24个高考数学最容易失分的知识点 看看有你不会的吗

合集下载

高考数学最容易丢分的知识点总结

高考数学最容易丢分的知识点总结

高考数学最容易丢分的知识点总结高考数学是考生们备战高考的重中之重,不仅占据了数学科目的一半分数,而且是考生综合实力的重要体现。

然而,也有一些知识点容易使考生们失分。

本文将从高考数学的各个章节进行总结,总结高考数学最容易丢分的知识点,希望能够对考生们有所帮助。

一、函数与方程1. 初等函数的性质和图像:在函数与方程中,容易丢分的是对于初等函数的性质和图像的理解不清。

对于一些常见的初等函数(如线性函数、二次函数、幂函数等),考生们需要理解函数的定义域、值域、单调性、奇偶性等性质,并且要能准确地画出函数的图像。

2. 函数的复合与反函数:在函数的复合与反函数的相关知识点里,容易丢分的是对于复合函数和反函数的运算不熟悉。

考生们需要掌握复合函数的求值方法和计算规则,以及反函数的定义和求解方法,同时要能够对复合函数和反函数的图像进行分析。

3. 二次函数方程与一元二次方程:在解题过程中,容易丢分的是对于二次函数方程和一元二次方程的解法不熟悉。

考生们需要掌握配方法、因式分解和公式求解三种方法,并能够根据题目的要求选择合适的解法进行求解,同时要注意解方程时的细节和计算的准确性。

二、数形结合1. 数列的概念与性质:在数形结合中,容易丢分的是对于数列的概念和性质的理解不深。

考生们需要掌握数列的定义、通项公式、前n项求和公式等重要概念和性质,并能够灵活运用数列的相关知识解决实际问题。

2. 平面向量的概念与运算:在平面向量的概念与运算中,容易丢分的是对于平面向量的加法、减法、数量积和向量积的计算不熟悉。

考生们需要掌握平面向量的基本性质和计算规则,并能够利用平面向量解决几何问题。

3. 图形的性质与变换:在图形的性质与变换中,容易丢分的是对于图形的性质和变换方法的理解不清。

考生们需要熟悉常见的几何图形的性质和特点,掌握旋转、平移、镜像和对称等变换方法,并能够根据题目的要求进行图形的变换和证明。

三、概率与统计1. 概率的基本概念与计算:在概率的基本概念与计算中,容易丢分的是对于事件的概率和条件概率的计算方法和规律不熟悉。

2024年高考数学最易失分知识点总结

2024年高考数学最易失分知识点总结

2024年高考数学最易失分知识点总结
以下是2024年高考数学最易失分的一些知识点总结:
1. 不理解基本概念:数学中的概念和定义是建立整个数学体系的基础,必须对基本概念有清晰的理解,例如:集合的运算、函数的定义和性质等。

2. 对公式和定理掌握不熟练:高考数学中常用的公式和定理都是需要熟练掌握和灵活运用的,例如:勾股定理、二次函数的性质、函数的导数等。

3. 题目解题思路不清晰:解答数学题目需要有清晰的思路和方法,一些解题思路不清晰或不正确导致题目失分,例如:没有明确的解题步骤、没有将问题转化为数学语言等。

4. 计算错误:高考数学中的计算是必不可少的,但是一些计算错误、运算符号使用不当等都会导致得分的损失。

5. 操作符号不规范:在数学计算中,符号的使用是非常重要的,不规范的符号使用也是导致得分损失的原因之一,例如:不正确使用运算符号、符号搞混等。

6. 不善于用图解题:高考数学中,很多题目都可以通过画图进行解答,但是一些考生不善于使用图解题,导致解题思路不清晰或解题错误。

7. 对于题目中的条件和限制不敏感:一些题目中存在着一些条件和限制,不敏感地处理这些条件和限制会导致解题错误。

总之,要想在2024年高考数学中取得好成绩,除了对数学知识的熟练掌握,还需要注意解题思路的清晰和正确、计算的准确性以及对题目条件和限制的敏感性。

第 1 页共 1 页。

2024年高考数学最易失分知识点总结

2024年高考数学最易失分知识点总结

2024年高考数学最易失分知识点总结在____年的高考数学考试中,有一些知识点是考生容易失分的。

本文总结了一些最易失分的知识点,以帮助考生重点复习和弥补不足。

一、函数与方程1. 幂函数与指数函数的性质:考生容易混淆幂函数与指数函数的性质,例如幂函数的自变量和幂指数的关系、指数函数的定义域和值域等。

理解并区分这些性质对于解题至关重要。

2. 二次函数与一元二次方程:考生容易混淆二次函数和一元二次方程的相关性质,例如二次函数的图像和一元二次方程的解法、二次函数的顶点坐标和一元二次方程的根等。

弄清楚二次函数和一元二次方程之间的关系能够帮助考生更好地理解和解答相关题目。

3. 线性规划:线性规划是高考中的经典知识点,但考生在解决线性规划问题时常常出现误解。

容易出错的地方包括列出约束条件、确定目标函数、绘制解空间等。

因此,考生需要重点掌握线性规划的基本概念和解题方法。

二、数列与数列表达式1. 等差数列与等比数列:等差数列与等比数列是高考中常见的数学概念,但考生在解题过程中经常出现混淆或忽略的情况。

考生容易混淆等差数列的通项公式和前n项和公式,以及等比数列的通项公式和前n项和公式。

在解题过程中,考生要仔细区分这些概念并正确应用。

2. 递推数列与递归数列:递推数列和递归数列常常出现在高考中,但考生容易忽视或混淆它们之间的区别。

递推数列是指通过公式或规则来计算数列的下一项,而递归数列是指通过前一项或前几项计算数列的下一项。

考生需要清楚地了解递推数列和递归数列之间的关系,并能够正确应用。

三、平面几何与立体几何1. 向量的运算与性质:向量是几何中的重要工具,但考生常常在向量的运算和性质上出现困惑。

容易出错的地方包括向量的加法、减法和数量积的计算,以及向量的共线、垂直和平行性质的判断。

考生需要熟练掌握向量的运算规则和性质,以便准确地解答相关题目。

2. 图形的分析与判断:在平面几何和立体几何中,考生常常需要分析和判断图形的性质。

高考数学科目最容易出错的知识点

高考数学科目最容易出错的知识点

高考数学科目最容易出错的知识点x高考数学科目易错知识点数学是所有科学的基础。

数学网推荐了高考数学科目容易出错的知识点。

请仔细阅读,希望你喜欢。

集合和简单逻辑1.遗忘空集合导致的错误错误分析:因为空集是任何非空集的适当子集,对于集合B,有三种情况:B=A,B,B,如果在解题时考虑不够仔细,可能会忽略B的这种情况,导致解题结果错误。

