高中数学函数相关知识点整理.doc
高中数学函数知识点(详细)

第二章 函数一.函数1、函数的概念:〔1〕定义:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作:y =)(x f ,x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{)(x f | x ∈A }叫做函数的值域. 〔2〕函数的三要素:定义域、值域、对应法那么〔3〕相同函数的判断方法:①表达式相同〔与表示自变量和函数值的字母无关〕;②定义域一致 (两点必须同时具备)2、定义域:〔1〕定义域定义:函数)(x f 的自变量x 的取值范围。
〔2〕确定函数定义域的原那么:使这个函数有意义的实数的全体构成的集合。
〔3〕确定函数定义域的常见方法:①假设)(x f 是整式,那么定义域为全体实数②假设)(x f 是分式,那么定义域为使分母不为零的全体实数 例:求函数xy 111+=的定义域。
③假设)(x f 是偶次根式,那么定义域为使被开方数不小于零的全体实数例1. 求函数 ()2143432-+--=x x xy 的定义域。
例2. 求函数()02112++-=x x y 的定义域。
④对数函数的真数必须大于零⑤指数、对数式的底必须大于零且不等于1⑥假设)(x f 为复合函数,那么定义域由其中各根本函数的定义域组成的不等式组来确定⑦指数为零底不可以等于零,如)0(10≠=x x⑧实际问题中的函数的定义域还要保证实际问题有意义. 〔4〕求抽象函数〔复合函数〕的定义域函数)(x f 的定义域为[0,1]求)(2x f 的定义域 函数)12(-x f 的定义域为[0,1〕求)31(x f -的定义域3、值域 :〔1〕值域的定义:与x 相对应的y 值叫做函数值,函数值的集合叫做函数的值域。
〔2〕确定值域的原那么:先求定义域 〔3〕常见根本初等函数值域:一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数〔正余弦、正切〕〔4〕确定函数值域的常见方法:①直接法:从自变量x 的范围出发,推出()y f x =的取值范围。
高中数学函数知识点梳理

高中數學函數知識點梳理1. .函數的單調性(1)設[]2121,,x x b a x x ≠∈⋅那麼[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函數; []1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是減函數. (2)設函數)(x f y =在某個區間內可導,如果0)(>'x f ,則)(x f 為增函數;如果0)(<'x f ,則)(x f 為減函數.注:如果函數)(x f 和)(x g 都是減函數,則在公共定義域內,和函數)()(x g x f +也是減函數;如果函數)(u f y =和)(x g u =在其對應的定義域上都是減函數,則複合函數)]([x g f y =是增函數. 2. 奇偶函數的圖象特徵奇函數的圖象關於原點對稱,偶函數的圖象關於y 軸對稱;反過來,如果一個函數的圖象關於原點對稱,那麼這個函數是奇函數;如果一個函數的圖象關於y 軸對稱,那麼這個函數是偶函數.注:若函數)(x f y =是偶函數,則)()(a x f a x f --=+;若函數)(a x f y +=是偶函數,則)()(a x f a x f +-=+.注:對於函數)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,則函數)(x f 的對稱軸是函數2b a x +=;兩個函數)(a x f y +=與)(x b f y -= 的圖象關於直線2b a x +=對稱. 注:若)()(a x f x f +--=,則函數)(x f y =的圖象關於點)0,2(a 對稱;若)()(a x f x f +-=,則函數)(x f y =為週期為a 2的週期函數.3. 多項式函數110()n n n n P x a x a x a --=+++的奇偶性多項式函數()P x 是奇函數⇔()P x 的偶次項(即奇數項)的係數全為零.多項式函數()P x 是偶函數⇔()P x 的奇次項(即偶數項)的係數全為零.23.函數()y f x =的圖象的對稱性(1)函數()y f x =的圖象關於直線x a =對稱()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函數()y f x =的圖象關於直線2a b x +=對稱()()f a mx f b mx ⇔+=- ()()f a b mx f mx ⇔+-=.4. 兩個函數圖象的對稱性(1)函數()y f x =與函數()y f x =-的圖象關於直線0x =(即y 軸)對稱. (2)函數()y f mx a =-與函數()y f b mx =-的圖象關於直線2a b x m +=對稱. (3)函數)(x f y =和)(1x f y -=的圖象關於直線y=x 對稱.25.若將函數)(x f y =的圖象右移a 、上移b 個單位,得到函數b a x f y +-=)(的圖象;若將曲線0),(=y x f 的圖象右移a 、上移b 個單位,得到曲線0),(=--b y a x f 的圖象.5. 互為反函數的兩個函數的關係a b f b a f =⇔=-)()(1.27.若函數)(b kx f y +=存在反函數,則其反函數為])([11b x f k y -=-,並不是)([1b kx f y +=-,而函數)([1b kx f y +=-是])([1b x f ky -=的反函數. 6. 幾個常見的函數方程 (1)正比例函數()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指數函數()x f x a =,()()(),(1)0f x y f x f y f a +==≠.(3)對數函數()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.(4)冪函數()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函數()cos f x x =,正弦函數()sin g x x =,()()()()()f x y f x f y g x g y -=+, 0()(0)1,lim 1x g x f x→==. 7. 幾個函數方程的週期(約定a>0)(1))()(a x f x f +=,則)(x f 的週期T=a ;(2)0)()(=+=a x f x f , 或)0)(()(1)(≠=+x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x +=+∈,則)(x f 的週期T=2a ; (3))0)(()(11)(≠+-=x f a x f x f ,則)(x f 的週期T=3a ; (4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,則)(x f 的週期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,則)(x f 的週期T=5a ;(6))()()(a x f x f a x f +-=+,則)(x f 的週期T=6a. 8. 分數指數冪(1)m n a=(0,,a m n N *>∈,且1n >). (2)1mn mn a a-=(0,,a m n N *>∈,且1n >).(2)當n a =;當n,0||,0a a a a a ≥⎧==⎨-<⎩. 10. 有理指數冪的運算性質(1)(0,,)r s r s a a a a r s Q +⋅=>∈.(2)()(0,,)r s rs a a a r s Q =>∈.(3)()(0,0,)r r r ab a b a b r Q =>>∈.注:若a >0,p 是一個無理數,則a p 表示一個確定的實數.上述有理指數冪的運算性質,對於無理數指數冪都適用.33.指數式與對數式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.34.對數的換底公式log log log m a m N N a=(0a >,且1a ≠,0m >,且1m ≠, 0N >). 推論 log log m n a a n b b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). 11. 對數的四則運算法則若a >0,a ≠1,M >0,N >0,則(1)log ()log log a a a MN M N =+; (2)log log log aa a M M N N=-; (3)log log ()n a a M n M n R =∈. 注:設函數)0)((log )(2≠++=a c bx ax x f m ,記ac b 42-=∆.若)(x f 的定義域為R ,則0>a ,且0<∆;若)(x f 的值域為R ,則0>a ,且0≥∆.對於0=a 的情形,需要單獨檢驗.12. 對數換底不等式及其推論若0a >,0b >,0x >,1x a≠,則函數log ()ax y bx = (1)當a b >時,在1(0,)a 和1(,)a+∞上log ()ax y bx =為增函數. (2)(2)當a b <時,在1(0,)a 和1(,)a +∞上log ()ax y bx =為減函數. 推論:設1n m >>,0p >,0a >,且1a ≠,則(1)log ()log m p m n p n ++<.(2)2log log log 2a a am n m n +<.。
高中函数知识点总结(最新最全)

