理微生物细胞的大小,是微生物重要的形态特征之一,也是分类鉴定的依据之一。

由于菌体很小、只能在显微镜下来测量。

用于测量微生物细胞大小的工具有目镜测微尺和镜台测微尺。

(1)目镜测微尺目镜测微尺是一块圆形玻片,在玻片中央把5mm 长度刻成50等分,或把10mm 长度刻成100等分。

测量时,将其放在接目镜中的隔板上(此处正好与物镜放大的中间像重叠)来测量经显微镜放大后的细胞物象。

由于不同目镜、物镜组合的放大倍数不相同,目镜测微尺每格实际表示的长度也不一样,因此目镜测微尺测量微生物大小时须先用置于镜台上的镜台测微尺校正,以求出在一定放大倍数下,目镜测微尺每小格所代表的相对长度。

2)镜台测微尺镜台测微尺是中央部分刻有精确等分线的载玻片,一般将lmm 等分为100格,每格长l0”m (即O.Olmm ),是专门用来校正目镜测微尺的。

校正时,将镜台测微尺放在载物台上,由于镜台测微尺与细胞标本是处于同一位置,都要经过物镜和目镜的两次放大成象进入视野,即镜台测微尺随着显微镜总放大倍数的放大而放大,因此从镜台测微尺上得到的读数就是细胞的真实大小,所以用镜台测微尺的已知长度在一定放大倍数下校正目镜测微尺,即可求出目镜测微尺每格所代表的长度,然后移去镜台测微尺,换上待测标本片,用校正好的 ◎图 1目镜测微尺目镜测微尺在同样放大倍数下测量微生物大小。

2.显微镜计数法测定微生物的原理显微镜直接计数法是将小量待测样品的悬浮液置于一种特别的具有确定面积和容积的载玻片上(又称计菌器),于显微镜下直接计数的一种简便、快速、直观的方法。

微生物数量测定

微生物数量测定

微生物数量测定在生物学和医学领域,微生物的数量测定是一个重要的实验技术。

通过对微生物数量的测定,我们可以了解生物体在不同环境中的适应性和生存能力,评估环境的健康状态,以及监测和治疗疾病等。

微生物数量测定的基本原理是利用单位体积或单位面积上的微生物细胞数,通过统计和计算得到微生物的数量。

常用的方法包括显微镜计数法、比浊法、平板计数法等。

显微镜计数法是一种直接计数法,通过显微镜观察并计数样品中的微生物数量。

该方法需要将样品均匀涂布在载玻片上,干燥后进行染色和固定,然后使用显微镜观察并计数。

该方法的优点是简单易行,适用于微生物数量较少的样品,但不适用于大量样品。

比浊法是一种通过测量样品的浊度来测定微生物数量的方法。

该方法是通过将样品与标准曲线进行比较,得出微生物的数量。

该方法的优点是快速、简便、准确度高,适用于大量样品的测定。

但是,该方法需要使用标准曲线,对于某些微生物可能不太准确。

平板计数法是一种通过培养微生物并计数菌落数量来测定微生物数量的方法。

该方法是将样品稀释后涂布在培养基上,培养一定时间后统计菌落数量,然后计算出微生物的数量。

该方法的优点是准确度高,适用于各种微生物的测定,但需要一定的培养时间和人力。

微生物数量测定的应用领域非常广泛,包括环境科学、医学、食品科学、农业科学等。

例如,在环境科学中,微生物数量测定可以用来评估污染物的毒性对生态环境的影响;在医学中,微生物数量测定可以用来监测和治疗疾病;在食品科学中,微生物数量测定可以用来控制食品的质量和安全;在农业科学中,微生物数量测定可以用来了解土壤的健康状况和作物的生长情况等。

