物联网感知层安全
物联网感知层和传输层的安全问题
物联网感知层与传输层的安全问题物联网作为一个多网的异构融合网络,不仅存在与传感器网络、移动通信网络与因特网同样的安全问题[4],同时在隐私保护问题、异构网络的认证与访问控制问题、信息的安全存储与管理等问题上还有其自身的安全特点。
物联网相较于传统网络,其感知层的感知节点大都部署在无人监控的环境,具有能力脆弱、资源受限等特点,并且由于物联网是在现有的网络基础上扩展了感知网络与应用平台,物联网应用比一般的网络系统更易受侵扰,传统网络安全措施不足以提供可靠的安全保障,从而使得物联网的安全问题具有特殊性,其安全问题更复杂。
如Skimming问题[5]:在末端设备或RFID持卡人不知情的情况下,信息被读取;Eavesdropping问题:在一个通道的中间,信息被中途截取;Spoofing问题:伪造复制设备数据,冒名输入到系统中;Cloning 问题:克隆末端设备,冒名顶替;Killing问题:损坏或盗走末端设备;Jamming问题:伪造数据造成设备阻塞不可用;Shielding问题:用机械手段屏蔽电信号,让末端无法连接等。
所以在解决物联网安全问题时候,必须根据物联网本身的特点研究设计相应的安全机制。
以下分析物联网感知层与传输层的安全问题。
1.1 物联网感知层的安全问题物联网感知层主要解决对物理世界的数据获取的问题,以达到对数据全面感知的目的。
目前研究有小范围示范应用的是基于RFID的物联网与基于WSN(无线传感器网络)的物联网。
(1)基于RFID的物联网感知层的安全威胁RFID是物联网感知层常用的技术之一,针对RFID的安全威胁主要有:1)物理攻击:主要针对节点本身进行物理上的破坏行为,导致信息泄露、恶意追踪等;2)信道阻塞:攻击者通过长时间占据信道导致合法通信无法传输;3)伪造攻击:伪造电子标签产生系统认可的合法用户标签;4)假冒攻击:在射频通信网络中,攻击者截获一个合法用户的身份信息后,利用这个身份信息来假冒该合法用户的身份入网;5)复制攻击:通过复制他人的电子标签信息,多次顶替别人使用;6)重放攻击:攻击者通过某种方法将用户的某次使用过程或身份验证记录重放或将窃听到的有效信息经过一段时间以后再传给信息的接收者,骗取系统的信任,达到其攻击的目的;7)信息篡改:攻击者将窃听到的信息进行修改之后再将信息传给接收者。
8、物联网感知层安全
8、物联网感知层安全物联网感知层安全
1.引言
1.1 概述
1.2 目的
1.3 范围
1.4 参考文档
2.物联网感知层安全基础
2.1 物联网感知层的定义
2.2 物联网感知层的架构
2.3 物联网感知层的安全要求
3.物联网感知层安全威胁与风险评估
3.1 威胁来源分析
3.2 安全威胁与风险评估方法
3.3 常见的安全威胁与风险案例分析
4.物联网感知层安全控制措施
4.1 身份和访问管理
①设备身份认证
②用户身份认证
③访问授权与权限管理
4.2 数据加密与传输安全
①数据加密算法
②传输安全协议
4.3 安全检测与监控
①网络安全监控系统
②安全事件响应与处置
4.4 硬件与设备安全
①物理安全控制
②设备固件安全
4.5 漏洞管理与补丁更新
①漏洞管理流程
②漏洞补丁更新策略
5.物联网感知层安全管理
5.1 安全策略与规划
5.2 安全培训与意识
5.3 安全演练与应急预案
5.4 安全审计与合规性
5.5 安全评估与改进
6.结论
1.本文档涉及附件:
●附件1:物联网感知层安全检查表
●附件2:物联网感知层安全风险评估报告
2.本文所涉及的法律名词及注释:
●法律名词1:《物联网安全管理条例》:指中国颁布,于X年X月日开始实施的法规,对物联网安全管理进行了规范。
●法律名词2:《个人信息保护法》:指中国国家人民代表大会制定,于X年X月日开始实施的法律,保护个人信息的安全和合法使用。
●注释:物联网感知层安全需符合相关法律法规,保障用户隐私和信息安全。
物联网感知层信息安全防护策略
制,防止未经授权的访问和操作。
审计与监控
03
对用户行为和设备状态进行审计和监控,及时发现异常行为和
潜在的安全威胁。
03
物联网感知层安全防护技术
安全芯片技术
安全芯片
安全芯片是物联网感知层信息安全防护的重要技术之一, 它能够提供加密、解密、数字签名等功能,确保数据在传 输和存储过程中的机密性和完整性。
沙箱技术
沙箱技术是一种隔离技术,它能 够将应用程序或系统组件运行在 隔离的环境中,以防止恶意代码 的传播和攻击。
安全容器与沙箱的比 较
安全容器和沙箱技术在隔离应用 程序和系统组件方面具有相似之 处,但它们的实现方式和应用场 景有所不同。安全容器更适用于 虚拟化环境,而沙箱技术更适用 于移动应用程序的隔离。
功能
感知层的主要功能包括数据采集、物体识别、环境监测等,为上层应用提供实 时、可靠的数据输入。
物联网感知层的信息安全威胁
数据泄露
未经授权的访问和窃取感知层中 的数据,可能导致敏感信息的泄 露,如个人隐私、企业机密等。
数据篡改
攻击者通过干扰或篡改感知层设备 采集的数据,可能导致上层应用做 出错误的决策或产生不良影响。
采用加密技术对车联网通信 进行保护,防止数据被窃取 或篡改。
限制对车联网服务的访问权 限,只允许授权用户进行访 问。
定期对车联网系统进行安全 审计,发现潜在的安全隐患 并及时处理。
THANKS
谢谢您的观看
设备加固
对物联网感知层设备进行 物理加固,如加装防拆、 防水、防尘等保护措施, 提高设备的抗破坏能力。
定期巡检
对物联网感知层设备进行 定期巡检,及时发现设备 异常和潜在的安全隐患。
数据加密与安全传输策略
物联网感知层安全问题
以下为物联网感知层安全问题,一起来看看:1、物联网感知层的安全威胁物联网感知层的任务是感知外界信息,完成物理世界的信息采集、捕获和识别。
