(优选)自动控制原理第七章非线性系统

合集下载

自动控制原理第七章

自动控制原理第七章
作用后,运动仍然保持原来的频率和振幅,即这种周期运动 具有稳定性,这种现象称为自持振荡,这是非线性系统独有 的现象。
2013-12-13
<<自动控制原理>>第七章
9
4、非线性系统不适用叠加原理
在线性系统中,若干个信号作用于系统上,我们可以分 别求单独信号作用的响应,然后再叠加就可以求出总的响应。
这给分析综合线性系统带来了很大方便。通常在典型输入函
<<自动控制原理>>第七章
22
2013-12-13
<<自动控制原理>>第七章
23Leabharlann 二、相平面图的分析 1.线性系统奇点的类型 假设奇点在相平面的原点上, f ( x, x) 是解析函数,可用泰勒 级数将其在原点附近展开:
f ( x, x) f ( x, x) f ( x, x) f ( x, x) x 0 x 0 x x 0 x g ( x, x ) x x x 0 x 0 x 0 其中,g ( x, x) 是包含 x, x 二次以上的项,在原点附近,x, x 都很小,g ( x, x) 可以忽略。注意到在奇点处有

dx d ( x) dx dx
表示在 ( x, x) 点和 ( x, x) 点相轨迹曲线的斜率大小相等,符 号相反,故关于 x 轴对称。
2013-12-13 <<自动控制原理>>第七章 14
若 f ( x, x)是 x 的奇函数,即 f ( x, x) f ( x, x)
2013-12-13
<<自动控制原理>>第七章
17
c.系统的状态沿相轨迹曲线转移的方向

自动控制原理课件 第7章 非线性控制系统

自动控制原理课件 第7章 非线性控制系统
描述函数法是基于频率域的等效线性化方法。该法不受系统 阶次的限制,但系统必须满足一定的假设条件,且只能提供系 统稳定性和自激振荡的信息。 3. 波波夫法
波波夫法是一个关于系统渐近稳定充分条件的频率域判据。 它可以应用于高阶系统,并且是一个准确判定稳定性的方法。
2020年11月17日
EXIT
第7章第16页
4.可以用频率特性的概念来研究和分析线性系统的固 有特性。不能用频率特性、传递函数等线性系统常用的 方法来研究非线性系统。
2020年11月17日
EXIT
第7章第15页
7.1.4 非线性系统的分析和设计方法
1. 相平面法 相平面法是求解一阶或二阶非线性系统的图解法。这种方法
既能提供的稳定性信息,又能提供时间响应信息。其缺点是只 限于一阶和二阶系统。 2. 描述函数法
齿轮传动的齿隙特性,液压传动的的油隙特性等均属于 这类特性。
当系统中有间隙特性存在时,将使系统输出信号在相位 上产生滞后,从而使系统的稳定裕度减少,动态特性变坏。
间隙的存在常常是系统产生自持振荡的主要原因。
2020年11月17日
EXIT
第7章第9页
4.继电器特性
0 y(t) b0sgn e(t)
在控制系统中若存在饱和特性,将使系统在大信号
作用下的等效放大倍数降低,从而引起瞬态过程时间 的延长和稳态误差的增加。对于条件稳定系统,甚至 可能出现小信号时稳定,而大信号时不稳定的情况。
2020年11月17日
EXIT
第7章第7页
2.死区(不灵敏区)特性
y (t )
0
k
e(t)
a sgn
e(t)
e(t) a e(t) a
2. 线性系统的稳定性与输入响应的性质只由系统本身的 结构及参量决定,而与系统的初始状态无关。而非线性 系统的稳定性及零输入响应的性质不仅取决于系统本身 的结构和参量,而且还与系统的初始状态有关。

自动控制原理第7章_非线性控制系统

自动控制原理第7章_非线性控制系统

7.2 相平面法
1. 基本概念 2. 相平面图的绘制 3. 线性系统的相轨迹 4. 非线性系统的相平面分析
7.2 相平面法
1. 基本概念 相平面法是一种求解二阶常微分方程的图解方法。 1) 相平面图 f ( x, x ) 0 x 二阶系统的数学描述 ,得下列一阶微分方程组 设x1=x,x2= x

非线性系统一般理解为非线性微分方程所描述的
系统。 线性系统的本质特征是叠加原理,因此非线性系 统也可以理解为不满足叠加原理的系统。

7.1 概述
2. 典型的非线性特性
1) 饱和特性
2) 死区特性
3) 间隙特性(滞环特性)
4) 变放大系数特性
5) 继电器特性
7.1 概述
1) 饱和特性
x(t) k 0 a e(t)
数学表达式
ke(t ) x(t ) ka signe(t )
1 signe(t ) 1 不定
e(t ) a e(t ) a
-a
符号函数(开关函数)
e(t ) 0 e(t ) 0 e(t ) 0
图 7.2 饱和特性
a – 线性域宽度 k – 线性域斜率
(d)半稳定极限环
(a) 可通过实验观察到。设计时应尽量减少极限环 的大小,以满足系统的稳态误差要求。
(b) 不能通过实验观察到。设计时应尽量增大极限 环的大小,以扩大系统的稳定域。
(c)、(d)不能通过实验观察到。(c)不稳定。(d)稳 定,但过渡过程时间将由于极限环的存在而增加。
7.2 相平面法
单输入-单输出的线性定常系 统
现代控制理论(20世纪50 年代后)
可以是比较复杂的系统

