层次分析法及案例分析
层次分析法原理+案例操作全流程详解
层次分析法1、作用层次分析法是一种解决多目标的复杂问题的定性与定量相结合的决策分析方法。
该方法将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标之间能否实现的标准之间的相对重要程度,例如通过构建评价指标(景色、费用,居住,饮食、旅途)对候选旅游地(桂林、黄山,北戴河)量化评价,进行选择。
在专业版里面,SPSSPRO 健全对方案层的层次总排序,如不需层次总排序,请选择SPSSPRO-层次分析法(AHP 简化版)。
2、输入输出描述输入:根据提示进行指标或者方案两两对比。
输出:各方案的量化得分或者同一级的指标权重。
3、案例示例案例:通过构建评价指标(景色、费用,居住,饮食、旅途)对候选旅游地(桂林、黄山,北戴河)量化评价,进行选择。
4、案例操作Step1:选择层次分析法(AHP 专业版);Step2:选择构建决策模型;Step3:输入构建的评价指标;Step4:输入最终的方案;Step5:确认以进入下一步指标评分;Step6:输入指标之间两两比对的重要程度值;Step7:输入不同方案的对应评价值的重要程度评价。
5、输出结果分析输出结果 1:方案得分图表说明:计算某一层次所有因素对于最高层(总目标)相对重要性的权值,称为层次总排序,基于指标层次单排序与方案层次总排序后,对于旅游地选择最好的方案为北戴河、其次为桂林。
结果分析:北戴河的量化得分为 1.435,高过第二桂林近一倍。
输出结果 2:层次决策模型图表说明:一般的层次分析法会将决策的目标、考虑的因素(决策准则)和决策对象按照他们之间的相互关系分为最高层、中间层和最低层,绘出层次结构图。
SPSSPRO 仅展示了决策的目标、考虑的因素(决策准则)以及各个因子对应的权重值。
结果分析:由图可见,其中最重要的两个决定因素是旅游地的景色和费用,而饮食、居住情况则属于低权重。
输出结果 3:判断矩阵汇总结果图表说明:上表展示了层次分析法的权重计算结果,根据结果对各个指标的权重进行分析,通过展示了一致性检验结果,用于判断是否存在构建判断矩阵的逻辑问题。
层次分析法步骤及案例分析
层次分析法步骤及案例分析层次分析法(AHP)是一种通过对比判断不同因素的重要性来进行决策的方法。
它由匹兹堡大学的数学家托马斯·萨蒙在20世纪70年代初提出,并逐渐应用于各个领域。
本文将介绍层次分析法的步骤,并通过一个实际案例来进行分析。
一、层次分析法的步骤层次分析法主要包括以下几个步骤:1. 确定层次结构:首先,需要明确决策问题的层次结构。
将问题划分为若干个层次,从总目标到具体的子目标,形成一棵树状结构。
例如,在一个购车的决策问题中,总目标可以是“选择一辆适合自己的车”,下面的子目标可以包括“价格”、“外观”、“安全性”等因素。
2. 构造判断矩阵:在每个层次中,需要对不同因素之间的两两比较进行判断。
判断可以基于专家经验、问卷调查或实际数据。
对于两两比较,通常采用一个1到9的比较尺度,其中1表示相等,3表示略微重要,5表示中等重要,7表示强烈重要,9表示绝对重要。
如果因素A相对于因素B的重要性大于1,则B相对于A的重要性是1/A。
3. 计算权重向量:根据判断矩阵中的比较结果,可以计算出每个层次中各个因素的权重向量。
通过对判断矩阵的特征值和特征向量进行计算,可以得到各个因素的权重。
4. 一致性检验:在进行层次分析时,需要检验判断矩阵的一致性。
一致性是指在两两比较中的逻辑关系的一致性。
通常使用一致性指数和一致性比率来判断判断矩阵的一致性程度。
5. 综合评价:通过将各层次中因素的权重向量进行乘积运算,并将结果汇总得到最后的评价结果。
在这一步骤中,可以对不同的决策方案进行排序或进行多目标决策。
二、案例分析为了更好地了解层次分析法的应用,我们来看一个实际案例。
假设某公司需要选择新的供应商,供应商选择的主要考虑因素包括产品质量、交货周期和价格。
我们可以按照以下步骤进行决策:1. 确定层次结构:总目标是选择合适的供应商,下面的子目标是产品质量、交货周期和价格。
2. 构造判断矩阵:对于每个子目标,可以进行两两比较。
层次分析法经典案例
层次分析法经典案例层次分析法(Analytic Hierarchy Process, AHP)是一种常用的多准则决策方法,被广泛应用于企业管理、工程项目评估、市场调研等领域。
本文将通过一个经典案例,介绍层次分析法的基本原理和应用过程。
一、案例背景某企业计划购买新设备,以提升生产效率和质量。
然而,在众多可选设备中,如何选择最适合企业发展的设备成为了业主面临的难题。
为了解决这一问题,业主决定应用层次分析法进行设备选择。
二、层次分析法基本原理层次分析法基于一个重要思想,即将复杂的决策问题拆解为具有层次结构的多个因素,并通过层次化的比较和综合分析,最终得出决策结果。
1. 构建层次结构首先,我们需要将决策问题划分为不同的层次,并构建层次结构。
在这个案例中,可以将设备选择问题划分为三个层次:目标层、准则层和备选方案层。