感知层的主要设备包括:RFID阅读器、各类传感器(如温度、湿度、红外、超声、速度等)、图像捕捉装置(摄像头)、全球定位系统装置、激光扫描仪等。
这些设备收集的信息通常具有明确的应用目的,例如:公路摄像头捕捉的图像信息直接用于交通监控;使用手机摄像头可以和朋友聊天以及与他人在网络上面对面交流;使用导航仪可以轻松了解当前位置以及前往目的地的路线;使用RFID技术的汽车无匙系统,可以自由开关车门。
各种感知系统在给人们的生活带来便利的同时,也存在各种安全和隐私问题。
例如,使用摄像头进行视频对话或监控,在给人们生活提供方便的同时,也会被具有恶意企图的人利用,从而监控个人的生活,窃取个人的隐私。
近年来,黑客通过控制网络摄像头窃取并泄露用户隐私的事件偶有发生。
根据物联网感知层的功能和应用特征,可以将物联网感知层面临的安全威胁概括如下。
(1)物理捕获感知设备存在于户外,且被分散安装,因此容易遭到物理攻击,其信息易被篡改,进而导致安全性丢失。
RFID标签、二维码等的嵌入,使接入物联网的用户不受控制地被扫描、追踪和定位,这极大可能会造成用户的隐私信息泄露。
RFID技术是一种非接触式自动识别技术,它通过无线射频信号自动识别目标对象并获取相关数据,识别工作无须人工干预。
由于RFID标签设计和应用的目标是降低成本和提高效率,大多采用“系统开放”的设计思想,安全措施不强,因此恶意用户(授权或未授权的)可以通过合法的阅读器读取RFID标签的数据,进而导致RFID标签的数据在被获取和传输的过程中面临严重的安全威胁。
另外,RFID 标签的可重写性使标签中数据的安全性、有效性和完整性也可能得不到保证。
(2)拒绝服务物联网节点为节省自身能量或防止被木马控制而拒绝提供转发数据包的服务,造成网络性能大幅下降。
物联网时代信息安全存在的问题及对策
物联网时代信息安全存在的问题及对策物联网时代信息安全存在的问题及对策近几年,跟着信息技术的快速发展,物联网技术已经惹起了世界各国专家学者的宽泛关注。
“信息化”时代的重要发展阶段就是物联网,可是此刻物联网在涉密网络中存在着一些安全问题已经影响到了物联网的建设和发展。
一、物联网时代信息安全存在的问题当前物联网已经被宽泛应用到人们的生产、生活中,如:安全监控、二维码扫描等,能够绝不夸张地说,将来将是一个物联网的时代。
由于物联网的中心基础是互联网,所以物联网在发展中也见面对着涉密信息遭受黑客侵袭的安全问题,所以物联网快速发展的一大阻挡就是信息安全问题。
一是物联网在应用层存在的信息安全问题。
物联网的应用层是三层构造的最顶层。
从物联网三层构造上边剖析,网络层和感知层在技术层面已经相对成熟,而应用层在重视程度和技术成就方面,还存在着一些问题。
由于“数据”、“应用”是应用层的中心功能,物联网的应用层系统需要对数据进行剖析办理、整理,最后将整理出来的数据和各样应用联合起来。
比如:物联网在医疗领域的应用,就是经过对医疗数据办理、整理,而后联合平台系统进行应用的。
物联网的应用层作为数据的最后接收方,在信息安全问题上有着不行推辞的责任。
二是物联网在网络层存在的信息安全问题。
物联网的网络层是三层构造的中间层,主要功能为“输送”,所以也能够称为输送层。
从物联网的三层构造上剖析,网络层起到了一个纽带的作用,连结物联网的感知层和应用层。
由于网络层需要对感知层的信息进行获得,而后安全的传递到应用层,所以物联网在网络层也存在着信息安全的问题。
由于物联网的基础中心是互联网,而互联网拥有不稳固的环境特色,所以物联网在传输层面很简单成为非法分子窃守信息的目标。
三是物联网在感知层存在的信息安全问题。
感知层在物联网的三层构造中,处于最基层,也是最简单攻破的一层。
由于感知层主要的功能就是对与数据信息进行获得。
二、物联网时代信息安全应付的举措一是物联网在应用层的应付信息安全问题的举措,应当增强对数据应用的安全管理。
物联网感知设备安全通用技术要求草案-全国信息安全标准化技术
《信息安全技术物联网感知终端应用安全技术要求》编制说明一、任务来源、起草单位,协作单位,主要起草人2009年8月7日,温家宝总理在无锡考察时提出“感知中国”的概念.北京、江苏等地纷纷提出智慧城市的规划,物联网应用广泛开展,物联网安全成为焦点问题.北京信息安全测评中心自2011年就开展物联网安全研究,包括《物联网及其应用安全防护方法研究》、《北京市政务物联数据专网安全测试研究》、《北京市政务物联数据专网安全性测试》、《物联网安全测试方法和测试平台》等.在上述工作的基础上,北京信息安全测评中心在2013年11月向市质监局申报了《物联网感知设备安全通用技术要求》并得到批准。
根据《关于印发2014年北京市地方标准制修订项目计划的通知》(京质监标发〔2014〕36号),《物联网感知设备安全通用技术要求》列入了2014年北京市地方标准制修订项目计划,是一类项目(即标准制定项目),是一项推荐性标准。
在地方标准工作基础上,北京信息安全测评中心联合其他单位2014年底申报制定《信息安全技术物联网感知设备安全技术要求》国家标准(《关于通报全国信息安全标准化技术委员会2014年信息安全标准项目的通知》信安秘字[2015]003号,隶属于WG5/WG6工作组),标准制定单位为:北京信息安全测评中心、工业和信息化部电信研究院、北京时代凌宇科技股份有限公司、大唐移动通信设备有限公司、中国科学院信息工程研究所、威海北洋光电信息技术股份公司。
由于本标准不仅关注感知类产品的功能和性能安全,而且更关注该类产品的部署和应用安全,而用“感知设备”容易让读者误以为仅仅关注产品的功能和性能安全,并且感知设备容易与传感器概念混淆,根据标准制定过程中的专家意见,把标准名称调整为《信息安全技术物联网感知终端应用安全技术要求》.二、制定标准的必要性、意义、研究目标和内容随着物联网在感知中国和智慧城市中的广泛应用,安全保障越来越迫切。