自动控制原理第七章非线性控制系统的分析

自动控制原理第七章非线性控制系统的分析
X X
这里,M=3,h=1
负倒描述函数为
N 1 X
X
12 1 1 2
X
X 1
X 1, N 1 X , N 1
必有极值
d N 1X 令
0 dX
得 X 2
N 1 2
2
0.523
12
1
1 2
2
6
X: 1 2
-N-1(X): 0.523
2.自振的稳定性分析
在A点,振幅XA,频率A。
扰动:
X : A点 C点 C点被G(j)轨迹包围,不稳定,
振幅 ,工作点由C点向B点运动;
A点一个不稳 定的极限环。
X : A点 D点 D点不被G(j)轨迹包围,稳定,
振幅 ,工作点由D点左移。
在B点,振幅XB,频率B 。 扰动:
X : B点 E点 E点不被G(j) 轨迹包围,稳定,
振幅 ,工作点由E点到B点;
X : B点 F点 F点被G(j)轨迹包围,不稳定,
振幅 ,工作点由F回到B点。
B点呈现稳定的自激振荡:振幅XB ,频率B。
3.闭环系统稳定性判别步骤
1)绘制非线性部分的负倒描述函数曲线和线 性部分的频率特性曲线。
2)若G(j)曲线不包围“-N-1(X)”曲线,则系统稳定。 若G(j)曲线包围“-N-1(X) ”曲线,系统不稳定。 若G(j)曲线与“-N-1(X)”曲线相交,系统出现自振。
3)若G(j )曲线与“-N-1(X)”曲线有交点,做以 下性能分析:
(1)不稳定的极限环
(2)稳定的极限环 计算自振频率和幅值。
例1:非线性系统如图所示,其中非线性特性为 具有死区的继电器,分析系统的稳定性。
0e

自动控制原理课件 第七章 非线性系统

自动控制原理课件 第七章 非线性系统
2
从(2)式看出:线性化以后的系
统其特性与线性系统的特性一样,
可是(1)式表示的非线性系统的
将上式写成二个一阶方程组:
x1 (t ) x2 (t )
平衡点为:
x2 (t ) x1 (t ) 2 1 x12 (t ) x2 (t )


(1) 特性为:
当参量
x2 0, x1 0
一、相平面、相轨迹和平衡点 x f ( x , x)
将二阶系统常微分方程写成两个一阶微分方程表示如下:
..
.
x1 (t ) f1 t , x1 (t ), x2 (t ) x2 (t ) f 2 t , x1 (t ), x2 (t )
1、相平面:以横坐标表示X,以纵坐标 x 构成一个直角坐标 系,则该
则:
2 x2 n x1 2n x2
dx1 x2 2 dx2 n x1 2n x2
从二阶线性系统的特征方程中解出
1 , 2 n n 2 1
(1)当 0时
方程为:
1,2为虚根
x1 x2
2 x2 n x1
dx1 x2 2 dx2 n x1 x (
2 1
n
x2
)2 R 2
表示系统的相轨迹是一族同心的椭圆
当不同的
,我们得到不同的相轨迹如下图:
根与相轨迹
j λ 2 λ1 0 j 0 λ λ 1 2
稳定节点
j
不稳定节点
j 0
0
稳定焦点
j 0
不稳定焦点
j λ1 0 λ2
中心
鞍点
三、二阶非线性系统的特征
解析法:
(1)

自动控制原理 第七章 非线性系统

自动控制原理 第七章 非线性系统

实质上是应用谐波线性化的方法,将非线性特性线性化, 然后用频域法的结论来研究非线性系统,它是线性理论 中的频率法在非线性系统中的推广,不受系统阶次的限 制。
(2)相平面法(本质非线性):图解法。通过在相平 面上绘制相轨迹,可以求出微分方程在任何初始条件下 的解。是一种时域分析法,仅适用于一阶和二阶系统。
1
ωt
y1 (t ) B1 sint
由式(7-15)可得饱和特性的描述函数为
B1 2k a a a 2 N ( A) arcsin 1 ( ) A A A A

