统计学第二版课后习题答案 part6
概率论与数理统计(茆诗松)第二版课后第六章习题参考答案
![概率论与数理统计(茆诗松)第二版课后第六章习题参考答案](https://img.taocdn.com/s3/m/a468670fa6c30c2259019e81.png)
ai
Xi
⎟⎟⎠⎞
=
n Cov⎜⎛ 1
i=1
⎝n
X
i
,
ai
X
i
⎟⎞ ⎠
=
n i=1
ai n
Cov( X
i
,
X
i
)
=
σ2 n
n
ai
i=1
=σ2 n
,
因 Var(X ) = 1 Var(X ) = σ 2 = Cov(X , T ) ,
n
n
故 X 与 T 的相关系数为 Corr(X , T ) = Cov(X , T ) =
1 6
X1
+
1 6
X
2
+
2 3
X3.
证:因
E ( µˆ1 )
=
1 2
E(X1)
+
1 3
E(X
2)
+
1 6
E(X3)
=
1 2
µ
+
1 3
µ
+
1 6
µ
=
µ
,
E ( µˆ 2
)
=
1 3
E(
X1)
+
1 3
E(
X
2
)
+
1 3
E(
X3)
=
1 3
µ
+
1 3
µ
+
1 3
µ
=
µ
,
E (µˆ 3 )
=
1 6
E(X1)
+
1 6
pY
( y)
=
λn Γ(n)
统计学(第二版)课件及习题答案《统计学》参考答案
![统计学(第二版)课件及习题答案《统计学》参考答案](https://img.taocdn.com/s3/m/a1a1fe6a5bcfa1c7aa00b52acfc789eb162d9e54.png)
《统计学》(教育部教材)习题参考答案第一章统计概述一、填空题1.数量方面定量认识2.统计总体同质性差异性大量性3.总体单位数量标志品质标志不变标志可变标志4.总体指标名称指标数值5.总量指标相对指标平均指标数量指标质量指标静态指标动态指标二、单项选择题1.B 2.C 3.A 4.B 5.B三、多项选择题1.ABDE 2.ABC 3.ABCD 4.ABD 5.ABD四、问答题1.什么是指标?指标和标志有何区别和联系?①统计指标简称指标,是指综合反映现象总体数量特征的概念(及其数值)。
②指标与标志有两点区别:一是说明的对象范围不同,即指标是说明总体特征的,标志是说明总体单位特征的;二是具体表现的表示方式不同,即指标的具体表现都用数值表示,标志的具体表现只有数量标志用数值表示,品质标志则用文字表示。
③指标与标志有密切联系:一是标志表现是计算指标数值的基础;二是两者随研究目的不同具有转化关系。
2.指标有哪些具体分类?指标按表现形式分为总量指标、相对指标和平均指标;按性质或内容分为数量指标和质量指标;按时间状况分为静态指标和动态指标。
3.什么是指标体系?设置指标体系有何意义?指标体系是指一系列相互联系的指标组成的整体。
单项指标的局限性和社会经济现象的复杂性,决定了在统计中必须科学地设置指标体系,以便从不同角度、不同侧面来反映现象的全貌和事物间的联系。
4. 统计工作过程分哪几个阶段?如何理解统计“质—量—质”的认识过程?统计工作过程大致分为统计设计、统计调查、统计整理和统计分析四个相对独立、相互衔接的阶段。
四个阶段基本体现了统计“质—量—质”的认识过程。
统计首先要对现象进行初步的定性(质的)认识,作出统计设计;然后根据设计要求去进行量的调查和整理;最后通过统计分析,揭示现象的本质特征及其变化规律性,达到高一级的质的认识,实现统计之目的。
第二章统计调查一、填空题1.准确及时全面(系统或经济)2.调查项目3.全部工业生产设备每台工业生产设备每个工业企业4.单一表一览表表头表体表脚5.调查得到的统计数字客观现象实际数量表现登记性代表性二、单项选择题1.A 2.C 3.C 4.C 5.B三、多项选择题1.BCDE 2.BCDE 3.ABD 4.ABCDE 5.ACE四、问答题1.什么是统计调查?统计调查有哪些种类?统计调查是根据统计设计的要求,采用科学的方式和方法,有计划、有组织地向总体单位登记其有关标志表现,以获取统计研究所需要的原始资料的工作过程。
统计学简明教程(第2版)习题答案6.3第六章习题详解
![统计学简明教程(第2版)习题答案6.3第六章习题详解](https://img.taocdn.com/s3/m/f759336503768e9951e79b89680203d8ce2f6a3b.png)
6.3第六章习题详解一、单项选择题1.假设检验的概率依据是( A )。
A.小概率原理B.最大似然原理C.大数定理D.中心极限定理2.检验功效定义为( B )。
A. 原假设为真时将其接受的概率B.原假设不真时将其舍弃的概率C. 原假设为真时将其舍弃的概率D.原假设不真时将其接受的概率3. 显著性水平为5%,下面的表述哪一个是正确的。
( A )A .接受0H 时的可靠性为95%;B .接受1H 时的可靠性为95%C .1H 为真时被拒绝的概率为5%D .0H 为假时被接受的概率为5%4. 哪种场合适合用t 检验?( C )A .样本为小样本,且总体方差已知B .样本为大样本,且总体方差已知C .样本为小样本,且总体方差未知D .样本为大样本,且总体方差未知5. 在一次假设检验中当显著性水平为5%时,原假设被拒绝,则用显著性水平1%时,( C )。
A .一定会被拒绝B .一定不会被拒绝C .有可能拒绝原假设D .需要重新检验二、多项选择题1. β错误( ACDE )A. 是在原假设不真实的条件下发生B. 是在原假设真实的条件下发生C. 决定于原假设与真实值之间的差距D. 原假设与真实值之间的差距越大,犯β错误的可能性就越小E. 原假设与真实值之间的差距越小,犯β错误的可能性就越大2. 下面对符号检验和秩和检验的描述准确的是( ACE )。
A .符号检验只考虑样本差数的符号B .秩和检验只考虑样本差数的顺序C .秩和检验除了考虑样本差数的符号,还考虑其顺序D .符号检验比秩和检验利用数据信息更加充分E .秩和检验的检验功效比符号检验更强三、计算题1. 某调查公司研究表明,10-20岁年轻人每去一次速食店(如麦当劳、肯德基等)的平均消费为50元。
现在某二线城市随机抽取100名这个年龄段的年轻人作为样本,测得该样本平均消费水平为56元,样本标准差为15元。
试问,在显著水平5%下,检验该调查公司的结论是否成立。
统计学-第二版课后习题答案-西财出版
![统计学-第二版课后习题答案-西财出版](https://img.taocdn.com/s3/m/c8fe0f6c844769eae009ed8b.png)
由于单位成本平均下降5.14%,
而节约总成本32.51万元。
4、
K p(面粉)
p1 p0
2.7 2.5
108%
K p(大米)
p1 p0
3.6 3.4
105.88%
K p(细粮)
K p
108% 40% 105.88% 60%
106.73%
K p(粮食) 106.73% 65% 108.5% 35%
356
2005 合计
2
0
380 1728
4
10
760 144
b ty 144 14.4 t 2 10
a y / n 345.6
yc 345.6 14.4t 2007年粮食产量预测值= 345 .6 14.4 4 403 .2(万吨)
第六章 统计指数[
• 单项选择题
• 单项选择题 CA(BC)BD ACACD
• 多项选择题 AD ACE ABC CD ABCD
第四章
• 单项选择题 CCBDD ACACC
• 多项选择题 AE BC ABCDE ABCE
• 判断题 √ ×√ ×√ × ×× × √
BDE
1、
计划完成程度
实际完成数 计划完成数100%
1 9% 100% 1 8%
所以甲班平均指标的代表性高于乙班
4、
甲品种
乙品种
f xf x
f xf x
1.2 600 500 1 500 500
0.8 404 505 1.3 676 520
0.5 720 1440 0.7 371 530
1.3 702 540 1.5 699 466
概率论与数理统计(茆诗松)第二版课后第六章习题参考答案
![概率论与数理统计(茆诗松)第二版课后第六章习题参考答案](https://img.taocdn.com/s3/m/6f920616fad6195f312ba66a.png)
第六章 参数估计习题6.11. 设X 1, X 2, X 3是取自某总体容量为3的样本,试证下列统计量都是该总体均值µ 的无偏估计,在方差存在时指出哪一个估计的有效性最差?(1)3211613121ˆX X X ++=µ; (2)3212313131ˆX X X ++=µ; (3)3213326161ˆX X X ++=µ. 证:因µµµµµ=++=++=613121)(61)(31)(21)ˆ(3211X E X E X E E , µµµµµ=++=++=313131)(31)(31)(31)ˆ(3212X E X E X E E , µµµµµ=++=++=326161)(32)(61)(61)ˆ(3213X E X E X E E , 故321ˆ,ˆ,ˆµµµ都是总体均值µ 的无偏估计; 因2222321136143619141)Var(361)Var(91)Var(41)ˆVar(σσσσµ=++=++=X X X , 2222321231919191)Var(91)Var(91)Var(91)ˆVar(σσσσµ=++=++=X X X , 222232132194361361)Var(94)Var(361)Var(361)ˆVar(σσσσµ=++=++=X X X , 故)ˆVar()ˆVar()ˆVar(312µµµ<<,即2ˆµ有效性最好,1ˆµ其次,3ˆµ最差. 2. 设X 1, X 2, …, X n 是来自Exp (λ)的样本,已知X 为1/λ的无偏估计,试说明X /1是否为λ的无偏估计.解:因X 1, X 2, …, X n 相互独立且都服从指数分布Exp (λ),即都服从伽玛分布Ga (1, λ),由伽玛分布的可加性知∑==ni i X Y 1服从伽玛分布Ga (n , λ),密度函数为01e )()(>−−ΙΓ=y y n nY y n y p λλ,则λλλλλλλ1)1()(e )(e )(110201−=−Γ⋅Γ=Γ=Γ⋅=⎟⎠⎞⎜⎝⎛=⎟⎠⎞⎜⎝⎛−∞+−−∞+−−∫∫n n n n n dy y n n dy y n y n Y n E X E n n y n n yn n, 故X /1不是λ的无偏估计.3. 设θˆ是参数θ 的无偏估计,且有0)ˆ(Var >θ,试证2)ˆ(θ不是θ 2的无偏估计. 证:因θθ=)ˆ(E ,有2222)ˆVar()]ˆ([)ˆVar(])ˆ[(θθθθθθ>+=+=E E ,故2)ˆ(θ不是θ 2的无偏估计. 4. 设总体X ~ N(µ , σ 2),X 1, …, X n 是来自该总体的一个样本.试确定常数c 使∑=+−ni i i X X c 121)(为σ 2的无偏估计.解:因E [(X i + 1 − X i )2 ] = Var (X i + 1 − X i ) + [E (X i + 1 − X i )]2 = Var (X i + 1) + Var (X i ) + [E (X i + 1) − E (X i )]2 = 2σ 2,则2211211121)1(22)1(])[()(σσ−=⋅−⋅=−=⎥⎦⎤⎢⎣⎡−∑∑−=+−=+n c n c X X E c X X c E n i i i n i i i ,故当)1(21−=n c 时,21121)(σ=⎥⎦⎤⎢⎣⎡−∑−=+n i i i X X c E ,即∑−=+−1121)(n i i i X X c 是σ 2的无偏估计.5. 