特别是在求解带参数的集合问题时,更要注意当参数在一定范围内时,给定集合可能为空的情况。

空集是一种特殊的集合。

由于思维定势,考生在解题时往往会忘记这一套,导致解题错误或不完整。

2.忽略集合元素的三个特征会导致错误。

错误分析:一个集合中的元素是确定的、无序的、相互不同的。

集合元素的三个性质中,互差对解题影响很大,尤其是带字母参数的集合,实际上隐含了对字母参数的一些要求。

解题时也可以先确定字母参数的范围,再具体解题。

3.四个命题的结构不明,造成错误。

错误分析:如果原命题是如果a是b,那么这个命题的逆命题是如果b是a,无命题是如果A那么B,而逆无命题是如果B那么a。

有两组等价命题,即原命题与其逆无命题等价,反无命题与其逆命题等价。

在求解一个命题所写的其他形式的命题时,必须搞清楚四个命题的结构及其等价关系。

另外,在否定一个命题时,要注意全称命题的否定是一个特殊命题,而特殊命题的否定是一个全称命题。

如果a和b是偶数,那么否定应该是a和b不是偶数,而不是a和b是奇数。

4.充分必要条件颠倒引起的误差错误分析:对于A和B两个条件,如果A=B成立,那么A是B and B的充分条件是A的必要条件;如果B=A成立,那么A是B的必要条件,B是A的充分条件;如果是AB,那么a和b是相互充分必要条件。

在解决问题时,X因为颠倒了充分性和必要性而容易出错,所以在解决这类问题时,需要根据充分必要条件的概念做出准确的判断。

5.不允许对逻辑连词有误解错误分析:用逻辑连词判断命题时,由于理解不准确,容易出错。

下面我们给出一些常见的判断方法,希望对大家有所帮助:P=p真或q真,P=p假和q假(总结为一真一真);Pq真,p真和q真,Pq假p假或q假(总结为一个假或假);p真p假,p假p真(概括为一真一假)。

高考数学最易丢分的20个知识点

高考数学最易丢分的20个知识点

高考数学最易丢分的20个知识点高考数学是很多学生头疼的问题,尤其是一些易丢分的知识点更是需要我们特别关注。

以下是高考数学中最易丢分的20个知识点:知识点一:函数的定义域和值域在理解函数的定义域和值域时,很多学生容易混淆,导致在选择答案时出现错误。

知识点二:直线与平面的交点在求直线与平面的交点时,很多学生容易出现计算错误或者解方程错误的情况。

知识点三:函数的奇偶性在判断函数的奇偶性时,很多学生容易忽视符号取值规律,从而出现判断错误的情况。

知识点四:平移、旋转和对称变换在进行平移、旋转和对称变换时,很多学生容易出现计算错误的情况,尤其是在计算坐标时容易混淆。

知识点五:函数的极值与最值在求函数的极值和最值时,很多学生容易出现求导错误、计算错误等问题。

知识点六:数列的通项公式在推导数列的通项公式时,很多学生容易出现计算错误或者漏项的情况。

知识点七:平方根和立方根的计算在进行平方根和立方根的计算时,很多学生容易出现计算错误的情况,尤其是多次开根时更容易出错。

知识点八:二次函数的图像在画出二次函数的图像时,很多学生容易忽略平移和缩放的特征,从而导致图像绘制错误。

知识点九:概率与统计在概率与统计中的概念理解和计算中,很多学生容易出现混淆和计算错误的情况。

知识点十:数列与函数的综合应用在数列与函数的综合应用题中,很多学生容易迷失在繁杂的信息中,导致无法理清思路。

知识点十一:复数的运算在进行复数的加减乘除运算时,很多学生容易出现计算错误或者混淆实部与虚部的概念。

知识点十二:立体几何题在解立体几何题时,很多学生容易出现计算错误或者对几何图形的性质理解不透彻的情况。

知识点十三:勾股定理和余弦定理在运用勾股定理和余弦定理解决三角形问题时,很多学生容易出现运算错误或者无法正确应用相应的定理。

知识点十四:解三角函数的方程在解三角函数的方程时,很多学生容易出现计算错误或者解方程错误的情况。

知识点十五:圆与圆的位置关系在判断圆与圆的位置关系时,很多学生容易出现计算错误或者判断错误的情况,尤其是在应用相切和相交的性质时更容易出错。

2023年高考数学容易失分的知识点

2023年高考数学容易失分的知识点

2023年高考数学容易失分的知识点1500字以下是2023年高考数学中容易失分的知识点:1.基础知识点:(1)数的性质:对于自然数、整数、有理数、无理数等的定义和性质理解不清楚。

(2)分数的四则运算:对于分数的加减乘除及混合运算掌握不牢固,容易出现计算错误。

(3)百分数与比例:对于百分数与比例的相互转换、计算百分数的增长、减少、比例的比较等概念混淆。

(4)分数方程与分数不等式:对于分数方程与分数不等式求解步骤和方法的掌握不熟练,常常出现计算错误。

2.函数与方程:(1)函数的性质:对于函数的奇偶性、周期性、增减性等性质的判断不准确,容易出现推论错误。

(2)一次函数与二次函数:对于一次函数与二次函数的图象特征、性质、方程与不等式的解法掌握不深刻,容易出现推理错误。

(3)指数函数与对数函数:对于指数函数与对数函数的定义、性质、运算规律不熟悉,经常出现计算错误。

3.解几何题:(1)平面几何:对于平行线、垂直线、共线、全等、相似等概念的理解不清楚,容易出现概念混淆。

(2)三角形与四边形:对于三角形与四边形的性质、判定定理、计算问题等掌握不牢固,常常出现计算错误。

(3)圆与圆的切线:对于圆与切线的性质、切线定理掌握不熟练,容易出现推论错误。

4.概率与统计:(1)事件与概率:对于事件与概率的定义和基本性质理解不准确,常常出现计算错误。

(2)统计图表的解读和分析:对于统计图表的解读、数据的处理和分析方法不熟悉,容易出现推理错误。

(3)抽样调查与统计推断:对于抽样调查和统计推断的原理和方法掌握不牢固,常常出现推理错误。

5.空间与向量:(1)几何向量:对于几何向量的定义、运算规则和性质掌握不清楚,容易出现计算错误。

(2)空间坐标与向量方程:对于空间坐标与向量方程的表示法和计算方法不熟悉,常常出现计算错误。

(3)线性方程组与矩阵:对于线性方程组的解法和矩阵的运算规则不熟练,容易出现计算错误。

总结起来,2023年高考数学容易失分的知识点包括基础知识点、函数与方程、解几何题、概率与统计、空间与向量等方面。

2020年高考数学容易失分的知识点

2020年高考数学容易失分的知识点

下面是本网为你收集的2020年高考数学容易失分的知识点,希望可以帮助同学们解决相关问题。

更多内容请持续关注本网站。

2020年高考数学容易失分的知识点01.遗忘空集致误由于空集是任何非空集合的真子集,因此B=?时也满足B?A.解含有参数的集合问题时,要特别注意当参数在某个范围内取值时所给的集合可能是空集这种情况。

02.忽视集合元素的三性致误集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。

03.混淆命题的否定与否命题命题的“否定”与命题的“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论。

04.充分条件、必要条件颠倒致误对于两个条件A,B,如果A?B成立,则A是B的充分条件,B是A的必要条件;如果B?A成立,则A是B的必要条件,B是A的充分条件;如果A?B,则A,B互为充分必要条件.解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充分条件和必要条件的概念作出准确的判断。

05.“或”“且”“非”理解不准致误命题p∨q真?p真或q真,命题p∨q假?p假且q假(概括为一真即真);命题p∧q真?p真且q真,命题p∧q假?p假或q假(概括为一假即假);綈p真?p假,綈p假?p真(概括为一真一假).求参数取值范围的题目,也可以把“或”“且”“非”与集合的“并”“交”“补”对应起来进行理解,通过集合的运算求解。