国家专门成立了国家物联网基础标准工作组。
5G的mMTC场景下的物联网感知层的认证安全
98Internet Application互联网+应用王鑫荣(1969.01),男,汉族,浙江桐乡,南京邮电大学本科毕业,高级工程师,长期从事传输网络规划和技术管理工作。
参 考 文 献[1]杨珩.中国移动综合业务接入区规划中关于分纤点的测算[J].电信工程技术与标准化,2011,24(01):16-19.[2]马晓亮.综合业务接入区微格化规划方法[J].电信快报,2017(02):33-35.[3]林何平,高志英,韩剑,谭哲.综合业务接入区微格化应用[J].电信工程技术与标准化,2016,29(11):45-49.[4]杨峰,陆闻静,王岩,陈秀锦,祝遵坤.面向未来的综合业务接入点建设探索[J].邮电设计技术,2017(11):26-29.[5]田洪宁,张红,尹祖新,顾荣生.末端站点接入模式及关键问题研究[J].邮电设计技术,2017(11):30-34.[6]袁文国,李洪栋,王智,蓝鑫冲.本地接入主干光缆和接入配线光缆优化思路探讨[J].邮电设计技术,2017(11):85-88.[7]程东洋,付琪.关于传输接入波分网络部署策略的研究[J].广东通信技术,2017,37(11):11-14+26.[8]杨龙发. 综合业务接入区及家庭宽带建设发展方案探讨[A]. .内蒙古通信(2017年第3期 第112期)[C].:内蒙古通信学会,2017:5.[9]陆冰.移动光纤基础网建设思路探讨[J].通讯世界,2017(20):75-76.[10]陈銮雄,方伟津,程广展,王师克.微网格规划方法及演进策略研究[J].电信技术,2017(10):18-19+23.[11]王琳,谭伟,朱宁,欧阳云峰.面向业务收敛层的光纤网络建设和优化典型案例剖析[J].数字通信世界,2017(09):177-178.[12]申大伟,于莉.浅谈通信线路专业如何向综合接入专业拓展[J].中国新通信,2017,19(16):34.[13]张天宇.综合业务接入区微格化研究[J].中国新通信,2017,19(13):77.[14]侯程远. 综合业务接入区优化建设探讨[A]. 《建筑科技与管理》组委会.2017年7月建筑科技与管理学术交流会论文集[C].《建筑科技与管理》组委会:北京恒盛博雅国际文化交流中心,2017:2.[15]冯春河,李海霞.综合业务接入区规划与设计[J].电子世界,2017(02):102-103.[16]谭哲,康帅,韩剑,林何平,嵇道举,陈良军.综合业务接入区微格化应用及优化案例[J].电信科学,2016,32(S1):187-193.[17]黎健骢. 面向全业务的移动城域光接入网建设方案探讨[A]. 广东省通信学会.2016广东通信青年论坛专刊[C].广东省通信学会:中国电子科技集团公司第七研究所《移动通信》杂志社,2016:4.其对综合业务接入区规划质量和效率双提升方面具有较好的效果,同时有助于加强运营商网络与前端市场的有效配合,助力运营商精准配置资源以及降本增效的实施,是保证今后运营商网络建设、业务持续深化发展的重要数字化技术手段。
物联网感知层信息安全防护策略
定期对网络设备和系统进行 安全检查和漏洞扫描,及时
发现和修复安全问题。
对网络设备和系统进行备份和 恢复措施,确保在发生故障或
攻击时能够迅速恢复。
强化对用户的安全教育与培训
加强员工的安全意识和培训,提高员工对信息 安全的重视程度。
定期组织安全培训和演练,提高员工应对安全 事件的能力。
。
05
物联网感知层信息安全的未来趋 势与展望
发展更加智能化的安全防护技术
人工智能与机器学习
利用人工智能和机器学习技术对物联网设备进行监控,及时发现 异常行为并进行预警。
深度学习
应用深度学习算法对物联网数据进行模式识别,以识别潜在的安 全威胁。
自然语言处理
通过自然语言处理技术对物联网设备间的通信内容进行语义分析 ,以发现潜在的安全风险。
模式。
物理安全防护技术
1 2 3
控制物理访问
对物联网设备、数据存储和网络设施进行物理访 问控制,包括门禁系统、监控摄像头和生物识别 技术等。
保护硬件设备
确保物联网硬件设备的安全性,如防篡改、防拆 卸和防破坏等,以及定期进行硬件设备的检查和 维护。
管理物理环境
对物联网设备所处的物理环境进行管理,如温度 、湿度和电磁干扰等,以确保设备正常运行和数 据安全。
提高物联网信息安全的可溯源性
数据加密
采用数据加密技术确保数据在传输和存储过程中的安全性,防止 数据被篡改或窃取。
数字签名
利用数字签名技术对数据来源进行验证,确保数据的真实性和完整 性。
审计与监控
对物联网设备和数据进行实时审计和监控,确保数据的可溯源性。
推动物联网信息安全标准化的进程
国际合作
参与国际物联网信息安全标准的制定和推广,促 进全球物联网信息安全水平的提高。
物联网感知层信息安全分析与建议_马纪丰
2012年10月1日第35卷第19期现代电子技术Modern Electronics TechniqueOct.2012Vol.35No.19物联网感知层信息安全分析与建议马纪丰,梁 浩(北京中电华大电子设计有限责任公司,北京 100102)摘 要:物联网是以感知为目的,实现人与人、人与物、物与人全面互联的网络。
其概念一经提出,得到了各国政府、科研机构以及各类企业的大力推广和积极发展。
感知层作为物联网信息获取的主要来源,其信息安全问题是物联网发展所面临的首要问题。
对物联网感知层的信息获取方式以及存在的安全威胁进行了研究,并对现有的安全防护机制进行了分析和总结。
最后,针对感知层目前存在的信息安全问题及其技术的发展趋势,提出了相应的应对建议措施。