M sin td ( t )
yMFra bibliotek0 π2π
ωt
所以基波分量为:
y1 ( t )
4M

sin t
故理想继电器特性的描述函数为
Y1 4M N ( A) 1 A A
2.饱和特性
请牢记!
即 N(A)的相位角为零度,幅值是输入正弦信号A的函数.
当输入为x(t)=Asinωt,且A大于线性区宽度a 时, 饱和特性的输出波形如图7-10所示。
7.1.3
非线性系统的分析方法
非线性的数学模型为非线性微分方程,大多数尚无
法直接求解。到目前为止,非线性系统的研究还不成熟, 结论不能像线性系统那样具有普遍意义,一般要针对系 统的结构,输入及初始条件等具体情况进行分析。工程 上常用的方法有以下几种:
(1)描述函数法(本质非线性):是一种频域分析法,
r(t)=0 x
N
y
G(s)
c(t)
图7-8 非线性系统典型结构图
(2)非线性环节的输入输出静特性曲线是奇对称的,即 y(x)=-y(-x),以保证非线性元件在正弦信号作用下的输出不 包含直流分量。 (3)系统的线性部分具有良好的低通滤波特性。能较好的滤 除非线性环节在正弦输入下输出中的高次谐波,于是可以认 为在闭环通道中只有基波分量在流通,此时应用描述函数法 所得的分析结果才是比较准确的。实际系统基本都能满足。

自动控制原理课件 第7章 非线性控制系统

自动控制原理课件 第7章 非线性控制系统

伺服电机的死区电压(启动电压),测量元件的不灵敏 区等都属于死区非线性特性。
由于有死区特性存在,将使系统产生静态误差,特别是 测量元件的不灵敏区影响最为突出。
2020年11月17日
EXIT
第7章第8页
3. 间隙特性
k e(t)
y(t)
k
e(t
)
b sgn e(t)
e(t) 0 e(t) 0 e(t) 0
2020年11月17日
EXIT
第7章第11页
5.变放大系数特性
y
(t
)
k1e(t
)
k2e(t )
e(t) a e(t) a
变放大系数特性使系统在大误差信号时具有较大的 放大系数,系统响应迅速。而在小误差信号时具有较 小的放大系数,使系统响应既缓且稳。
具有这种特性的系统,其动态品质较好。
2020年11月17日
fv
dy t
dt
k
y
y t
F
式中:fv——粘性摩擦系数
k(y)——弹性系数,是 y(t)的函数
2020年11月17日
EXIT
第7章第4页
描述大多数非线性物理系统的数学模型是n阶非线性 微分方程
d
ny dt
t
n
h
t,
y
t
,
dy t
dt
,
,
d
n1
dt
y
n1
t
,
u
t
式中,u(t)为输入函数, y(t)为输出函数
描述函数法是基于频率域的等效线性化方法。该法不受系统 阶次的限制,但系统必须满足一定的假设条件,且只能提供系 统稳定性和自激振荡的信息。 3. 波波夫法

自动控制原理第七章

自动控制原理第七章

条件下的时间响应曲线如图所示。
四、非线性控制系统的特点
3.稳定性 3.稳定性 从曲线及方程中可以看出, 系统有两个平衡状态,即 x=0和 x=1 。 按稳定性的定义对平衡状 态 x=1来说,系统只要有一 个很小的偏离,就再也不会 回到这一平衡状态上来。 因此,x=1的平衡状态是一个不稳定的平衡状态。
第七章 非线性系统的分析
§7
非线性系统的分析
教学内容:
§7-1 非线性控制系统概述 §7-2 描述函数法 §7-3 相平面法
§7-1 非线性控制系统概述
一、引言 二、研究非线性系统的一般方法 三、典型非线性特性 四、非线性控制系统的特点
一、引言
包含一个或一个以上非线性元件或环节的系统为非线性系 统。 实际上自动控制系统的各个环节不可避免的带有某种程度 的非线性,线性系统只是非线性系统的近似。 非线性系统程度不严重时,在一定范围内或特定条件下, 可采用微偏法进行线性化,这种非线性称为非本质非线性。 如果系统的非线性具有间断点、折断点,称为本质非线性。 这时采用线性系统分析方法去研究会引起很大的误差甚至导 致错误的结论。
四、非线性控制系统的特点
3.稳定性 3.稳定性
线性系统的稳定性取决于系统的结构与参数,与起始 状态无关。 非线性系统的稳定性不仅仅和系统的结构与参数有关, 还和起始状态有直接关系。 一个非线性系统,他的某些平衡状态可能是稳定的, 某些平衡状态可能是不稳定的。因此对于非线性系统, 不存在系统是否稳定的笼统概念,要研究的是非线性系 统平衡状态的稳定性。
2 n
A +B
2 n
An ϕn = arctan Bn
一 描述函数的基本概念
非线性特性为奇对称,则直流分量 A0= 0; 同时,各谐波分量的幅值与基波相比一般都比较小; 因此,可以忽略式中的高次谐波分量,只考虑基波分量, 这种近似也称为谐波线性化。则