06.函数的单调区间理解不准致误在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法.对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。

07.判断函数奇偶性忽略定义域致误判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数。

2024年历年高考数学易错知识点总结

2024年历年高考数学易错知识点总结

2024年历年高考数学易错知识点总结2024年的高考数学考试易错知识点总结如下:
1. 函数与方程:易错点包括函数的定义域与值域、函数的奇偶性、解方程时的取值范围、解不等式时的符号变化等。

2. 三角函数与三角恒等式:易错点包括三角函数的定义、基本的三角恒等式的熟练掌握、解三角方程时的值域判断等。

3. 平面几何与立体几何:易错点包括平面图形的面积计算、立体图形的体积计算、立方体、正方体、圆锥体等几何体的计算等。

4. 概率与统计:易错点包括概率计算中的排列组合、事件的独立性与互斥性、统计数据的分析与解读等。

5. 导数与微分:易错点包括导数的定义与性质、函数的最值与最值点的求解、曲线的切线与法线方程的求解等。

6. 数列与数列极限:易错点包括数列的通项公式的求解、等差数列与等比数列的性质及求和公式、数列极限的判断与计算等。

7. 矩阵与行列式:易错点包括矩阵的加减乘除、对角矩阵、单位矩阵与逆矩阵的求解、行列式的性质与计算等。

8. 模型与实际问题:易错点包括问题的分析与建模、转化为数学问题的能力、解答实际问题时的合理性判断等。

以上是2024年高考数学考试易错知识点的总结,考生可以针对这些知识点进行有针对性的复习和备考,提高解题的准确性和效率。

高三数学失分知识点总结

高三数学失分知识点总结

高三数学失分知识点总结数学是一门需要思考和理解的学科,对于高三学生来说,数学科目的失分问题是一个常见的难题。

在此,笔者将对高三数学中常见的失分知识点进行总结,希望能够帮助同学们更好地理解和掌握这些难点。

一、函数与方程1. 不会解一元一次方程或方程组在高三数学考试中,一元一次方程或方程组往往是常见的题型。

对于没有掌握解方程的方法或步骤的同学来说,很容易失分。

因此,在备考过程中,要学会如何正确地解一元一次方程或方程组,并能够灵活运用到实际问题的解决中。

2. 对函数与图像的性质了解不清楚函数与图像的性质是高三数学中的重要内容,同学们在备考中应该掌握函数的单调性、零点、最值等基本概念。

对于函数的图像,需要了解曲线的开口方向、对称轴、拐点等特征。

只有对函数与图像的性质有一个清晰的认识,才能更好地解答相关题目。

二、立体几何1. 对平面几何基本定理的掌握不牢固在高三数学考试中,平面几何是一个容易失分的知识点。

对于平面几何基本定理的掌握不牢固,容易在证明过程或应用题中出错。

因此,同学们在备考过程中应该注重理论的学习,并且多进行练习,加强对基本定理的记忆和理解。

2. 空间几何立体图形的判断和计算错误关于立体几何中空间图形的判断和计算,同学们经常容易犯错误。

例如,在计算体积或表面积时,没有正确地识别各个部分的边长、高度或角度,导致计算结果错误。

因此,同学们在备考过程中应该加强对空间图形的认识,并且进行大量的计算练习,提高判断和计算的准确性。

三、概率与统计1. 对概率计算的公式和方法不熟悉概率计算是高三数学中的重要内容,同学们在备考中应该熟悉常见的概率计算公式和方法,如排列组合、条件概率、事件独立性等。

只有对这些公式和方法有一个清晰的认识,才能够正确地解答概率计算题目。

2. 统计知识点的理解和运用错误在统计学中,同学们容易在问题的理解和运用上犯错误。

例如,在计算平均数时,没有注意到是否要剔除异常值;在计算方差或标准差时,没有正确应用公式等。

2024年高考数学最易失分知识点总结

2024年高考数学最易失分知识点总结

2024年高考数学最易失分知识点总结随着高考科目数学的改革,考试内容和考试形式都在不断变化,但是总体来说,高考数学的出题思路和考查点并未发生太大变化。

根据近年高考数学试题的分析,我们可以总结出一些容易导致失分的知识点。

下面是2024年高考数学最易失分的知识点总结:一、函数与方程1. 函数的定义和性质在考试中,常常会涉及到对函数的定义、函数的性质、函数图像的绘制等问题,这是学生容易出错的一个知识点。

一些常见的错误包括对函数的定义不够准确、不理解函数的性质、绘制函数图像时不符合函数的定义域等。

2. 一次函数与二次函数的性质一次函数和二次函数是高考数学中最常见的函数类型,对于这两类函数的性质要熟悉掌握。

一次函数涉及到直线的斜率和截距,二次函数涉及到抛物线的顶点、焦点、对称轴等概念。

不理解这些性质会导致在解题过程中出现偏差。

3. 求解方程求解方程是高考数学中的基本题型,要掌握各种方法和技巧。

一些常见的错误包括未注意解析解的存在性、对方程的变形不熟练、未注意特殊解的存在等。

二、几何与向量1. 平面几何基本定理和性质平面几何基本定理和性质是高考数学中的重点,要牢记各种定理和性质,并能熟练应用到解题中。

一些常见的错误包括对基本定理的不理解、应用错误的定理、判断条件不准确等。

2. 向量的运算求向量数量积、向量叉积等是高考数学中的重要内容,要熟练掌握向量运算的定义和性质。

一些常见的错误包括计算错误、向量的表示方法不准确等。

3. 圆与圆的位置关系圆与圆的位置关系是高考数学中的难点,涉及到圆的切线、切点、相交、内切、外切等问题。

一些常见的错误包括判断不准确、对位置关系的认识不准确等。

三、数列与数学归纳法1. 数列的概念和性质数列是高考数学中的重点内容,要掌握数列的概念、数列的通项公式、数列的性质等。

一些常见的错误包括对数列的概念不理解、对数列的通项公式使用不熟练等。

2. 数列的求和数列的求和是高考数学中的常见问题,要熟练掌握各种求和方法和技巧。

高考数学最易失分知识点总结

高考数学最易失分知识点总结

高考数学最易失分知识点总结01.遗忘空集致误由于空集是任何非空集合的真子集,因此B=?时也满足B?A.解含有参数的集分解绩时,要特别留意当参数在某个范围内取值时所给的集合能够是空集这种状况。

02.无视集合元素的三性致误集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实践上就隐含着对字母参数的一些要求。

03.混杂命题的否认与否命题命题的〝否认〞与命题的〝否命题〞是两个不同的概念,命题p的否认能否认命题所作的判别,而〝否命题〞是对〝假定p,那么q〞方式的命题而言,既要否认条件也要否认结论。

04.充沛条件、必要条件颠倒致误关于两个条件A,B,假设A?B成立,那么A是B的充沛条件,B是A的必要条件;假设B?A成立,那么A是B的必要条件,B是A的充沛条件;假设A?B,那么A,B互为充沛必要条件。

解题时最容易出错的就是颠倒了充沛性与必要性,所以在处置这类效果时一定要依据充沛条件和必要条件的概念作出准确的判别。

05.〝或〞〝且〞〝非〞了解不准致误命题p∨q真?p真或q真,命题p∨q假?p假且q假〔概括为一真即真〕;命题p∧q真?p真且q真,命题p∧q假?p假或q假〔概括为一假即假〕;绨p真?p假,绨p假?p 真〔概括为一真一假〕。