关键词:物联网;感知层;信息安全;建议中图分类号:TN915.08-34;TP393 文献标识码:A 文章编号:1004-373X(2012)19-0076-03Analysis and suggestion on information security of Internet of Things perceptual layerMA Ji-feng,LIANG Hao(CEC Huada Electronic Design Co.,Ltd.,Beijng 100102,China)Abstract:Internet of Things(IOT),with the help of perception technology,aims to build a total connection network be-tween human and things.Since the conception of IOT was proposed,IOT has been largely promoted and actively developed bythe governments,research institutions and enterprises.As perception layer is the major source of IOT information,its infor-mation security is the most important issue during the development of IOT.This paper studies the key information technolo-gies and security threats of perception layer,and then analyzes and summarizes the existing security mechanism.Finally,thispaper gives security measures and suggestions on the current security concerns on the perception layer.Keywords:Internet of Things;perception layer;information security;suggestion收稿日期:2012-05-100 引 言物联网是以感知为核心的物物互联的综合信息系统,是继计算机、互联网之后信息产业的第三次浪潮。
电力物联网感知层设备安全认证技术要求
电力物联网感知层设备安全认证技术要求1 规范性引用文件本标准规定了电力物联网中感知层设备的安全认证技术要求,包括非智能业务终端、智能业务终端、智能涉控涉敏业务终端的身份标记、安全认证、访问控制和安全审计技术要求。
本标准适用于电力物联网建设运维单位对感知层设备进行安全选型、部署、运行和维护。
本标准也适用于指导感知层设备设计和生产。
2 规范性引用文件下列文件对于本文件的应用是必不可少的。
凡是注日期的引用文件,仅所注日期的版本适用于本文件。
凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T 4208 外壳防护等级(IP代码)GB/T 17799.1 电磁兼容通用标准居住、商业和轻工业环境中的抗扰度试验GB/T 17799.2 电磁兼容通用标准工业环境中的抗扰度试验GB/T 22239 信息安全技术网络安全等级保护基本要求GB/T 25069 信息安全技术术语GB/T 36951 信息安全技术物联网感知终端应用安全技术要求GB/T 37024 信息安全技术物联网感知层网关安全技术要求GB/T 37025 信息安全技术物联网数据传输安全技术要求GB/T 37044 信息安全技术物联网安全参考模型及通用要求GB/T 37093 信息安全技术物联网感知层接入通信网的安全要求3 术语和定义GB/T 4208、GB/T 17799.1、GB/T 17799.2、GB/T 22239、GB/T 25069、GB/T 36951、GB/T 37024、GB/T 37025、GB/T 37044、GB/T 37093界定的以及下列术语和定义适用于本文件。
3.1电力物联网electric internet of things(eIoT)围绕电力系统各环节,充分应用移动互联、人工智能等现代信息技术、先进通信技术,实现电力系统各个环节万物互联、人机交互,具有状态全面感知、信息高效处理、应用便捷灵活特征的智能化服务系统。
物联网系统的安全与隐私保护技术研究
物联网系统的安全与隐私保护技术研究一、物联网系统的概念物联网系统是指通过互联网、无线网络、传感器等技术将各种实体物品与虚拟物品连接起来,实现智能管理和控制的系统。
它由感知层、网络层和应用层三个层次组成,涵盖了传感器、控制器、网络设备、平台系统等多个方面。
二、物联网系统的安全问题1.物理安全:包括设备被盗、损坏、滥用等风险。
2.数据安全:包括数据泄露、篡改、伪造等风险。
3.通信安全:包括数据传输过程中的拦截、窃听、篡改等风险。
4.隐私保护:包括用户隐私泄露、个人信息滥用等风险。
三、物联网系统的安全与隐私保护技术1.加密技术:对数据进行加密处理,保证数据在传输过程中的安全性。
常见的加密算法有对称加密、非对称加密和混合加密等。
2.认证技术:验证参与物联网系统的设备、用户和数据的真实性和合法性。
常见的认证方法有数字签名、证书颁发机构(CA)认证等。
3.访问控制技术:限制和控制用户对物联网系统的访问权限,确保系统资源的合理利用。
常见的访问控制方法有角色访问控制(RBAC)、属性基访问控制(ABAC)等。
4.安全协议:制定安全通信协议,保证物联网系统在数据传输过程中的安全性。
常见的安全协议有传输层安全(TLS)、安全套接层(SSL)等。
5.安全存储技术:保障存储在物联网系统中的数据安全,防止数据泄露、篡改等风险。