高中数学函数知识点归纳1. .函数的单调性(1)设那么上是增函数;上是减函数.(2)设函数在某个区间内可导,如果,则为增函数;如果,则为减函数.2. 奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.3. 多项式函数的奇偶性多项式函数是奇函数的偶次项(即奇数项)的系数全为零.多项式函数是偶函数的奇次项(即偶数项)的系数全为零.23.函数的图象的对称性(1)函数的图象关于直线对称.(2)函数的图象关于直线对称.4. 两个函数图象的对称性(1)函数与函数的图象关于直线(即轴)对称.(2)函数与函数的图象关于直线对称.(3)函数和的图象关于直线y=x对称.25.若将函数的图象右移、上移个单位,得到函数的图象;若将曲线的图象右移、上移个单位,得到曲线的图象.5. 互为反函数的两个函数的关系.27.若函数存在反函数,则其反函数为,并不是,而函数是的反函数.6. 几个常见的函数方程(1)正比例函数,.(2)指数函数,.(3)对数函数,.(4)幂函数,.(5)余弦函数,正弦函数,,.7. 几个函数方程的周期(约定a>0)(1),则的周期T=a;(2),或,或,或,则的周期T=2a;(3),则的周期T=3a;(4)且,则的周期T=4a;(5),则的周期T=5a;(6),则的周期T=6a.8. 分数指数幂(1)(,且).(2)(,且).9. 根式的性质(1).(2)当为奇数时,;当为偶数时,.10. 有理指数幂的运算性质(1).(2).(3).33.指数式与对数式的互化式.34.对数的换底公式(,且,,且,).推论(,且,,且,,).11. 对数的四则运算法则若a>0,a≠1,M>0,N>0,则(1);(2);(3).。
(完整word版)高中数学公式及知识点总结大全(精华版)(word文档良心出品)

高中文科数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。
奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。
3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.*二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+- 4、几种常见函数的导数①'C 0=;②1')(-=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a xx ln )('=;⑥xx e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v -=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 指数函数、对数函数分数指数幂(1)m na =0,,a m n N *>∈,且1n >).(2)1m nm naa-==(0,,a m n N *>∈,且1n >).根式的性质(1)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.有理指数幂的运算性质(1) r sa a⋅=(2) ()r s rsa a=(3)()r rab a b=注:若a>0,指数幂都适用..(0,1,0)a a N>≠>..1a≠,0m>,且1m≠,0N>).对数恒等式:).推论logmnab).常见的函数图象822sin cosθθ+9απ±kα看成锐角时该函数的符号;αππ±+2kα看成锐角时该函数的符号。
高中数学知识点总结最全版doc

高中数学知识点总结最全版doc一、集合与函数概念1. 集合的含义、表示方法以及集合与集合之间的关系;2. 函数的概念、函数的性质、函数的运算;3. 函数的图像、函数的变换(平移、对称、伸缩);4. 常见函数类型:一次函数、二次函数、幂函数、指数函数、对数函数、三角函数等。
二、数列1. 数列的概念及表示;2. 等差数列、等比数列的定义、通项公式、求和公式;3. 数列的极限概念及其计算;4. 数列的实际应用问题。
三、三角函数1. 三角函数的定义、性质;2. 三角恒等变换;3. 三角函数的图像及性质;4. 解三角形问题:正弦定理、余弦定理。
四、平面向量1. 向量的概念、线性运算;2. 向量的坐标表示、数量积;3. 向量的数量积的计算及其应用;4. 向量的夹角及其计算。
五、立体几何1. 空间几何体的性质;2. 空间直线与平面的位置关系;3. 立体图形的表面积与体积计算;4. 空间向量在立体几何中的应用。
六、解析几何1. 直线与圆的方程;2. 圆锥曲线(椭圆、双曲线、抛物线)的标准方程;3. 曲线与方程的关系;4. 坐标变换。
七、概率与统计1. 随机事件与概率的定义;2. 概率的计算方法:加法公式、乘法公式、条件概率、贝叶斯公式;3. 随机变量及其分布列、期望值、方差;4. 统计量的概念、样本及其分布、估计理论。
八、数学归纳法1. 数学归纳法的原理;2. 完全归纳法与不完全归纳法;3. 数学归纳法的应用。
九、复数1. 复数的概念、代数形式和几何意义;2. 复数的运算;3. 复数的极限、导数和积分。
十、数学思想方法1. 函数与方程的思想;2. 转化与化归的思想;3. 数形结合的思想;4. 统计与概率的思想。
结语高中数学是一门基础学科,涵盖了丰富的知识点和多样的解题方法。
掌握这些知识点不仅能够帮助学生在学术上取得优异的成绩,更能培养他们的逻辑思维能力和解决问题的能力。
通过系统地学习和练习,学生可以逐步提高自己的数学素养,为未来的学习和生活打下坚实的基础。
高中数学函数知识点总结(精华版)知识分享

高中数学函数知识点总结(精华版)知识分
享
高中数学函数知识点总结(精华版)知识分享
1. 函数的定义和性质
- 定义:函数是一个将各个元素从一个集合映射到另一个集合的规则。
- 函数的性质:单调性、奇偶性、周期性等。
2. 基本函数
- 幂函数:y = x^n,n为常数,图像为直线或曲线。
- 三角函数:包括正弦函数、余弦函数、正切函数等,图像具有周期性。
- 指数函数:y = a^x,a为正常数,图像单调递增或递减。
- 对数函数:y = log_a(x),a为正常数,图像单调递增或递减。
3. 函数的运算与变换
- 四则运算:加法、减法、乘法、除法。
- 复合运算:由两个或多个函数构成一个新的函数。
- 反函数:原函数与定义域互为值域的函数。
- 平移、压缩、翻折等函数的变换。
4. 函数的图像与性质
- 函数图像的绘制和分析方法。
- 函数的最值、零点、极值等特性。
5. 函数的应用
- 函数在物理、经济等领域的应用。
- 函数在数学建模中的应用。
6. 解函数方程
- 求函数方程的解法与步骤。
以上是高中数学函数知识点的精华总结和知识分享。
掌握这些知识能够帮助学生更好地理解和应用函数概念,提升数学能力。
注:本文档内容仅为总结分享,并不保证所有内容的正确性,请酌情参考。
高中数学知识点函数(最全)