目标层代表企业的最终目标,即实现高效生产;准则层包括影响设备选择的各种准则,如设备价格、性能指标、售后服务等;备选方案层包括具体的设备选项。
2. 建立判断矩阵接下来,我们需要对不同层次的因素进行两两比较,建立判断矩阵。
通过专家主观判断,给出两个因素之间的相对重要性,采用1-9的尺度,其中1代表两者具有相同重要性,9代表一个因素相对于另一个因素极端重要。
比如,在准则层中,设备性能指标对设备价格的重要性为6。
3. 计算权重向量利用判断矩阵,我们可以计算出每个层次的权重向量。
通过对判断矩阵进行归一化处理,可获得各因素的权重。
权重向量表示了各因素对当前决策的贡献程度,可作为后续分析的依据。
例如,计算准则层中各因素的权重向量。
4. 一致性检验为了保证判断矩阵的合理性,我们需要进行一致性检验。
通过计算一致性指标和一致性比率,评估判断矩阵是否存在较大的一致性问题。
若一致性比率超过一定阈值,需要检查和修正判断矩阵。
5. 优先级排序最后,结合各层次的权重,我们可以进行优先级排序,得出对不同备选方案的排序结果。
根据排序结果,我们可以选择最合适的备选方案。
层次分析法具体案例
层次【2 】剖析法实例与步骤联合一个具编制子,解释层次剖析法的根本步骤和要点.【案例剖析】合理购置电脑决议计划:层次剖析法问题提出许多的电脑小白须要对购置哪个品牌的电脑进行决议计划,可选择的计划是购置戴尔公司临盆的笔记本(简称购置戴尔)或购置联想公司临盆的笔记本(简称购置联想).除了斟酌主板起源外,还要斟酌CPU机能.显卡方法等身分,等于多准则决议计划问题,斟酌应用层次剖析法解决.1. 树立递阶级次构造【案例剖析】合理购置电脑决议计划:树立递阶级次构造在购置哪个品牌的电脑决议计划问题中,许多电脑小白愿望经由过程选择不同的电脑品牌使性价比最高,即决议计划目的是“合理购置电脑使性价比最高”.为了实现这一目的,须要斟酌的重要准则有三个,即主板起源,CPU机能,显卡方法.但问题毫不这么简略.经由过程深刻思虑,还以为还必须斟酌本工场自产.代工场供给.主频的大小.焦点数.自力式显卡.集成式显卡等身分(准则),从互相关系上剖析,这些身分附属于重要准则,是以放鄙人一层次斟酌,并且分属于不同准则.假设本问题只斟酌这些准则,接下来须要明白为了实现决议计划目的.在上述准则下可以有哪些计划.依据题中所述,本问题有两个解决计划,即购置戴尔或购置联想,这两个身分作为措施层元素放在递阶级次构造的最基层.很显著,这两个计划于所有准则都相干.将各个层次的身分按其高低关系摆放好地位,并将它们之间的关系用连线衔接起来.同时,为了便利后面的定量表示,一般从上到下用A.B.C.D...代表不同层次,统一层次从左到右用1.2.3.4...代表不同身分.如许组成的递阶级次构造如下图.目的层A准则层B 准则层C合理购置电脑使性价比最高(A)显卡方法(B3)本工场自产(C1)代工场供给(C2)主频的大小(C3)焦点数(C4)自力式显卡(C5)集成式显卡(C6)措施层D图1 递阶级次构造示意图2. 构造断定矩阵并赋值【案例剖析】合理购置电脑决议计划:构造断定矩阵并填写3. 层次单排序(盘算权向量)与磨练【案例剖析】合理购置电脑决议计划:盘算权向量及磨练 上例盘算所得的权向量及磨练成果见下:可以看出,所有单排序的C.R.<0.1,以为每个断定矩阵的一致性都是可以接收的.4. 层次总排序与磨练【案例剖析】合理购置电脑决议计划:层次总排序及磨练上例层次总排序及磨练成果见下:层次总排序(CR = 0.0000)可以看出,总排序的C.R.<0.1,以为断定矩阵的整体一致性是可以接收的5. 成果剖析经由过程对排序成果的剖析,得出最后的决议计划计划.【案例剖析】合理购置电脑决议计划:成果剖析从计划层总排序的成果看,购置联想(D2)的权重(0.6592)远弘远于购置戴尔(D1)的权重(0.3408),是以,最终的决议计划计划是购置联想.依据层次排序进程剖析决议计划思绪.对于准则层B的3个因子,主板起源(B1)的权重最低(0.1429),cpu(B2)和显卡(B3)的权重都比较高(皆为0.4286),解释在决议计划中比较重视cpu和显卡.对于不重视的主板,其影响的两个因子本工场(C1).代工场(C2)单排序权重都是购置戴尔远弘远于购置联想,对于比较重视的cpu和显卡,其影响的四个因子中有三个因子的单排序权重都是购置联想远弘远于购置戴尔,由此可以推出,购置联想计划因为cpu和显卡较为凸起,权重也会相对凸起.从准则层C总排序成果也可以看出,主频数(C3).自力显卡(C5)是权重值较大的,而假如单独斟酌这两个身分,计划排序都是购置联想远弘远于购置戴尔.由此我们可以剖析出决议计划思绪,即决议计划比较重视的是cpu和显卡,不太重视主板,是以对于具体因子,主频数和自力显卡成为重要斟酌身分,对于这两个身分,都是购置联想计划更佳,由此,最终的计划选择购置联想也就瓜熟蒂落了.。
经典层次分析法分析及实例教程
当CR 0.1 时,认为层次总排序通过一致性检验。到
此,根据最下层(决策层)的层次总排序做出最后决策。
层次分析法的基本步骤归纳如下
1.建立层次结构模型 该结构图包括目标层,准则层,方案层。
2.构造成对比较矩阵 从第二层开始用成对比较矩阵和1~9尺度。