常见的安全存储技术有加密存储、访问控制存储等。
6.隐私保护技术:对用户的隐私信息进行保护,防止泄露和滥用。
常见的隐私保护技术有匿名通信、差分隐私、同态加密等。
7.安全监控技术:对物联网系统的运行状态进行实时监控,发现并处理安全事件。
常见的监控技术有入侵检测系统(IDS)、入侵防御系统(IPS)等。
8.物理安全技术:保障物联网设备的物理安全,防止设备被盗、损坏等风险。
常见的物理安全技术有防盗锁、监控摄像头等。
物联网系统的安全与隐私保护技术研究是当前物联网领域的重要研究方向。
通过采用加密技术、认证技术、访问控制技术、安全协议、安全存储技术、隐私保护技术、安全监控技术以及物理安全技术等多种手段,可以有效地解决物联网系统在安全与隐私方面存在的问题,为物联网技术的广泛应用提供有力保障。
第1章 物联网的安全架构
(4)、综合应用层(例子)
智能物流
A
智能交通
B
绿色建筑
C
智能电网
D
环境监测
E
Байду номын сангаас
智能物流
智能物流是利用集成智能化技术,使物流系统能模仿人的智能,具有思维, 感知,学习,推理判断和自行解决物流中某些问题的能力。智能物流的未来 发展将会体现出四个特点:智能化,一体化和层次化,柔性化与社会化。在 物流作业过程中的大量运筹与决策的智能化;以物流管理为核心,实现物流 过程中运输,存储,包装,装卸等环节的一体化和智能物流系统的层次化; 智能物流的发展会更加突出“以顾客为中心”的理念,根据消费者需求变化 来灵活调节生产工艺;智能物流的发展将会促进区域经济的发展和世界资源 优化配置,实现社会化。 通过智能物流系统的四个智能机理,即信息的智 能获取技术,智能传递技术,智能处理技术,智能运用技术。
标签本身访问的缺陷:任何用户都 可以通过合法的阅读器读取RFID标 签。
通信链路的安全。
移动RFID的安全:主要存在假冒和 非授权服务访问的问题。
网络层安全
物联网网络层主要实现信息的转 发和传送,它将感知层获取的信 息传送到远端,为数据在远端进 行只能处理和分析决策提供强有 力的支持。
数据中心是一整套复杂的设施,它不仅仅包括计算机系统和其他与之配套 的设备(通信和存储系统),还包含冗余的数据通信连接、环境控制设备、 监控设备以及各种安全装置。数据中心有严格的标准:1.选址和布局,2.缆 线系统,3.可靠性分级,4.能源系统,5.降温系统。
基于节点认证的物联网感知层安全性问题研究_张玉婷
极易遭受攻击者的恶意攻击,节点之间相互通信时也非常 容易遭受到监听、窃取、假冒、破坏、篡改等攻击,最终 造成严重后果和巨大的财产损失。物联网感知层节点面临 的安全威胁如表 1 所示。
在现阶段,由于物联网的安全面临许多威胁,国内 外对于物联网安全方面的研究受到了学术界的重视,研 究越来越深入。但目前国内外的物联网发展水平仍然处
28
2015
11
技
术
研
究
表1 物联网感知层节点面临的安全威胁
标签(block tag)等。这些物理安全机制主要是通过牺牲 标签的部分功能来满足隐私保护要求,但是由于验证、成 本和法律等约束的原因,物理安全机制还存在许许多多的 缺点。 2)密钥管理机制
ཧࢳ්هվਐ֭টࠕ༗ĭۺ֭ࢳރᇝሯჿĭ൘ࢳٍ ࡇ࿋܅ቜ
Hale Waihona Puke 1.1 物联网感知层节点面临的安全威胁
随着网络信息安全的不断发展,物联网概念被提出并 快速发展,在人们生活的各个领域都得到了应用。近年来, 部分军队、地方政府等重要单位对敏感信息进行感知、采 集和传输就用到了基于物联网安全的管理系统。与此同时, 物联网也面临着许多安全方面的问题,如信息泄露、信息 篡改、追踪标签等,这些问题制约着物联网的进一步发展。 现如今,在信息的互联互通过程中,传统的物联网安全管 理系统在网络安全方面尽管能够满足三个层面之间数据信 息的互联互通,但对于物联网感知层节点以及节点之间的 安全保护系统尚不成熟。由于节点本身非常容易被控制,
Abstract: The perception layer is the information source of the Internet of things, and also the basis for the application of the Internet of things, the security problem is the primary problem of the whole Internet of things. With the continuous development of network information security, despite the traditional network security management system in the network security can achieve interoperability between the three levels, the security system for the Internet of things sensing layer nodes and between nodes is not mature. Since the nodes are easily controlled, attaches are vulnerable to attack them. When the nodes communicate with each other, it is very easy to be monitored, stole, faked, and destroyed, and so on. From this, it is necessary to strengthen the identity authentication of the Internet of things to ensure the security of the whole system. This paper introduces the main security threats and related security mechanisms of the Internet of things, based on the discrete logarithm problem solving elliptic curve encryption algorithm. Key words: IoT perception layer; node; security; authentication