微生物数量测定是一种重要的实验技术,广泛应用于生物学和医学等领域。

通过对微生物数量的测定,我们可以更好地了解生物体的适应性和生存能力,评估环境的健康状态,监测和治疗疾病等。

未来随着科技的不断进步和应用领域的不断拓展,微生物数量测定的方法和应用将更加多样化和精准化。

在生物学和医学领域,微生物的大小和数量的测定对于研究生命过程、疾病诊断和治疗等方面都具有重要的意义。

微生物数量测定

微生物数量测定

《环境微生物新技术》课程作业2.微生物数量测定方法有哪些?空气、水、土壤样品分别适用哪些方法?请举例说明。

常见微生物数量的测定方法<1>1.计数器测定法:即用血细胞计数器进行计数。

取一定体积的样品细胞悬液置于血细胞计数器的计数室内,用显微镜观察计数。

由于计数室的容积是一定的(O.1mm3),因而根据计数器刻度内的细菌数,可计算样品中的含菌数。

本法简便易行,可立即得出结果。

本法不仅适于细菌计数,也适用于酵母菌及霉菌孢子计数。

2、电子计数器计数法:电子计数器的工作原理是测定小孔中液体的电阻变化,小孔仅能通过一个细胞,当一个细胞通过这个小孔时,电阻明显增加,形成一个脉冲,自动记录在电子记录装置上。

该法测定结果较准确,但它只识别颗粒大小,而不能区分是否为细菌。

因此,要求菌悬液中不含任何碎片。

3、活细胞计数法 :常用的有平板菌落计数法,是根据每个活的细菌能长出一个菌落的原理设计的。

取一定容量的菌悬液,作一系列的倍比稀释,然后将定量的稀释液进行平板培养,根据培养出的菌落数,可算出活菌数。

此法灵敏度高,是一种检测污染活菌数的方法,也是目前国际上许多国家所采用的方法。

使用该法应注意:①一般选取菌落数在30~300之间的平板进行计数,过多或过少均不准确;②为了防止菌落蔓延,影响计数,可在培养基中加入O.001%2,3,5一氯化三苯基四氮唑(TTC);③本法限用于形成菌落的微生物。

广泛应用于水、牛奶、食物、药品等各种材料的细菌检验,是最常用的活菌计数法。

4、比浊法比浊法是根据菌悬液的透光量间接地测定细菌的数量。

细菌悬浮液的浓度在一定范围内与透光度成反比,与光密度成正比,所以,可用光电比色计测定菌液,用光密度(OD值)表示样品菌液浓度。

此法简便快捷,但只能检测含有大量细菌的悬浮液,得出相对的细菌数目,对颜色太深的样品,不能用此法测定。

5、测定细胞重量法此法分为湿重法和干重法。

湿重法系单位体积培养物经离心后将湿菌体进行称重;干重法系单位体积培养物经离心后,以清水洗净放人干燥器加热烘干,使之失去水分然后称重。

微生物量微生物大小及数量的测定

微生物量微生物大小及数量的测定

微生物大小及数量的测定一、实验目的1.学习并掌握用测微尺测定微生物细胞大小的方法。

2.了解血细胞计数板的构造及计数原理。

3.掌握使用血细胞计数板进行微生物计数的方法。

二、实验原理1.微生物大小测定原理微生物细胞的大小是微生物的形态特征之一,也是分类鉴定的依据之一。

其测量工具有目镜测微尺和镜台测微尺。

镜台测微尺是中央部分刻标准刻尺的载玻片,其尺度总长为1mm,精确分为10个大格,每个大格又分为10个小格,共100小格,每一小格长度为0.01mm,即10μm。

如图1。

图1镜台测微尺中央部分及镜台测微尺校正目镜测微尺目镜测微尺,如图2,是一块可放入接目镜内的圆形小玻片,其中央有精确的等分刻度,一般有等分为50小格和100小格两种。

测量时,需将其放在接目镜中的隔板上,用以测量经显微放大后的细胞物象。

由于不同显微镜或不同的目镜和物镜组合放大倍数不同,目镜测微尺每小格在不同条件下所代表的实际长度也不一样。

图2目镜测微尺2.血球计数板测定微生物数量的原理血细胞计数板是一块特制的载玻片,其上由4条槽构成3个平台。

中间较宽的平台又被一段横槽隔成两半,每一边的平台上各刻有一个方格网,每个方格网共分9个大方格,中间的大方格即为计数室。

计数室的刻度一般有两种规格,一种是一个大方格分成25个中方格,而每个中方格又分成16小方格(图5-2);另一种是一个大方格分成16个中方格,而每个中方格又分成25个小方格,但无论是哪一种规格的计数板,每一个大方格中的小方格都是2400个。