第7章 非线性控制系统分析(《自动控制原理》课件)

第7章 非线性控制系统分析(《自动控制原理》课件)

• • •
••

得等倾线方程为: 令 d x/ dx = α , 得等倾线方程为 x = − x /(1 + α ) (15 ) • 若令 α = 1, x = − x / 2 , 则等倾线如下图所示 如 α = − 2 则等倾线如下图所示. • • x 则 x = x 等倾线如图中蓝线 等倾线如图中蓝线. α =1 依此类推, 依此类推 取不同的α 值, 由 x 式(15)画出足够密的一簇等倾 画出足够密的一簇等倾 0 线, 然后按各条等倾线所表示 的相轨迹在该条等倾线上的斜率将各点连 成一条光滑的曲线, 如左上图所示. 成一条光滑的曲线 如左上图所示 α = −2


设下图为式(1)在初始条件 设下图为式 在初始条件 x = x0 , x = x0 情况下的 x (t ) 与 x (t ) 的关系曲线. 平面上的点随时间的增大, 的关系曲线 当 t ∈ [ 0, ∞ ) 时, 平面上的点随时间的增大 • • 将沿曲线移动 当初始条件确定后 x A( x0 , x0 ) 将沿曲线移动. 当初始条件确定后, 曲线也确定, 曲线也确定 则曲线上任何一点的 • x 坐标也确定 当 x, x 的值确定后 由 的值确定后, 坐标也确定. 0 式(1)可知 x = f ( x , x ) 的值也唯一确 可知 从而系统的整个运动状态也完全确定. 定, 从而系统的整个运动状态也完全确定 整条曲线就清楚地描述了系统在某一初始条件下的运动 性质. 上图中的平面叫相平面, 性质 上图中的平面叫相平面 曲线叫系统在某一初始 条件下的相轨迹. 由于系统的初始条件可有无穷多个, 条件下的相轨迹 由于系统的初始条件可有无穷多个 因此相应的相轨迹也有无穷多条, 因此相应的相轨迹也有无穷多条 这无穷多条相轨迹构 成的相轨迹簇叫相平面图. 成的相轨迹簇叫相平面图 因为

自动控制原理第七章

自动控制原理第七章

特点
常见于放大器中,在大信 号作用下,放大倍数小,因而 降低了稳态精度。
a
k
K
0
a
e
4
2、死区特性
0 e(t ) a
x
a
0
k
x
k e (t ) a k e (t ) a
e(t ) > a e (t ) < a
a
e
特点
常见于测量、放大元件中。死区非线性特性导致系 统产生稳态误差,且用提高增益的方法也无法消除。
0 A
a

1 N ( A)
(2)交点 b
外界干扰 外界干扰
G ( j )
A↑ A↓
该交点产生自持振荡
24
总结
G ( j ) 1 N ( A)
A b
Im
Re
1 R e G ( j ) R e N ( A) 1 Im G ( j ) Im N ( A)
G ( j ) 1 N ( A)
1 N ( A) 1 2
Im
1 R e G ( j ) R e N ( A) 1 Im G ( j ) Im 0 N ( A)
Re
A 1
0
28
G ( j )

Im G ( j ) 0
0 .3 K 4 .5

50 rad / s
G(jw)与负实轴 相交处的幅值
R e G ( j )
50
系统临界稳定
0 .3 K c 4 .5

1 2
K c 7 .5

自动控制原理非线性控制系统分析

自动控制原理非线性控制系统分析

x f(
x,
x)
dt
(2)
用第一个方程除第二个方程有
dx f (x, x) dx x
(3)
这是一个以 x 为自变量,以 x为因变量的方程,如果能解出该方程,则 可以用(2)式把x,t 的关系计算出来。因此对方程(1)的研究,可以 用研究方程(3)来代替。如果把方程(1)看作质点的运动方程,则 x 代表质点的位置, x代表质点的速度(因而也代表了质点的
e(t) a e(t) a
式中 k1, k2 -变增益特性斜率
a -切换点
特点:使系统在大误差信号时具有较大的增益,从而使系统响应迅 速;而在小误差信号时具有较小的增益,从而提高系统的相对稳定 性。同时抑制高频低振幅噪声,提高系统响应控制信号的准确度。
本质非线性:不能应用小偏差线性化概念将其线性化 非本质非线性:可以进行小偏差线性化的非线性特
二.非线性控制系统的特性
(1)对于线性系统,描述其运动状态的数学模型量线性微分方程, 它的根本标志就在于能使用叠加原理。而非线性系统,其数学模型 为非线性微分方程,不能使用叠加原理。由于两种系统特性上的这 种差别,所以它的运动规律是很不相同的。目前,还没有像求解线
性微分方程那样求解非线性微分方程的通用方法。而对非线性系统, 一般并不需要求解其输出响应过程。通常是把讨论问题的重点放在 系统是否稳定,系统是否产生自持振荡,计算机自持振荡的振幅和 频率,消除自持振荡等有关稳定性的分析上。
系统稳定,
。甚至还会出现更为复杂的
情况。
(3)在非线性系统中,除了从平衡状态发散或收敛于平衡状态两 种运动形式外,往往即使无外作用存在,系统也可能产生具有一定 振幅和频率的稳定的等幅振荡。
自持振荡:无外作用时非线性系统内部产生的稳定的等幅振荡称为 自持振荡,简称自振荡。 改变非系统的结构和参数,可以改变自持振荡的振幅和频率,或消 除自持振荡。 对线性系统,围绕其平衡状态只有发散和收敛两种运动形式,其中 不可能产生稳定的自持振荡。