求参数取值范围的标题,也可以把〝或〞〝且〞〝非〞与集合的〝并〞〝交〞〝补〞对应起来停止了解,经过集合的运算求解。

06.函数的单调区间了解不准致误在研讨函数效果时要时时辰刻想到〝函数的图像〞,学会从函数图像上去剖析效果、寻觅处置效果的方法。

关于函数的几个不同的单调递增〔减〕区间,切忌运用并集,只需指明这几个区间是该函数的单调递增〔减〕区间即可。

07.判别函数奇偶性疏忽定义域致误判别函数的奇偶性,首先要思索函数的定义域,一个函数具有奇偶性的必要条件是这个函数的定义域关于原点对称,假设不具有这个条件,函数一定是非奇非偶函数。

08.函数零点定理运用不当致误假设函数y=f〔x〕在区间[a,b]上的图像是一条延续的曲线,并且有f〔a〕f〔b〕0,那么,函数y=f〔x〕在区间〔a,b〕内有零点,但f〔a〕f〔b〕0时,不能否认函数y=f〔x〕在〔a,b〕内有零点。

这24个高考数学易错点,你一定要牢记

这24个高考数学易错点,你一定要牢记

这24个高考数学易错点,你一定要牢记一、集合与函数1、进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况。

2、否命题与命题的否定形式的区别。

3、判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称。

4、求一个函数的反函数时,易忽略标注该函数的定义域。

5、求函数单调性时,在多个单调区间之间应用和或,,而不能用符号∪和或。

6、解对数函数问题时,注意真数大于零,底数大于零且不等于1。

二、不等式7、利用均值不等式求最值时,注意:一正;二定;三等。

8、在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。

9、两个不等式相乘时,必须注意同向同正时才能相乘。

三、数列10.在已知,求的问题中,利用公式时注意需要验证,有些题目通项是分段函数。

11.应用数学归纳法一要注意步骤齐全,二要注意从先假设时成立,再结合一些数学方法用来证明时也成立。

四、三角函数12、三角化简的通性通法:切割化弦、降幂公式、用三角公式转化出现特殊角。

13、函数的图象的平移,方程的平移易混:函数的图象的平移为左+右-,上+下-。

14、正弦定理时易忘比值还等于2R。

五、解析几何15、在用点斜式、斜截式求直线的方程时,注意不存在的情况。

16、通径是抛物线的所有焦点弦中最短的弦。

17、在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制。

六、立体几何18、三垂线定理及其逆定理;三垂线定理的关键是:一面、四线、三垂直、立柱即面的垂线是关键。

19、异面直线所成角利用平移法求解时,一定要注意平移后所得角等于所求角(或其补角),特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。

20、两条异面直线所成的角的范围:0°≤α≤90°直线与平面所成的角的范围:0°≤α≤90°二面角的取值范围:0°≤α≤180°21、经度为二面角,纬度为线面角、球面距离的求法;球的表面积和体积公式。

高考数学易失分知识点总结

高考数学易失分知识点总结

高考数学易失分知识点总结导语:高考是每个学生人生中的重要考试,数学作为其中一门重要科目,是很多学生认为难以应对的科目之一。

受制于时间限制以及对一些易失分知识点的不熟悉,很多学生在考试中容易犯错。

下面,我们将总结一些高考数学易失分的知识点,希望对广大考生有所帮助。

易失分知识点一:函数与方程1.函数与方程的概念混淆。

函数是一个或多个自变量与一个因变量之间的关系,例如y = f(x),而方程则是由字母以及数与运算符号构成的等式或不等式。

有些学生往往将函数与方程的概念混淆,导致理解和应用上的错误。

因此,在准备高考时,学生应该对函数和方程的概念进行明确的区分和理解。

2.函数图像的分析错误。

在解析几何中,函数的图像是一个非常重要的概念,可以通过图像直观地看到函数的性质和变化趋势。

然而,有些学生在解析函数图像时容易犯错,例如将函数图像的拐点、极值点或者当x趋近于正无穷时的情况分析错误。

易失分知识点二:三角函数与向量1.常用三角函数的应用错误。

在高考数学中,三角函数是经常出现的知识点之一。

例如,对于正弦函数的应用,很多学生容易混淆正弦值和角度的关系,导致计算错误。

因此,在考试准备中,建议学生通过大量的习题练习,熟悉和掌握三角函数的应用。

2.向量共线性的判断错误。

在向量的几何性质中,共线性是一个非常重要的概念。

有些学生往往在判断向量共线时容易犯错,例如对向量的平行性与共线性的区别不清楚。

因此,在学习向量的过程中,学生应该对共线向量和平行向量的概念进行深入的理解和区分。

易失分知识点三:几何与平面解析几何1.平行线与垂直线的判断错误。

在几何中,平行线和垂直线的判断是一个基本的几何常识。

然而,在高考中,有些学生在判断平行线和垂直线时容易犯错,例如错误地使用了平行线的判定条件,或者在平面解析几何中,使用了错误的判定式。

因此,在学习几何和平面解析几何时,学生要注意掌握平行线和垂直线的判定方法,多进行练习,加深理解。

2.坐标系的选择错误。

高考数学最容易丢分的知识点总结

高考数学最容易丢分的知识点总结

高考数学最容易丢分的知识点总结1、遗忘空集致误由于空集是任何非空集合的真子集,因此B=?时也满足B?A。

解含有参数的集分解绩时,要特别留意当参数在某个范围内取值时所给的集合能够是空集这种状况。

2、无视集合元素的三性致误集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实践上就隐含着对字母参数的一些要求。

3、混杂命题的否认与否命题命题的〝否认〞与命题的〝否命题〞是两个不同的概念,命题p的否认能否认命题所作的判别,而〝否命题〞是对〝假定p,那么q〞方式的命题而言,既要否认条件也要否认结论。

4、充沛条件、必要条件颠倒致误关于两个条件A,B,假设A?B成立,那么A是B的充沛条件,B是A的必要条件;假设B?A成立,那么A是B的必要条件,B是A的充沛条件;假设A?B,那么A,B互为充沛必要条件。

解题时最容易出错的就是颠倒了充沛性与必要性,所以在处置这类效果时一定要依据充沛条件和必要条件的概念作出准确的判别。

5、〝或〞〝且〞〝非〞了解不准致误命题p∨q真?p真或q真,命题p∨q假?p假且q假(概括为一真即真);命题p∧q真?p真且q真,命题p∧q假?p假或q 假(概括为一假即假);绨p真?p假,绨p假?p真(概括为一真一假)。

求参数取值范围的标题,也可以把〝或〞〝且〞〝非〞与集合的〝并〞〝交〞〝补〞对应起来停止了解,经过集合的运算求解。

6、函数的单调区间了解不准致误在研讨函数效果时要时时辰刻想到〝函数的图像〞,学会从函数图像上去剖析效果、寻觅处置效果的方法。

关于函数的几个不同的单调递增(减)区间,切忌运用并集,只需指明这几个区间是该函数的单调递增(减)区间即可。

7、判别函数奇偶性疏忽定义域致误判别函数的奇偶性,首先要思索函数的定义域,一个函数具有奇偶性的必要条件是这个函数的定义域关于原点对称,假设不具有这个条件,函数一定是非奇非偶函数。