每一个大方格边长为1mm,则每一个大方格的面积为1mm,盖上盖玻片后,盖玻片3与载玻片之间的高度为0.1mm,所以计数室的容积为0.1mm(10-4mL)。

以25个中方格的计数板为例,设5个中方格中的总菌数为A,菌液稀释倍数为B,则:1mL菌液中的总菌数=A/5×25×10×B图3血球计数板侧面及两种类型的计数室三、实验1.菌种枯草芽孢杆菌(Bacillussubtilis)斜面培养物;酿酒酵母(Saccharomycescerevisiae)液体培养基培养物。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《环境微生物新技术》课程作业2.微生物数量测定方法有哪些?空气、水、土壤样品分别适用哪些方法?请举例说明。

常见微生物数量的测定方法<1>1.计数器测定法:即用血细胞计数器进行计数。

取一定体积的样品细胞悬液置于血细胞计数器的计数室内,用显微镜观察计数。

由于计数室的容积是一定的(O.1mm3),因而根据计数器刻度内的细菌数,可计算样品中的含菌数。

本法简便易行,可立即得出结果。

本法不仅适于细菌计数,也适用于酵母菌及霉菌孢子计数。

2、电子计数器计数法:电子计数器的工作原理是测定小孔中液体的电阻变化,小孔仅能通过一个细胞,当一个细胞通过这个小孔时,电阻明显增加,形成一个脉冲,自动记录在电子记录装置上。

该法测定结果较准确,但它只识别颗粒大小,而不能区分是否为细菌。

因此,要求菌悬液中不含任何碎片。

3、活细胞计数法 :常用的有平板菌落计数法,是根据每个活的细菌能长出一个菌落的原理设计的。

取一定容量的菌悬液,作一系列的倍比稀释,然后将定量的稀释液进行平板培养,根据培养出的菌落数,可算出活菌数。

此法灵敏度高,是一种检测污染活菌数的方法,也是目前国际上许多国家所采用的方法。

使用该法应注意:①一般选取菌落数在30~300之间的平板进行计数,过多或过少均不准确;②为了防止菌落蔓延,影响计数,可在培养基中加入O.001%2,3,5一氯化三苯基四氮唑(TTC);③本法限用于形成菌落的微生物。

广泛应用于水、牛奶、食物、药品等各种材料的细菌检验,是最常用的活菌计数法。

4、比浊法比浊法是根据菌悬液的透光量间接地测定细菌的数量。

细菌悬浮液的浓度在一定范围内与透光度成反比,与光密度成正比,所以,可用光电比色计测定菌液,用光密度(OD值)表示样品菌液浓度。

此法简便快捷,但只能检测含有大量细菌的悬浮液,得出相对的细菌数目,对颜色太深的样品,不能用此法测定。

5、测定细胞重量法此法分为湿重法和干重法。

湿重法系单位体积培养物经离心后将湿菌体进行称重;干重法系单位体积培养物经离心后,以清水洗净放人干燥器加热烘干,使之失去水分然后称重。

此法适于菌体浓度较高的样品,是测定丝状真菌生长量的一种常用方法。

6、测定细胞总氮量或总碳量氮、碳是细胞的主要成分,含量较稳定,测定氮、碳的含量可以推知细胞的质量。

此法适于细胞浓度较高的样品。

7、颜色改变单位法(colour change unit,简称CCU)通常用于很小,用一般的比浊法无法计数的微生物,比如支原体等,因为支原体的液体培养物是完全透明的,呈现为清亮透明红色,因此无法用比浊法来计数,由于支原体固体培养很困难,用cfu法也不容易计数,因此需要用特殊的计数方法,即CCU法。

它是以微生物在培养基中的代谢活力为指标,来计数微生物的相对含量的,下面以解脲脲原体为例单介绍其操作:(1)取12只无菌试管,每一管装1.8ml解脲脲原体培养基。

(2)在第一管加入0.2ml待测解脲脲原体菌液,充分混匀,从中吸取0.2ml加入第二管,依次类推,10倍梯度稀释,一直到最末一管(3)于37度培养,以培养基颜色改变的最末一管作为待测菌液的CCU,也就是支原体的最大代谢活力,比如第六管出现颜色改变,他的相对浓度就是10的6次方CCU/ml.取一定体积的样品细胞悬液置于血细胞计数器的计数室内,用显微镜观察计数或做片在显微镜下数,均称为显微镜直接计数法。