自动控制原理考试试题第七章习题与答案

自动控制原理考试试题第七章习题与答案

第七章非线性控制系统分析练习题及答案7-1设一阶非线性系统的微分方程为xx3 x试确定系统有几个平衡状态,分析平衡状态的稳定性,并画出系统的相轨迹。

解令x0得3(21)(1)(1)0xxxxxxx系统平衡状态x e0,1,1其中:x0:稳定的平衡状态;ex1,1:不稳定平衡状态。

e计算列表,画出相轨迹如图解7-1所示。

x-2-11301312x-600.3850-0.38506x112010211图解7-1系统相轨迹可见:当x(0)1时,系统最终收敛到稳定的平衡状态;当x(0)1时,系统发散;x(0)1 时,x(t);x(0)1时,x(t)。

注:系统为一阶,故其相轨迹只有一条,不可能在整个x~x平面上任意分布。

7-2试确定下列方程的奇点及其类型,并用等倾斜线法绘制相平面图。

(1)xxx0(2) x1x2xx122xx12解(1)系统方程为1:xxx0(x0):xxx0(x0)令xx0,得平衡点:x e0。

系统特征方程及特征根:132:ss10,sj(稳定的焦点)1,2222:ss10,s1.618,0.618(鞍点)1,2xf(x,x)xx, d xdxxxxdx dx 1xx,1xxx11I:1(x0)1II:1(x0)计算列表-∞-3-1-1/301/313∞x0:11-1-2/302-∞-4-2-4/3-1x0:11-1-4/3-2-4∞20-2/3-1用等倾斜线法绘制系统相平面图如图解7-2(a)所示。

2图解7-2(a)系统相平面图(2)xxx112①x22xx②12由式①:x2x1x1③式③代入②:(x1x1)2x1(x1x1)即x12x1x10④令x1x10得平衡点:x e0由式④得特征方程及特征根为2.4142ss2101,2(鞍点)0.414画相轨迹,由④式xx 11 d x1dxx12x1x1x 1 x1 2计算列表322.53∞11.52=1/(-2)∞210-1-2∞用等倾斜线法绘制系统相平面图如图解7-2(b)所示。

自动控制原理-第七章 非线性系统分析

自动控制原理-第七章 非线性系统分析

p p p ( x1 , x 2 ) ( x1 x 10 ) ( x 2 x 20 ) x1 x 2 Q ( x , x ) Q ( x x ) Q ( x x ) 1 2 1 10 2 20 x1 x 2
p ( x1 , x 2 ) a ( x1 x10 ) b( x 2 x 20 ) Q( x1 , x 2 ) c( x1 x10 ) d ( x 2 x 20 )

c 区域: a Tc c k m
c k m c 1 (k m c) T T ct 0 由奇点定义: k m c 0 c 常数 c k m 1 k m c dc T dc c 区域: c 常数 奇线: c k m
§7-4
奇点及极限环
dx 0 奇点概念:相轨迹上满足 dx 0 不定式的特殊点,称为奇点。
在奇点处有多条相轨迹穿过或趋于该奇点,相当于系统处于 平衡状态 一 奇点分类:(线性系统)
2 2 n x n x 0 x 2 2 n x n x x dx 2 x dx 2 n x n x dt (*) 相轨迹方程 dx x dx x dt
介绍:典型非线性特性、相平面法、描述 函数法
§7-1引言
稳定性 1.线性系统与非线性系统区别: 输出曲线 等幅振荡 稳态输出
2.非线性特性(典型) 1)死区
0 x a y k ( x a ) x a k ( x a ) x a
0 = k ( x aSignx)
x1 a ( x1 x 10 ) b( x 2 x 20 ) x 2 c( x1 x10 ) d ( x 2 x 20 )

自动控制原理(第三版)第7章非线性控制系统(1)