设X 1, X 2, …, X n 是来自下列总体中抽取的简单样本,⎪⎩⎪⎨⎧+≤≤−=.,0;2121,1);(其他θθθx x p证明样本均值X 及)(21)()1(n X X +都是θ 的无偏估计,问何者更有效? 证:因总体⎟⎠⎞⎜⎝⎛+−21,21~θθU X ,有)1,0(~21U X Y +−=θ,则21−+=θY X ,21)1()1(−+=θY X ,21)()(−+=θn n Y X ,即21)(21)(21)()1()()1(−++=+θn n Y Y X X ,可得θθθ=−+=−+=21)(21)()(Y E Y E X E ,nY n Y X 121)Var(1)Var()Var(===,因Y 的密度函数与分布函数分别为p Y ( y ) = I 0<y <1,⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(y y y y y F Y有Y (1)与Y (n )的密度函数分别为10111)1()()](1[)(<<−−Ι−=−=y n Y n Y y n y p y F n y p ,1011)()]([)(<<−−Ι==y n Y n Y n ny y p y F n y p ,且(Y (1), Y (n ))的联合密度函数为)()1()()()]()()[1(),()()1(2)1()()()1(1n y y n Y Y n Y n Y n n y p y p y F y F n n y y p <−Ι−−=102)1()()()1())(1(<<<−Ι−−=n y y n n y y n n ,则11)2()()2()1()(101)1(+=+ΓΓΓ⋅=−⋅=∫−n n n n dy y n y Y E n ,1)(101)(+=⋅=∫−n n dy ny y Y E n n , )2)(1(2)3()()3()1()(10122)1(++=+ΓΓΓ⋅=−⋅=∫−n n n n n dy y n y Y E n ,2)(10122)(+=⋅=∫−n n dy ny y Y E n n , ∫∫∫∫−−−−⋅⋅=−−⋅=11)1()()()1()(1)1(2)1()()()1()()()1()()()()1())(1()(n n y n n n n y n n n n n y y d n y y dy dy y y n n y y dy Y Y E∫∫⎥⎦⎤⎢⎣⎡⋅−+−−=−−100)1()(1)1()(01)1()()()1()()()()()(n n y n n n y n n n n dy y y y n y y y ny dy2121)(102)(10)(1)(100)1()()()()(+=+==⎥⎦⎤⎢⎣⎡−⋅−=++∫∫n y n dy y y y y dy n n n n n y n n n n n , 即)2()1(11)2)(1(2)Var(22)1(++=⎟⎠⎞⎜⎝⎛+−++=n n n n n n Y ,)2()1(12)Var(22)(++=⎟⎠⎞⎜⎝⎛+−+=n n n n n n n Y n ,且)2()1(111121),Cov(2)()1(++=+⋅+−+=n n n nn n Y Y n 可得θθ=−++=⎥⎦⎤⎢⎣⎡+21)]()([21)(21)()1()()1(n n Y E Y E X X E ,)2)(1(21)2()1(422)],Cov(2)Var()[Var(41)(21Var 2)()1()()1()()1(++=+++=++=⎥⎦⎤⎢⎣⎡+n n n n n Y Y Y Y X X n n n , 因θ=(X E ,θ=⎥⎦⎤⎢⎣⎡+)(21)()1(n X X E ,故X 及)(21)()1(n X X +都是θ 的无偏估计; 因当n > 1时,)2)(1(21)(21Var 121)Var()()1(++=⎥⎦⎤⎢⎣⎡+>=n n X X n X n , 故)(21)()1(n X X +比样本均值X 更有效. 6. 设X 1, X 2, X 3服从均匀分布U (0, θ ),试证)3(34X 及4X (1)都是θ 的无偏估计量,哪个更有效?解:因总体X 的密度函数与分布函数分别为θθ<<Ι=x x p 01)(,⎪⎩⎪⎨⎧≥<≤<=.,1;0,;0,0)(θθθx x x x x F有X (1)与X (3)的密度函数分别为θθθ<<Ι−=−=x x x p x F x p 03221)(3)()](1[3)(,θθ<<Ι==x x x p x F x p 032233)()]([3)(,则443223)(3)(043223032)1(θθθθθθθθ=⎟⎟⎠⎞⎜⎜⎝⎛+⋅−⋅=−⋅=∫x x x dx x x X E , 43433)(043032)3(θθθθθ=⋅=⋅=∫x dy x x X E , 1054233)(3)(205432303222)1(θθθθθθθθ=⎟⎟⎠⎞⎜⎜⎝⎛+⋅−⋅=−⋅=∫x x x dx x x X E , 53533)(25303222)3(θθθθθ=⋅=⋅=∫x dy x x X E , 即803410)Var(222)1(θθθ=⎟⎠⎞⎜⎝⎛−=X ,8034353)Var(222)3(θθθ=⎟⎠⎞⎜⎝⎛−=X , 因θθ=⋅=44)4()1(X E ,θθ=⋅=⎟⎠⎞⎜⎝⎛433434)3(X E ,故4X (1)及)3(34X 都是θ 的无偏估计; 因5380316)4Var(22)1(θθ=⋅=X ,1580391634Var 22)3(θθ=⋅=⎟⎠⎞⎜⎝⎛X ,有⎟⎠⎞⎜⎝⎛>)3()1(34Var )4Var(X X , 故)3(34X 比4X (1)更有效. 7. 设从均值为µ ,方差为σ 2 > 0的总体中,分别抽取容量为n 1和n 2的两独立样本,1X 和2X 分别是这两个样本的均值.试证,对于任意常数a , b (a + b = 1),21X b X a Y +=都是µ 的无偏估计,并确定常数a , b 使Var (Y ) 达到最小.解:因µµµµ=+=+=+=)()()()(21b a b a X bE X aE Y E ,故Y 是µ 的无偏估计;因22222121222122221212)1()(Var )(Var )(Var σσσ⎟⎟⎠⎞⎜⎜⎝⎛+−+=⋅−+⋅=+=n a n a n n n n n a n a X b X a Y , 令022)(Var 222121=⎟⎟⎠⎞⎜⎜⎝⎛−⋅+=σn a n n n n Y da d ,得211n n n a +=,且02)(Var 2212122>⋅+=σn n n n Y a d d , 故当211n n n a +=,2121n n n a b +=−=时,Var (Y ) 达到最小2211σn n +.8. 设总体X 的均值为µ ,方差为σ 2,X 1, …, X n 是来自该总体的一个样本,T (X 1, …, X n )为µ 的任一线性无偏估计量.证明:X 与T 的相关系数为)Var()Var(T X .证:因T(X 1, …, X n )为µ的任一线性无偏估计量,设∑==ni i i n X a X X T 11),,(L ,则µµ===∑∑==ni i ni i i a X E a T E 11)()(,即11=∑=ni i a ,因X 1, …, X n 相互独立,当i ≠ j 时,有Cov (X i , X j ) = 0,则nanX X n a X a X n X a X n T X ni in i i i i n i i i i ni i i n i i 2121111),Cov(,1Cov ,1Cov ),Cov(σσ===⎟⎠⎞⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛=∑∑∑∑∑=====,因),Cov()Var(1)Var(2T X nX n X ===σ,故X 与T 的相关系数为)Var()Var()Var()Var()Var()Var()Var(),Cov(),Corr(T X T X X T X T X T X ===.9. 设有k 台仪器,已知用第i 台仪器测量时,测定值总体的标准差为σ i (i = 1, …, k ).用这些仪器独立地对某一物理量θ 各观察一次,分别得到X 1, …, X k ,设仪器都没有系统误差.问a 1, …, a k 应取何值,方能使∑==ki i i X a 1ˆθ成为θ 的无偏估计,且方差达到最小?解:因θθθ⎟⎟⎠⎞⎜⎜⎝⎛===⎟⎟⎠⎞⎜⎜⎝⎛=∑∑∑∑====k i i ki i k i i i ki i i a a x E a x a E E 1111)()ˆ(, 则当11=∑=ki i a 时,∑==ki ii x a 1ˆθ是θ 的无偏估计, 因∑∑∑=====⎟⎟⎠⎞⎜⎜⎝⎛=ki i i k i i i k i i i a x a x a 122121)(Var Var )ˆ(Var σθ, 讨论在11=∑=ki i a 时,∑=ki i i a 122σ的条件极值,设拉格朗日函数⎟⎟⎠⎞⎜⎜⎝⎛−+=∑∑==1),,,(11221ki i ki iik a a a a L λσλL , 令⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=−=∂∂=+=∂∂=+=∂∂∑=,01,02,02122111ki i k k ka L a a L a a L λλσλσL L L L L 得2212−−++−=k σσλL ,2212−−−++=k i i a σσσL ,i = 1, …, k , 故当2212−−−++=k i i a σσσL ,i = 1, …, k 时,∑==ki ii x a 1ˆθ是θ 的无偏估计,且方差达到最小. 10.设X 1, X 2, …, X n 是来自N (θ, 1)的样本,证明g (θ ) = |θ | 没有无偏估计(提示:利用g (θ )在θ = 0处不可导).证:反证法:假设T = T (X 1, X 2, …, X n )是g (θ ) = |θ | 的任一无偏估计,因∑==ni i X n X 11是θ 的一个充分统计量,即在取定x X =条件下,样本条件分布与参数θ 无关,则)|(X T E S =与参数θ 无关,且S 是关于X 的函数,||)()()]|([)(θθ====g T E X T E E S E , 可得)(X S S =是g (θ ) = |θ | 的无偏估计,因X 1, X 2, …, X n 是来自N (θ, 1)的样本,由正态分布可加性知X 服从正态分布⎟⎠⎞⎜⎝⎛n N 1,θ,则∫∫∞+∞−+−−∞+∞−−−⋅⋅=⋅=dx x S ndx n x S S E x n x n n x nθθθ22222)(2e)(eπ2eπ2)()(,因E (S ) = |θ|,可知对任意的θ,反常积分∫∞+∞−+−⋅dx x S x n x n θ22e)(收敛,则由参数θ的任意性以及该反常积分在−∞与+∞两个方向的收敛性知∫∞+∞−⋅⋅+−⋅dx x S x n x n ||||22e)(θ收敛,因x n x S x S x n x n x n n ⋅⋅=⎥⎥⎦⎤⎢⎢⎣⎡⋅∂∂+−+−θθθ2222e )(e )(,且| y | ≤ e| y |,有||)1||(2222eex n n x n x n x n ⋅+⋅+−+−≤⋅θθ,则由∫∞+∞−⋅+⋅+−⋅dx x S x n x n ||)1|(|22e)(θ的收敛性知∫∞+∞−+−⎥⎥⎦⎤⎢⎢⎣⎡⋅∂∂dx x S x n x n θθ22e )(一致收敛, 可得∫∞+∞−+−−⋅⋅=dx x S nS E x n x n n θθ2222e)(e π2)(关于参数θ 可导,与E (S ) = |θ |在θ = 0处不可导矛盾,故g (θ ) = |θ | 没有无偏估计.11.