高中数学第二章-函数考试内容:映射、函数、函数的单调性、奇偶性. 反函数.互为反函数的函数图像间的关系.指数概念的扩充.有理指数幂的运算性质.指数函数. 对数.对数的运算性质.对数函数. 函数的应用. 考试要求:(1)了解映射的概念,理解函数的概念.(2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法. (3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数. (4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像 和性质.(5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质. (6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.§02. 函数 知识要点一、本章知识网络结构:F:A B对数函数指数函数二、知识回顾: (一) 映射与函数 1. 映射与一一映射 2.函数函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数. 3.反函数反函数的定义 设函数))((A x x f y ∈=的值域是C ,根据这个函数中x,y 的关系,用y 把x 表示出,得到x=ϕ(y). 若对于y 在C 中的任何一个值,通过x=ϕ(y),x 在A 中都有唯一的值和它对应,那么,x=ϕ(y)就表示y 是自变量,x 是自变量y 的函数,这样的函数x=ϕ(y) (y ∈C)叫做函数))((A x x f y ∈=的反函数,记作)(1y f x -=,习惯上改写成)(1x f y -=(二)函数的性质 ⒈函数的单调性定义:对于函数f(x)的定义域I 内某个区间上的任意两个自变量的值x 1,x 2,⑴若当x 1<x 2时,都有f(x 1)<f(x 2),则说f(x)在这个区间上是增函数; ⑵若当x 1<x 2时,都有f(x 1)>f(x 2),则说f(x) 在这个区间上是减函数.若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数.2.函数的奇偶性正确理解奇、偶函数的定义。
高中数学函数知识点归纳

高中数学函数知识点归纳高中数学函数知识点归纳 11.函数的定义函数是高考数学中的重点内容,学习函数需要首先掌握函数的各个知识点,然后运用函数的各种性质来解决具体的问题。
设a、b是非空的数集,如果按照某种确定的对应关系f,使对于集合a中的任意一个数x,在集合b中都有唯一确定的数f(x)和它对应,那么就称f:a->b为从集合a到集合b的一个函数,记作y=f(x),x∈a2.函数的定义域函数的定义域分为自然定义域和实际定义域两种,如果给定的函数的解析式(不注明定义域),其定义域应指的是使该解析式有意义的自变量的取值范围(称为自然定义域),如果函数是有实际问题确定的,这时应根据自变量的实际意义来确定,函数的值域是由全体函数值组成的集合。
3.求解析式求函数的解析式一般有三种种情况:(1)根据实际问题建立函数关系式,这种情况需引入合适的变量,根据数学的有关知识找出函数关系式。
(2)有时体中给出函数特征,求函数的解析式,可用待定系数法。
(3)换元法求解析式,f[h(x)]=g(x)求f(x)的问题,往往可设h(x)=t,从中解出x,代入g(x)进行换元来解。
掌握求函数解析式的前提是,需要对各种函数的性质了解且熟悉。
目前我们已经学习了常数函数、指数与指数函数、对数与对数函数、幂函数、三角函数、反比例函数、二次函数以及由以上几种函数加减乘除,或者复合的一些相对较复杂的函数,但是这种函数也是初等函数。
高中数学函数知识点归纳 2(1)高中函数公式的变量:因变量,自变量。
在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。
(2)一次函数:①若两个变量,间的关系式可以表示成(为常数,不等于0)的形式,则称是的一次函数。
②当=0时,称是的正比例函数。
(3)高中函数的一次函数的图象及性质①把一个函数的自变量与对应的因变量的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。
高中函数相关知识点总结

高中函数相关知识点总结一、函数的定义在数学中,函数是一种特殊的关系,它把一个集合中的元素对应到另一个集合中的唯一元素。
一般来说,它表示为y=f(x),其中x是自变量,y是因变量,f(x)表示自变量x经过函数f的映射后得到的值。
如果对于集合X中的每一个元素x,都有唯一确定的y与之对应,则称f是X到Y的函数,记作:f: X→Y这里X称为定义域,Y称为值域。
二、函数的性质1. 定义域和值域函数的定义域是指自变量可能取值的集合,值域是函数实际上可能取值的集合。
在绘制函数的图像时,定义域和值域可以帮助我们确定图像的范围。
2. 奇函数和偶函数奇函数的图像关于原点对称,即f(-x)=-f(x),而偶函数的图像关于y轴对称,即f(-x)=f(x)。
常见的奇函数包括正弦函数、余弦函数,而常见的偶函数包括幂函数、指数函数等。
3. 单调性函数的单调性指的是函数的增减性质,如果在定义域上任意两个点x1和x2,当x1小于x2时,f(x1)小于f(x2),则称函数为增函数;反之,若f(x1)大于f(x2),则称函数为减函数。
4. 周期性函数的周期性指的是当自变量x增加一个周期时,函数的值会重复出现。
例如正弦函数和余弦函数就是周期函数,它们的周期为2π。
三、函数的图像在数学中,函数的图像是非常重要的,通过函数的图像可以直观地了解函数的性质,帮助我们解决各种问题。
对于不同类型的函数,它们的图像有着不同的特点。
1. 直线函数直线函数的图像是一条直线,其一般表达式为y=kx+b,其中k为斜率,b为截距。
2. 幂函数幂函数的图像是一条曲线,其一般表达式为y=x^n,其中n为常数。
3. 指数函数指数函数的图像是一条曲线,其一般表达式为y=a^x,其中a为底数,a大于1时函数是增函数,a小于1时函数是减函数。
4. 对数函数对数函数的图像是一条曲线,其一般表达式为y=loga(x),其中a为底数。
5. 三角函数正弦函数的图像是一条波浪线,其一般表达式为y=Asin(Bx+C)+D,其中A、B、C、D为常数。
高中数学函数的性质知识点整理