第四章、物联网感知层安全
4.2.1 RFID安全威胁
1.RFID系统所带来的团体隐私效果 2.RFID系统所带来的平安效果 1〕自动攻击包括: 〔1〕取得的射频标签实体,经过物理手腕在实验室环境中去除芯片封装,运用微 探针获取敏感信号,从而停止射频标签重构的复杂攻击; 〔2〕经过过软件,应用微处置器的通用接口,经过扫描射频标签和照应读写器的 探寻,寻求平安协议和加密算法存在的破绽,进而删除射频标签内容或窜改可重 写射频标签内容; 〔3〕经过搅扰广播、阻塞信道或其他手腕,构建异常的运用环境,使合法处置器 发作缺点,停止拒绝效劳攻击等。 2〕主动攻击主要包括: 〔1〕经过采用窃听技术,剖析微处置器正常任务进程中发生的各种电磁特征,来 取得射频标签和读写器之间或其他RFID通讯设备之间的通讯数据; 〔2〕经过读写器等窃听设备,跟踪商品流通静态。自动攻击和主动攻击都会使 RFID运用系统面临庞大的平安风险。
第4章 物联网感知层平安 第1节 感知层平安概述
4.1.2 感知层安全威胁
1.增强对传感网秘密性的平安控制 2.增强节点认证 3.增强入侵监测 4.增强对传感网的平安路由控制 5.应构建和完善我国信息平安的监管体系
第4章 物联网感知层平安 第1节 感知层平安概述
4.2 RFID平安
4.2.1 RFID平安要挟 4.2.2 RFID平安技术
4.3.2 传感器网络安全威胁分析
2.技术分类
1〕物理层攻击 〔1〕信号搅扰和窃听攻击。〔2〕窜改和物理破坏攻击。〔3〕仿冒节点攻击。 2〕链路层平安要挟 〔1〕链路层碰撞攻击。〔2〕资源消耗攻击。〔3〕非公允竞争。 3〕网络层的平安要挟 〔1〕虚伪路由攻击。〔2〕选择性地转发。〔3〕Sinkhole槽洞攻击。 〔4〕DoS拒绝效劳攻击。〔5〕Sybil女巫攻击。〔6〕Wormholes虫洞攻击。 〔7〕HELLO洪泛攻击。〔8〕确认诈骗。〔9〕主动窃听。 4〕传输层攻击 〔1〕洪泛攻击。〔2〕重放攻击。
物联网安全技术第4章物联网感知层安全
4.Wormhole攻击 Wormhole攻击通常需要两个恶意节点相互串通,合谋进 行攻击。一般情况下,一个恶意节点位于Sink节点附近,另 一个恶意节点距离Sink节点较远,较远的那个节点声称自己 和Sink节点附近的节点可以建立低时延、高带宽的链路,从 而吸引周围节点将其数据包发送到它这里。在这种情况下, 远离Sink节点的那个恶意节点其实也是一个Sinkhole。该攻 击常和其他攻击,如选择转发等手段结合进行。 5.Hello泛洪攻击 很多路由协议需要物联网感知节点定时发送Hello包, 以声明自己是它们的邻居节点。但是一个较强的恶意节点以 足够大的功率广播Hello包时,收到该包的节点会认为这个 恶意节点是它们的邻居。在以后的路由中,这些节点很可能 会使用这条到此节点的路径,向恶意节点发送数据包。 针对进攻者的攻击行为,物联网的感知节点可以采取各 种主动和被动的防御措施。主动防御指在网络遭受攻击以前, 节点为防范攻击采取的措施,例如对发送的数据加密认证,
布置区域的物理安全无法保证物联网的感知节点通常散布在无人区域因为其工作空间本身就存在不安全因素节点很可能遭到物理上或逻辑上的破坏或者俘获所以物联网感知层安全设计中必须考虑及时撤除网络中恶意篡改节点的问题以及由于恶意篡改节点而导致的安全隐患问题即因为该节点的恶意篡改导致更多节点被破坏最终导致整个网络被恶意篡改或者失效
线电管理规定,在个人电子设备的扫描探测段不需要进行加 密,如光学存储介质使用激光、条码与扫描头之间的激光, 以及主动或被动式标签与阅读器之间的射频信号进行加密。 大多数国家要比美国弱得多,从近年美国参与的波斯湾 战争、波黑战争和伊拉克战争来看,美国军事上和政治上都 无意隐藏其进攻的动机,相反在战前都是在大张旗鼓地调兵 遣将,大规模地运送物资。美国不但不再以对手知道自己的 物流信息,相反还主动发布这些信息,使对手产生恐惧心理, 希望达到不战而屈人之兵的效果。这是基于美国军事、经济 和技术均大幅度领先对手,而军队又极度依赖技术的前提下 采用的合理策略。 但是对于落后的国家而言,却不能掉以轻心。在可以预 见的将来,我国面临的主要战争威胁仍然来源于周边国家。 与这些国家相比,我国技术、经济和军事力量并不占有绝对 优势。不管是战略上还是战术上隐藏真实意图,保持军事行 动的突然性仍然具有重大意义。
物联网感知层的信息安全保障措施
( 1 . 北 京市公安局 网络安 全保卫 总队 , 北京 1 0 0 7 4 0; 2 . 海军计算技 术研 究所 , 北京 1 0 0 8 4 1; 3 . 北 京交通 大学计算机 与信息技 术学 院 , 北京 1 0 0 0 4 4)
摘 要 : 文章 介 绍 了物联 网 三层 结 构 中采 用 的主 要 技 术 手段 和 存 在 的 安 全 威胁 ,提 出 了应 在 不 同的
Be i j i n g J i a o t o n g U n i v e r s i t y , Be j i i n g 1 0 0 0 4 4 , Ch i n a )