用琼脂平板计数,称为菌落计数法。

一般来说,比浊法和菌落计数法就可以满足绝大多数细菌的计数,但是对支原体这样比较特殊的微生物,用CCU法比较合适。

<2>微生物主要包括原核微生物、真核微生物、病毒等三大类,由于多数微生物的个体较小,肉眼无法观察,对其计数一般比较困难。

在目前的微生物实验教学,对微生物计数的方法主要有三大类:总细胞计数法、活细胞计数法和微生物生长量测定法。

并不是每一种方法都是通用的,不同的微生物种类需要不同的计数方法, 目前多用以下8种方法进行计数:1.总细胞计数法1.1 血细胞计数板计数法血细胞计数板是一块特制的载玻片,其上划有计数室,通过对计数室中的微生物数量的读取,计算原溶液中的微生物数量。

此方法由于计数板较厚,且计数室的高度是0.1mm ,不能采用油镜进行观察,故只能对体积较大的真核微生物进行测定,如酵母菌、霉菌抱子等,只能测得所有细胞的总数,不能区别死细胞和活细胞,尤其是对运动能力强的活细胞难以计数。

目前已经提出一些方法,如结合特定的美蓝染色技术,区别酵母菌死活细胞,将运动的细胞加人甲醛溶液中,破坏其运动以便计数等。

1.2 细菌计数板计数法细菌计数板是在血细胞计数板的基础上改进而来,主要是降低计数板的厚度,同时将计数室的高度从0.1mm 降低到0.02mm ,以用油镜对较小的原核微生物进行计数。

1.3 膜过滤计数法利用计数板对高浓度的菌液测定比较准确,但当样品中细菌的数量很低时,如湖水、海水或饮用水等,用膜过滤计数法更精确些,可以将一定体积样品溶液加结晶紫染色,再用0.02um的聚偏二氟乙烯膜负压过滤,再用无菌水冲洗至无色后,将过滤的膜进行抽干,将膜放到载玻片上,滴加甘油,盖上盖玻片,即可在显微镜下计数。

一般随机抽取20个视野进行计数,最后算平均数,计算整个滤膜上的菌的数量,得到原菌液中的微生物数量。

此测定方法一般只能用于样品中细菌数量很低的情况,多数时候细菌个体由于粘附成团而影响结果。

所以,过滤前的细胞分散处理很重要,例如将细菌悬液经过酸碱或超声波处理,将聚团的细胞打散, 可以增加此方法的准确性。

2.活细胞计数法2.1 平板菌落计数法平板菌落计数法只能用于测定活细胞的数量,但是操作过程相对计数板而言复杂一些,而且测得的细菌数量往往小于实际值。

主要原因是在计算细菌浓度时,往往每个菌落并不一定是由一个单细胞生长繁殖而来,有可能是2个或多个,致使结果比实际菌液样品中的细菌数量低,这也就是为什么现在都用菌落形成单位数(cfu/mL)来取代过去的绝对细菌数量。

为了使菌落数更接近实际菌液中细菌的数量值, 目前多数办法是:尽量扩大稀释倍数,涂布平板时少取稀释菌液,使平板中的菌落数减少,避免由于菌液中细菌数过多造成多个细菌形成一个菌落。

例如,将系列梯度稀释至10-8或更低(稀释倍数取决于原菌液)。

2.2 比浊法微生物细胞在一定浓度范围内,与浊度成正比,即与光密度成正比,菌越多,光密度越大。

故可通过分光光度计测定吸光值,通常测定600nm下的吸光值OD600 ,通过与标准曲线对比,求出样品中菌液浓度,计算出细胞的数量。

实验测定时容易出现误差,必须控制菌浓度在与光密度成正比的线性范围内,否则不准确。

2.3 霉菌计数法对于霉菌的计数一般比较困难, 由于霉菌生长快、菌丝叠加导致无法准确计数。

国标霉菌计数法的原理是将待测菌液进行10倍梯度系列稀释,利用高盐察氏培养基(CAO)与待测菌液混匀后倒平板,25℃~28(土1) ℃下培养3d后开始计数,选择菌落数在10-150之间的平板进行计数,取同稀释度的两个平板的菌落平均数乘以稀释倍数, 即为每g(或ml)检样中所含霉菌数。