一、函数(一)、函数的单调性1、定义:一般地,设函数f(x)的定义域为I,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1 ,x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说函数f(x)在区间D 上是增函数; 当x 1<x 2时,都有f(x 1)>f(x 2),那么就说函数f(x)在区间D 上是减函数。
单调性定义的等价形式:设x 1,x 2∈[a,b],x 1≠x 2.(1)若有(x 1-x 2)[f(x 1)-f(x 2)]>0或>0,则f(x)在闭区间[a,b]上是增函数;(2)若有(x 1-x 2)[f(x 1)-f(x 2)]<0或<0,则f(x)在闭区间[a,b]上是减函数.2、常用结论(1)若f(x),g(x)均为区间A 上的增(减)函数,则f(x)+g(x)也是区间A 上的增(减)函数. (2)若k>0,则kf(x)与f(x)单调性相同;若k<0,则kf(x)与f(x)单调性相反.(3)函数y=f(x)(f(x)>0)在公共定义域内与y=-f(x),y=的单调性相反.(4)函数y=f(x)(f(x)≥0)在公共定义域内与y=的单调性相同.(5)复合函数单调性的确定方法:若两个简单函数的单调性相同,则这两个函数的复合函数为增函数;若两个简单函数的单调性相反,则这两个函数的复合函数为减函数.简称“同增异减”. (二)、函数的奇偶性1.函数奇偶性的定义:函数()f x 的定义域必须关于原点对称,对定义域内的任意一个x 都满足 ①()()f x f x -=⇔函数()f x 为偶函数;②()()()()0f x f x f x f x -=-⇔-+=⇔函数()f x 为奇函数.2.奇函数的图像关于原点对称,偶函数的图像关于y 轴对称;反过来如果一个函数的图像关于原点对称,则该函数为奇函数,若该函数的图像关于y 轴对称,该函数为偶函数. 3.函数奇偶性的性质①既是奇函数又是偶函数的函数只有一种类型,即()0f x =,x D ∈,其中定义域D 是关于原点对称的非空数集.②奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.即奇函数()f x 在区间[,](0)a b a b ≤<上单调递增(减),则()f x 在区间[,]b a --上也是单调递增(减); ③偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.即偶函数()f x 在区间[,](0)a b a b ≤<上单调递增(减),则()f x 在区间[,]b a --上也是单调递减(增); ④任意定义在R 上的函数()f x 都可以唯一地表示成一个奇函数与一个偶函数的和.即()()()()()22f x f x f x f x f x +---=+(三)、函数的对称性1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称2、轴对称的等价描述:(1)()()f a x f a x -=+⇔()f x 关于x a =轴对称(当0a =时,恰好就是偶函数)特别的(2)()()()f a x f b x f x -=+⇔关于2a bx +=轴对称; (3)()f x a +是偶函数,则()()f x a f x a +=-+,进而可得到:()f x 关于x a =轴对称.本结论也可通过图像变换来理解,()f x a +是偶函数,则()f x a +关于0x =轴对称,而()f x 可视为()f x a +平移了a 个单位(方向由a 的符号决定),所以()f x 关于x a =对称. 3、中心对称的等价描述:(1)()()f a x f a x -=-+⇔()f x 关于(),0a 中心对称(当0a =时,恰好就是奇函数); (2)()()()f a x f b x f x -=-+⇔关于,02a b +⎛⎫⎪⎝⎭中心对称;(3)()f x a +是奇函数,则()()f x a f x a +=--+,进而可得到:()f x 关于(),0a 中心对称。
最新高中数学知识点总结(最全版)

高中数学 必修1知识点1 第一章 函数概念2 (1)函数的概念3 ①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在4 集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对5 应法则f )叫做集合A 到B 的一个函数,记作:f A B →.6 ②函数的三要素:定义域、值域和对应法则.7 ③只有定义域相同,且对应法则也相同的两个函数才是同一函数. 8 (2)区间的概念及表示法9 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足10 a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合11 叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记12 做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.13注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须14 a b <,(前者可以不成立,为空集;而后者必须成立). 15 (3)求函数的定义域时,一般遵循以下原则:16 ①()f x 是整式时,定义域是全体实数.17②()f x 是分式函数时,定义域是使分母不为零的一切实数.18 ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.19 ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. 20 ⑤tan y x =中,()π⑥零(负)指数幂的底数不能为零.22 ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初23 等函数的定义域的交集.24 ⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数25 [()]f g x 的定义域应由不等式()a g x b ≤≤解出.26 ⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. 27 ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. 28 (4)求函数的值域或最值29 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中30 存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质31 是相同的,只是提问的角度不同.求函数值域与最值的常用方法:32 ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.33 ②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围34 确定函数的值域或最值.35 ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程36 2()()()0a y x b y x c y ++=37则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值38 域或最值.39 ④不等式法:利用基本不等式确定函数的值域或最值.40 ⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问41 题转化为三角函数的最值问题.42 ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. 43 ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. 44 ⑧函数的单调性法.45(5)函数的表示方法4647表示函数的方法,常用的有解析法、列表法、图象法三种.48解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两49个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.50(6)映射的概念51①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B52中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫53做集合A到B的映射,记作:f A B→.54②给定一个集合A到集合B的映射,且,∈∈.如果元素a和元素b对应,那么我们把a Ab B55元素b叫做元素a的象,元素a叫做元素b的原象.56(6)函数的单调性57①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一58 个减函数为增函数,减函数减去一个增函数为减函数.59 ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =60 为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,61则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.62 (7)打“√”函数()(0)af xx a x=+>的图象与性质63()f x 分别在(,]a -∞-、[,)a +∞上为增函数,64 分别在[,0)a -、(0,]a 上为减函数. 65 (8)最大(小)值定义66 ①一般地,设函数()y f x =的定义域为I ,如果存67在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;68 (2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.69②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都70 有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作71 max ()f x m =.72 (9)函数的奇偶性73 ①定义及判定方法74函数的性 质定义图象判定方法函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇.函数...(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=f(x).......,那么函数f(x)叫做偶函..数.. (1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.75 ③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相76 反.77 ④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个78 偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数. 79 第二章 基本初等函数(Ⅰ) 80 〖2.1〗指数函数81 【2.1.1】指数与指数幂的运算 82 (1)根式的概念83 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次84 n a n 是偶数时,正数a 的正的n n a 负的n 次方根用符85号0的n 次方根是0;负数a 没有n 次方根.86 n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;87 当n 为偶数时,0a ≥.88 ③根式的性质:n a =;当n 为奇数时,a =;当n 为偶数时,89 (0)|| (0) a a a a a ≥⎧==⎨-<⎩. 90(2)分数指数幂的概念91 ①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于92 0.93②正数的负分数指数幂的意义是: 1()0,,,mm n n aa m n N a -+==>∈且1)n >.0的负分数94 指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. 95 (3)分数指数幂的运算性质96 ①(0,,)r s r s a a a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ 97③()(0,0,)r r r ab a b a b r R =>>∈ 98 【2.1.2】指数函数及其性质 99 (4)指数函数100101 〖2.2〗对数函数102 【2.2.1】对数与对数运算 103 (1)对数的定义104 ①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N105叫做真数. 106 ②负数和零没有对数.107 ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. 108 (2)几个重要的对数恒等式109 log 10a =,log 1a a =,log b a a b =.110 (3)常用对数与自然对数111 常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). 112(4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么113①加法:log log log ()a a a M N MN += ②减法:log log log a a a MM N N-= 114③数乘:log log ()n a a n M M n R =∈ ④log a N a N =115⑤log log (0,)b n a a nM M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a bN N b b a =>≠且 116【2.2.2】对数函数及其性质 117 (5)对数函数118(6)反函数的概念119 设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果120 对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式121 子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯122 上改写成1()y f x -=. 123 (7)反函数的求法124 ①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=; 125③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域. 126 (8)反函数的性质127 ①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.128②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域. 129③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上. 130 ④一般地,函数()y f x =要有反函数则它必须为单调函数. 131 〖2.3〗幂函数 132 (1)幂函数的定义133一般地,函数y xα134=叫做幂函数,其中x为自变量,α是常数.135136137138139140141142143144145146147148149150151152153154155156(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象157 分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点158 对称);是非奇非偶函数时,图象只分布在第一象限.159 ②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).160③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函161 数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.162④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中163 ,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则164 qpy x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.165 ⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,166 其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直167 线y x =下方.168 〖补充知识〗二次函数 169 (1)二次函数解析式的三种形式170 ①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:171 12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法172 ①已知三个点坐标时,宜用一般式.173 ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. 174 ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. 175 (3)二次函数图象的性质176①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是177 24(,)24b ac b a a--. 178②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a=-时,179 2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba -+∞上递减,180当2bx a=-时,2max 4()4ac b f x a -=.181③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点182 ********(,0),(,0),||||||M x M x M M x x a =-=. 183(4)一元二次方程20(0)ax bx c a ++=≠根的分布184 一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但185 尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)186 的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.187 设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从188以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函189 数值符号. 190 ①k <x 1≤x 2 ⇔191192 ②x 1≤x 2<k ⇔193194 ③x 1<k <x 2 ⇔ af (k )<0195196 ④k 1<x 1≤x 2<k 2 ⇔ 197198199 ⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔f (k 1)f (k 2)<0,并同时考虑200 f (k 1)=0或f (k 2)=0这两种情况是否也符合201202203⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 204 此结论可直接由⑤推出.205 (5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值206 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+.207 (Ⅰ)当0a >时(开口向上) 208 ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a=- ③若2b q a ->,则()m f q = 209210 211 212 213 214 215 216 217 ①若02b x a -≤,则()M f q =b ()f p 218 219 220 221 2222230x 0x225226 (Ⅱ)当0a <时(开口向下) 227 ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a=- ③若2bq a ->,则()M f q = 228229 230 231 232 233 234235 236 237 ①若02b x a -≤,则()m f q = ②02b xa->,则()m f p =.238 239 240 241 242 243244ff fx246 第三章 函数的应用247 一、方程的根与函数的零点248 1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数249 ))((D x x f y ∈=的零点。
高中数学函数知识点