自动控制原理(第三版)第7章非线性控制系统(1)
大连民族学院机电信息工程学院
自动控制原理
4)当非线性输入的信号为正弦作用时,由 于非线性其输出将不再是正弦信号,而包 含有各种谐波分量,发生非线性畸变。
大连民族学院机电信息工程学院
自动控制原理
5)混沌
大连民族学院机电信息工程学院
自动控制原理
非线性系统运动的特殊性
• 不满足叠加原理 — 线性系统理论原则上不能运用 (区别) • 稳定性问题 — 不仅与自身结构参数,且与输入, 初条件有关,平衡点可能不惟一,可以稳定且可以 在多个平衡点稳定,可能不稳定—发散、衰减等 nonlinear • 自振运动— 非线性系统特有的运动形式,产生自 持振荡 • 发生频率激变—频率响应的复杂性 — 跳频响应, 倍/分频响应,组合振荡
大连民族学院机电信息工程学院
自动控制原理
3、滞环(非单值特性)
) x 0 , 且y 0 k ( x a sgn x y =0 y x2 m sgn x
滞环特性会 使系统的相 角裕度减小, 动态性能恶 化,甚至产生 自持振荡。
x2
x2m
x2
x2m
a
0
x1
a
x2m
7.3 描述函数法 7.4 相平面法
7.5 Matlab 在本章中的应用
大连民族学院机电信息工程学院
自动控制原理
7.1 非线性控制系统概述
如果一个控制系统包含一个或一个以上具有非 线性特性的元件或环节,则此系统即为非线性系统。
• 前面研究的线性系统满足叠加性和齐次性; • 严格地说,由于控制元件或多或少地带有非线性特 性,所以实际的自动控制系统都是非线性系统; • 一些系统作为线性系统来分析: ①系统的非线性 不明显,可近似为线性系统。②某些系统的非线性 特性虽然较明显,但在某些条件下,可进行线性化 处理; • 但当系统的非线性特征明显且不能进行线性化处理 时,就必须采用非线性系统理论来分析。这类非线 大连民族学院机电信息工程学院 性称为本质非线性。

自动控制原理第七章

自动控制原理第七章

饱和特性可以由放大器失去放大能力的饱和现象 来说明,其输入输出关系如图所示。 来说明,其输入输出关系如图所示。
饱和特性
它的数学描述为
+ M , e > +e0 f (e ) = ke,−e0 ≤ e ≤ +e0 − M ,e < 0
在放大器的线性工作区内,叠加原理是适用的。 在放大器的线性工作区内,叠加原理是适用的。但 是输入信号正反向过大时, 是输入信号正反向过大时,放大器的工作进入饱和 工作区,就不满足叠加原理了。从图上可以看到, 工作区,就不满足叠加原理了。从图上可以看到, 在饱和点上,信号虽然是连续的,但是导数不存在。 在饱和点上,信号虽然是连续的,但是导数不存在。 饱和特性在控制系统中普遍地存在。 饱和特性在控制系统中普遍地存在。调节器一般都 是电子器件组成的,输出信号不可能再大时, 是电子器件组成的,输出信号不可能再大时,就形 成饱和输出。有时饱和特性是在执行单元形成的, 成饱和输出。有时饱和特性是在执行单元形成的, 如阀门开度不能再大、电磁关系中的磁路饱和等。 如阀门开度不能再大、电磁关系中的磁路饱和等。
滞环特性
一起, 滞环特性表现为正向行程与反向行程不是重叠 一起,在 输入输出曲线上出现闭合环路因此而得名。 输入输出曲线上出现闭合环路因此而得名。滞环特性又 可以称为换向不灵敏特性。滞环特性与死区特性一样, 可以称为换向不灵敏特性。滞环特性与死区特性一样, 通常也是叠加在其它传输关系上的附加特性, 通常也是叠加在其它传输关系上的附加特性,其输入输 出关系如图所示。 出关系如图所示。
摩擦特性
死区特性
死区又称不灵敏区,在不灵敏区内, 死区又称不灵敏区,在不灵敏区内,控制单元的输入端虽 然有输入信号但是其输出为零。 然有输入信号但是其输出为零。死区特性通常是叠加在其 它传输关系上的附加特性,其输入输出关系如图所示。 它传输关系上的附加特性,其输入输出关系如图所示。