设总体X 服从正态分布N (µ , σ 2),X 1, X 2, …, X n 为来自总体X 的样本,为了得到标准差σ 的估计量,考虑统计量:∑=−=ni i X X n Y 11||1,∑==n i i X n X 11,n ≥ 2,∑∑==−−=n i nj j i X X n n Y 112||)1(1,n ≥ 2,求常数C 1与C 2,使得C 1Y 1与C 2Y 2都是σ 的无偏估计. 解:设),0(~2θN Y ,有θθθθθθθπ2eπ22e π212e π21|||][|02022222222=−=⋅=⋅=+∞−∞+−∞+∞−⋅−∫∫y y y dy y dy y Y E , 因X X i −是独立正态变量X 1, X 2, …, X n 的线性组合, 且0()()(=−=−=−µµX E X E X X E i i ,22211,Cov 21),Cov(2)Var()Var()Var(σσσn n X n X n X X X X X X i i i i i −=⎟⎠⎞⎜⎝⎛−+=−+=−,则⎟⎠⎞⎜⎝⎛−−21,0~σn n N X X i ,σσπ)1(21π2|][|n n n n X X E i −=−⋅=−, 可得σσπ)1(2π)1(21|][|1)()(11111111n n C n n n n C X X E n C Y E C Y C E n i i −=−⋅⋅⋅=−⋅==∑=,故当)1(2π1−=n n C 时,E [C 1Y 1] = σ,C 1Y 1是σ 的无偏估计;当i ≠ j 时,X i 与X j 相互独立,都服从正态分布N (µ , σ 2),有E (X i − X j ) = E (X i ) − E (X j ) = µ − µ = 0,Var(X i − X j ) = Var(X i ) + Var(X j ) = σ 2 + σ 2 = 2σ 2,则X i − X j ~ N (0, 2σ 2),σσπ22π2|][|=⋅=−j i X X E , 当i = j 时,X i − X j = 0,E [| X i − X j |] = 0,可得σσπ2π2)()1(1|][|)1(1)()(2221122222C n n n n C X X E n n C Y E C Y C E n i nj j i =−⋅−⋅=−−⋅==∑∑==, 故当2π2=C 时,E [C 2Y 2] = σ,C 2Y 2是σ 的无偏估计. 习题6.21. 从一批电子元件中抽取8个进行寿命测试,得到如下数据(单位:h ):1050,1100,1130,1040,1250,1300,1200,1080,试对这批元件的平均寿命以及寿命分布的标准差给出矩估计.解:平均寿命µ 的矩估计75.1143ˆ==x µ;标准差σ 的矩估计8523.89*ˆ==s µ. 2. 设总体X ~ U (0, θ ),现从该总体中抽取容量为10的样本,样本值为:0.5,1.3,0.6,1.7,2.2,1.2,0.8,1.5,2.0,1.6,试对参数θ 给出矩估计.解:因X ~ U (0, θ ),有2)(θ=X E ,即θ = 2 E (X ),故θ 的矩估计68.234.122ˆ=×==x θ. 3. 设总体分布列如下,X 1, …, X n 是样本,试求未知参数的矩估计.(1)Nk X P 1}{==,k = 0, 1, 2, …, N − 1,N (正整数)是未知参数;(2)P {X = k } = (k − 1)θ 2 (1 − θ )k − 2,k = 2, 3, …,0 < θ < 1.解:(1)因21)]1(10[1)(−=−+++=N N N X E L ,即N = 2 E (X ) + 1,故N 的矩估计12ˆ+=X N ; (2)因⎥⎦⎤⎢⎣⎡−=−=−−⋅=∑∑∑+∞=+∞=+∞=−22222222222)1()1()1()1()(k k k k k k d d d d k k X E θθθθθθθθ θθθθθθθθθθθ2221)1(1)1(322222222=⋅=⎟⎠⎞⎜⎝⎛+−=⎥⎦⎤⎢⎣⎡−−−=d d d d , 则)(2X E =θ, 故θ 的矩估计X2ˆ=θ. 4. 设总体密度函数如下,X 1, …, X n 是样本,试求未知参数的矩估计.(1))(2);(2x x p −=θθθ,0 < x < θ ,θ > 0; (2)p (x ;θ ) = (θ + 1) x θ,0 < x < 1,θ > 0;(3)1);(−=θθθx x p ,0 < x < 1,θ > 0; (4)θµθµθ−−=x x p e1),;(,x > µ ,θ > 0.解:(1)因3322)(2)(032202θθθθθθθ=⎟⎟⎠⎞⎜⎜⎝⎛−⋅=−⋅=∫x x dx x x X E ,即θ = 3 E (X ),故θ 的矩估计X 3ˆ=θ; (2)因212)1()1()(10210++=+⋅+=+⋅=+∫θθθθθθθx dx x x X E ,即)(11)(2X E X E −−=θ, 故θ 的矩估计XX −−=112ˆθ; (3)因11)(101101+=+⋅=⋅=+−∫θθθθθθθxdx x x X E ,即2)(1)(⎥⎦⎤⎢⎣⎡−=X E X E θ, 故θ 的矩估计21ˆ⎟⎟⎠⎞⎜⎜⎝⎛−=XX θ; (4)因θµθµθµθµµθµµθµµθµµθµ+=−=+−=−⋅=⋅=+∞−−∞+−−+∞−−∞+−−∞+−−∫∫∫x x x x x dx x d x dx x X E eeee)1(e1)(,)(2e2ee)1(e1)(22222X E dx x x d x dx x X E x x x x θµθµθµµθµµθµµθµ+=+−=−⋅=⋅=∫∫∫∞+−−+∞−−∞+−−∞+−−= µ 2 + 2µθ + 2θ 2,则Var (X ) = E (X 2 ) − [E (X )]2 = θ 2,即)Var(X =θ,)Var()(X X E −=µ,故θ 的矩估计*ˆS =θ,*ˆS X −=µ. 5. 设总体为N (µ , 1),现对该总体观测n 次,发现有k 次观测值为正,使用频率替换方法求µ 的估计.解:因p = P {X > 0} = P {X − µ > −µ} = 1 − Φ (−µ) = Φ (µ),即µ = Φ −1 ( p ),故µ 的矩估计⎟⎠⎞⎜⎝⎛Φ=Φ=−−n k p 11)ˆ(ˆµ.6. 甲、乙两个校对员彼此独立对同一本书的样稿进行校对,校完后,甲发现a 个错字,乙发现b 个错字,其中共同发现的错字有c 个,试用矩法给出如下两个未知参数的估计: (1)该书样稿的总错字个数; (2)未被发现的错字数. 解:(1)设N 为该书样稿总错别字个数,且A 、B 分别表示甲、乙发现错别字,有A 与B 相互独立,则P (AB ) = P (A ) P (B ),使用频率替换方法,即N b N a p p N c p B A AB ⋅===ˆˆˆ,得cabN =, 故总错字个数N 的矩估计cab N=ˆ; (2)设k 为未被发现的错字数,因)()()(1)(1)(AB P B P A P B A P B A P +−−=−=U ,使用频率替换方法,即N cN b N a p p pN k pAB B A B A +−−=+−−==1ˆˆˆ1ˆ,即k = N − a − b + c , 故未被发现的错字数k 的矩估计c b a cab c b a N k+−−=+−−=ˆˆ. 7. 设总体X 服从二项分布b (m , p ),其中m , p 为未知参数,X 1, …, X n 为X 的一个样本,求m 与p 的矩估计.解:因E (X ) = mp ,Var (X ) = mp (1 − p ),有)()Var(1X E X p =−,则)()Var(1X E X p −=,)Var()()]([)(2X X E X E p X E m −==, 故m 的矩估计22*ˆS X X m −=,p 的矩估计XS p 2*1ˆ−=.习题6.31. 设总体概率函数如下,X 1, …, X n 是样本,试求未知参数的最大似然估计.(1)1);(−=θθθxx p ,0 < x < 1,θ > 0;(2)p (x ;θ ) = θ c θ x − (θ + 1) ,x > c ,c > 0已知,θ > 1. 解:(1)因1,,,01212110121)()(<<−=<<−Ι=Ι=∏n i x x x n nni x ix x x x L L L θθθθθ,当0 < x 1, x 2, …, x n < 1时,)ln()1(ln 2)(ln 21n x x x nL L −+=θθθ, 令0)ln(212)(ln 21=+=n x x x n d L d L θθθθ,得)ln(21n x x x n L −=θ,即221)ln(⎥⎦⎤⎢⎣⎡=n x x x nL θ,故θ 的最大似然估计221)ln(ˆ⎦⎤⎢⎣⎡=n X X X n L θ;(2)因c x x x n n n ni c x i n i x x x c x c L >+−=>+−Ι=Ι=∏,,,)1(211)1(21)()(L L θθθθθθθ,当x 1, x 2, …, x n > c 时,ln L (θ ) = n ln θ + n θ ln c − (θ + 1) ln (x 1 x 2 …x n ), 令0)ln(ln )(ln 21=−+=n x x x c n n d L d L θθθ,得c n x x x nn ln )ln(21−=L θ, 故θ 的最大似然估计cn X X X nn ln )ln(ˆ21−=L θ.2. 设总体概率函数如下,X 1, …, X n 是样本,试求未知参数的最大似然估计.(1)p (x ;θ ) = c θ c x − (c + 1) ,x > θ ,θ > 0,c > 0已知;(2)θµθµθ−−=x x p e1),;(,x > µ ,θ > 0;(3)p (x ;θ ) = (k θ )−1,θ < x < (k + 1)θ ,θ > 0.