生物统计学 第三章 概率分布

合集下载

医学统计学-第三章-概率分布

医学统计学-第三章-概率分布
图5-4 正态分布位置随参数μ变换示意图
⑵ 形状参数:σ
当μ固定不变时,σ越大,曲线越平阔;σ越小,曲 线越尖峭,σ 叫正态曲线N(μ, σ2)的形状参数。
f(X)
0.9
0.8
σ=1
0.7
0.6
0.5
0.4 0.3
σ=1.5
0.2 0.1
σ=2
0
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
累积频率
0.004 3 0.042 8 0.158 3 0.367 3 0.623 4 0.835 9 0.935 8 0.985 7 0.997 9 1.000 0
频率密度 (频率/组距)
0.001 1 0.009 6 0.028 9 0.052 2 0.064 0 0.053 1 0.025 0 0.012 5 0.003 0 0.000 5
医学研究中许多正常人的生理、生化指标 的变量分布呈正态分布或近似正态分布。
体重频率密度
0.08
0.06
0.04
0.02
0.00 48- 56- 64- 72- 80体重(kg)
图5-1 体重频率密度图
由于频率的总和为1,所以该曲线下横轴上的面积为1 面积=频率
正态分布曲线:两个参数 μ和σ决定了x的概率分布,习
3 概率分布
教学内容:
变量
定量资料
集中趋势:算术均数、 中位数等
极差、 四分位数间距、方差、
离散趋势:标准差、变异系数
统计 描述
定性资料:频率型指标、强度型指标、比 统计表和统计图 概率分布:正态分布、二项分布、Possion分布
统计 推断
抽样分布—参数估计:点估计、区间估计

生物统计学第三章 概率和概率分布(2)

生物统计学第三章  概率和概率分布(2)

的第x 1项,所以有“二项分布”这个名称。
0 0 1 1 x x n n [ (1 )]n Cn (1 )n Cn (1 )n1 Cn (1 )nx Cn (1 )0
x x (2) P(x) Cn (1 )nx [ (1 )]n 1n 1 x 0 x 0
2. 二项分布的常用符号
n :贝努利试验的次数(或 样本含量)
x : 在n次试验中事件A出现的次数,即二项分布变量X 的取值
: 事件A发生的概率 (每次试验都是恒定的 )
1 - : 事件A发生的概率
p(x) : X的概率函数即P(X x)
F( x) P(X x) p(xi )
2014-4-21
二项分布的程序计算方法

二项分布函数Binomdist(k,n,p,false/true) 某数阶乘的计算函数Fact 从给定元素数目m的集合中抽取若干n元素的排 列组合数C n m 计算函数Combin(m,n)
2014-4-21
二、 泊松分布 (Poisson Distribution)
2014-4-21
二项分布
(实例)
【例】已知 100 件产品中有 5 件次品,现从中任取一件,有 放回地抽取3次。求在所抽取的3件产品中恰好有2件次品的 概率 解:设 X 为所抽取的3件产品中的次品数,则根据二项分 布公式有
P X 2 C32 (0.05)2 (0.95)32 0.007125
二项分布变量的一些例子:
(1)连续抛硬币100次,统计总共出现正面的次数。次数X服从二项分布。 (2)调查250名新生婴儿的性别,记男婴的总数为X,则X服从二项分布。 (3)调查n枚种蛋的出雏数,出雏数X服从二项分布。 (4)n头病畜治疗后的治愈数X,X服从二项分布。

生物统计学课件1、概率及概率分布

生物统计学课件1、概率及概率分布
04
指数分布在统计分析中常用于计算随机事件的概率和期望值,如生存 分析和可靠性工程。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
03
概率分布的应用
在生物统计学中的应用
描述生物样本人群的特征
遗传学研究
通过概率分布,可以描述生物样本人 群的某些特征,如身高、体重、年龄 等。
在遗传学研究中,概率分布被广泛应 用于基因频率的分布和遗传疾病的分 布。
正态分布在统计学中的重要性在于许 多统计方法和假设检验都是基于正态 分布的假设。
泊松分布
泊松分布是一种离散概率分布 ,常用于描述单位时间内随机
事件发生的次数。
泊松分布的概率函数由两个参 数λ和k控制,其中λ表示单位时
间内随机事件发生的平均次数 ,k表示随机事件发生的次数。
泊松分布在生物统计学中常用 于描述某些离散变量的分布, 如遗传学中的基因突变频率、 流行病学中的疾病发病率等。
在社会科学研究中的应用
人口统计学研究
在人口统计学研究中,概率分布 被用于描述人口特征和分布情况

社会调查
在社会调查中,概率分布被用于描 述调查结果的分布情况,例如调查 结果的置信区间和抽样误差。
经济预测
在经济预测中,概率分布被用于预 测经济发展趋势和未来经济状况。
REPORT
CATALOG
DATE
描述随机变量取连续数值时的概率分布,如正态分布、指数 分布等。
离散概率分布
二项分布
描述在n次独立重复的伯努利试验中 成功的次数的概率分布,常用于描述 生物实验和调查中的成功次数。
泊松分布
描述单位时间内(或单位面积上)随 机事件发生的次数,常用于描述稀有 事件的概率模型。