高中数学函数知识点一、二次函数1、二次函数的解析式:(1)一般式: y=ax 2+bx+c (a ≠0),(2)顶点式:y=a (x+m )2+k (a ≠0),此时二次函数的顶点坐标为(-m ,k )(3)零点式:y=a (x-x 1)(x-x 2)其中x 1、x 2是二次函数与x 轴的两个交点的横坐标,此时二次函数的对称轴为直线x=221x x +;2、二次函数的图象与性质:(1)开口方向:当a>0时,函数开口方向向上;当a<0时,函数开口方向向下; (2)对称轴:直线x=-b/2a ; (3)顶点坐标:(ab 2-,ab ac 442-);(4)增减性:当a>0时,在对称轴左侧,y 随着x 的增大而减少;在对称轴右侧,y 随着x 的增大而增大;当a<0时,在对称轴左侧,y 随着x 的增大而增大;在对称轴右侧,y 随着x 的增大而减少;(5)最大或最小值:当a>0时,函数有最小值,并且当x=ab 2-,y 最小值=ab ac 442-;当a<0时,函数有最大值,并且当x=ab 2-,y 最大值=ab ac 442-;(6)与X 轴的交点个数:当Δ=b 2-4ac>0时,函数与X 轴有两个不同的交点;Δ=b 2-4ac <0时,函数与X 轴没有交点;Δ=b 2-4ac =0时;函数与X 轴只有一个交点; (7)函数值的正、负性:如图1:当x <x 1或x >x 2时,y > 0;当x 1<x <x 2时,y <0; 如图2:当x 1<x <x 2时,y >0;当x <x 1或x >x 2时,y < 0;(8)二次函数y=ax 2+bx+c (a ≠0) 中a 、b 、c 的符号判别:(1)a 的符号判别由开口方向确定:当开口向上时,a >0;当开口向下时,a <0;(2)c 的符号判别由与Y 轴的交点来确定:若交点在X 轴的上方,则c >0;若交点在X 轴的下方,则C <0;(3)b 的符号由对称轴来确定:对称轴在Y 轴的左侧,则a 、b 同号;若对称轴在Y 轴的右侧,则a 、b 异号;(9)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax的两个根,故acx x a b x x =⋅-=+2121,()()aaac b a c a b x x x x x x x x AB ∆=-=-⎪⎭⎫⎝⎛-=--=-=-=4442221221221213.二次函数与一元二次方程之根的分布所谓一元二次方程,实质就是其相应二次函数的零点(图象与x 轴的交点问题,因此,二次方程的实根分布问题,即二次方程的实根在什么区间内的问题,借助于二次函数及其图象利用数形结合的方法来研究是非常有益的.设()()20f x ax bc c a =++≠的二实根为1x ,2x ,()12x x <,24b ac ∆=-,且()αβαβ<,是预先给定的两个实数.⑴ 当两根都在区间()αβ,内,方程系数所满足的充要条件: ∵12x x αβ<<<,对应的二次函数()f x 的图象有下列两种情形:αβx 1x 2a>0OxyyxOx 2x 1βα当0a >时的充要条件是:0∆>,2b aαβ<-<,()0f α>,()0f β>. 当0a <时的充要条件是:0∆>,2b aαβ<-<,()0f α<,()0f β<.两种情形合并后的充要条件是:()()0200b af f αβαααβ⎫∆><-<⎪⎬⎪>>⎭,, ……①⑵ 当两根中有且仅有一根在区间(),αβ内,方程系数所满足的充要条件; ∵1x αβ<<或2x αβ<<,对应的函数()f x 的图象有下列四种情形:x 1αβxyOαβx 1xyOxyαβx 1Oxyαβx 1O从四种情形得充要条件是: ()()0f f αβ⋅< ……②⑶ 当两根都不在区间[]αβ,内方程系数所满足的充要条件:当两根分别在区间[]αβ,的两旁时;∵12x x αβ<<<对应的函数()f x 的图象有下列两种情形:xyαβx 2x 1OOx 1x 2βαyx当0a >时的充要条件是:()0f α<,()0f β<. 当0a <时充要条件是:()0f α>,()0f β>. 两种情形合并后的充要条件是:()0f αα<,()0f αβ< ……③ 当两根分别在区间[,]αβ之外的同侧时:∵12x x αβ<<<或12x x αβ<<<,对应函数()f x 的图象有下列四种情形:xyαβx 1x 2O xyαβx 1x 2Oxyαβx 1x 2Oxyαβx 1x 2O当12x x α<<时的充要条件是:0∆>,2b a α-<,()0f αα> ……④当12x x β<<时的充要条件是:0∆>,2b aβ->,()0f αβ> ……⑤4区间根定理如果在区间()a b ,上有()()0f a f b ⋅<,则至少存在一个()x a b ∈,,使得()0f x =. 此定理即为区间根定理,又称作勘根定理,它在判断根的位置的时候会发挥巨大的威力.f (b )f (a )b a二、函数的单调性1x 2x )(1x f )(2x f )(x f 图5yx1、定义:(1)设[]2121,,x x b a x x ≠∈⋅那么 []1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数; []1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.注:如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数;如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数. ⒈ 增函数与减函数定义:对于函数)(x f 的定义域I 内某个区间上的任意两个自变量的值21,x x ,⑴若当1x <2x 时,都有)(1x f <)(2x f ,则说)(x f 在这个区间上是增函数(如图3);⑵若当1x <2x 时,都有)(1x f >)(2x f ,则说)(x f 在这个区间上是减函数(如图4).说明:函数是增函数还是减函数,是对定义域内某个区间而言的.有的函数在一些区间上是增函数,而在另一些区间上不是增函数.例如函数2x y =(图1),当x ∈[0,+∞)时是增函数,当x ∈(-∞,0)时是减函数. ⒉ 单调性与单调区间若函数y=f(x)在某个区间是增函数或减函数,则就说函数)(x f 在这一区间具有(严格的)单调性,这一区间叫做函数)(x f 的单调区间.此时也说函数是这一区间上的单调函数.在单调区间上,增函数的图象是上升的,减函数的图象是下降的. 说明:⑴函数的单调区间是其定义域的子集;⑵应是该区间内任意的两个实数,忽略需要任意取值这个条件,就不能保证函数是增函数(或减函数),例如,图5中,在21,x x 那样的特定位置上,虽然使得)(1x f >)(2x f ,但显然此图象表示的函数不是一个单调函数;⑶除了严格单调函数外,还有不严格单调函数,它的定义类似上述的定义,只要将上述定义中的“)(1x f <)(2x f 或)(1x f >)(2x f , ”改为“)(1x f ≤)(2x f 或)(1x f ≥)(2x f ,”即可;⑷定义的内涵与外延:内涵是用自变量的大小变化来刻划函数值的变化情况;外延①一般规律:自变量的变化与函数值的变化一致时是单调递增,自变量的变化与函数值的变化相对时是单调递减.②几何特征:在自变量取值区间上,若单调函数的图象上升,则为增函数,图象下降则为减函数.(5)函数单调性的应用单调性是函数的重要性质,它在研究函数时具有重要的作用.具体表现在:(1)利用函数的单调性,可以把比较函数值的大小问题,转化为比较自变量的大小问题,也是我们解不等式的依据.(2)确定函数的值域或求函数的最值.对于函数f(x),如果它在区间[a ,b]上是增函数,那么它的值域是[f(a),f(b)],如果它在区间[a ,b]上是减函数,那么它的值域是[f(b),f(a)],如果它在区间[a ,c]上是增(减)函数,在[c ,b]上是减(增)函数,那么它的最大(小)值是f(c).三、函数的奇偶性1.奇函数:对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x )〔或f (x )+ f (-x )=0〕,则称f (x )为奇函数.2.偶函数:对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x )〔或f (x )-f (-x )=0〕,则称f (x )为偶函数.奇、偶函数的性质(1)具有奇偶性的函数,其定义域关于原点对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称).(2)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (3)若奇函数的定义域包含数0,则f (0)=0.(4)奇函数的反函数也为奇函数.(5)定义在(-∞,+∞)上的任意函数f (x )都可以唯一表示成一个奇函数与一个偶函数之和.(6)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.注:若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.注:对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2b a x +=对称.注:若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称;若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.多项式函数110()n n nn P x ax a xa --=+++ 的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零.四、函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=- (2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a b x +=对称()()f a mx f b mx ⇔+=-()()f a b mx f mx ⇔+-=.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b x m+=对称.(3)函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.五、反函数互为反函数的两个函数的关系a b fb a f =⇔=-)()(1.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x fky -=-,并不是)([1b kx fy +=-,而函数)([1b kx fy +=-是])([1b x f ky -=的反函数.六、指数函数一般地,函数)1a ,0a (a y x≠>=且叫做指数函数(exponential function ),其中x 是自变量,函数的定义域为R .图象特征函数性质1a >1a 0<<1a >1a 0<<向x 、y 轴正负方向无限延伸函数的定义域为R 图象关于原点和y 轴不对称 非奇非偶函数 函数图象都在x 轴上方 函数的值域为R +函数图象都过定点(0,1) 1a=自左向右看, 图象逐渐上升自左向右看, 图象逐渐下降增函数减函数在第一象限内的图象纵坐标都大于1 在第一象限内的图象纵坐标都小于1 1a ,0x x>> 1a ,0x x<> 在第二象限内的图象纵坐标都小于1在第二象限内的图象纵坐标都大于11a,0x x <<1a,0x x><图象上升趋势是越来越陡 图象上升趋势是越来越缓函数值开始增长较慢,到了某一值后增长速度极快; 函数值开始减小极快,到了某一值后减小速度较慢;七、对数函数1.概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数(Logarithm ),记作:N x alog=注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:x y 2log 2=,5log5xy = 都不是对数函数,而只能称其为对数型函数.○2 对数函数对底数的限制:0(>a ,且)1≠a . a — 底数,N — 真数,N alog— 对数式说明:○1 注意底数的限制0>a ,且1≠a ; ○2 x N N a ax=⇔=log;○3 注意对数的书写格式. 两个重要对数:○1 常用对数(common logarithm ):以10为底的对数N lg ;○2 自然对数(natural logarithm ):以无理数 71828.2=e 为底的对数的对数N ln .2. 对数式与指数式的互化x N a=log⇔ N a x=对数式 ⇔指数式对数底数 ← a → 幂底数 对数 ← x → 指数真数 ← N → 幂3. 对数的性质(1)负数和零没有对数;(2)1的对数是零:01log =a ; (3)底数的对数是1:1log =a a;(4)对数恒等式:N a Na=log;(5)n ana=log.在同一坐标系中画出下列对数函数的图象;(可用描点法,也可借助科学计算器或计算机)Nalog(1) x y 2log=(2) x y 21log=(3) x y 3log =(4) x y 31log=○2 类比指数函数图象和性质的研究,研究对数函数的性质并填写如下表格: 图象特征 函数性质1a > 1a 0<< 1a > 1a 0<<函数图象都在y 轴右侧 函数的定义域为(0,+∞)图象关于原点和y 轴不对称 非奇非偶函数 向y 轴正负方向无限延伸 函数的值域为R函数图象都过定点(1,1) 11=α自左向右看,图象逐渐上升 自左向右看, 图象逐渐下降 增函数减函数第一象限的图象纵坐标都大于0 第一象限的图象纵坐标都大于0 0log,1>>x x a 0log ,10><<x x a第二象限的图象纵坐标都小于0 第二象限的图象纵坐标都小于00log,10<<<x x a0log,1<>x x a规律:在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大.1.指数式与对数式的互化式log ba Nb a N =⇔=(0,1,0)a a N >≠>.2.对数的换底公式log log log m a m N N a=(0a >,且1a ≠,0m >,且1m ≠, 0N >). 推论 log log m n a a n b b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).3.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a M N M N =+; (2)log log log aa a M M N N=-; (3)log log ()na a Mn M n R =∈.注:设函数)0)((log )(2≠++=a c bx axx f m,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.4.对数换底不等式及其推论若0a >,0b >,0x >,1x a ≠,则函数log ()ax y bx =(1)当a b >时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为增函数.(2)(2)当a b <时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为减函数.推论:设1n m >>,0p >,0a >,且1a ≠,则八、几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=. (2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.(4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+, 0()(0)1,lim1x g x f x→==.1. 几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f ,或1()()f x a f x +=-(()0)f x ≠,或[]21()()(),(()0,1)2f x f x f x a f x +-=+∈,则)(x f 的周期T=2a ;(3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ;(4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ;(6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a. 2. 分数指数幂(1)1mn nma a=(0,,a m n N *>∈,且1n >).(2)1m nmnaa-=(0,,a m n N *>∈,且1n >).3. 根式的性质(1)()nn a a =.(2)当n 为奇数时,n na a =; 当n 为偶数时,,0||,0nna a a a a a ≥⎧==⎨-<⎩.4. 有理指数幂的运算性质(1)(0,,)rsr sa a aa r s Q +⋅=>∈.(2)()(0,,)rs rsa a a r s Q =>∈. (3)()(0,0,)rrrab a b a b r Q =>>∈.注:若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.(1)log ()log m p m n p n ++<.(2)2log log log 2a a a m n m n +<.。
高中函数知识点总结(整理版)