解:(1)因θθθθθ>+−=>+−Ι=Ι=∏n i x x x c n nc n ni x c i c x x x c x c L ,,,)1(211)1(21)()(L L ,显然θ 越大,nc θ越大,但只有x 1 , x 2 , …, x n > θ 时,才有L (θ ) > 0,即θ = min {x 1, x 2, …, x n } 时,L (θ ) 达到最大,故θ 的最大似然估计},,,min{ˆ21)1(nX X X X L ==θ;(2)因µµθµθµθθµθ>⎟⎟⎠⎞⎜⎜⎝⎛−−=>−−Ι∑=Ι==∏n n i i i i x x x n x nni x x L ,,,11211e1e1),(L ,当x 1, x 2, …, x n > µ 时,⎟⎟⎠⎞⎜⎜⎝⎛−−−=∑=µθθµθn x n L ni i 11ln ),(ln , 令01),(ln 12=⎟⎟⎠⎞⎜⎜⎝⎛−+−=∑=µθθθµθn x n d L d ni i ,解得µµθ−=⎟⎟⎠⎞⎜⎜⎝⎛−=∑=x n x n n i i11, 且显然µ越大,⎟⎟⎠⎞⎝⎛−−∑=µθn x n i i 11e 越大,但只有x 1 , x 2 , …, x n > µ 时,才有L (θ, µ) > 0,即µ = min {x 1, x 2, …, x n } 时,L (θ, µ) 才能达到最大,故µ 的最大似然估计},,,min{ˆ21)1(n X X X X L ==µ,θ 的最大似然估计)1(ˆˆX X X −=−=µθ; (3)因θθθθθθθ)1(,,,1)1(121)()()(+<<−=+<<−Ι=Ι=∏k x x x n ni k x n i k k L L ,显然θ 越小,(k θ )−n 越大,但只有θ < x 1 , x 2 , …, x n < (k + 1)θ 时,才有L (θ ) > 0,即},,,max{1121n x x x k L +=θ时,L (θ ) 达到最大, 故θ 的最大似然估计为},,,max{111ˆ21)(nn X X X k k X L +=+=θ. 3. 设总体概率函数如下,X 1, …, X n 是样本,试求未知参数的最大似然估计.(1)θθθ||e 21);(x x p −=,θ > 0;(2)p(x ;θ ) = 1,θ − 1/2 < x < θ + 1/2;(3)12211),;(θθθθ−=x p ,θ1 < x < θ2.解:(1)因∑===−=−∏ni i i x n n ni x L 1||11||e21e 21)(θθθθθ,有∑=−−−=n i i x n n L 1||1ln 2ln )(ln θθθ, 令∑=+⋅−=ni i x n d L d 12||11)(ln θθθθ,得∑==ni i x n 1||1θ, 故θ的最大似然估计∑==ni i X n 1||1ˆθ; (2)因2/1,,,2/112/12/121)(+<<−=+<<−Ι=Ι=∏θθθθθn i x x x ni x L L ,即θ − 1/2 < x (1) ≤ x (n ) < θ + 1/2,可得当x (n ) − 1/2 < θ < x (1) + 1/2时,都有L (θ ) = 1,故θ 的最大似然估计ˆθ是 (x (n ) − 1/2, x (1) + 1/2) 中任何一个值; (3)因221121,,,1211221)(11),(θθθθθθθθθθ<<=<<Ι−=Ι−=∏n i x x x n ni x L L ,显然θ 1越大且θ 2越小时,L (θ1, θ 2) 越大,但只有θ1 < x 1 , x 2 , …, x n < θ 2 时,才有L (θ1, θ 2) > 0, 即θ 1 = min {x 1, x 2, …, x n }且θ 2 = max {x 1, x 2, …, x n }时,L (θ1, θ 2)达到最大,故θ 1的最大似然估计},,,min{ˆ21)1(1nX X X X L ==θ, θ 2的最大似然估计},,,max{ˆ21)(2nn X X X X L ==θ. 4. 一地质学家为研究密歇根湖的湖滩地区的岩石成分,随机地自该地区取100个样品,每个样品有10块石子,记录了每个样品中属石灰石的石子数.假设这100次观察相互独立,求这地区石子中石灰石的比例p 的最大似然估计.该地质学家所得的数据如下: 样本中的石子数 0 1 2 3 4 5 6 7 8 9 10样品个数0 1 6 7 23 26 21 12 3 1 0解:总体X 为样品的10块石子中属石灰石的石子数,即X 服从二项分布B (10, p ),其概率函数为xx p p x x p −−⎟⎟⎠⎞⎜⎜⎝⎛=10)1(10)(,x = 1, 2, …, 10,因∑−∑⋅⎟⎟⎠⎞⎜⎜⎝⎛=−⎟⎟⎠⎞⎜⎜⎝⎛===−==−∏∏1001100110001001110)1(10)1(10)(i ii iii x x i i ni x x i p p x p p x p L ,即)1ln(1000ln 10ln )(ln 100110011001p x p x x p L i i i i i i −⋅⎟⎟⎠⎞⎜⎜⎝⎛−+⋅+⎟⎟⎠⎞⎜⎜⎝⎛=∑∑∑===, 令01110001)(ln 10011001=−⋅⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=∑∑==p x p x dp p L d i i i i ,得∑==100110001i i x p ,即∑==100110001ˆi i X p 由于49909137261101001=+×+×+×+×+=∑=i i x ,故比例p 的最大似然估计499.049910001ˆ=×=p. 5. 在遗传学研究中经常要从截尾二项分布中抽样,其总体概率函数为m k p p p k m p k X P mk m k ,,2,1,)1(1)1(};{L =−−−⎟⎟⎠⎞⎜⎜⎝⎛==−. 若已知m = 2,X 1, …, X n 是样本,试求p 的最大似然估计.解:当m = 2时,X 只能取值1或2,且p p p p p X P −−=−−−==222)1(1)1(2}1{2,ppp p X P −=−−==2)1(1}2{22, 即pp p p p p p p x X P x x x x−−=⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛−−==−−−−2)22(2222};{1212,x = 1, 2,因nnx x n ni x x p p p p p p p L ni i ni i i i )2()22(2)22()(112112−∑∑−=−−=−−=−−==∏, 即)2ln(ln )22ln(2)(ln 11p n p n x p x n p L n i i ni i −−⋅⎟⎟⎠⎞⎜⎜⎝⎛−+−⋅⎟⎟⎠⎞⎜⎜⎝⎛−=∑∑==,令02112222)(ln 11=−−⋅−⋅⎟⎟⎠⎞⎜⎜⎝⎛−+−−⋅⎟⎟⎠⎞⎜⎜⎝⎛−=∑∑==p n p n x p x n dp p L d n i i ni i ,得x x n p n i i22221−=−=∑=, 故p 的最大似然估计Xp22ˆ−=. 6. 已知在文学家萧伯纳的“An Intelligent Woman’s Guide to Socialism ”一书中,一个句子的单词数X 近似地服从对数正态分布,即Z = ln X ~ N (µ , σ 2 ).今从该书中随机地取20个句子,这些句子中的单词数分别为52, 24, 15, 67, 15, 22, 63, 26, 16, 32, 7, 33, 28, 14, 7, 29, 10, 6, 59, 30,求该书中一个句子单词数均值22e )(σµ+=X E 的最大似然估计.解:因Z = ln X ~ N (µ , σ 2 ),则µ的最大似然估计09.3)30ln 24ln 52(ln 201ln 11ˆ11=+++====∑∑==L n i in i i x n z n z µ, σ 2的最大似然估计51.0])09.330(ln )09.324(ln )09.352[(ln 201)(12221222=−++−+−=−==∑=∗∧L n i i zz z n sσ, 故由最大似然估计的不变性知22e)(σµ+=X E 的最大似然估计31.28e e )(251.009.322*===++∧zs z X E .7. 总体X ~ U (θ , 2θ ),其中θ > 0是未知参数,又X 1, …, X n 为取自该总体的样本,X 为样本均值.(1)证明X 32ˆ=θ是参数θ 的无偏估计和相合估计; (2)求θ的最大似然估计,它是无偏估计吗?是相合估计吗?解:(1)因X ~ U(θ , 2θ ),有θθθ2322)(=+=X E ,2212112)2()Var(θθθ=−=X , 故θθ=⋅===2332)(32)(32)ˆ(X E X E E ,即X 32ˆ=θ是参数θ 的无偏估计; 因n n X n X 2712194)Var(94)Var(94)ˆVar(22θθθ=⋅===,有θθ=→∞)ˆ(lim E n ,0)ˆVar(lim =∞→θn , 故X 32ˆ=θ是参数θ 的相合估计; (2)因θθθθθθθ2,,,122111)(<<=<<Ι=Ι=∏n i x x x nni x L L ,显然θ 越小,nθ1越大,但只有θ < x 1 , x 2 , …, x n < 2θ 时,才有L (θ ) > 0,即},,,max{2121n x x x L =θ时,L (θ ) 达到最大, 故θ 的最大似然估计为},,,max{2121*ˆ21)(nn X X X X L ==θ;因X 的密度函数为⎪⎩⎪⎨⎧<<=.,0;2,1)(其他θθθx x p ,分布函数为⎪⎩⎪⎨⎧≥<≤−<=.2,1;2,;,0)(θθθθθθx x x x x F则X (n ) 的密度函数⎪⎩⎪⎨⎧<<−==−−.,0;2,)()()]([)(11其他θθθθx x n x p x F n x p nn n n因θθθθθθθθθθθ11)()()()(2121)(+=+−⋅=−⋅−=−+−∫n nn x n dx x n x X E n n nn n ,有θ112)()(++=n n X E n , 且2222122)(22)()()(])[(θθθθθθθθθθθ+=+−⋅=−⋅−=−+−∫n nn x n dx x n x X E n n nn n , 则2222)()()2()1(12)Var()Var(θθθθ++=⎟⎠⎞⎜⎝⎛+−+=−=n n n n n n n X X n n , 因θθθ≠++==)1(212)(21*)ˆ()(n n X E E n ,22)()2()1(4)Var(41*)ˆVar(θθ++==n n n X n , 故)(21*ˆn X =θ不是参数θ 的无偏估计,应该修偏为)(121ˆn X n n ++=θ才是θ 的无偏估计, 因θθθ=++=→∞→∞)1(212lim *)ˆ(lim n n E n n ,0)2()1(4lim *)ˆVar(lim 22=++=∞→∞→θθn n n n n , 故θ 的最大似然估计)(21*ˆn X =θ是参数θ 的相合估计. 8. 设X 1, …, X n 是来自密度函数为p (x ;θ ) = e − (x − θ), x >θ 的样本.(1)求θ 的最大似然估计1ˆθ,它是否是相合估计?是否是无偏估计? (2)求θ 的矩估计2ˆθ,它是否是相合估计?是否是无偏估计? 