自动控制原理第七章非线性系统分析

自动控制原理第七章非线性系统分析

02
非线性系统的分析方法
相平面法
相平面法是一种通过绘制系统的 相图来分析非线性系统的动态行
为的方法。
它通过将系统的状态变量绘制在 二维平面上,显示系统的平衡状 态、周期运动和混沌运动等不同
状态。
相平面法可以用于分析非线性系 统的稳定性、分岔和混沌等现象。
描述函数法
描述函数法是一种通过引入描 述函数来分析非线性系统的频 率特性的方法。
滑模控制是一种变结构控制方法,通过设计滑模面和滑模控制器,使 得系统状态在滑模面上滑动,以达到控制系统的目的。
非线性系统的设计方法
相平面法
通过分析非线性系统的相轨迹,了解系统的动态行为,并 设计适当的控制器来控制系统状态。
描述函数法
通过分析非线性系统的频率特性,了解系统的动态行为, 并设计适当的控制器来控制系统状态。
它通过将非线性系统近似为线 性系统,并利用频率响应函数 来描述系统的频率特性。
描述函数法可以用于分析非线 性系统的谐振、倍周期分岔等 现象。
逆系统法
逆系统法是一种通过构建逆系统来补偿非线性系 统的非线性特性的方法。
它通过设计一个逆系统来抵消原系统的非线性, 从而将非线性系统转化为线性系统进行处理。
根轨迹法
根轨迹法是通过绘制系统的根轨迹图来分析系统的稳定性,根轨迹是指系统的极点随参数变化而变化 的轨迹。
劳斯稳定判据
劳斯稳定判据是判断线性系统稳定性的重要方法之一,其基本思想是通过 计算系统的极点,判断极点是否位于复平面的左半部分。
劳斯稳定判据的优点是简单易行,适用于多变量系统,可以同时考虑系统 的所有极点。
03
非线性系统的稳定性分析
定义与特点
定义
非线性系统的稳定性是指系统在受到 扰动后,能否恢复到原来的平衡状态 。

自动控制原理课程第7章-非线性系统分析

自动控制原理课程第7章-非线性系统分析

有时从系统安全性的考虑,常常加入各种限幅装置,其
特性也属饱和特性。
3.间隙特性(回环特性)
y
b
a
k
0 a
x
bsign. y y K ( x asign y )
y0 y0