3.计算单排序权向量并做一致性检验 对每个成对比较矩阵计算最大特征值及其对应的特征向量, 利用一致性指标、随机一致性指标和一致性比率做一致性 检验。若检验通过,特征向量(归一化后)即为权向量; 若不通过,需要重新构造成对比较矩阵。
一般分为三层,最上面为目标层,最下面为方案层,中 间是准则层或指标层。 例1 的层次结构模型
买钢笔
目标层
质颜价外实 量色格形用
准则层
可供选择的笔
方案层
例2 层次结构模型
选择 旅游地
景
费
居
饮
旅
色
用
住
食
途
苏州、杭州、 桂林
目标层Z 准则层A 方案层B
若上层的每个因素都支配着下一层的所有因素,或被下一层所 有因素影响,称为完全层次结构,否则称为不完全层次结构。
A 4 7
2 3
1 3
1 5
2
1
1
1
1
3
1
1
3 5
1 2 5
B1
1 2
1
2
1 5
1 2
1
1
B2
3
1 3 1
1 18 3
8 3 1
1 1 3
B3
1 1
1 1
3
3 3 1
1 3 4
B4
1 3
1
1
层次分析法
层次分析法层次分析法是一种应用广泛的决策分析方法,它通过构建层次结构和比较矩阵,来对不同因素进行排序和权重分配,帮助决策者做出合理的决策。
本文将介绍层次分析法的基本原理、应用领域以及一些实际案例。
一、层次分析法的基本原理层次分析法由美国运筹学家托马斯·L·塞蒂提出,它是一种定性和定量相结合的分析方法,能够综合考虑多个因素的重要性和相互关系。
它的基本原理如下:1. 层次结构:将决策问题分解成多个层次,从上至下逐级细化。
顶层是目标层,中间层是准则层,最底层是方案层。
2. 比较矩阵:在每个层次内,通过构建比较矩阵来判断各因素之间的重要性。
比较矩阵是一个n×n的正互反矩阵,其中n是该层次因素的个数。
通过对各因素进行两两比较,得出相对重要性的判断。
3. 加权优先向量:通过对比较矩阵进行特征向量的计算,可以得到各个因素的权重。
特征向量是对比较矩阵的主特征值对应的特征向量,也称为特征向量法。
4. 一致性检验:通过一致性指标和一致性比率的计算,判断构建的比较矩阵是否合理。
一致性指标表示了矩阵的内部一致性程度,一致性比率则是对一致性指标进行归一化,判断是否满足一致性。
5. 综合评价:通过计算得出的权重,进行乘积运算和累加运算,得到方案的综合评价值。
综合评价值越高,方案越优。
二、层次分析法的应用领域层次分析法在许多领域都有广泛的应用,包括经济学、管理学、环境科学、社会科学等。
下面是一些常见的应用领域:1. 投资决策:在投资决策中,可以将不同的投资方案作为方案层,通过比较各个方案的风险性、收益性等因素,来确定投资方向。
2. 供应链管理:在供应链管理中,可以将供应商的价格、质量、交货周期等因素作为准则层,通过比较不同供应商的重要性,来选择合适的供应商。
3. 项目评估:在项目评估中,可以将项目的成本、时限、风险等因素作为准则层,通过比较各个因素的重要性,来评估项目的可行性和优先级。
4. 人才选拔:在人才选拔中,可以将候选人的学历、工作经验、专业技能等因素作为准则层,通过比较各个因素的重要性,来确定最佳人选。
层次分析法及其案例分析
2 层次分析法应用实例
5、计算各项指标结构的权值(归一化特征向量) 按照上述第四小点中说明,可将特征值的归一化特征向量作为权重。 计算最大特征向量除高数中讲到的数学方法外,有一个较为简便的方法,即 “求和法" (1)按照纵列求和
A
B1 B2 B3 B4 B5 求和
B1
1 5 0.33333 0.33333 0.142857 6.809524
2、建立层次结构图
为了简化计算步骤,本文在供应商决策分析时,只做关键指标的分析,具体的层 次结构如下图:
目标层(A) 指标层(B) 方案层(C)
合格的供应商
价格指标 质量指标 交货指标 服务指标 硬件资质
供应商1
供应商2
2 层次分析法应用实例
3、建立判断矩阵
(1)建立B层次与A层次的矩阵关系 A、首先对各项指标进行打分( B1: B2,即价格指标、质量指标、交货指标、服 务指标、硬件资质)
B、进行一致性检测,以确保打分时不出现前后的逻辑错误
(1)计算上述矩阵的最大特征值= 5.08
(2)计算一致性指标: CI= - n =0.08/4=0.02( n=5,矩阵的阶 n -1
数),原则上比n越大,说明不一致性越严重
(3)查询随机性一致性指标: RI
n 1 2 3 4 5 6 7 8 9 10
RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49
11
1.51
当n=5时,RI=1.12 (4)计算一致性比率:CR=CI/RI=0.02/1.12=0.01785<0.1,一致性成立。 一般认为当CR< 0.1时,认为矩阵的不一致程度在容许范围之内,可用其归一化特 征向量作为权向量,否则要重新构造成对比较矩阵。
层次分析法分析(AHP)及实例教程
设定评价标准
根据问题背景和目标,设定合理的评价标准,如 成本、效益、风险等。
识别关键因素和指标
关键因素识别