解:(1)似然函数θθθθθ>+−=>−−Ι∑=Ι==∏n ni i i i x x x n x ni x x L ,,,1)(211ee)(L ,显然θ 越大,θn x ni i +−∑=1e 越大,但只有x 1 , x 2 , …, x n > θ 时,才有L (θ ) > 0, 即θ = min {x 1, x 2, …, x n } 时,L (θ ) 达到最大,故θ 的最大似然估计},,,min{ˆ21)1(1nX X X X L ==θ; 因X 的密度函数与分布函数分别为⎩⎨⎧≤>=−−.,0;,e )()(θθθx x x p x ⎩⎨⎧≤>−=−−.,0;,e 1)()(θθθx x x F x 则X (1) 的密度函数为⎩⎨⎧≤>=−=−−−.,0;,e )()](1[)()(11θθθx x n x p x F n x p x n n 可得X (1) − θ 服从指数分布Exp (n ),因n X E 1)()1(=−θ,2)1(1)Var(nX =−θ, 则θθθ≠+==nX E E 1)()ˆ()1(1,2)1()1(11)Var()Var()ˆVar(n X X =−==θθ, 故)1(1ˆX =θ不是θ 的无偏估计; 因θθθ=⎟⎠⎞⎜⎝⎛+=→∞→∞n E n n 1lim )ˆ(lim 1,01lim )ˆVar(lim 21==→∞→∞n n n θ, 故)1(1ˆX =θ是θ 的相合估计; (2)因总体X 的密度函数为p (x ;θ ) = e − (x − θ), x >θ ,有X − θ 服从指数分布Exp (1),则E (X − θ ) = E (X ) − θ = 1,即θ = E (X ) − 1,故θ 的矩估计1ˆ2−=X θ; 因E (X ) = θ + 1,Var(X ) = Var(X − θ) = θ 2,则θθ=−=−=1)(1)()ˆ(2X E X E E ,nX n X 22)Var(1)Var()ˆVar(θθ===, 故1ˆ2−=X θ是θ 的无偏估计; 因θθ=∞→)ˆ(lim 2E n ,0lim )ˆVar(lim 22==→∞→∞n n n θθ, 故1ˆ2−=X θ是θ 的相合估计. 9. 设总体X ~ Exp (1/θ ),X 1, …, X n 是样本,θ 的矩估计和最大似然估计都是X ,它也是θ 的相合估计和无偏估计,试证明在均方误差准则下存在优于X 的估计(提示:考虑X a a=θˆ,找均方误差最小者). 证:因X ~ Exp (1/θ ),有E (X ) = θ ,Var(X ) = θ 2,且X 的密度函数为⎪⎩⎪⎨⎧≤>=−.0,0;0,e 1)(x x x p xθθ故θ = E (X ),即θ 的矩估计为X =θˆ; 因似然函数0,,,110211e1e1)(>−=>−Ι∑=Ι==∏n ni ii ix x x x nni x x L L θθθθθ, 当x 1, x 2, …, x n > 0时,∑=−−=ni i x n L 11ln )(ln θθθ, 令01)(ln 12=+−=∑=ni i x n d L d θθθθ,得x x n ni i ==∑=11θ, 故θ 的最大似然估计也为X =θˆ; 因θ==)((X E X E ,nX n X 2)Var(1)Var(θ==,故X 是θ 的无偏估计;因θ=→∞)(lim X E n ,0lim)Var(lim 2==∞→∞→nX n n θ,故X 是θ 的相合估计;设X a a =θˆ,有θθa X aE E a ==)()ˆ(,na X a a 222)Var()ˆVar(θθ==, 则nnX E X X 2222)(])([)Var()MSE(θθθθθ=−+=−+=,222222212)(])ˆ([)ˆVar()ˆMSE(θθθθθθθθ⎟⎟⎠⎞⎜⎜⎝⎛+−+=−+=−+=a a n a a n a E a a a 2222111111121θθ⎥⎥⎦⎤⎢⎢⎣⎡++⎟⎠⎞⎜⎝⎛+−+=⎟⎠⎞⎜⎝⎛++++−+=n n n a n n n n n a a n n ,故当1+=n n a 时,X n n a 1ˆ+=θ的均方误差1)ˆMSE(2+=n a θθ小于X 的均方误差nX 2)MSE(θ=.10.为了估计湖中有多少条鱼,从中捞出1000条,标上记号后放回湖中,然后再捞出150条鱼,发现其中有10条鱼有记号.问湖中有多少条鱼,才能使150条鱼中出现10条带记号的鱼的概率最大?解:设湖中有N 条鱼,有湖中每条鱼带记号的概率为Np 1000=,看作总体X 服从两点分布b (1, p ),从中抽取容量为150的样本X 1, X 2, …, X 150,有101501=∑=i i x ,似然函数∑−∑=−===−=−∏ni ini iiix n x ni x x p pp p p L 11)1()1()(11,有)1ln(ln )(ln 11p x n p x p L ni i ni i −⋅⎟⎟⎠⎞⎜⎜⎝⎛−+⋅=∑∑==, 令0111)(ln 11=−−⋅⎟⎟⎠⎞⎜⎜⎝⎛−+⋅=∑∑==p x n p x dp p L d ni i n i i ,得x x n p ni i ==∑=11,即p 的最大似然估计为X p =ˆ, 因pN 1000=,由最大似然估计的不变性知X N1000ˆ=, 故湖中有150001015011000ˆ=×=N条鱼时,才能使150条鱼中出现10条带记号的鱼的概率最大. 11.证明:对正态分布N (µ , σ 2 ),若只有一个观测值,则µ , σ 2的最大似然估计不存在. 证:若只有一个观测值,似然函数222)(2eπ21),(σµσσµ−−=x L ,对于任一固定的σ,当µ = x 时,L (µ)取得最大值σπ21, 但显然σ 越小,σπ21越大,且σ 可任意接近于0,即σπ21不存在最大值,故µ , σ 2的最大似然估计不存在.习题6.41. 设总体概率函数是p (x ;θ ),X 1, …, X n 是其样本,T = T (X 1, …, X n )是θ 的充分统计量,则对g (θ )的任一估计gˆ,令)|ˆ(~T g E g =,证明:)ˆMSE()~MSE(g g ≤.这说明,在均方误差准则下,人们只需要考虑基于充分估计量的估计.解:因)|ˆ(~T g E g=,由Rao-Blackwell 定理知)ˆ()~(g E g E =,)ˆVar()~Var(g g ≤, 故)ˆMSE()]()ˆ([)ˆVar()]()~([)~Var()~MSE(22g g g E g g g E g g=−+≤−+=θθ. 2. 设T 1 , T 2分别是θ 1 , θ 2的UMVUE ,证明:对任意的(非零)常数a , b ,aT 1 + bT 2 是a θ 1 + b θ 2的UMVUE .证:因T 1 , T 2分别是θ 1 , θ 2的UMVUE ,有E (T 1) = θ 1 ,E (T 2) = θ 2 ,且对任意的满足E (ϕ) = 0的ϕ 都有Cov (T 1 , ϕ) = Cov (T 2 , ϕ) = 0, 则E (aT 1 + bT 2) = a E (T 1) + b E (T 2) = a θ 1 + b θ 2 ,且Cov (aT 1 + bT 2 , ϕ) = a Cov (T 1 , ϕ) + b Cov (T 2 , ϕ) = 0, 故aT 1 + bT 2是a θ 1 + b θ 2的UMVUE .3. 设T 是g (θ ) 的UMVUE ,gˆ是g (θ ) 的无偏估计,证明,若+∞<)ˆ(Var g ,则0)ˆ,Cov(≥g T . 证:因gˆ和T 都是g (θ ) 的无偏估计,有)()()ˆ(θg T E g E ==,即0)ˆ(=−T g E , 又因T 是g (θ ) 的UMVUE ,有0)ˆ,(Cov =−T g T ,即0),Cov()ˆ,Cov(=−T T g T , 故0),Cov()ˆ,Cov(≥=T T gT . 4. 设总体X ~ N (µ , σ 2),X 1 , …, X n 为样本,证明,∑==n i i X n X 11,∑=−−=n i i X X n S 122)(11分别为µ , σ 2的UMVUE .证:因X ~ N (µ , σ 2 ),有X 是µ 的无偏估计,S 2是σ 2的无偏估计,且样本X 1 , …, X n 的联合密度函数为===−−=−−∏ni i ix nni x n x x p 12222)(2112)(21e )π2(1e π21),;,,(µσσµσσσµL ,对任意的满足E (ϕ) = 0的ϕ (x 1 , …, x n ),有0e)π2(1)(1)(21122=∑⋅=∫∫∞+∞−∞+∞−−−=n x ndx dx E ni i L L µσϕσϕ,对E (ϕ) = 0两端关于µ 求偏导数,得∫∫∑∞+∞−∞+∞−−−=⋅−⋅==∂∂=n x ni i ndx dx x E ni i L L 1)(2112122e )(1)π2(10)(µσµσϕσµϕ∫∫∞+∞−∞+∞−−−∑⋅−⋅==n x n dx dx n x n ni i L L 1)(212122e)(1)π2(1µσµσϕσ)()]()([])[(222ϕσϕµϕσϕµσX E nE X E nX E n=−=−=,则0)(=ϕX E ,0)(()(),Cov(=⋅−=ϕϕϕE X E X E X ,故∑==ni i X n X 11是µ 的UMVUE ;对0)(=ϕX E 两端再关于µ 求偏导数,得∫∫∑∞+∞−∞+∞−−−=∑⋅−⋅==∂∂=n x n i i ndx dx x x X E ni i L L 1)(2112122e )(1)π2(10)(µσµσϕσµϕ∫∫∞+∞−∞+∞−−−∑⋅−⋅==n x n dx dx n x n x ni i L L 1)(212122e)(1)π2(1µσµσϕσ )()]()([])[(22ϕσϕµϕσϕµσX E nX E X E nX X E n=−=−=,则0)(2=ϕX E ,对0)()π2(=ϕσE n 两端关于σ 2求偏导数,得∫∫∑∞+∞−∞+∞−−−=∑⋅−⋅==∂∂=n x ni indx dx xE ni i L L 1)(211242122e)(210)]()π2[(µσµσϕσϕσ∫∫∑∞+∞−∞+∞−−−=∑⋅⎟⎟⎠⎞⎜⎜⎝⎛+−⋅==n x n i i dx dx n x n x ni i L L 1)(212124122e 221µσµµσϕ⎥⎦⎤⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛+−=∑=ϕµµσσ21222)π2(n X n X E n i i n ⎟⎟⎠⎞⎜⎜⎝⎛=⎥⎦⎤⎢⎣⎡+−⎟⎟⎠⎞⎜⎜⎝⎛=∑∑==n i i n n i i n X E E n X E n X E 122122)π2()()(22)π2(ϕσσϕµϕµϕσσ, 则012=⎟⎟⎠⎞⎜⎜⎝⎛∑=n i i X E ϕ,因⎟⎟⎠⎞⎜⎜⎝⎛−−=−−=∑∑==21212211)(11X n X n X X n S n i i n i i ,有0)(11)(2122=⎥⎦⎤⎢⎣⎡−⎟⎟⎠⎞⎜⎜⎝⎛−=∑=ϕϕϕX nE X E n S E n i i , 则Cov (S 2, ϕ ) = E (S 2ϕ ) − E (S 2) ⋅ E (ϕ) = 0,故∑=−−=ni i X X n S 122)(11是σ 2的UMVUE . 5. 设总体的概率函数为p(x ;θ ),满足定义6.4.2的条件,若二阶导数);(22θθx p ∂∂对一切的θ ∈ Θ 存在,证明费希尔信息量⎟⎟⎠⎞⎜⎜⎝⎛∂∂−=);(ln )(22θθθX p E I . 证:因θθ∂∂⋅=∂∂p p p 1ln ,2222222221ln 111ln θθθθθθθ∂∂⋅+⎟⎠⎞⎜⎝⎛∂∂−=∂∂⋅+⎟⎠⎞⎜⎝⎛∂∂⋅−=⎟⎟⎠⎞⎜⎜⎝⎛∂∂⋅∂∂=∂∂p p p p p p p p p p , 故∫∫∞+∞−∞+∞−∂∂+−=⋅∂∂⋅+−=⎟⎟⎠⎞⎜⎜⎝⎛∂∂⋅+⎟⎠⎞⎜⎝⎛∂∂−=⎟⎟⎠⎞⎜⎜⎝⎛∂∂dx p I pdx p p I p p E p E p E 222222222)(1)(1ln ln θθθθθθθ)()()(22θθθI dx x p I −=⎟⎠⎞⎜⎝⎛∂∂+−=∫∞+∞−.6. 