高中数学函数知识点总结1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么?2 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况{}{}如:集合,A x x x B x ax =--===||22301若,则实数的值构成的集合为B A a ⊂3. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n()若,;2A B A B A A B B ⊆⇔== (3)德摩根定律:()()()()()()C C C C C C U U U U U U A B A B A B A B ==,4.用补集思想解决问题(排除法、间接法) 如:已知关于的不等式的解集为,若且,求实数x ax x aM M M a --<∈∉50352的取值范围。
()(∵,∴·∵,∴·,,)335305555015392522∈--<∉--≥⇒∈⎡⎣⎢⎫⎭⎪M a a M a aa5、熟悉命题的几种形式、()()().∨∧⌝可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和“非”若为真,当且仅当、均为真p q p q ∧若为真,当且仅当、至少有一个为真p q p q ∨ 若为真,当且仅当为假⌝p p命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。
)原命题与逆否命题同真、同假;逆命题与否命题同真同假。
6、熟悉充要条件的性质(高考经常考)x x A |{=满足条件}p ,x x B |{=满足条件}q ,若 ;则p 是q 的充分非必要条件B A _____⇔; 若 ;则p 是q 的必要非充分条件B A _____⇔; 若 ;则p 是q 的充要条件B A _____⇔;若 ;则p 是q 的既非充分又非必要条件___________⇔;7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B 中有元素无原象。
(完整版)高中数学函数知识点总结