分析影响决策目标的关键因素,如市 场需求、技术水平、资源条件等。
指标选取
针对每个关键因素,选取具体的评价 指标,如市场份额、创新能力、资源 利用率等。
构建递阶层次结构图
目标层
准则层
将决策目标作为最高层, 表示解决问题的总体目标。
层次分析法分析 (AHP)及实例教程
目录
• 层次分析法(AHP)概述 • 构建层次结构模型 • 构造判断矩阵与权重计算 • 实例教程:以某企业投资决策为例 • AHP优缺点及改进方向 • 总结与展望
01
层次分析法(AHP)概述
AHP定义与发展历程
定义
层次分析法(Analytic Hierarchy Process,简称AHP)是一种定性与定量相结合的、系统化、 层次化的分析方法。它通过将复杂问题分解为若干层次和因素,对各因素进行两两比较,构造 判断矩阵,进而计算各因素的权重,为决策问题提供定量依据。
对计算得到的权重进行一致性检 验,确保结果的合理性和准确性。
一致性检验与调整策略
一致性检验方法
通过计算一致性指标CI和随机一 致性指标RI,判断判断矩阵的一 致性。
调整策略
当判断矩阵不满足一致性要求时, 需要对判断矩阵进行调整,包括 调整元素值、重新构造判断矩阵 等方法,直至满足一致性要求。
注意事项
针对缺点提出改进措施
1 2
提高数据质量和数量
通过改进数据采集和处理方法,提高数据的质量 和数量,减少数据不准确和不完整对决策结果的 影响。
引入客观标准
在构建判断矩阵时,可以引入客观标准和量化指 标,减少主观判断对决策结果的影响。
层次分析法经典案例
层次分析法经典案例层次分析法是一种比较常见且实用的决策分析方法,通过对待比较的各种方案的因素逐一分析,将其组织成一种层次结构,然后再运用数学方法对其进行计算,得出最终的结果。
经典案例有很多,比如金融领域、生产制造等许多行业都可以应用到层次分析法,下面我来介绍一下层次分析法在一个工厂的生产制造中的应用案例。
某工厂是一家生产钢管的制造厂,该工厂本着“质量第一、信誉第一”的原则,一直都很重视生产制造中的质量管控。
但是,由于市场竞争日益激烈,不断有新的小厂涌现,压力越来越大,所以该工厂决定对生产制造中的质量问题进行深入分析,并采用层次分析法,制定出更加合理的质量管控方案。
该工厂首先将生产制造中的质量管控分成了几个层次,分别是管理层次、生产层次、产品层次和客户需求层次,当然,每个层次下面还有自己的一些小要素,如管理层次下面就包括质量文化、质量指数等等,生产层次下面包括人员培训、设备状态等等,小要素比较复杂,不做过多介绍。
接下来是层次分析法的重头戏,对每个小要素的影响程度进行量化,以及对不同小要素之间的相关性进行评估,这是做好层次分析法的关键,必须要准确评估,否则得出的结果很可能会偏差较大。
为了保证量化的准确性,该工厂引入了专家协助,共同制定出适合该企业的一套量化标准。
原本需要量化的小要素有50个,经过专家评估和筛选,最终选出了20个,其余30个小要素的影响程度与剩下的20个小要素的相关性贡献较小,因此不被列入对比。
在对20个小要素进行量化之后,该工厂得出了各小要素的权重值,这个权重值表示每个小要素对于决策结果的影响程度,根据这些权重值,可确定各个小要素的重要性,从而制定出更加合理的质量管控方案。
经分析,该工厂管控方案的优先级排序如下:1.产品质量:该项权重值为0.408,被认为是影响质量管理的最重要因素,因为一个工厂的根本目的就是要生产出高质量的产品,切实提高其竞争力。
2.生产管理与控制:该项权重值为0.325,生产管理是确保产品质量的基础,虽然位于产品质量之下,但同样很重要。
层次分析法具体应用及实例
层次分析法步骤与实例1 层次分析法的思想:将所有要分析的问题层次化;根据问题的性质和所要到达的总目标,将问题分为不同的组成因素,并按照这些因素间的关联影响即其隶属关系,将因素按不同层次聚集组合,形成一个多层次分析结构模型;最后,对问题进行优劣比较排序.2 次分析法的步骤:3 以一个具体案例进行说明:【案例分析】市政工程项目建设决策:层次分析法问题提出市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。
除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。
【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。
为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。
但问题绝不这么简单。
通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。
假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。
根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。
很明显,这两个方案于所有准则都相关。
将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。