设总体密度函数为p (x ;θ ) = θ x θ − 1, 0 < x < 1, θ > 0,X 1 , …, X n 是样本.(1)求g (θ ) = 1/θ 的最大似然估计; (2)求g (θ )的有效估计.解:(1)似然函数1,,,0121110121)()(<<−=<<−Ι=Ι=∏n i x x x n n ni x i x x x x L L L θθθθθ,当0 < x 1, x 2, …, x n < 1时,ln L (θ ) = n ln θ + (θ − 1) ln (x 1x 2…x n ),令0)ln()(ln 21=+=n x x x n d L d L θθθ,得∑=−=−=ni i n x n x x x n 121ln )ln(L θ,即∑=−=ni iX n 1ln ˆθ, 故g(θ ) = 1/θ 的最大似然估计为∑=−==ni iX n g 1ln 1ˆ/1ˆθ; (2)因θθθθθθθθ1101ln )(ln ln )(ln 10101010101−=−=⋅−=⋅=⋅=∫∫∫−x dx x x x x x d x dx x x X E ,21102102101222)(ln 2ln 2)(ln )()(ln )(ln )(ln θθθθθθθ=−=⋅−==⋅=∫∫∫−X E dx x x x x x x d x dx x x X E , 则22222112)](ln [)(ln )Var(ln θθθ=⎟⎠⎞⎜⎝⎛−−=−=X E X E X ,可得)(111)(ln 1)ˆ(1θθθg n n X E n gE n i i ==⎟⎠⎞⎜⎝⎛−⋅⋅−=−=∑=,即∑=−=n i i X n g 1ln 1ˆ是g (θ )的无偏估计, 且22212111)Var(ln 1)ˆ(Var θθn nn X ngni i =⋅⋅==∑=, 因p (x ; θ ) = θ x θ − 1 I 0 < x < 1,当0 < x < 1时,ln p (x ; θ ) = ln θ + (θ − 1) ln x ,则x x p ln 1);(ln +=∂∂θθθ,2221);(ln θθθ−=∂∂x p ,即2221);(ln )(θθθθ=⎥⎦⎤⎢⎣⎡∂∂−=X p E I ,可得g (θ ) = 1/θ 无偏估计方差的C-R 下界为)ˆ(Var 111)()]([22222g n n nI g ==⋅⎟⎠⎞⎜⎝⎛−=′θθθθθ, 故∑=−=ni i X n g1ln 1ˆ是g (θ ) = 1/θ 的有效估计. 7. 设总体密度函数为2e 2);(3x xx p θθθ−=, x > 0, θ > 0,求θ 的费希尔信息量I (θ ).解:因032e 2);(>−Ι=x x xx p θθθ,当x > 0时,2ln 3ln 2ln );(ln x x x p θθθ−−+=,。
统计学第六章课后题及答案解析
![统计学第六章课后题及答案解析](https://img.taocdn.com/s3/m/0fe6c91a43323968011c923e.png)
第六章一、单项选择题1.下面的函数关系是( )A现代化水平与劳动生产率 B圆周的长度决定于它的半径C家庭的收入和消费的关系 D亩产量与施肥量2.相关系数r的取值范围( )A -∞< r <+∞B -1≤r≤+1C -1< r < +1D 0≤r≤+13.年劳动生产率x(干元)和工人工资y=10+70x,这意味着年劳动生产率每提高1千元时,工人工资平均( )A增加70元 B减少70元 C增加80元 D减少80元4.若要证明两变量之间线性相关程度高,则计算出的相关系数应接近于( )A +1B -1C 0.5D 15.回归系数和相关系数的符号是一致的,其符号均可用来判断现象( )A线性相关还是非线性相关 B正相关还是负相关C完全相关还是不完全相关 D单相关还是复相关6.某校经济管理类的学生学习统计学的时间(x)与考试成绩(y)之间建立线性回归方程ŷ=a+bx。
经计算,方程为ŷ=200—0.8x,该方程参数的计算( )A a值是明显不对的B b值是明显不对的C a值和b值都是不对的D a值和b值都是正确的7.在线性相关的条件下,自变量的均方差为2,因变量均方差为5,而相关系数为0.8时,则其回归系数为:( )A 8B 0.32C 2D 12.58.进行相关分析,要求相关的两个变量( )A都是随机的 B都不是随机的C一个是随机的,一个不是随机的 D随机或不随机都可以9.下列关系中,属于正相关关系的有( )A合理限度内,施肥量和平均单产量之间的关系B产品产量与单位产品成本之间的关系C商品的流通费用与销售利润之间的关系D流通费用率与商品销售量之间的关系10.相关分析是研究( )A变量之间的数量关系 B变量之间的变动关系C变量之间的相互关系的密切程度 D变量之间的因果关系11.在回归直线y c=a+bx,b<0,则x与y之间的相关系数 ( )A r=0B r=lC 0< r<1D -1<r <012.当相关系数r=0时,表明( )A现象之间完全无关 B相关程度较小C现象之间完全相关 D无直线相关关系13.下列现象的相关密切程度最高的是( )A某商店的职工人数与商品销售额之间的相关系数0.87B流通费用水平与利润率之间的相关系数为-0.94C商品销售额与利润率之间的相关系数为0.51D商品销售额与流通费用水平的相关系数为-0.8114.估计标准误差是反映( )A平均数代表性的指标 B相关关系的指标C回归直线方程的代表性指标 D序时平均数代表性指标二、多项选择题1.下列哪些现象之间的关系为相关关系( )A家庭收入与消费支出关系 B圆的面积与它的半径关系C广告支出与商品销售额关系D商品价格一定,商品销售与额商品销售量关系2.相关系数表明两个变量之间的( )A因果关系 C变异程度 D相关方向 E相关的密切程度3.对于一元线性回归分析来说( )A两变量之间必须明确哪个是自变量,哪个是因变量B回归方程是据以利用自变量的给定值来估计和预测因变量的平均可能值C可能存在着y依x和x依y的两个回归方程D回归系数只有正号4.可用来判断现象线性相关方向的指标有( )A相关系数 B回归系数 C回归方程参数a D估计标准误5.单位成本(元)依产量(千件)变化的回归方程为y c=78- 2x,这表示( ) A产量为1000件时,单位成本76元B产量为1000件时,单位成本78元C产量每增加1000件时,单位成本下降2元D产量每增加1000件时,单位成本下降78元6.估计标准误的作用是表明( )A样本的变异程度 B回归方程的代表性C估计值与实际值的平均误差 D样本指标的代表性7.销售额与流通费用率,在一定条件下,存在相关关系,这种相关关系属于( ) A完全相关 B单相关 C负相关 D复相关8.在直线相关和回归分析中( )A据同一资料,相关系数只能计算一个B据同一资料,相关系数可以计算两个C据同一资料,回归方程只能配合一个D据同一资料,回归方程随自变量与因变量的确定不同,可能配合两个9.相关系数r的数值( )A可为正值 B可为负值 C可大于1 D可等于-110.从变量之间相互关系的表现形式看,相关关系可分为( )A正相关 B负相关 C直线相关 D曲线相关11.确定直线回归方程必须满足的条件是( )A现象间确实存在数量上的相互依存关系B相关系数r必须等于1C y与x必须同方向变化D现象间存在着较密切的直线相关关系12.当两个现象完全相关时,下列统计指标值可能为( )A r=1B r=0C r=-1D S y=013.在直线回归分析中,确定直线回归方程的两个变量必须是( )A一个自变量,一个因变量 B均为随机变量C对等关系 D一个是随机变量,一个是可控制变量14.配合直线回归方程是为了( )A确定两个变量之间的变动关系 B用因变量推算自变量C用自变量推算因变量 D两个变量都是随机的15.在直线回归方程中( )A在两个变量中须确定自变量和因变量 B一个回归方程只能作一种推算C要求自变量是给定的,而因变量是随机的。
《统计学》课后答案(第二版,贾俊平版)附录答案第6章-9章方差分析
![《统计学》课后答案(第二版,贾俊平版)附录答案第6章-9章方差分析](https://img.taocdn.com/s3/m/a7d46886f424ccbff121dd36a32d7375a417c6bc.png)
《统计学》课后答案(第二版,贾俊平版)附录答案第6章-9章方差分析第6章方差分析6.1 0215.86574.401.0=<=F F (或01.00409.0=>=-αvalue P ),不能拒绝原假设。
6.2 579.48234.1501.0=>=F F (或01.000001.0=<=-αvalue P ),拒绝原假设。
6.3 4170.50984.1001.0=>=F F (或01.0000685.0=<=-αvalue P ),拒绝原假设。
6.4 6823.37557.1105.0=>=F F (或05.0000849.0=<=-αvalue P ),拒绝原假设。
6.5 8853.30684.1705.0=>=F F (或05.00003.0=<=-αvalue P ),拒绝原假设。
85.54.14304.44=>=-=-LSD x x B A ,拒绝原假设;85.58.16.424.44=<=-=-LSD x x C A ,不能拒绝原假设;85.56.126.4230=>=-=-LSD x x C B ,拒绝原假设。
6.6554131.3478.105.0=<=F F (或05.0245946.0=>=-αvalue P ),不能拒绝原假设。
第7章相关与回归分析7.1 (1)散点图(略),产量与生产费用之间正的线性相关关系。
(2)920232.0=r 。
(3)检验统计量2281.24222.142=>=αt t ,拒绝原假设,相关系数显著。
7.2 (1)散点图(略)。
(2)8621.0=r 。
7.3 (1)0?β表示当0=x 时y 的期望值。
(2)1?β表示x 每变动一个单位y 平均下降0.5个单位。
(3)7)(=y E 。
7.4 (1)%902=R 。
(2)1=e s 。
7.5 (1)散点图(略)。
概率论与数理统计(茆诗松)第二版课后第六章习题参考解答-1
![概率论与数理统计(茆诗松)第二版课后第六章习题参考解答-1](https://img.taocdn.com/s3/m/3aa7bc7a770bf78a64295400.png)
n
∑ 4. 设总体 X ~ N (µ , σ 2),X1, …, Xn 是来自该总体的一个样本.试确定常数 c 使 c ( X i+1 − X i )2 为σ 2 的无 i=1
偏估计. 解:因 E[(Xi + 1 − Xi )2 ] = Var (Xi + 1 − Xi ) + [E(Xi + 1 − Xi )]2 = Var (Xi + 1) + Var (Xi ) + [E(Xi + 1) − E(Xi )]2 = 2σ 2,
( X i+1
−
Xi
)2
是σ
2
的无偏估计.
5. 设 X1, X2, …, Xn 是来自下列总体中抽取的简单样本,
p(x; θ ) = ⎪⎨⎧1,
θ − 1 ≤ x≤θ + 1;
2
2
⎪⎩0, 其他.
证明样本均值
X
及
1 2
( X (1)
+
X (n) )
都是θ
的无偏估计,问何者更有效?
证:因总体 X ~ U ⎜⎛θ − 1 , θ + 1 ⎟⎞ ,有 Y = X − θ + 1 ~ U (0, 1) ,
1 6
X1
+
1 6
X
2
+
2 3
X3.