Abs t r a c t :Th e i n f o r ma t i o n s e c u r i t y o fI nt e r ne t o ft hi n g s i s c u r r e n t l y h o t r e s e a r c h ie f l d i n i nf o r ma t i o n t e c h n ol o g y
I nt e r ne t o f Th i ng s
Z HANG Qi a n g 1 . L I U Y Z HA0 J i a
( 1 . De p a r t m e n t o f N e t w o r k S e c u r i B e i j i n g Mu n i c i p a l P u b l i c S e c u r i y t B u r e a u , B e j i i n g 1 0 0 7 4 0 , C h i n a ; 2 . N a v a l I n s t i t u t e o fC o m p u t i n g T e c h n o l o g y , B e j i i n g 1 0 0 8 4 1 , C h i n a ; 3 . S c h o o l o fC o m p u t e r a n d I n f o r m a t i o n T e c h n o l o y, g
第3章 物联网安全体系及物理安全
4. 认证与访问控制 认证指使用者采用某种方式来证明自己确实是自己宣称的某人, 网络中的认证主要包括身份认证和消息认证。身份认证可以使 通信双方确认对方的身份并交换会话密钥。保密性和及时性是
1. 密钥管理机制
密钥系统是安全的基础,是实现感知信息隐私保护的手段之一。
它的安全需求主要体现在:
(1)密钥生成或更新算法的安全性 (2)前向私密性 (3)后向私密性和可扩展性 (4)抗同谋攻击
2. 数据处理与隐私性 物联网的数据要经过信息感知、获取、汇聚、融合、传输、存 储、挖掘、决策和控制等处理流程,而末端的感知网络几乎要 涉及上述信息处理的全过程,只是由于传感节点与汇聚点的资 源限制,在信息的挖掘和决策方面不占据主要的位置。物联网 应用不仅面临信息采集的安全性,也要考虑到信息传输的安全
2. 管理层面
管理层面节点管理要求中的节点监管是指对感知节点的物理信 息、能量状况、数据通信行为、交互运行状态及设备信息精心
管理,识别恶意、损害节点。应急处理是指根据感知节点的重
要程度和运行安全的不同要求,实现感知节点应急处理的安全 机制和措施,可分为设备正常的备份机制和安全管理机制。
3. 检测体系
络中不具有可操作性,当前有一些研究正致力于对公钥算法进 行优化设计使其能适用于无线传感网络,但在能耗和资源方面 还存在很大的改进空间,如基于RSA公钥算法的TinyPK认证方 案,以及基于身份标识的认证算法等。
(2)基于预共享密钥的认证技术 SNEP方案中提出两种配置方法:一是节点之间的共享密钥,二 是每个节点和基站之间的共享密钥。这类方案使用每对节点之 间共享一个主密钥,可以在任何一对节点之间建立安全通信。 缺点表现为扩展性和抗捕获能力较差,任意一节点被俘获后就 会暴露密钥信息,进而导致全网络瘫痪。
物联网感知安全探析
物联网感知安全探析摘要物联网,英文名称为Internet of Things(IOT),也称为Web of Things,是指通过各种信息传感设备,实现物与物、人与物之间的信息传递与控制。
本文主要研究了影响物联网感知层信息安全的因素,并提出了如何加强感知层安全防护的策略。
关键词物联网;感知层;安全早在2009年,温家宝总理就曾提出“感知中国”的理念,并将物联网行业正式列入为我国五大新兴战略性产业之一,重点写入当年的“政府工作报告”。
如今,随着淘宝、天猫等营销成功的物联网模式在我国的全民推广,物联网行业日渐受到全民关注,物联网也将成为下一个推动世界高速发展的“重要生产力”!由于物联网是由感知层、网络层以及应用层三部分组成。
感知层的信息安全与否,直接影响着物联网的普及、发展与兴衰,因此,讨论物联网的感知安全,具有重要的时代性。
1 物联网及其感知层的安全研究1.1 物联网的安全研究物联网的安全问题主要体现在,它有别与传统的互联网络,物联网的网络层安全与业务层安全并非相互独立,而是将网络平台和应用平台集成于原有的移动网络。
虽然移动网络可以为物联网提供一定的安全性,如加密机制、认证机制等成熟的安全防御措施的运用,但物联网有其独特的运行特性,以往的传统安全认证远不能保障物联网感知层信息的的绝对安全,因此物联网在攻克传统移动通信网络安全问题的同时,还应重视其有别于移动通信网络安全的特殊信息安全问题。
1.2 物联网感知层的安全研究众所周知,物联网是由感知层、网络层和应用层三部分组成。
感知层的主要功能是对监测信息的感知和标识,并提供原始信息的收集。
由于感知层中的收集器、感知器和信息管理设备的运行环境是最容易受到病毒、黑客攻击、控制、破坏的薄弱终端环节,因此保证物联网感知层的运行环境安全,是物联网能否顺利运转的关键所在。
物联网感知层是由RFID设备、传感器、摄像头、CPS定位系统、激光扫描仪等设备组成。
当感知层进行数据采集时,信息通常采用无线网络方式传输,这种传输方式如果运用在公共场,由于缺乏有效的信息保护措施,极易被他人非法干扰、窃听、盗取。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
② 设P1=(x,y)是椭圆曲线上的一点, 它的加法逆元定义为P2=P1=(x, -y)。
这是因为P1、P2的连线延长到无穷远时,得到椭圆曲线上的 另一点O,即椭圆曲线上的3点P1、P2,O共线,所以 P1+P2+O=O,P1+P2=O,即P2=-P1。