-b
间隙特性对系统的影响: 一般来说,间隙使系统输出相位滞后,降低了系统的稳 定裕量,控制系统的动态特性变坏,甚至使系统振荡; 间隙的存在使系统的稳态误差扩大,稳态特性变差。
M y M
(2)死区继电器特性
x0 x0
M y 0 M
x a x a xa
(3)回环继电器特性
x<a M M x>a y x<-a M x<-a M
(4)死区加回环继电器特性
0 M M y 0 M M a1 x a2 x a2 x a1 a2 x a1 x a1 x a2
7.3.1 相平面的基本概念 设二阶非线性系统的微分方程为:
f ( x, x ) 0 x
若令 x1 x, x2 x
则二阶系统可写成两个一阶微分方程,即
1 x2 x 2 f ( x1 , x2 ) x
dx2 f ( x1 , x2 ) dx1 x2
0 x
0 x
0 x
0 x
7.3 相平面分析法 相平面法是庞加莱(Poincare)提出的,它是一种求 解二阶非线性微分方程组的图解法,它比较直观、准
确地反映系统的稳定性、平衡状态的特性、不同初始
状态和输入信号下系统的运动形式。虽然相平面法适 用一阶、二阶非线性控制系统的分析,但它形成特定 的相平面法,它对弄清高阶非线性系统的稳定性、极 限环等特殊现象,也起到了直观形象的作用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1, x 0 signx 1, x 0
0
xa
y k( x asignx) x a
3 滞环特性
滞环特性表现为正向与反向特性不是重叠在一起,而是
在输入--输出曲线上出现闭合环路。其静特性曲线如图7-3
所示。其数学表达式为:
y
b
y
k(
x asignx) bsignx
y0 y0
-a
0a
x
(优选)自动控制原理第七章 非线性系统
7.1 典型非线性特性
在控制系统中,若控制装置或元件其输入输出间的静 特性曲线,不是一条直线,则称为非线性特性。如果这 些非线性特性不能采用线性化的方法来处理,称这类非 线性为本质非线性。为简化对问题的分析,通常将这些 本质非线性特性用简单的折线来代替,称为典型非线性 特性。 7.1.1 典型非线性特性的种类
描述函数法是非线性系统的一种近似分析方法。首先利用描 述函数将非线性元件线性化,然后利用线性系统的频率法对系统 进行分析。它是线性理论中的频率法在非线性系统中的推广,不 受系统阶次的限制。
分析内容主要是非线性系统的稳定性和自振荡稳态,一 般不给出时域响应的确切信息。 7.2.1 描述函数的定义
1.描述函数的应用条件
2.死区特性
死区又称不灵敏区,在死区内虽有输入信号,但其输
出为零,其静持性关系如图7-2所示。
y
其数学表达式为
k -a
0a
x
0,| x | a
y
k(x
a),
x
a
k( x a), x a
若引入符号函数
图7-2 死区特性
死区小时,可忽略;大 时,需考虑。工程中,为抗 干扰,有时故意引入。比如 操舵系统。
(2)可能存在自激振荡
无外界周期信号输入时产生的具有固定振幅 和频率的稳定振荡。对于线性二阶系统,也会出
现等幅振荡,但不会是稳定的振荡(Why?)。
(3)频率响应
对于线性系统,输入是正弦函数时,其稳态 输出也是同频率的正弦函数,可以用频率特性来 描述;而非线性系统输出是非正弦周期函数。
可见,非线性系统要比线性系统复杂的多,会 存在多种运动状态。已无法用线性系统理论解释或 分析,必须应用非线性理论来研究。
(a)理想继电器特性 (b)死区继电器特性(c)滞环继电器特性
特殊情况:
y
(1)若a=0,称这种特性为理想继电
b
器特性,如图7-5 (a)所示.
-a -ma
(2)若m=1,其静特性如图7-5(b)所示, 则称为死区继电器特性.
0 ma a
x
(3)若m=-1,则称为滞环继电器特性,
-b
如图7-5(c)所示。
-b
图7-3 滞环特性
这类特性,当输入信号小于间隙a时,输出不变。当x>a 时,输出线性变化;输入反向时,输出保持在方向发生变 化时的输出值上,直到变化2a后,才再线性变化。
例如:铁磁材料,齿轮的齿隙,液压传动中的间隙等。
4 继电器特性
继电器非线性特性一般可用图7-4表示,不仅包含 死区,而且还具有滞环特性,其数学表达式为:
图7-4 继电器特性
实际系统中,各种开关元件都具有继电器特性。
上述介绍的是一些典型特性。实际中的非线性还 有好多复杂的情况,有些是它们的组合;还有一 些很难用一般的函数来描述,可以称为不规则非 线性。
7.1.2 非线性系统的若干特征
非线性系统与线性系统最本质的区别为:由非 线性微分方程描述,不满足叠加原理,故在非线 性系统中将出现一些线性系统见不到的现象,两 者之间有着不同的运动规律。
具体表现在:
(1)稳定性的复杂性
对于线性系统,其稳定性仅与系统的结构和参数有关,与系
统的输入信号及初始条件无关。而非线性系统却复杂的多。
ห้องสมุดไป่ตู้
考虑非线性一阶系统:
x x2 x x( x 1)
x(t)
设t = 0时,系统的初始状态为x0
dx dt x( x 1)
x(t )
1
x0e t x0 x0et
实质上是应用谐波线性化的方法,将非线性特性线性化, 然后用频域法的结论来研究非线性系统,它是线性理论 中的频率法在非线性系统中的推广,不受系统阶次的限 制。
(2)相平面法(本质非线性):图解法。通过在相平 面上绘制相轨迹,可以求出微分方程在任何初始条件下 的解。是一种时域分析法,仅适用于一阶和二阶系统。
(1)非线性系统的结构图可简化成一个非线性环节N和 一个线性部分G(s)串联的闭环结构,如图7-8所示。
7.1.3 非线性系统的分析方法
非线性的数学模型为非线性微分方程,大多数尚无 法直接求解。到目前为止,非线性系统的研究还不成熟, 结论不能像线性系统那样具有普遍意义,一般要针对系 统的结构,输入及初始条件等具体情况进行分析。工程 上常用的方法有以下几种:
(1)描述函数法(本质非线性):是一种频域分析法,
1.饱和特性
饱和特性的静特性曲线如图7-1所示,其数学表达式 为:
y
M k
-a 0a
-M
M,x a
y
kx , |
x |
a
x
M , x a
图7-1 饱和特性
式中,a为线性区宽度;k为线性区斜率。饱和 特性的特点是:输入信号超过某一范围后,输出不 再随输入的变化而变化,而是保持在某一常值上。 饱和特性在控制系统中是普遍存在的,常见的调节 器就具有饱和特性。
y b
-a -ma 0 ma a -b
图7-4 继电器特性
x
0 ma x a, x 0
y
bsi0gnx
a
x ma, x x a
0
b b
ma x a, x 0 a x ma, x 0
y
y
y
b
b
b
-a
0
x
0a x
-a 0 a
x
-b
-b
-b
(a)
(b)
(c)
图7-5 三种继电器特性
1
相应的时间响应随初始条件而变。 0
当x0 >1,t <lnx0/(x0 1) 时,随t增大, x(t) 递增;t = lnx0 /(x0 1) 时,x(t)为 无穷大。当x0<1时,x(t) 递减并趋于0。
x0>1 x0<1
ln
x0 t x0 1
因此非线性系统的稳定性不仅与系统的结构和参数有关, 而且与系统的初始条件有直接的关系。
(3)计算机求解法:用计算机直接求解非线性微分方 程,对于分析和设计复杂的非线性系统是非常有效的。
本章以系统分析为主,而且是以稳定性分析为核心 内容,着重介绍在工程上广泛应用的描述函数法。
※7.2 描述函数法
• 描述函数的定义
• 描述函数的求法 • 组合非线性特性的描述函数 • 用描述函数法分析非线性系统
相关文档
最新文档