证:因
E ( µˆ1 )
=
1 2
E(X1)
+
1 3
E(X
2)
+
1 6
E(X3)
=
1 2
µ
+
1 3
µ
+1 6来自µ=µ
《统计学》课后答案(第二版 - 贾俊平版)
![《统计学》课后答案(第二版 - 贾俊平版)](https://img.taocdn.com/s3/m/d2e79c0f6294dd88d1d26b1d.png)
《统计学》课后答案(第二版 - 贾俊平版)第1章统计与统计数据一、学习指导统计学是处理和分析数据的方法和技术,它几乎被应用到所有的学科检验领域。
本章首先介绍统计学的含义和应用领域,然后介绍统计数据的类型及其来源,最后介绍统计中常用的一些基本概念。
本章各节的主要内容和学习要点如下表所示。
章节 1.1 统计及其应用领域主要内容什么是统计学统计的应用领域分类数据、顺序数据、数值型数据观测数据和实验数据截面数据和时间序列数据数据的间接来源学习要点 ? 概念:统计学,描述统计,推断统计。
? 统计在工商管理中的应用。
? 统计的其他应用领域。
? 概念:分类数据,顺序数据,数值型数据。
? 不同数据的特点。
? 概念:观测数据,实验数据。
? 概念:截面数据,时间序列数据。
? 统计数据的间接来源。
? 二手数据的特点。
? 概念:抽样调查,普查。
? 数据的间接来源。
? 数据的收集方法。
? 调查方案的内容。
? 概念。
抽样误差,非抽样误差。
? 统计数据的质量。
? 概念:总体,样本。
? 概念:参数,统计量。
? 概念:变量,分类变量,顺序变量,数值型变量,连续型变量,离散型变量。
1.2 数据的类型 1.3 数据来源数据的直接来源调查方案设计数据质量总体和样本 1.4 统计中的参数和统计量几个基本概念变量二、主要术语1. 2. 3. 4. 5. 6. 7. 8. 9. 10.统计学:收集、处理、分析、解释数据并从数据中得出结论的科学。
描述统计:研究数据收集、处理和描述的统计学分支。
推断统计:研究如何利用样本数据来推断总体特征的统计学分支。
分类数据:只能归于某一类别的非数字型数据。
顺序数据:只能归于某一有序类别的非数字型数据。
数值型数据:按数字尺度测量的观察值。
观测数据:通过调查或观测而收集到的数据。
实验数据:在实验中控制实验对象而收集到的数据。
截面数据:在相同或近似相同的时间点上收集的数据。
时间序列数据:在不同时间上收集到的数据。
统计学课后习题答案(全章节)(精品).docx
![统计学课后习题答案(全章节)(精品).docx](https://img.taocdn.com/s3/m/492d56ee900ef12d2af90242a8956bec0975a591.png)
第二章、练习题及解答2.为了确定灯泡的使用寿命(小时),在一批灯泡中随机抽取100只进行测试,所得结果如下:700 716 728 719 685 709 691 684 705 718 706 715 712 722 691 708 690 692 707 701 708 729 694 681 695 685 706 661 735 665 668 710 693 697 674 658 698 666 696 698 706 692 691 747 699 682 698 700 710 722 694 690 736 689 696 651 673 749 708 727 688 689 683 685 702 741 698 713 676 702 701 671 718 707 683 717 733 712 683 692 693 697 664 681 721 720 677 679 695 691 713 699 725 726 704 729 703 696 717 688要求:(2)以组距为10进行等距分组,生成频数分布表,并绘制直方图。
3.某公司下属40个销售点2012年的商品销售收入数据如下:单位:万元152 124 129 116 100 103 92 95 127 104 105 119 114 115 87 103 118 142 135 125 117 108 105 110 107 137 120 136 117 10897 88 123 115 119 138 112 146 113 126要求:(1)根据上面的数据进行适当分组,编制频数分布表,绘制直方图。
(2)制作茎叶图,并与直方图进行比较。
1.已知下表资料:25 20 10 500 2.5 30 50 25 1500 7.5 35 80 40 2800 14 40 36 18 1440 7.2 4514 7 630 3. 15 合 计200100687034. 35_y xf 6870根据频数计算工人平均日产量:〒=金^ =北* = 34.35 (件)£f 200结论:对同一资料,采用频数和频率资料计算的变量值的平均数是一致的。
《统计学》课后答案(第二版_贾俊平版)
![《统计学》课后答案(第二版_贾俊平版)](https://img.taocdn.com/s3/m/9a9ee0153169a4517623a305.png)
第1章统计与统计数据一、学习指导统计学是处理和分析数据的方法和技术,它几乎被应用到所有的学科检验领域。
本章首先介绍统计学的含义和应用领域,然后介绍统计数据的类型及其来源,最后介绍统计中常用的一些基本概念。
本章各节的主要内容和学习要点如下表所示。
二、主要术语1. 统计学:收集、处理、分析、解释数据并从数据中得出结论的科学。
2. 描述统计:研究数据收集、处理和描述的统计学分支。
3. 推断统计:研究如何利用样本数据来推断总体特征的统计学分支。
4. 分类数据:只能归于某一类别的非数字型数据。
5. 顺序数据:只能归于某一有序类别的非数字型数据。
6. 数值型数据:按数字尺度测量的观察值。
7. 观测数据:通过调查或观测而收集到的数据。
8. 实验数据:在实验中控制实验对象而收集到的数据。
9. 截面数据:在相同或近似相同的时间点上收集的数据。
10. 时间序列数据:在不同时间上收集到的数据。
11. 抽样调查:从总体中随机抽取一部分单位作为样本进行调查,并根据样本调查结果来推断总体特征的数据收集方法。
12. 普查:为特定目的而专门组织的全面调查。
13. 总体:包含所研究的全部个体(数据)的集合。
14. 样本:从总体中抽取的一部分元素的集合。
15. 样本容量:也称样本量,是构成样本的元素数目。
16. 参数:用来描述总体特征的概括性数字度量。
17. 统计量:用来描述样本特征的概括性数字度量。
18. 变量:说明现象某种特征的概念。
19. 分类变量:说明事物类别的一个名称。
20. 顺序变量:说明事物有序类别的一个名称。
21. 数值型变量:说明事物数字特征的一个名称。
22. 离散型变量:只能取可数值的变量。
23. 连续型变量:可以在一个或多个区间中取任何值的变量。
第2章数据的图表展示一、学习指导数据的图表展示是应用统计的基本技能。
本章首先介绍数据的预处理方法,然后介绍不同类型数据的整理与图示方法,最后介绍图表的合理使用问题。
本章各节的主要内容和学习二、主要术语24. 频数:落在某一特定类别(或组)中的数据个数。
统计学第二版的课后答案
![统计学第二版的课后答案](https://img.taocdn.com/s3/m/9e6e5b3c55270722192ef792.png)
附录1:各章练习题答案第1章绪论(略)第2章统计数据的描述2.1 (1)属于顺序数据。
(2)频数分布表如下:服务质量等级评价的频数分布服务质量等级家庭数(频率)频率%A1414B2121C3232D1818E1515合计100100(3)条形图(略)2.2 (1)频数分布表如下:(2)某管理局下属40个企分组表按销售收入分组(万元)企业数(个)频率(%)先进企业良好企业一般企业落后企业11119927.527.522.522.5合计40 100.0 2.3 频数分布表如下:某百货公司日商品销售额分组表按销售额分组(万元)频数(天)频率(%)25~30 30~35 35~40 40~45 45~5046159610.015.037.522.515.0合计40 100.0 直方图(略)。
2.4 (1)排序略。
(2)频数分布表如下:100只灯泡使用寿命非频数分布按使用寿命分组(小时)灯泡个数(只)频率(%)650~660 2 2660~670 5 5670~680 6 6680~690 14 14690~700 26 26700~710 18 18710~720 13 13720~730 10 10730~740 3 3740~750 3 3合计100 100 直方图(略)。
2.5 (1)属于数值型数据。
(2)分组结果如下:分组天数(天)-25~-20 6-20~-15 8-15~-10 10-10~-5 13-5~0 120~5 45~10 7 合计60(3)直方图(略)。
2.6 (1)直方图(略)。
(2)自学考试人员年龄的分布为右偏。
(2)A 班考试成绩的分布比较集中,且平均分数较高;B 班考试成绩的分布比A 班分散,且平均成绩较A 班低。
2.82.9 L U 。
(2)17.21=s (万元)。
2.10 (1)甲企业平均成本=19.41(元),乙企业平均成本=18.29(元);原因:尽管两个企业的单位成本相同,但单位成本较低的产品在乙企业的产量中所占比重较大,因此拉低了总平均成本。
马江权统计学(第二版)课后习题与指导答案
![马江权统计学(第二版)课后习题与指导答案](https://img.taocdn.com/s3/m/c3e5ccd32cc58bd63186bda6.png)
第一章概论习题答案一、名词解释用规范性的语言解释统计学中的名词。
1. 总体和总体单位:凡是客观存在的并至少具有某一相同性质而结合起来的许多个别事物构成的整体,当它作为统计的研究对象时,就称为统计总体,简称总体。
构成总体的每一个事物,就称为总体单位。
2. 标志和标志表现:标志是与总体单位相对应的概念,它是说明总体单位特征的名称。
标志表现是标志的属性或数量在总体各单位的具体体现。
3. 品质标志和数量标志:品质标志是表明总体单位的质的特征的名称。
数量标志是表明总体单位的量的特征的名称。
4. 不变标志和可变标志:无论是品质标志还是数量标志,同一总体中各个总体单位上表现都一样的标志就称为不变标志。
同一总体中各个总体单位上表现不尽相同的标志就称为可变标志(或称变动标志)。
5. 指标和指标体系:指标是说明总体数量特征的概念及其综合数值,故又称为综合指标。
所谓统计指标体系,就是若干个反映社会经济现象数量特征的相对独立又相互联系的统计指标所组成的整体。
二、填空题根据下面提示的内容,将适宜的名词、词组或短语填入相应的空格之中。
1. 统计资料、统计学、统计学2. 总体性、社会性、数量关系、数量界限3. 数量性、具体性4. 数量、概率论、大量观察法5. 总体、方法论6. 信息、监督、信息7. 质量8. 统计数学模型、统计逻辑模型9. 静态统计推断、动态统计推断10. 同质、相对11. 离散变量、连续变量12. 品质标志、数量标志13. 数量、外延、质量、内涵14. 物质、模糊性15. 定性规范、指标数值三、选择题从各题给出的四个备选答案中,选择一个或多个正确的答案,填入相应的括号中。
1. D2. B3. C4. C5. A6. C7. AB8. BD9. AB 10. A11. A 12. A 13. A 14. A 15. C16. C 17. C 18. ABCD 19. C 20. ABC四、判断改错对下列命题进行判断,在正确命题的括号内打“√”;在错误命题的括号内打“×”,并在错误的地方下划一横线,将改正后的内容写入题下空白处。
统计学课后答案第二版贾俊平版
![统计学课后答案第二版贾俊平版](https://img.taocdn.com/s3/m/5c30fcc41ed9ad51f01df2ac.png)
第1章统计与统计数据一、学习指导统计学是处理和分析数据的方法和技术,它几乎被应用到所有的学科检验领域。
本章首先介绍统计学的含义和应用领域,然后介绍统计数据的类型及其来源,最后介绍统计中常用的一些基本概念。
本章各节的主要内容和学习要点如下表所示。
章节主要内容学习要点统计及其应用领域什么是统计学④概念:统计学,描述统计,推断统计。
统计的应用领域④统计在工商管理中的应用。
④统计的其他应用领域。
数据的类型分类数据、顺序数据、数值型数据④概念:分类数据,顺序数据,数值型数据。
④不同数据的特点。
观测数据和实验数据④概念:观测数据,实验数据。
截面数据和时间序列数据④概念:截面数据,时间序列数据。
数据来源数据的间接来源④统计数据的间接来源。
④二手数据的特点。
数据的直接来源④概念:抽样调查,普查。
④数据的间接来源。
④数据的收集方法。
调查方案设计④调查方案的内容。
数据质量④概念。
抽样误差,非抽样误差。
④统计数据的质量。
统计中的几个基本概念总体和样本④概念:总体,样本。
参数和统计量④概念:参数,统计量。
变量④概念:变量,分类变量,顺序变量,数值型变量,连续型变量,离散型变量。
二、主要术语1. 统计学:收集、处理、分析、解释数据并从数据中得出结论的科学。
2. 描述统计:研究数据收集、处理和描述的统计学分支。
3. 推断统计:研究如何利用样本数据来推断总体特征的统计学分支。
4. 分类数据:只能归于某一类别的非数字型数据。
5. 顺序数据:只能归于某一有序类别的非数字型数据。
6. 数值型数据:按数字尺度测量的观察值。
7. 观测数据:通过调查或观测而收集到的数据。
8. 实验数据:在实验中控制实验对象而收集到的数据。
9. 截面数据:在相同或近似相同的时间点上收集的数据。
10. 时间序列数据:在不同时间上收集到的数据。
11. 抽样调查:从总体中随机抽取一部分单位作为样本进行调查,并根据样本调查结果来推断总体特征的数据收集方法。
12. 普查:为特定目的而专门组织的全面调查。
统计学(第二版)课后答案
![统计学(第二版)课后答案](https://img.taocdn.com/s3/m/57a574ec102de2bd96058895.png)
附录1:各章练习题答案第1章绪论(略)第2章统计数据的描述2.1 (1)属于顺序数据。
(2)频数分布表如下:服务质量等级评价的频数分布服务质量等级家庭数(频率)频率%A1414B2121C3232D1818E1515合计100100(3)条形图(略)2.2 (1)频数分布表如下:(2)某管理局下属40个企分组表按销售收入分组(万元)企业数(个)频率(%)先进企业良好企业一般企业落后企业11119927.527.522.522.5合计40 100.0 2.3 频数分布表如下:某百货公司日商品销售额分组表按销售额分组(万元)频数(天)频率(%)25~30 30~35 4610.015.035~40 40~45 45~50 159637.522.515.0合计40 100.0 直方图(略)。
2.4 (1)排序略。
(2)频数分布表如下:100只灯泡使用寿命非频数分布按使用寿命分组(小时)灯泡个数(只)频率(%)650~660 2 2660~670 5 5670~680 6 6680~690 14 14690~700 26 26700~710 18 18710~720 13 13720~730 10 10730~740 3 3740~750 3 3合计100 100 直方图(略)。
2.5 (1)属于数值型数据。
(2)分组结果如下:分组天数(天)-25~-20 6-20~-15 8-15~-10 10-10~-5 13-5~0 120~5 45~10 7合计60(3)直方图(略)。
2.6 (1)直方图(略)。
(2)自学考试人员年龄的分布为右偏。
(2)A 班考试成绩的分布比较集中,且平均分数较高;B 班考试成绩的分布比A 班分散,且平均成绩较A 班低。
2.82.9 (1)x =274.1(万元);Me=272.5 ;Q L =260.25;Q U =291.25。
(2)17.21=s (万元)。
2.10 (1)甲企业平均成本=19.41(元),乙企业平均成本=18.29(元);原因:尽管两个企业的单位成本相同,但单位成本较低的产品在乙企业的产量中所占比重较大,因此拉低了总平均成本。
概率论与数理统计(茆诗松)第二版课后第六章习题参考答案
![概率论与数理统计(茆诗松)第二版课后第六章习题参考答案](https://img.taocdn.com/s3/m/b6225337f242336c1eb95e4b.png)
习题 6.1
1. 设 X1, X2, X3 是取自某总体容量为 3 的样本,试证下列统计量都是该总体均值µ 的无偏估计,在方差存 在时指出哪一个估计的有效性最差?