8、函数零点定理运用不当致误假设函数y=f(x)在区间[a,b]上的图像是一条延续的曲线,并且有f(a)f(b)0,那么,函数y=f(x)在区间(a,b)内有零点,但f(a)f(b)0时,不能否认函数y=f(x)在(a,b)内有零点。

高考数学失分知识点归纳

高考数学失分知识点归纳

高考数学失分知识点归纳高考数学是许多学生在高中阶段面临的重大挑战之一,它不仅考查学生的数学基础知识和计算能力,还考查学生的逻辑推理和问题解决能力。

以下是一些常见的高考数学失分知识点归纳:1. 基础概念不清晰:对于数学中的基础概念,如函数、导数、积分等,如果理解不透彻,很容易在解题时出现错误。

2. 公式记忆不牢固:数学中有很多公式,如三角函数公式、圆锥曲线公式等,如果记忆不牢固,在解题时容易混淆或忘记。

3. 计算能力不足:数学考试中,计算是基础,如果计算能力不强,很容易在复杂的计算题中失分。

4. 逻辑推理能力薄弱:数学问题往往需要逻辑推理,如果逻辑推理能力不足,很难解决一些需要推理的题目。

5. 空间想象能力不足:对于立体几何等需要空间想象的题目,如果空间想象能力不足,很难准确解题。

6. 审题不仔细:很多学生在解题时没有仔细阅读题目,导致对题目的理解出现偏差,从而失分。

7. 解题方法不熟练:对于一些常见的解题方法,如代入法、配方法等,如果不熟练掌握,很难在考试中快速准确解题。

8. 时间管理不当:在高考数学考试中,时间管理非常重要。

如果时间分配不合理,可能会导致一些题目没有足够的时间去解答。

9. 粗心大意:在解题过程中,一些简单的计算错误或书写错误,往往会导致失分。

10. 应用题理解不深入:对于一些应用题,如果对实际问题的理解不够深入,很难将数学知识应用到实际问题中去。

结束语:高考数学的备考是一个系统工程,需要学生在基础知识、计算能力、逻辑推理、空间想象等方面下功夫。

同时,培养良好的审题习惯和时间管理能力,以及在练习中不断熟练掌握各种解题方法,都是避免失分的关键。

希望以上的归纳能够帮助学生在高考数学中取得更好的成绩。

高三数学易失分知识点归纳

高三数学易失分知识点归纳

高三数学易失分知识点归纳在高中数学学习过程中,很多学生都会遇到一些易失分的知识点。

这些知识点可能因为概念理解不清晰、计算错误、解题思路不清晰等原因导致学生失分。

为了帮助同学们更好地掌握高三数学考试中的易失分知识点,下面将对其中几个重要的知识点进行归纳和解析。

1. 基础知识点1.1 几何与三角函数几何与三角函数是高中数学的基础,然而很多同学在理解相关概念时容易混淆或者记忆不牢固。

例如,对于周长和面积的概念,许多学生容易混淆或者计算错误。

另外,在三角函数中,正弦定理和余弦定理的应用也是容易出错的地方。

因此,同学们在备考中要反复温习这些基础知识点,并通过大量的练习巩固记忆。

1.2 计算和推导在高三数学考试中,计算和推导是非常常见的题型。

然而,很多学生在计算和推导过程中经常犯错。

例如,在解方程的过程中,容易出现计算错误或者忽略解的判断范围。

在求导求积分的题目中,很多同学容易出错,例如忘记运用链式法则或者移项计算错误等。

因此,同学们在做这类题目时一定要细心,将每一步的计算都仔细核对,避免不必要的失分。

2. 高阶知识点2.1 解析几何解析几何是高三数学考试中的一个重要知识点,也是易失分的重灾区之一。

在解析几何中,直线和曲线的方程、点的位置关系等都是比较考察的内容。

同学们在解这类题目时经常会出现误用公式、计算错误等问题。

因此,要提前掌握各种图形的性质和方程,多进行推导练习,并及时纠正错误,做到知其然更要知其所以然。

2.2 空间几何与立体几何在空间几何和立体几何领域,同学们也经常容易犯错。

例如,在立体几何中,求体积和表面积的计算容易混淆,或者在想象和绘制图形时失误。

因此,同学们在解决这类题目时要注重绘图、标记和计算的准确性,善于利用各种已知条件和几何关系进行解题。

3. 解题技巧和应试策略3.1 切忌草率行事在高三数学考试中,切忌草率行事。

即使遇到熟悉的题型,也要仔细审题,认真计算,不要因为着急或者粗心导致低级错误。

高三数学易失分知识点

高三数学易失分知识点

高三数学易失分知识点高三学生在备战数学考试时,常常会遇到一些易失分的知识点。

这些知识点可能看似简单,但却容易出错,导致得分不尽人意。

为了帮助同学们在数学考试中拿高分,下面列举了一些高三数学易失分的知识点及解决方法。

知识点一:平面几何中的相似三角形相似三角形是平面几何中一个常见的考点,也是易失分的一个知识点。

在解决相似三角形问题时,同学们经常忽视了一些重要的条件,导致错误的结果。

解决方法:在解决相似三角形问题时,首先要明确相似三角形的定义,即对应角相等,对应边成比例。

其次,需要仔细审题,确保给定的条件满足相似三角形的要求。

最后,可以采用比例关系或相似比例定理来求解相似三角形问题。

知识点二:不等式的解集在解决不等式问题时,同学们往往容易犯错,特别是在求解不等式的解集时。

常见的错误有漏解、多解或解集表达形式错误等。

解决方法:在解决不等式问题时,首先要仔细分析不等式的性质,如判断是大于、小于还是等于关系。

其次,要注意每一步的运算是否正确,特别是在乘以负数时要注意改变不等号的方向。

最后,要将解集按照正确的形式表示出来,如用区间表示或用集合表示。

知识点三:函数与导数的应用函数与导数的应用是高三数学中的一大难点,也是易失分的一个重要知识点。

同学们容易在函数的定义域、最值问题、极值点等方面犯错。

解决方法:在解决函数与导数的应用问题时,首先要正确理解函数的意义和定义域的范围。

其次,在求函数的最值时,需要注意将边界点和极值点都考虑进去。

另外,在解决极值点问题时,同学们应该掌握导数为零的条件,并进行必要的求导计算。

知识点四:概率与统计概率与统计是高中数学中的一个重点知识点,也是高三数学易失分的一个重要内容。

同学们容易在对样本空间、事件的理解和计算、条件概率的应用等方面出错。

解决方法:在解决概率与统计的问题时,首先要认真读题,理解样本空间和事件的含义,并正确计算概率。

其次,在解决条件概率的问题时,需要根据已知条件确定计算的方法,并注意计算过程的准确性。

二、高考数学中最容易丢分的32个知识点

二、高考数学中最容易丢分的32个知识点

二、高考数学中最容易丢分的32个知识点1.遗忘空集致误由于空集是任何非空集合的真子集,因此当B=⌀时也满足B⊆A.解含有参数的集合问题时,要特别注意当参数在某个范围内取值时所给的集合可能是空集这种情况.2.忽视集合元素的“三性”致误集合中的元素具有确定性、无序性、互异性,集合元素的“三性”中互异性对解题的影响最大,特别是含有字母参数的集合,实际上就隐含着对字母参数的一些要求.3.命题p的否定与含有量词的命题的否定命题p的否定是否定命题所作的判断,即否定命题p的结论;含有量词的命题的否定,不仅是把结论否定,而且要改写量词,全称量词变为存在量词,存在量词变为全称量词.4.充分条件、必要条件颠倒致误对于两个条件A,B,若A⇒B成立,则A是B的充分条件,B是A的必要条件;若B⇒A成立,则A是B的必要条件,B是A的充分条件;若A⇔B,则A,B互为充分必要条件.解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充分条件和必要条件的概念作出准确的判断.5.函数的单调区间理解不准致误求函数单调区间时,多个单调区间之间不能用符号“∪”和“或”连接,可用“和”连接,或用“,”隔开.单调区间必须是“区间”,而不能用集合或不等式代替.6.求解与函数、不等式有关的问题忽略定义域致误求解与函数、不等式有关的问题(如求值域、单调区间、判断奇偶性、解不等式等),要注意定义域优先的原则.特别是一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,那么函数一定是非奇非偶函数.7.不理解函数零点或函数零点存在性定理使用不当致误(1)易混淆函数的零点和函数图象与x轴的交点,不能把函数零点、方程的解、不等式解集的端点值进行准确互化.(2)如果函数y=f(x)在区间[a,b]上的图象是一条连续的曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,但f(a)f(b)>0时,不能否定函数y=f(x)在(a,b)内有零点.函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”函数的零点存在性定理是“无能为力”的,在解决函数的零点问题时要注意这个问题.8.求函数图象的切线方程失误混淆y=f(x)的图象在某点(x0,y0)处的切线与y=f(x)过某点(x0,y0)的切线,导致求解失误.若求y=f(x)的图象在某点(x0,y0)处的切线方程,点(x0,y0)一定是切点,若求y=f(x)过某点(x0,y0)的切线方程,点(x0,y0)不一定是切点.9.确定函数极值点失误对于可导函数y=f(x),错以为f'(x0)=0是函数y=f(x)在x=x0处有极值的充分条件,从而认为x0是函数的极值点.