同时,为了方便后面的定量表示,一般从上到下用A 、B 、C 、D 。
代表不同层次,同一层次从左到右用1、2、3、4。
代表不同因素。
这样构成的递阶层次结构如下图。
目标层A准则层B准则层C措施层D图1 递阶层次结构示意图2.构造判断矩阵(成对比较阵)并赋值根据递阶层次结构就能很容易地构造判断矩阵。
层次分析法具体案例
条理阐发法实例与步调之五兆芳芳创作结合一个具体例子,说明条理阐发法的根本步调和要点.【案例阐发】公道采办电脑决策:条理阐发法问题提出良多的电脑小白需要对采办哪个品牌的电脑进行决策,可选择的计划是采办戴尔公司生产的笔记本(简称采办戴尔)或采办联想公司生产的笔记本(简称采办联想).除了考虑主板来源外,还要考虑CPU性能、显卡方法等因素,便是多准则决策问题,考虑运用条理阐发法解决.1. 成立递阶条理结构【案例阐发】公道采办电脑决策:成立递阶条理结构在采办哪个品牌的电脑决策问题中,良多电脑小白希望通过选择不合的电脑品牌使性价比最高,即决策目标是“公道采办电脑使性价比最高”.为了实现这一目标,需要考虑的主要准则有三个,即主板来源,CPU性能,显卡方法.但问题绝不这么复杂.通过深入思考,还认为还必须考虑本工场自产、代工场提供、主频的大小、焦点数、独立式显卡、集成式显卡等因素(准则),从相互关系上阐发,这些因素隶属于主要准则,因此放在下一条理考虑,并且分属于不合准则.假定本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些计划.按照题中所述,本问题有两个解决计划,即采办戴尔或采办联想,这两个因素作为措施层元素放在递阶条理结构的最下层.很明显,这两个计划于所有准则都相关.将各个条理的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来.同时,为了便利前面的定量暗示,一般从上到下用A、B、C、D...代表不合条理,同一条理从左到右用1、2、3、4...代表不合因素.这样组成的递阶条理结构如下图.目标层A准则层B本工场自产(C1) 代工场提供(C2)主频的大小(C3)焦点数(C4)独立式显卡(C5)集成式显卡(C6)准则层C 措施层D2. 机关判断矩阵并赋值【案例阐发】公道采办电脑决策:机关判断矩阵并填写表2 判断矩阵表3. 条理单排序(计较权向量)与查验【案例阐发】公道采办电脑决策:计较权向量及查验 上例计较所得的权向量及查验结果见下:都是可以接受的.4. 条理总排序与查验【案例阐发】公道采办电脑决策:条理总排序及查验上例条理总排序及查验结果见下:,认为判断矩阵的整体一致性是可以接受的5. 结果阐发通过对排序结果的阐发,得出最后的决策计划.【案例阐发】公道采办电脑决策:结果阐发从计划层总排序的结果看,采办联想(D2)的权重(0.6592)远远大于采办戴尔(D1)的权重(0.3408),因此,最终的决策计划是采办联想.按照条理排序进程阐发决策思路.对于准则层B的3个因子,主板来源(B1)的权重最低(0.1429),cpu(B2)和显卡(B3)的权重都比较高(皆为0.4286),说明在决策中比较看重cpu和显卡.对于不看重的主板,其影响的两个因子本工场(C1)、代工场(C2)单排序权重都是采办戴尔远远大于采办联想,对于比较看重的cpu和显卡,其影响的四个因子中有三个因子的单排序权重都是采办联想远远大于采办戴尔,由此可以推出,采办联想计划由于cpu和显卡较为突出,权重也会相对突出.从准则层C总排序结果也可以看出,主频数(C3)、独立显卡(C5)是权重值较大的,而如果单独考虑这两个因素,计划排序都是采办联想远远大于采办戴尔.由此我们可以阐发出决策思路,即决策比较看重的是cpu和显卡,不太看重主板,因此对于具体因子,主频数和独立显卡成为主要考虑因素,对于这两个因素,都是采办联想计划更佳,由此,最终的计划选择采办联想也就顺理成章了.。
层次分析法步骤及案例分析
层次分析法步骤及案例分析层次分析法(Analytic Hierarchy Process,简称AHP)是一种用于解决决策问题的定性与定量相结合的方法。
该方法通过建立分层结构模型,对各个因素进行比较和权重分配,从而帮助决策者做出较为科学的决策。
本文将介绍层次分析法的步骤,并通过一个实际案例进行分析。
一、层次分析法的步骤层次分析法的步骤主要包括问题定义、建立层次结构模型、构建判断矩阵、计算权重和一致性检验等。
下面将详细介绍每个步骤。
1. 问题定义在使用层次分析法前,首先需要明确要解决的问题。
通过明确问题的目标和约束条件,可以确定出适合使用层次分析法的决策问题。
2. 建立层次结构模型在问题定义的基础上,需要建立层次结构模型,将整个问题分解为若干层次,并确定各个层次之间的关系。
通常,层次结构包括目标层、准则层和方案层。
目标层表示要达到的最终目标,准则层表示实现目标所需的评价因素,方案层表示可供选择的备选方案。
3. 构建判断矩阵构建判断矩阵是层次分析法的核心步骤。
判断矩阵用于比较和评价不同层次的因素,确定它们之间的重要性。
通过专家判断或问卷调查等方式,将各个因素两两进行比较,并赋予相应的重要性权值。