3.微生物生长量测定法3.1 凯氏定氮计数法蛋白质是微生物细胞的主要成分,含量较稳定,可以通过测定样品中含量稳定的蛋白质的量计算细菌的数量,将细胞洗涤收集,用凯氏定氮法测全氮,蛋白质含氮量为16%,细菌中蛋白质含量因种类的不同而有差别,平均值为65%, 根据每一种微生物细胞内的蛋白质总含量可以计算出待侧样品中细胞的总质量,最后根据单个细胞的质量计算出样品的细胞数量。

总含氮量与蛋白质之间的关系为:蛋白质总量=含氮量÷16% ,那么,微生物细胞总质量=蛋白质总量÷65%,微生物细胞总数=细胞总质量÷单个细胞质量。

每一种微生物细胞的蛋白质含量不同,且不同时期的细胞蛋白质含量、单个细胞的质量都有差别,所以用此方法测定的结果误差较大,只能作为参考。

3.2 DNA含量测定法相比凯氏定氮计数法较大误差,DNA含量测定法相对较准确。

每个微生物细胞的DNA含量非常恒定,平均为8.4×10-5ng ,将一定体积的细菌悬液离心,从细菌细胞中提取DNA , 得其重量,则可计算出这一定体积的细菌悬液所含的细菌总数。

总结:本文对常用的8种微生物数量测定方法进行总结与比较,血细胞计数板和细菌计数板常用于测定单细胞或孢子,相对比较准确;膜过滤用于测定细胞浓度很低的样品,平板菌落计数对多数微生物的测定都适用,但是相对其他计数法要复杂;比浊法相对准确,但需要标准曲线;对于丝状微生物的数量测定, 国际上有明确的标准,而凯氏定氮法和DNA含量测定法都是通过对微生物细胞内含量相对稳定的物质进行定量测定, 再算出细胞的数量,操作相对复杂。

环境中的微生物数量测定方法一、空气中:空气中没有可为微生物直接利用的营养物质和足够的水分,它不是微生物生长繁殖的天然环境,因此空气中没有固定的微生物种类。

它主要通过土壤尘埃、小水滴、人和动物体表的干燥脱落物、呼吸道的排泄物等方式被带入空气。

由于微生物能产生各种休眠体,故可在空气中存活相当长的时期而不至死亡。

空气中微生物的种类,主要为真菌和细菌。

其数量则取决于所处的环境和飞扬的尘埃量。

1.自然沉降法(沉降平板法)根据空气中携有微生物气溶胶粒子在地心引力作用下,以垂直的自然方式沉降到琼脂培养基上,经24h,37℃温箱培养计算菌落数。

根据奥梅梁斯基建议,面积为100cm2的平板培养基,暴露于空气中5min,于37℃温箱培养24h后所生长的菌落数相当于10L空气中的细菌数。

空气中的细菌数(cfu/m3)=1000×{(100/A)×(5/t)×(1/10)}×N=50000N/(A×T)A----平板面积cm2;T----暴露时间min;N----平均菌落数(cfu/皿) 特点:简单方便,但稳定性差,直径1~5um的粒子在5min内沉降距离有限,使小粒子采集效率低。

2.撞击法Anderson采样器原理:多级筛孔型采样器由6个带有微细针孔的金属撞击盘构成,盘下放置有培养基的平皿,每个圆盘上有400个环形排列小孔,由上到下孔径逐渐减小。

气流从顶罩进第一级,较小的粒子会由于动量不足随气流绕过平皿进入下一级。

经6次撞击后,可把绝大部分的微生物采集下。

空气含菌量(cfu/m3)=【六级采样板的总菌数(cfu)÷28.3(L/min)×采样时间(min)】×1000特点:a.采集粒谱范围广,一般在0.2~20um以上;b.采集效率高,逃逸少;c.微生物存活率高。

3.过滤法使一定量的空气通过吸附剂(灭菌生理盐水),然后培养吸附剂中的细菌,计算出菌落数。

4.液体撞击法和固体撞击式采样器一样,是利用喷射气流方式将空气中的微生物粒子采集到小体积液体中,适用于高浓度的空气微生物采样。

相关文档
最新文档