函数一、函数的定义:1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.(1)其中,x叫做自变量,x的取值范围A叫做函数的定义域;(2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.2.函数的三要素:定义域、值域、对应法则3.函数的表示方法:(1)解析法:明确函数的定义域(2)图想像:确定函数图像是否连线,函数的图像可以是连续的曲线、直线、折线、离散的点等等。
(3)列表法:选取的自变量要有代表性,可以反应定义域的特征。
4、函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .(2) 画法A、描点法:B、图象变换法:平移变换;伸缩变换;对称变换,即平移。
(3)函数图像平移变换的特点:1)加左减右——————只对x2)上减下加——————只对y3)函数y=f(x) 关于X轴对称得函数y=-f(x)4)函数y=f(x) 关于Y轴对称得函数y=f(-x)5)函数y=f(x) 关于原点对称得函数y=-f(-x)6)函数y=f(x) 将x轴下面图像翻到x轴上面去,x轴上面图像不动得函数y=| f(x)|7)函数y=f(x) 先作x≥0的图像,然后作关于y轴对称的图像得函数f(|x|)二、函数的基本性质1、函数解析式子的求法(1)、函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)、求函数的解析式的主要方法有:1)代入法:2)待定系数法:3)换元法:4)拼凑法:2.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
高一数学知识点-函数

9.函数的最大值、最小值
最大值
最小值
条件
一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:对于任意 的x∈I,都有
f(x)≤M
f(x)≥M
结论
存在x0∈I,使得f(x0)=M
称M是函数y=f(x)的最大值
称M是函数y=f(x)的最小值
几何意义
f(x)图象上最高点的纵坐标
f(x)图象上最低点的纵坐标
2.区间概念(a,b为实数,且a<b)
定义 {x|a≤x≤b}
名称 闭区间
符号
[a,b]
数轴表示
{x|a<x<b} 开区间
{x|a≤x<b} {x|a<x≤b}
半开半闭区 间
半开半闭区 间
(a,b) [a,b) (a,b]
3.其他区间的表示
定义
R
{x|x≥a}
{x|x>a}
{x|x≤a}
{x|x<a}
10.函数的奇偶性
定
条件
义
结论
图象特征
偶函数
奇函数
对于函数f(x)定义域内任意一个x,都有
f(-x)=f(x)
f(-x)=-f(x)
函数f(x)叫做偶函数
函数f(x)叫做奇函数
图象关于y轴对称
图象关于原点对称
(1)奇偶函数的定义域关于原点对称,反之,若定义域不关于原 点对称,则这个函数一定不具有奇偶性.
符号 (-∞,+∞) [a,+∞) (a,+∞) (-∞,a] (-∞,a)
4.函数的表示
5.分段函数
(1)分段函数就是在函数定义域内,对于自变量x的不同取值范
围,有着不同的对应关系的函数. (2)分段函数是一个函数,其定义域、值域分别是各段函数的 定义域、值域的并集;各段函数的定义域的交集是空集.
最全函数知识点总结高中