根据专家判断或调查结果,可以构建出一个全排列的判断矩阵。
4. 计算权重通过计算判断矩阵,可以获取各个因素的权重值。
常用的计算方法包括特征向量法、层次递推法和最大特征值法等。
根据计算结果,可以得到每个因素的相对权重值,从而进行比较和排序。
5. 一致性检验为了确保判断矩阵的一致性,需要进行一致性检验。
一致性指标主要包括一致性比率和一致性指数。
一致性比率用于评估判断矩阵的不一致程度,一致性指数用于判断判断矩阵是否满足一致性要求。
如果一致性比率超过一定阈值,表明判断矩阵存在较大的不一致性,需要重新调整判断矩阵。
二、案例分析为了更好地理解层次分析法的应用,下面以选择旅游目的地为例进行案例分析。
假设你准备进行一次旅行,有三个备选目的地:A、B和C。
层次分析法具体应用及实例
层次分析法步骤与实例1 层次分析法的思想:将所有要分析的问题层次化;根据问题的性质和所要到达的总目标,将问题分为不同的组成因素,并按照这些因素间的关联影响即其隶属关系,将因素按不同层次聚集组合,形成一个多层次分析结构模型;最后,对问题进行优劣比较排序.2 次分析法的步骤:3 以一个具体案例进行说明:【案例分析】市政工程项目建设决策:层次分析法问题提出市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。
除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。
【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。
为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。
但问题绝不这么简单。
通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。
假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。
根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。
很明显,这两个方案于所有准则都相关。
将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。
同时,为了方便后面的定量表示,一般从上到下用A 、B 、C 、D 。
代表不同层次,同一层次从左到右用1、2、3、4。
代表不同因素。
这样构成的递阶层次结构如下图。
目标层A准则层B准则层C措施层D图1 递阶层次结构示意图2.构造判断矩阵(成对比较阵)并赋值根据递阶层次结构就能很容易地构造判断矩阵。
层次分析法具体案例
层次分析法实例与步骤结合一个具体例子,说明层次分析法的基本步骤和要点。
【案例分析】合理购买电脑决策:层次分析法问题提出很多的电脑小白需要对购买哪个品牌的电脑进行决策,可选择的方案是购买戴尔公司生产的笔记本(简称购买戴尔)或购买联想公司生产的笔记本(简称购买联想)。
除了考虑主板来源外,还要考虑CPU性能、显卡方式等因素,即是多准则决策问题,考虑运用层次分析法解决。
1. 建立递阶层次结构【案例分析】合理购买电脑决策:建立递阶层次结构在购买哪个品牌的电脑决策问题中,很多电脑小白希望通过选择不同的电脑品牌使性价比最高,即决策目标是“合理购买电脑使性价比最高”。
为了实现这一目标,需要考虑的主要准则有三个,即主板来源,CPU性能,显卡方式。
但问题绝不这么简单。
通过深入思考,还认为还必须考虑本工厂自产、代工厂提供、主频的大小、核心数、独立式显卡、集成式显卡等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。
假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。
根据题中所述,本问题有两个解决方案,即购买戴尔或购买联想,这两个因素作为措施层元素放在递阶层次结构的最下层。
很明显,这两个方案于所有准则都相关。
将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。
同时,为了方便后面的定量表示,一般从上到下用A、B、C、D。
代表不同层次,同一层次从左到右用1、2、3、4。
代表不同因素。
这样构成的递阶层次结构如下图。
目标层A准则层C图1 递阶层次结构示意图2. 构造判断矩阵并赋值【案例分析】合理购买电脑决策:构造判断矩阵并填写表2 判断矩阵表3. 层次单排序(计算权向量)与检验【案例分析】合理购买电脑决策:计算权向量及检验上例计算所得的权向量及检验结果见下:表4 层次计算权向量及检验结果表4. 层次总排序与检验【案例分析】合理购买电脑决策:层次总排序及检验上例层次总排序及检验结果见下:表5 C层次总排序(CR = 0.0000)表表6 D层次总排序(CR = 0.0000)5. 结果分析通过对排序结果的分析,得出最后的决策方案。
层次分析法具体案例