函数在某点处有极值,不仅要看其对应的导数是否为0,还要看这点的左、右区间对应的函数的单调性是否相反.10.求y=A sin(ωx+φ)的单调区间失误(1)不注意A或ω的符号,把单调性弄反,或把区间左右的值弄反;(2)忘掉写+2kπ,或+kπ等,忘掉写k∈Z;(3)书写单调区间时,错把弧度和角度混在一起.11.图象平移的单位长度失误由f (x )=A sin ωx (ω>0)的图象变换到y=A sin(ωx+φ)=A sin [ω(x +φω)]的图象.当φ>0时,向左平移φω个单位长度;当φ<0时,向右平移φω个单位长度,而不是|φ|个单位长度.12.复数的概念不清致误对于复数a+b i(a ,b ∈R ),a 叫做实部,b 叫做虚部.当且仅当b=0时,复数a+b i(a ,b ∈R )是实数a ;当b ≠0时,复数z=a+b i 叫做虚数;当a=0,且b ≠0时,z=b i 叫做纯虚数.解决复数概念类试题,要仔细区分以上概念差别,防止出错.另外,i 2=-1是实现实数与虚数互化的桥梁,要适时进行转化,解题时极易丢掉“-”而出错.13.忽视零向量致误零向量是向量中最特殊的向量,规定零向量的长度为0,其方向是任意的,零向量与任意向量都共线.它在向量中的位置正如实数中0的位置一样,但有了它容易引起一些混淆,稍微考虑不到就会出错,考生应给予足够的重视.14.向量夹角范围不清致误解题时要全面考虑问题.数学试题中往往隐含着一些容易被考生所忽视的因素,能不能在解题时把这些因素考虑到,是解题成功的关键,如当a ·b<0时,a 与b 的夹角不一定为钝角,要注意θ=π的情况;当a ·b >0时,a 与b 的夹角不一定为锐角,要注意θ=0的情况.15.a n 与S n 关系不清致误在数列问题中,数列的通项a n 与其前n 项和S n 之间存在下列关系:当n=1时,a 1=S 1;当n ≥2时,a n =S n -S n-1.这个关系对任意数列都是成立的,但要注意的是这个关系式是分段的,在n=1和n ≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点.16.对数列的定义、性质理解错误等差数列的前n 项和在公差不为零时是关于n 的常数项为零的二次函数.一般地,有结论“若数列{a n }的前n 项和S n =an 2+bn+c (a ,b ,c ∈R ),则数列{a n }为等差数列的充要条件是c=0”;在等差数列中,S m ,S 2m -S m ,S 3m -S 2m (m ∈N *)是等差数列.17.数列中的最值错误在数列问题中,其通项公式、前n 项和公式都是关于正整数n 的函数,要善于从函数的观点认识和理解数列问题.数列的通项a n 与其前n 项和S n 的关系是高考的命题重点,解题时要注意先把n=1和n ≥2分开讨论,再看能不能统一.在关于正整数n 的二次函数中,其取最值的点要根据正整数距离二次函数图象的对称轴的远近而定.18.错位相减求和处理不当致误错位相减求和法的适用条件:数列是由一个等差数列和一个等比数列对应项的乘积所组成的,求其前n 项和,基本方法是设这个和式为S n ,在这个和式两端同时乘以等比数列的公比得到另一个和式,这两个和式错一位相减,就把问题转化为以求一个等比数列的前n 项和或前n-1项和为主的求和问题.这里最容易出现问题的就是错位相减后对剩余项的处理.19.不等式性质应用不当致误在使用不等式的基本性质进行推理论证时一定要准确,特别是不等式两端同时乘以或同时除以一个数(式)、两个不等式相乘、一个不等式两端同时n 次方时,一定要注意使其能够成立的条件,如果忽视了不等式性质成立的前提条件就会出现错误.20.忽视基本不等式应用条件致误利用基本不等式√ab ≤a+b 2以及变式ab ≤(a+b 2)2等求函数的最值时,务必注意a ,b 为正数(或a ,b 非负),ab 或a+b 其中之一应是定值,特别要注意等号成立的条件.对形如y=ax+bx (a,b>0)的函数,在应用基本不等式求函数最值时,一定要注意ax,bx的符号,必要时要进行分类讨论,另外要注意自变量x的取值范围,在此范围内等号能否取到.21.不等式恒成立问题致误解决不等式恒成立问题的常规求法是:借助相应函数的单调性求解,其中的主要方法有数形结合法、变量分离法、主元法.通过最值产生结论.应注意恒成立与存在性问题的区别,如对任意x∈[a,b]都有f(x)≤g(x)成立,即f(x)-g(x)≤0的恒成立问题,但对存在x∈[a,b],使f(x)≤g(x)成立,则为存在性问题,即f(x)min≤g(x)max,应特别注意两函数的最大值与最小值的关系.22.面积、体积计算转化不灵活致误面积、体积的计算既需要学生有扎实的基础知识,又要用到一些重要的思想方法,是高考考查的重要题型.因此要熟练掌握以下几种常用的思想方法:(1)还台为锥的思想:这是处理台体时常用的思想方法.(2)割补法:求不规则图形面积或几何体体积时常用.(3)等积变换法:充分利用三棱锥的任意一个面都可作为底面的特点,灵活求解三棱锥的体积.(4)截面法:尤其是关于旋转体及与旋转体有关的组合问题,常画出轴截面进行分析求解.23.随意推广平面几何中结论致误平面几何中有些概念和性质,推广到空间中不一定成立.例如“过直线外一点只能作一条直线与已知直线垂直”“垂直于同一条直线的两条直线平行”等性质在空间中就不成立.24.对折叠与展开问题认识不清致误折叠与展开是立体几何中的常用思想方法,此类问题注意折叠或展开过程中平面图形与空间图形中的变量与不变量,不仅要注意哪些变了,哪些没变,还要注意位置关系的变化.25.点、线、面位置关系不清致误关于空间点、线、面位置关系的组合判断类试题是高考全面考查考生对空间位置关系的判定和性质掌握程度的理想题型,历来受到命题者的青睐,解决这类问题的基本思路有两个:一是逐个寻找反例作出否定的判断或逐个进行逻辑证明作出肯定的判断;二是结合长方体模型或实际空间位置(如课桌、教室)作出判断,但要注意定理应用准确,考虑问题全面细致.26.忽视斜率不存在致误在解决两直线平行的相关问题时,若利用l1∥l2⇔k1=k2来求解,则要注意其前提条件是两直线不重合且斜率存在.如果忽略k1,k2不存在的情况,就会导致错解.这类问题也可以利用如下的结论求解,即直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0平行的必要条件是A1B2-A2B1=0,在求出具体数值后代入检验,看看两条直线是不是重合,从而确定问题的答案.对于解决两直线垂直的相关问题时也有类似的情况.利用l1⊥l2⇔k1·k2=-1时,要注意其前提条件是k1与k2必须同时存在.利用直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0垂直的充要条件是A1A2+B1B2=0,就可以避免讨论.27.忽视零截距致误解决有关直线的截距问题时应注意两点:一是求解时一定不要忽略截距为零这种特殊情况;二是要明确截距为零的直线不能写成截距式.因此解决这类问题时要进行分类讨论,不要漏掉截距为零时的情况.28.忽视圆锥曲线定义中条件致误利用椭圆、双曲线的定义解题时,要注意两种曲线的定义形式及其限制条件.如在双曲线的定义中,有两点是缺一不可的:其一,绝对值;其二,2a<|F1F2|.如果不满足第一个条件,动点到两定点的距离之差为常数,而不是差的绝对值为常数,那么其轨迹只能是双曲线的一支.29.误判直线与圆锥曲线的位置关系过定点的直线与双曲线的位置关系问题,基本的解决思路有两个:一是利用一元二次方程的判别式来确定,但一定要注意,利用判别式的前提是二次项系数不为零,当二次项系数为零时,直线与双曲线的渐近线平行(或重合),也就是直线与双曲线最多只有一个交点;二是利用数形结合的思想,画出图形,根据图形判断直线和双曲线的各种位置关系.在直线与圆锥曲线的位置关系中,抛物线和双曲线都有特殊情况,在解题时要注意,不要忘记其特殊性.30.两个计数原理不清致误分步加法计数原理与分类乘法计数原理是解决排列组合问题最基本的原理,故理解“分类用加、分步用乘”是解决排列组合问题的前提.在解题时,要分析计数对象的本质特征与形成过程,按照事件的结果来分类,按照事件的发生过程来分步,然后应用两个基本原理解决.对于较复杂的问题既要用到分类加法计数原理,又要用到分步乘法计数原理,一般是先分类,每一类中再分步,注意分类、分步时要不重复、不遗漏,对于“至少、至多”型问题除了可以用分类方法处理外,还可以用间接法处理.31.排列、组合不分致误为了简化问题和表达方便,解题时应将具有实际意义的排列组合问题符号化、数学化,建立适当的模型,再应用相关知识解决.建立模型的关键是判断所求问题是排列问题还是组合问题,其依据主要是看元素的组成有没有顺序性,有顺序性的是排列问题,无顺序性的是组合问题.32.混淆项系数与二项式系数致误在二项式(a+b)n的展开式中,其通项T r+1=C n r a n-r b r是指展开式的第r+1项,因此展开式中第1,2,3,…,n项的二项式系数分别是C n0,C n1,C n2,…,C n n-1,而不是C n1,C n2,C n3,…,C n n,而项的系数是二项式系数与其他数字因数的积.。