最全函数知识点总结高中一、函数的基本概念1.1 函数的定义函数是一个非常基本的数学概念。
在数学上,函数是一种对应关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
用数学符号表示就是:对于两个集合A和B,如果存在一个规则f,它使得对于A中的每个元素x,都有一个唯一的y属于B与之对应,那么我们说f是从A到B的一个函数,记作f:A→B。
其中A称为定义域,B称为值域。
1.2 函数的概念在我们的日常生活中,我们可以看到很多函数的例子。
比如,将一个数字加上3,或者乘以2,这就是两个函数的例子。
我们可以看到,函数本质上就是一种输入与输出的关系。
1.3 函数的符号表示函数一般用字母f,g,h等表示,其定义为:y=f(x),表示x是自变量,y是因变量。
1.4 函数的自变量和因变量在函数中,自变量是输入的值,它在定义域中取值;而因变量是输出的值,它在值域中取值。
1.5 函数的图象函数的图象是函数在一个坐标系中的表示,它可以帮助我们更直观地了解函数的性质和规律。
1.6 函数的性质函数有很多的性质,比如奇偶性、单调性、周期性等等。
1.7 函数的分类函数可以分为初等函数和非初等函数。
初等函数包括多项式函数、有理函数、指数函数、对数函数、三角函数和反三角函数。
非初等函数包括无穷级数、常微分方程等。
1.8 逆函数如果函数f有定义域A和值域B,对于B中的每一个y,存在一个唯一的x属于A与之对应,那么我们称这个函数有逆函数,记作f^(-1)。
1.9 复合函数如果有两个函数f和g,使得f的值域是g的定义域,那么我们可以定义一个新的函数h(x)=f(g(x)),这就是复合函数。
1.10 函数的性质与变化函数有很多的性质和变化规律,比如极值、单调性、周期性、奇偶性等等。
对于这些性质和变化,我们可以通过函数的图象和导数来进行分析。
1.11 函数的运算函数之间可以进行加减乘除的运算,还可以进行求泛函、求复合函数、求逆函数等。
二、函数的表示与运用2.1 函数的表示方法函数可以用方程的形式、图象的形式、表格的形式、文字的形式等来表示。
高中数学函数知识点总结大全

高中数学函数知识点总结大全1.函数的定义:函数是一种数学关系,它从一个集合中的每个元素对应到另一个集合中的唯一一个元素。
常用的表示方式有:f(x)和y。
2.定义域和值域:函数的定义域是指函数的自变量可能的取值范围,而值域是指函数的因变量可能的取值范围。
函数的图像是定义域和值域之间的对应关系。
3.函数的图像:函数的图像是函数在直角坐标系上的几何表示。
通过观察函数的图像,我们可以得到函数的一些性质,例如函数的增减性、极值、最值等。
4.函数的性质:(1)奇偶性:如果对于函数中任意一个x值,f(-x)=f(x),则函数是偶函数;如果对于函数中任意一个x值,f(-x)=-f(x),则函数是奇函数。
(2)周期性:如果存在一个正数T,使得对于函数中任意一个x值,f(x+T)=f(x),则函数是周期函数。
(3)单调性:如果对于函数中任意两个x1和x2的值,当x1<x2时有f(x1)<f(x2),则函数是增函数;如果当x1<x2时有f(x1)>f(x2),则函数是减函数。
(4)零点和根:函数的零点是指函数图像与x轴相交的点,函数的根是指函数的零点所对应的x值。
(5)映射:函数中的每一个自变量都有唯一对应的因变量,这种一对一的关系称为映射。
(6)复合函数:如果函数g的定义域包含了函数f的值域,则可以将g(f(x))表示为复合函数。
5.函数的运算:(1)四则运算:函数之间可以进行加减乘除的运算,例如:f(x)+g(x)、f(x)-g(x)、f(x)*g(x)、f(x)/g(x)。
(2)反函数:如果一个函数f的定义域为D,值域为R,并且对于R中任意一个y值,存在一个唯一的x值,使得f(x)=y,那么这个函数就有一个反函数f^(-1)(y),它的定义域是R,值域是D。
(3)复合函数:如果函数g的定义域包含了函数f的值域,则可以将g(f(x))表示为复合函数。
复合函数可以用来描述多个函数的组合方式。
高中数学知识点全总结(电子版)

高中数学知识点全总结(电子版)高中数学学问点全〔总结〕一、求导数的〔方法〕(1)基本求导公式(2)导数的四则运算(3)复合函数的导数设在点x处可导,y=在点处可导,则复合函数在点x处可导,且即_二、关于极限1、数列的极限:粗略地说,就是当数列的项n无限增大时,数列的项无限趋向于A,这就是数列极限的描述性定义。
记作:=A。
如:2、函数的极限:当自变量x无限趋近于常数时,假如函数无限趋近于一个常数,就说当x趋近于时,函数的极限是,记作三、导数的概念1、在处的导数。
2、在的导数。
3、函数在点处的导数的几何意义:函数在点处的导数是曲线在处的切线的斜率,即k=,相应的切线方程是_注:函数的导函数在时的函数值,就是在处的导数。
例、若=2,则=()A—1B—2C1D四、导数的综合运用(一)曲线的切线函数y=f(x)在点处的导数,就是曲线y=(x)在点处的切线的斜率。
由此,可以利用导数求曲线的切线方程。
详细求法分两步:(1)求出函数y=f(x)在点处的导数,即曲线y=f(x)在点处的切线的斜率k=_(2)在已知切点坐标和切线斜率的条件下,求得切线方程为x。
如何学好高中数学方法1、上课仔细听、认真做笔记学习新的学问首先得通过老师的讲解,然后自己理解,这样才能通过做题稳固,不然上课不仔细听的话,下课自己做题也不会,即使自己参按例题做出来了,也会有许多地方不理解,而且自己学还很铺张时间。
所以高中的同学们肯定不能轻视了上课老师讲的内容。
再有一点就是数学也是需要记笔记的,上课的时候把老师讲的书上没有的步骤都记一下,重点的内容该画的画,改写的写,千万不要觉得如今看了一眼就记住了,要知道数学的学问从高一到高三会越来越难,前面的学问相当于为后面做铺垫,尤其是高三复习的时候。
所以同学们在高一高二的时候老师讲的重点的内容肯定要整理在笔记上,不然到了高三复习的时候遗忘了又得铺张时间重新做笔记。
2、以课本为主,把握课本去理解提高数学成果主要是靠听课和做题来提高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学函数相关知识点整理
函数在高中数学中的地位不可动摇,考生必须掌握函数相关知识点,下面是我给大家带来的,希望对你有帮助。
高中数学反比例函数知识点
形如 y=k/x(k为常数且k0) 的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数图像性质:反比例函数的图像为双曲线。
由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。
另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为|k|。
知识点:
1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
2.对于双曲线y=k/x ,若在分母上加减任意一个实数 (即 y=k/(xm)m 为常数),就相当于将双曲线图象向左或右平移一个单位。
(加一个数时向左平移,减一个数时向右平移)
高中数学对数函数知识点
对数函数的一般形式为,它实际上就是指数函数的反函数。
因此指数函数里对于a的规定,同样适用于对数函数。
对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,
因为它们互为反函数。
(1)对数函数的定义域为大于0的实数集合。
(2)对数函数的值域为全部实数集合。
(3)函数总是通过(1,0)这点。
(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。
(5)显然对数函数无界。
高中数学指数函数知识点
指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得
可以得到:
(1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2) 指数函数的值域为大于0的实数集合。
(3) 函数图形都是下凹的。
(4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。
其中水平直线y=1是从递减到递增的一个过渡位置。
(6) 函数总是在某一个方向上无限趋向于X轴,永不相交。
(7) 函数总是通过(0,1)这点。
(8) 显然指数函数无界。