条理分解法真例取步调之阳早格格创做分离一个简直例子,证明条理分解法的基原步调战重心.【案例分解】合理买买电脑计划:条理分解法问题提出很多的电脑小黑需要对付买买哪个品牌的电脑举止计划,可采用的规划是买买戴我公司死产的条记原(简称买买戴我)或者买买偶像公司死产的条记原(简称买买偶像).除了思量主板根源中,还要思量CPU本能、隐卡办法等果素,即是多规则计划问题,思量使用条理分解法办理.1. 修坐递阶条理结构【案例分解】合理买买电脑计划:修坐递阶条理结构正在买买哪个品牌的电脑计划问题中,很多电脑小黑期视通过采用分歧的电脑品牌使性价比最下,即计划目标是“合理买买电脑使性价比最下”.为了真止那一目标,需要思量的主要规则有三个,即主板根源,CPU本能,隐卡办法.但是问题绝没有那样简朴.通过深进思索,还认为还必须思量原工厂自产、代工厂提供、主频的大小、核心数、独力式隐卡、集成式隐卡等果素(规则),从相互闭系上分解,那些果素隶属于主要规则,果此搁正在下一条理思量,而且分属于分歧规则.假设原问题只思量那些规则,交下去需要精确为了真止计划目标、正在上述规则下不妨有哪些规划.根据题中所述,原问题有二个办理规划,即买买戴我或者买买偶像,那二个果素动做步伐层元素搁正在递阶条理结构的最下层.很明隐,那二个规划于所有规则皆相闭.将各个条理的果素按其上下闭系晃搁好位子,并将它们之间的闭系用连线连交起去.共时,为了便当后里的定量表示,普遍从上到下用A、B、C、D...代表分歧条理,共一条理从左到左用1、2、3、4...代表分歧果素.那样形成的递阶条理结构如下图. 目标层A规则层B规则层步伐层图1 递阶条理结构示企图2. 构制推断矩阵并赋值【案例分解】合理买买电脑计划:构制推断矩阵并挖写表2 推断矩阵表3. 条理单排序(估计权背量)取考验【案例分解】合理买买电脑计划:估计权背量及考验上例估计所得的权背量及考验截止睹下:表4 条理估计权背量及考验截止表不妨瞅出,所有单排序的C.R.<0.1,认为每个推断矩阵的普遍性皆是不妨交受的.4. 条理总排序取考验【案例分解】合理买买电脑计划:条理总排序及考验上例条理总排序及考验截止睹下:表5 C条理总排序(CR = 0.0000)表表6 D条理总排序(CR = 0.0000)不妨瞅出,总排序的C.R.<0.1,认为推断矩阵的完全普遍性是不妨交受的5. 截止分解通过对付排序截止的分解,得出末尾的计划规划.【案例分解】合理买买电脑计划:截止分解从规划层总排序的截止瞅,买买偶像(D2)的权沉(0.6592)近近大于买买戴我(D1)的权沉(0.3408),果此,最后的计划规划是买买偶像.根据条理排序历程分解计划思路.对付于规则层B的3个果子,主板根源(B1)的权沉最矮(0.1429),cpu(B2)战隐卡(B3)的权沉皆比较下(皆为0.4286),证明正在计划中比较瞅沉cpu战隐卡.对付于没有瞅沉的主板,其做用的二个果子原工厂(C1)、代工厂(C2)单排序权沉皆是买买戴我近近大于买买偶像,对付于比较瞅沉的cpu战隐卡,其做用的四个果子中有三个果子的单排序权沉皆是买买偶像近近大于买买戴我,由此不妨推出,买买偶像规划由于cpu战隐卡较为超过,权沉也会相对付超过.从规则层C总排序截止也不妨瞅出,主频数(C3)、独力隐卡(C5)是权沉值较大的,而如果单独思量那二个果素,规划排序皆是买买偶像近近大于买买戴我.由此咱们不妨分解出计划思路,即计划比较瞅沉的是cpu 战隐卡,没有太瞅沉主板,果此对付于简直果子,主频数战独力隐卡成为主要思量果素,对付于那二个果素,皆是买买偶像规划更好,由此,最后的规划采用买买偶像也便水到渠成了.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
目标层
O(选择旅游地)
准则层
C1 景色
C2 费用
C3 居住
C4 饮食
C5 旅途
设要比较各准则C1,C2,… , Cn对目标O的重要性 1
Ci :Cj aij
A(aij)nn,aij
0,aji
a
选 择
C1
旅 C2
1. 不把所有因素放在一起比较,而是两两相互比较。 2. 对此时采用相对尺度,以尽可能减少性质不同的诸因
素相互比较的困难,以提高准确度。
判断矩阵是表示本层所有因素针对上一层某一个因素的 相对重要性的比较。判断矩阵的元素aij用Santy的1—9标 度方法给出。
心理学家认为成对比较的因素不宜超过9个,即每层 不要超过9个因素。
层次分析法及案例分析
邵亚飞
.
目录
1、问题提出 2、层次分析法的定义 3、层次分析法解决问题的思路 4、案例分享
.
目录
1、问题提出 2、层次分析法的定义 3、层次分析法解决问题的思路 4、案例分享
.
问题提出
决策
.
问题提出
买房子
娶老婆
买汽车
报专业
旅游
决策
选择
选择 选择
.
选择
发展
难易
报专业
问题提出
成对比较
A
w
1
w2
满足 aijajkaik , i,j,k1 ,2, ,n
的正互反阵A称一致阵。
w
n
w 1
wn
w2
w1
wn
w2
w
n
w
n
w n
一致阵 • A的秩为1,A的唯一非零特征根为n
Awnw
性质 • 非零特征根n所对应的特征向量归一化后可作为权向量
对于不一致(但在允许范围内)的成对比较阵
.