高考数学24个最易失分知识点汇总

高考数学24个最易失分知识点汇总

为你精选了高考数学24个最易失分知识点汇总,供你参考,更多相关资讯本网将持续更新,请及时关注。

高考数学24个最易失分知识点汇总01.遗忘空集致误由于空集是任何非空集合的真子集,因此B=?时也满足B?A.解含有参数的集合问题时,要特别注意当参数在某个范围内取值时所给的集合可能是空集这种情况。

02.忽视集合元素的三性致误集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。

03.混淆命题的否定与否命题命题的“否定”与命题的“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论。

04.充分条件、必要条件颠倒致误对于两个条件A,B,如果A?B成立,则A是B的充分条件,B是A的必要条件;如果B?A成立,则A是B的必要条件,B是A的充分条件;如果A?B,则A,B互为充分必要条件。

解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充分条件和必要条件的概念作出准确的判断。

05.“或”“且”“非”理解不准致误命题p∨q真?p真或q真,命题p∨q假?p假且q假(概括为一真即真);命题p∧q真?p真且q真,命题p∧q假?p假或q假(概括为一假即假);綈p真?p假,綈p假?p真(概括为一真一假).求参数取值范围的题目,也可以把“或”“且”“非”与集合的“并”“交”“补”对应起来进行理解,通过集合的运算求解。

06.函数的单调区间理解不准致误在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法.对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。

07.判断函数奇偶性忽略定义域致误判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

24个高考数学最容易失分的知识点看看
有你不会的吗
数学是一切科学的基础,今天我们整理了24个高考数学最容易失分的知识点,同学们赶快看看有没有你不会的,有不会的赶快学习。

01.遗忘空集致误
由于空集是任何非空集合的真子集,因此B=?时也满足B?A.解含有参数的集合问题时,要特别注意当参数在某个范围内取值时所给的集合可能是空集这种情况。

02.忽视集合元素的三性致误
集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。

03.混淆命题的否定与否命题
命题的“否定”与命题的“否命题”是两个不同的概念,命题p 的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论。

04.充分条件、必要条件颠倒致误
对于两个条件A,B,如果A?B成立,则A是B的充分条件,B 是A的必要条件;如果B?A成立,则A是B的必要条件,B是A的
充分条件;如果A?B,则A,B互为充分必要条件.解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充分条件和必要条件的概念作出准确的判断。

05.“或”“且”“非”理解不准致误
命题p∨q真?p真或q真,命题p∨q假?p假且q假(概括为一真即真);命题p∧q真?p真且q真,命题p∧q假?p假或q假(概括为一假即假);綈p真?p假,綈p假?p真(概括为一真一假).求参数取值范围的题目,也可以把“或”“且”“非”与集合的“并”“交”“补”对应起来进行理解,通过集合的运算求解。

06.函数的单调区间理解不准致误
在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法.对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。