(1) µˆ1
=
1 2
X1
+
1 3
X
2
+
1 6
X3 ;
(2) µˆ2
=
1 3
X1
+
1 3
X
2
+
1 3
X
3
;
(3) µˆ3
=
n1 + n2
n1 + n2
n1 + n2
8. 设总体 X 的均值为µ ,方差为σ 2,X1, …, Xn 是来自该总体的一个样本,T (X1, …, Xn)为µ 的任一线性
无偏估计量.证明: X 与 T 的相关系数为 Var( X ) Var(T ) .
n
∑ 证:因 T (X1, …, Xn)为µ 的任一线性无偏估计量,设 T ( X1, L, X n ) = ai X i , i=1
2. 设 X1, X2, …, Xn 是来自 Exp(λ)的样本,已知 X 为 1/λ的无偏估计,试说明1/ X 是否为λ的无偏估计. 解:因 X1, X2, …, Xn 相互独立且都服从指数分布 Exp(λ),即都服从伽玛分布 Ga(1, λ),
n
∑ 由伽玛分布的可加性知 Y = X i 服从伽玛分布 Ga(n, λ),密度函数为 i=1
=
(n
2 + 1)(n
+
2)
,
E(Y(2n) )
=
1 y 2 ⋅ nyn−1dy = n ,
统计学课后习题答案(全章节)
![统计学课后习题答案(全章节)](https://img.taocdn.com/s3/m/f80b9fd25022aaea998f0fcc.png)
第二章、练习题及解答2.为了确定灯泡的使用寿命(小时),在一批灯泡中随机抽取100只进行测试,所得结果如下:700 716 728 719 685 709 691 684 705 718 706 715 712 722 691 708 690 692 707 701 708 729 694 681 695 685 706 661 735 665 668 710 693 697 674 658 698 666 696 698 706 692 691 747 699 682 698 700 710 722 694 690 736 689 696 651 673 749 708 727 688 689 683 685 702 741 698 713 676 702 701 671 718 707 683 717 733 712 683 692 693 697 664 681 721 720 677 679 695 691 713 699 725 726 704 729 703 696 717 688 要求:(2)以组距为10进行等距分组,生成频数分布表,并绘制直方图。
灯泡的使用寿命频数分布表3.某公司下属40个销售点2012年的商品销售收入数据如下:单位:万元152 124 129 116 100 103 92 95 127 104 105 119 114 115 87 103 118 142 135 125 117 108 105 110 107 137 120 136 117 108 97 88 123 115 119 138 112 146 113 126 要求:(1)根据上面的数据进行适当分组,编制频数分布表,绘制直方图。
(2)制作茎叶图,并与直方图进行比较。
解:(1)频数分布表(2)茎叶图第三章、练习题及解答1. 已知下表资料:试根据频数和频率资料,分别计算工人平均日产量。
解:根据频数计算工人平均日产量:687034.35200xf x f===∑∑(件) 根据频率计算工人平均日产量:34.35fx xf==∑∑(件)结论:对同一资料,采用频数和频率资料计算的变量值的平均数是一致的。
统计学第二版课后习题的答案西财出版
![统计学第二版课后习题的答案西财出版](https://img.taocdn.com/s3/m/62ceb7c59b89680203d8257f.png)
第三章
• 单项选择题 CA(BC)BD ACACD • 多项选择题 AD ACE ABC CD ABCD
第四章
• 单项选择题 CCBDD ACACC • 多项选择题 AE BC ABCDE ABCE BDE • 判断题 √ ×√ ×√ × ×100% 计划完成数 1 9% 100% 1 8% 100.93% 超额0.93%完成计划
统计学作业
第一章
• 单项选择题 BDCCA BADAA • 多项选择题 BCD BD ACD ABCDE ABC ACD
CD ABC
ACD ACE
第二章
• 单项选择题 BBBAD CBBBC • 多项选择题 CDE BDE ADE ABD ABCDE • 判断题 ×× √ √ × × ×× √ ×
2150 18.93 (分) 6
所以甲班平均指标的代 表性高于乙班
4、
甲品种 f 1.2 0.8 0.5 xf 600 404 720 x 500 505 1440 f 1 1.3 0.7 乙品种 xf 500 676 371 x 500 520 530
1.3
702
540
1.5
699
466
甲:x
31 2
20571077 .34
4535.54 (元) 4535.54 V 0.62 7338.71
第五章
• 单项选择题 CBBDA DBAAB • 多项选择题 BCDE ACD ABCD ABDE • 辨析题 √ × ×× ×
AB
1、
发展水平 累计增长量 逐期增长量 定基发展速 度 环比发展速 度 定基增长速 度 环比增长速 度 增长1%绝 对值
ˆ a bt y b N ty t y N t t
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
n
(1
n 0.76 ) (1 0.01) 0.087 N 100
t 3; x tux 3 0.087 0.261
以99.73%的概率估计这批茶叶平均每包重量的范围为
[150.3 0.261,150.3 0.261] [150.039,150.561]
查表得
t 1.645; p tu p 0.0209
以90%的可靠程度推测全校优秀学生比例的可能区间为
[0.22 0.0209,0.22 0.0209] [0.1991,0.2409]
并估算优秀学生人数的可能范围为 [1991, 2409]
从1000名学生中进行随机抽样以推断学生平均考试成绩。 根据以往经验,学生成绩的标准差为3分,现以95.45%
资总额的所在区间。
解:
820 4 830 6 ... 900 3 (1) x 4 6 ... 3
( x x) 2 f
f
ux
n
2、 采用简单随机重复抽样方法,在2000件产品中抽查200件, 其中合格品190件。 要求: (1)以95.45%的概率保证程度对合格品和全部产品中合
格品数量进行区间估计。
(2)如果极限误差为2.31%,则其概率保证程度为多少?
解:(1)t=2;n=200;
190 p 0.95; 200
up
p(1 p) 0.95 0.05 1.54% n 200
p tu p 2 1.54% 3.08%
合格品率的置信区间为 p p P p p
4、 某学校某年有在校学生10000人,为调查优秀学生所
占的比率情况,对全部学生按10%的比例抽取部分学
生进行调查,调查资料如表所示。
性别 抽取人数 优秀生比例 % 20 25 标准差
男生 女生
600 400
20 30
要求:以90%的可靠程度推测全校优秀学生比例的可能 区间,并估算优秀学生人数的可能范围。
确定平均重量为150.3克,达到要求。
(2) p 0.7; u p p(1 p) n 0.7 0.3 (1 ) (1 0.01) 0.046 n N 100
p tu p 0.138
以同样的概率保证估计这批茶叶的合格率范围:
[0.7 0.138,0.7 0.138] [0.562,0.838]
的可靠程度,要求学生平均成绩估计的最大允许抽样误
差不超过1分,分别计算重复抽样和不重复抽样条件下至 少应抽取多少学生调查。
1 0.5 解: 3; t 2; x 1; ux t 2
x
u 重复抽样:x
n
;n
2
ux 2
9 36 人。 0.25
不重复抽样:
如表所示。 要求: (1)以99.73%的概率估计这批茶叶平均每包重量的 范围,确定平均重量是否达到要求。
(2)以同样的概率保证估计这批茶叶的合格率范围。
解: (1) x
148.5 10 149.5 20 150.5 50 151.5 20 150.3 100
1.82 10 ห้องสมุดไป่ตู้0.82 20 0.22 50 1.22 20 2 0.76 100
作业讲评
1、某工厂有1500名工人,用简单随机重复抽样方法抽出 50个工人组成样本,调查其工资水平如表。
520 月工资水平 (元) 工人数(人) 4 530 6 540 9 550 10 560 8 570 6 580 4 600 3
要求: (1)计算样本平均数和抽样平均误差。 (2)以95%的可靠程度估计该厂工人的月平均工资和工
即[0.9192,0.9808]。 全部产品中合格品数量为[1838,1962]。
(2)若 p 2.31%,
0.0231 1.5 则 t u p 0.0154
p
查表得到概率保证程度为0.8664。
3、
某外贸公司出口一种茶叶,规定每包规格不低于150克
,现用不重复抽样方法抽取其中1%进行检验,其结果
解:
600 0.2 400 0.25 (1) p 0.22 1000
i i i
p (1 p ) n P (1 P )
i i
n
0.20 0.8 600 0.30 0.70 400 0.18 1000
up
pi (1 pi ) n 0.18 1000 (1 ) (1 ) 0.000162 1.27% n N 1000 10000
ux
2
n
(1
n 9 n 9 );0.25 (1 ); n 35 人。 N n 1000 0.259