判断矩阵元素aij的标度方法
标度 1 3 5 7 9
2,4,6,8 倒数
含义 表示两个因素相比,具有同样重要性 表示两个因素相比,一个因素比另一个因素稍微重要 表示两个因素相比,一个因素比另一个因素明显重要 表示两个因素相比,一个因素比另一个因素强烈重要 表示两个因素相比,一个因素比另一个因素极端重要
能否确认层次单排序,需要进行一致性检验,所谓一致性
定检理验:是n 指阶对一A致确阵定的不唯一一致非的零允特许征范根围为。n
收益
价格
决策
位置
环境
旅游
买房子
成本
…
…
.
目录
1、问题提出 2、层次分析法的定义 3、层次分析法解决问题的思路 4、案例分享
.
层次分析法(AHP)是美国运筹学家匹茨堡大学教授萨蒂 (T.L.Saaty)于上世纪70年代初,为美国国防部研究“根据各个 工业部门对国家福利的贡献大小而进行电力分配”课题时,应 用网络系统理论和多目标综合评价方法,提出的一种层次权重 决策分析方法。
• 层次分析法(AHP法) 是一种解决多目标的复杂问 题的定性与定量相结合的决策分析方法。该方法 将定量分析与定性分析结合起来,用决策者的经
.
目录
1、问题提出 2、层次分析法的定义 3、层次分析法解决问题的思路 4、案例分享
.
层次分析法的基本原理
层次分析法根据问题的性质和要达到的总目标,将问 题分解为不同的组成因素,并按照因素间的相互关联影响 以及隶属关系将因素按不同层次聚集组合,形成一个多层 次的分析结构模型,从而最终使问题归结为最低层(供决 策的方案、措施等)相对于最高层(总目标)的相对重要权值 的确定或相对优劣次序的排定。
• 最高层:决策的目的、要解决的问题。 • 最低层:决策时的备选方案。 • 中间层:考虑的因素、决策的准则。 • 对于相邻的两层,称高层为目标层,低层为因素层。
下面举例说明: .
例1. 工作选择
目标层
如何在几个工作中,按照不同 的需求确定最终的工作需求
工作选择
准则层 方案层
贡收 发 声 工 生 作活 环环
A, Saaty等人建议用对应于最大特征根 的特征向量作为权向量w ,即
Aw w .
但允许范围是 多大?如何界 定?
三、层次单排序及其一致性检 验
对应于判断矩阵最大特征根λmax的特征向量,经归一化 (使向量中各元素之和等于1)后记为W。
W的元素为同一层次因素对于上一层次因素某因素相对重 要性的排序权值,这一过程称为层次单排序。
C1
C2
1 1/ 2
2
1
游 地
C3 C4
A 1/ 4
1/ 3
1/ 7 1/ 5
C5
1/ 3 1/ 5
C3
C4
C5 ij
4 3 3 A~成对比较阵
7
5
5
1 1/ 2 1/ 3 A是正互反阵
2 3
1 1
1
1
稍加分析就发 现上述成对比
要由A确定C1,… , Cn对O的权向量 .
较矩阵有问题
献入 展 誉 境 境
可供选择的单位P1’ P2 , Pn
.
例2. 选择旅游地 如何在3个目的地中按照景色、 费用、居住条件等因素选择.
目标层
O(选择旅游地)
准则层
C1 景色
C2 费用
C3 居住
C4 饮食
C5 旅途
方案层
桂林
.
P2 黄山
P3 北戴河
二、构造判断(成对比较)矩阵
在确定各层次各因素之间的权重时,如果只是定性的结 果,则常常不容易被别人接受,因而Santy等人提出:一 致矩阵法,即:
这种方法的特点是在对复杂的决策问题的本质、影响因素 及其内在关系等进行深入分析的基础上,利用较少的定量信息 使决策的思维过程数学化,从而为多目标、多准则或无结构特 性的复杂决策问题提供简便的决策方法。 是对难于完全定量 的复杂系统作出决策的模型和方法。
.
• 人们在对社会、经济以及管理领域的问题进行系 统分析时,面临的经常是一个由相互关联、相互 制约的众多因素构成的复杂系统。层次分析法则 为研究这类复杂的系统,提供了一种新的、简洁 的、实用的决策方法。
成对比较的不一致情况
1 1/2 A 2 1
4 7
不一致
a212(C2:C1)
a4(C:C)
13
13
一致比较
a8(C:C)
23
23
允许不一致,但要确定不一致的允许范围
.
考察完全一致的情况
w1
w
1
w1
w2
W (1) w 1,w 2,w n可作为一个排序向量 w 2 w 2
令aij wi /wj
.
层次分析法的步骤和方法
运用层次分析法构造系统模型时,大体可以分为以下 四个步骤:
1. 建立层次结构模型 2. 构造判断(成对比较)矩阵 3. 层次单排序及其一致性检验 4. 层次总排序及其一致性检验
.
一、建立层次结构模型
• 将决策的目标、考虑的因素(决策准则)和决策对象按 它们之间的相互关系分为最高层、中间层和最低层,绘出 层次结构图。