07.判断函数奇偶性忽略定义域致误
判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数。

08.函数零点定理使用不当致误
如果函数y=f(x)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,但f(a)f(b)>0时,不能否定函数y=f(x)在(a,b)内有零点.函数的零点有“变
号零点”和“不变号零点”,对于“不变号零点”函数的零点定理是“无能为力”的,在解决函数的零点问题时要注意这个问题。

09.导数的几何意义不明致误
函数在一点处的导数值是函数图像在该点处的切线的斜率.但在许多问题中,往往是要解决过函数图像外的一点向函数图像上引切线的问题,解决这类问题的基本思想是设出切点坐标,根据导数的几何意义写出切线方程.然后根据题目中给出的其他条件列方程(组)求解.因此解题中要分清是“在某点处的切线”,还是“过某点的切线”。

10.导数与极值关系不清致误
f′(x0)=0只是可导函数f(x)在x0处取得极值的必要条件,即必须有这个条件,但只有这个条件还不够,还要考虑是否满足f′(x)在x0两侧异号.另外,已知极值点求参数时要进行检验。

11.三角函数的单调性判断致误
对于函数y=Asin(ωx+φ)的单调性,当ω>0时,由于内层函数u=ωx+φ是单调递增的,所以该函数的单调性和y=sin x的单调性相同,故可完全按照函数y=sin x的单调区间解决;但当ω<0时,内层函数u=ωx+φ是单调递减的,此时该函数的单调性和函数y=sin x的单调性相反,就不能再按照函数y=sin x的单调性解决,一般是根据三角函数的奇偶性将内层函数的系数变为正数后再加以解决.对于带有绝对值的三角函数应该根据图像,从直观上进行判断。

12.图像变换方向把握不准致误
函数y=Asin(ωx+φ)(其中A>0,ω>0,x∈R)的图像可看作
由下面的方法得到:(1)把正弦曲线上的所有点向左(当φ>0时)或向右(当φ<0时)平行移动|φ|个单位长度;(2)再把所得各点横坐标缩短(当ω>1时)或伸长(当0<ω<1时)到原来的1ω倍(纵坐标不变);(3)再把所得各点的纵坐标伸长(当A>1时)或缩短(当0<A<1时)到原来的A倍(横坐标不变).即先作相位变换,再作周期变换,最后作振幅变换.若先作周期变换,再作相位变换,应左(右)平移|φ|ω个单位.另外注意根据φ的符号判定平移的方向。

13.忽视零向量致误
零向量是向量中最特殊的向量,规定零向量的长度为0,其方向是任意的,零向量与任意向量都共线.它在向量中的位置正如实数中0的位置一样,但有了它容易引起一些混淆,稍微考虑不到就会出错,考生应给予足够的重视.
14.向量夹角范围不清致误
解题时要全面考虑问题.数学试题中往往隐含着一些容易被考生所忽视的因素,能不能在解题时把这些因素考虑到,是解题成功的关键,如当a·b<0时,a与b的夹角不一定为钝角,要注意θ=π的情况。

15.忽视斜率不存在致误
在解决两直线平行的相关问题时,若利用l1∥l2?k1=k2来求解,则要注意其前提条件是两直线不重合且斜率存在.如果忽略k1,k2不存在的情况,就会导致错解.这类问题也可以利用如下的结论求解,即直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0平行的必
要条件是A1B2-A2B1=0,在求出具体数值后代入检验,看看两条直线是不是重合从而确定问题的答案.对于解决两直线垂直的相关问题时也有类似的情况.利用l1⊥l2?k1·k2=-1时,要注意其前提条件是k1与k2必须同时存在.利用直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0垂直的充要条件是A1A2+B1B2=0,就可以避免讨论。

16.忽视零截距致误
解决有关直线的截距问题时应注意两点:一是求解时一定不要忽略截距为零这种特殊情况;二是要明确截距为零的直线不能写成截距式.因此解决这类问题时要进行分类讨论,不要漏掉截距为零时的情况。

17.忽视圆锥曲线定义中条件致误
利用椭圆、双曲线的定义解题时,要注意两种曲线的定义形式及其限制条件.如在双曲线的定义中,有两点是缺一不可的:其一,绝对值;其二,2a<|F1F2|.如果不满足第一个条件,动点到两定点的距离之差为常数,而不是差的绝对值为常数,那么其轨迹只能是双曲线的一支。

18.误判直线与圆锥曲线位置关系
过定点的直线与双曲线的位置关系问题,基本的解决思路有两个:一是利用一元二次方程的判别式来确定,但一定要注意,利用判别式的前提是二次项系数不为零,当二次项系数为零时,直线与双曲线的渐近线平行(或重合),也就是直线与双曲线最多只有一个交点;
二是利用数形结合的思想,画出图形,根据图形判断直线和双曲线各种位置关系.在直线与圆锥曲线的位置关系中,抛物线和双曲线都有特殊情况,在解题时要注意,不要忘记其特殊性。

19.两个计数原理不清致误
分步加法计数原理与分类乘法计数原理是解决排列组合问题最基本的原理,故理解“分类用加、分步用乘”是解决排列组合问题的前提,在解题时,要分析计数对象的本质特征与形成过程,按照事件的结果来分类,按照事件的发生过程来分步,然后应用两个基本原理解决.对于较复杂的问题既要用到分类加法计数原理,又要用到分步乘法计数原理,一般是先分类,每一类中再分步,注意分类、分步时要不重复、不遗漏,对于“至少、至多”型问题除了可以用分类方法处理外,还可以用间接法处理。

20.排列、组合不分致误
为了简化问题和表达方便,解题时应将具有实际意义的排列组合问题符号化、数学化,建立适当的模型,再应用相关知识解决.建立模型的关键是判断所求问题是排列问题还是组合问题,其依据主要是看元素的组成有没有顺序性,有顺序性的是排列问题,无顺序性的是组合问题。

21.混淆项系数与二项式系数致误
在二项式(a+b)n的展开式中,其通项Tr+1=Crnan-rbr是指展开式的第r+1项,因此展开式中第1,2,3,…,n项的二项式系数分别是C0n,C1n,C2n,…,Cn-1n,而不是C1n,C2n,C3n,…,
Cnn.而项的系数是二项式系数与其他数字因数的积。

22.循环结束判断不准致误
控制循环结构的是计数变量和累加变量的变化规律以及循环结束的条件.在解答这类题目时首先要弄清楚这两个变量的变化规律,其次要看清楚循环结束的条件,这个条件由输出要求所决定,看清楚是满足条件时结束还是不满足条件时结束。

23.条件结构对条件判断不准致误
条件结构的程序框图中对判断条件的分类是逐级进行的,其中没有遗漏也没有重复,在解题时对判断条件要仔细辨别,看清楚条件和函数的对应关系,对条件中的数值不要漏掉也不要重复了端点值。

24.复数的概念不清致误
对于复数a+bi(a,b∈R),a叫做实部,b叫做虚部;当且仅当b=0时,复数a+bi(a,b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数.解决复数概念类试题要仔细区分以上概念差别,防止出错.另外,i2=-1是实现实数与虚数互化的桥梁,要适时进行转化,解题时极易丢掉“-”而出错。

24个高考数学最容易失分的知识点的全部内容就介绍完了,同学们一定要认真学习。

相关文档
最新文档