由O+O=O,还可得O=-O
2020/4/9
y2+axy+by=x3+cx2+dx+e
(4.1)
其中a,b,c,d,e是满足某些简单条件的实数。 定义中包括一个称为无穷点的元素,记为O。
图4.4 是椭圆曲线的两个例子。
2020/4/9
11
有限域上的椭圆曲线 椭圆曲线
4
P1
2 R Q
-2 -1
01 2 3
-2
- P1 -4
4
P1
2 R Q -2 -1 0 1 2 3
-2
-4
-P1
(a) y2=x3-x
(b) y2=x3+x+1
图4.4 椭圆曲线的两个例子
2020/4/9
12
有限域上的椭圆曲线
椭圆曲线
椭圆曲线上的加法运算定义如下: 如果其上的3个点位于同 一直线上,那么它们的和为O。
ቤተ መጻሕፍቲ ባይዱ
进一步可如下定义椭圆曲线上的加法律(加法法则):
① O为加法单位元,即对椭圆曲线上任一点P,有P+O=P。
(4.2)
2020/4/9
15
有限域上的椭圆曲线
有限域上的椭圆曲线
例4.12 p=23,a=b=1,4a3+27b2(mod 23)≡8≠0 ,方程 (4.2)为y2≡x3+x+1,其图形是连续曲线,由图4.4(b)所示。 然而我们感兴趣的是曲线在第一象限中的整数点。设 Ep(a,b)表示方程(4.2)所定义的椭圆曲线上的点集 {(x,y)|0≤x<p,0≤y<p,且x,y均为整数}并上无穷远点O。本 例中E23(1,1)由表4.6给出,表中未给出O
2020/4/9
16
有限域上的椭圆曲线 有限域上的椭圆曲线
一般来说,Ep(a,b)由以下方式产生:
①
对每一x(0≤x<p且x为整数),计算
x3+ax+b(mod p)。
② 决定①中求得的值在模p下是否有平方根, 如果没有,则曲线上没有与这一x相对应的点;如 果有,则求出两个平方根(y=0 时只有一个平方 根)。
2020/4/9
17
有限域上的椭圆曲线 有限域上的椭圆曲线
Ep(a,b)上的加法定义如下:
设P,Q∈Ep(a,b),则
13
有限域上的椭圆曲线
椭圆曲线
③ 设Q和R是椭圆曲线上x坐标不同的两点,Q+R的定义 如下: 画一条通过Q、R的直线与椭圆曲线交于P1(这一 交点是惟一的,除非所做的直线是Q点或R点的切线,此时 分别取P1=Q和P1=R)。由Q+R+P1=O得Q+R=-P1。 ④ 点Q的倍数定义如下: 在Q点做椭圆曲线的一条切线, 设切线与椭圆曲线交于点S,定义2Q=Q+Q=-S。类似地可 定义3Q=Q+Q+Q+,…,等。 以上定义的加法具有加法运算的一般性质,如交换律、 结合律等。
椭圆曲线密码体制
为保证RSA算法的安全性,它的密钥长度需一 再增大,使得它的运算负担越来越大。相比之下, 椭圆曲线密码体制ECC(elliptic curve cryptography)可用短得多的密钥获得同样的安全 性,因此具有广泛的应用前景。ECC已被IEEE公 钥密码标准P1363采用。
2020/4/9
2020/4/9
14
有限域上的椭圆曲线 有限域上的椭圆曲线
密码中普遍采用的是有限域上的椭圆曲线,有限域上 的椭圆曲线是指曲线方程定义式(4.1)中,所有系数都是某 一有限域GF(p)中的元素(其中p为一大素数)。其中最为 常用的是由方程
y2≡x3+ax+b(mod p)
(a,b∈GF(p),4a3+27b2(mod p)≠0) 定义的曲线。
则称F为一个域.
2020/4/9
8
有限域
定义4.3.2 有限个元素构成的域称为有限域.域中元素 的个数称为有限域的阶.
例:当p是素数时,模p剩余类集合
{0,1,2K, p1}
构成p阶有限域GF(p) ,这也是最简单的一种有限域.
2020/4/9
9
有限域
定义4.3.3 设G是群,a是G中的一个元素,如果存在正 整数m,使得am=1,则称a是有限阶的元素,把最小的满 足am=1 的正整数m叫做元素a的阶,用|a|表示。
4
轻量级密码算法——ECC
ECC特别适用于诸如以下实现中:
➢ 无线Modem的实现; ➢ web服务器的实现; ➢ 集成电路卡的实现; ➢ ……
轻量级密码算法——ECC
➢ 安全性高,其安全性依赖于椭圆曲线上的离散 对数困难问题;
➢ 运算速度快; ➢ 便于软硬件实现。
轻量级密码算法——ECC
正是由于椭圆曲线具有丰富的群结构和多选择性,并可在保持和 RSA/DSA体制同样安全性能的前提下大大缩短密钥长度(目前160比特 足以保证安全性),因而在密码领域有着广阔的应用前景。表4.9给出 了椭圆曲线密码体制和RSA/DSA体制在保持同等安全的条件下各自所 需的密钥的长度。
域
定义4.3.1 若代数系统<F, +, •>的二元运算满足: 1) <F, +>是交换群; 2) <F-{0}, •> 是交换群,其中0是+运算的单位元; 3)乘法在加法+运算上满足分配律,即对于任意a,b,
cF,有
a• (b+c) = a•b+a•c和(b+c) •a=b•a+c•a;
定义4.3.4 q阶有限域中阶为q1的元素称为本原域元素,
简称本原元.
本原元的意义是很明显的.如果q阶有限域中存在本原元a,
则所有非零元构成一个由a生成的q1阶循环群.那么q阶
有限域就可以表示为
{ 0,1,a1,a2,…,aq2}.
2020/4/9
10
有限域上的椭圆曲线 椭圆曲线
椭圆曲线并非椭圆,之所以称为椭圆曲线是因为 它的曲线方程与计算椭圆周长的方程类似。一般来 讲,椭圆曲线的曲线方程是以下形式的三次方程:
物联网感知层安全
课前回顾
3 物联网感知层安全 3.1物联网感知层安全概述 3.2RFID安全 RFID安全密码协议
本次课学习内容
3.2RFID安全 轻量级密码算法 1 椭圆曲线密码算法 2 RC4算法 3 Present算法 4 SM3算法 国家商用密码算法简介
轻量级密码算法——ECC