生物统计学 几种常见的概率分布律

生物统计学 几种常见的概率分布律

非此即彼
随机试验有两种互不相容不同结果。 重要条件: 1. 每次试验两个结果(互为对立事件),每一种结果在每次 试验中都有恒定的概率; 2. 试验之间应是独立的。
P(AB)=P(A)P(B)
2.14
二项分布的概率函数
服从二项分布的随机变量的特征数
方差 当以比率表示时
偏斜度
了解
峭度
做题时请先 写公式,代 数字,出结 果,描述结 果的意义。
正态分布表的单侧临界值
上侧临界值
下侧临界值
双侧临界值
§3.5 另外几种连续型概率分布
指数分布(exponential distribution)
了解
Γ分布(gamma distribution)
了解
了解
随着p的增加, Γ分布愈来愈 接近于正态分 布。
§3.6 中心极限定理 (Central Limit Theorem) 假设被研究的随机变量X可以表 示为许多相互独立的随机变量Xi 的和。如果Xi的数量很大,而且 每一个别的Xi对于X所起的作用 又很小,则X可以被认为服从或 近似地服从正态分布。
作业
P51
3.1, 3.2(算出各表现型概率即可); 3.12, 3.18
正态分布的密度函数和分布函数 正态分布(normal distribution) 高斯分布(Gauss distribution) 正态曲线(normal curve) 连续型概率分布律 两头少,中间多,两侧对称
了解
标准正态分布
/fai/
标准正态分布的特性
ቤተ መጻሕፍቲ ባይዱ
正态分布表的使用方法
正态分布标准化
生物统计学
第三章 几种常见的概率 分布律
2010.9

生物统计学:第三章随机变量与概率分布

生物统计学:第三章随机变量与概率分布

例:用复合饲料饲养动物,每天增重的kg数及 其相应的概率如下:
每天增重xi /kg 0.5
概率 0.10
1.0
0.20
1.5
0.50
2.0
0.20
问每天增重的数学期望和方差是多少?
解: μ=E(X)=1.40
E(X2 ) =2.15
var=σ2 = E(X2 ) –μ2=2.15-1.42=0.19
15.167
(4)随机变量的方差(variance) - 总体方差
度量随机变量取值的变异程度的指标,其定义式:
Var( X ) 2 ( xi )2 E[( X )2 ]
N
E[( X )2 ] E( X 2 2 X 2 )]
E(X 2) 2E(X ) 2
对于例1:
件的集合)的概率有以下关系:P(A )=1-P(A)
2 )条件概率
➢ 已知事件B发生的条件下,事件A发生的概率 称为条件概率,记为P(A︱B) P(A∣B)=P(AB)/P(B) P(B∣A)=P(AB)/P(A)
例:一周的天气情况如下:
周日







预报







实际







设A表示预报有雨的事件,B表示实际下雨的事件
些值的概率p(x1),p(x2),…,p(xn),…,排列起来,构 成了离散型随机变量的概率分布。常用概率分布表或概 率分布图表示(如,p28表与p29图3-1)。
例3.1 掷一次骰子所得点数的概率函数
f (x) 1 , x 1, 2, 3, 4, 5, 6 6

生物统计学03概率和概率分布

生物统计学03概率和概率分布

e
−λ
(λ = np)
x = 0, 1, 2…, n
第二节 常用的概率分布 二、泊松分布
☆ 参数 参数:
µ= λ
2 = λ σ
☆ 形状
λ=0.5 λ=1.5 λ=2.5
λ→20
泊松分布→正态分布 泊松分布 正态分布
第二节 常用的概率分布 三、正态分布
☆ 是一种连续随机变量的概率分布 ☆ 许多生物现象的计量资料均服从正态分布 ☆ 一般假定试验误差的分布服从正态分布 ☆ 非正态总体统计数的抽样分布近似服从正态分布
☆当 p 值较小且 n 值不
0.25 0.2 0.15 0.1 0.05 0 1 3 5 7
p=0.3
p=0.5
p=0.75
大时, 大时,图形是偏倚的
☆当 p 值趋于 时,分 值趋于0.5时
布趋于对称
9
11
13
15
17
19
21
第二节 常用的概率分布 二、泊松分布
☆ 概率函数
P( x ) =
λ
x
x!
第二节 常用的概率分布
随机抽取20株小麦 测得平均株高为82.3cm,标准差为 株小麦, cm, 例3.4 随机抽取 株小麦,测得平均株高为 cm 1.7502cm,试计算: cm,试计算: cm 1)株高≥85cm的概率; 的概率; 的概率 的正常值范围。 2)小麦株高的95%的正常值范围。 小麦株高的 的正常值范围
第二节 常用的概率分布 三、正态分布
1. 概率函数
f (x) = 1
− ( x−µ)2 2σ 2
σ 2 π
e
记为x~ 记为 ~N(µ,σ2)
第二节 常用的概率分布
2. 正态曲线的特点

生物统计学课件--2概率的基本知识

生物统计学课件--2概率的基本知识

A1 A2 An V
则有:
P( A1 A2 An) P( A1) P( A2) P( An) 1
1 如果n个事件出现的概率相等,那么, P ( Ai ) n
称Ai为完全事件系。
复习思考题
①什么概率论?什么叫统计学?两者的关系是什么? ②什么是试验? ③举例说明什么是必然事件、什么是随机事件?请说 明事件之间的关系。
④什么是概率?利用统计概率的定义说明概率的性质。
⑤什么是统计概率?要想了解随机事件的发生规律, 应如何进行研究? ⑥试阐述“小概率实际不可能性”的原理及应用。 ⑦说明随机事件的概率计算法则。
第四章
第一节 随机变量
几种常见的概率分布
一、随机变量 在随机试验中被测量的量,称随机变量。 有时随机试验的结果为数量,有时随机试验的结果 不是数量,要人为地量化。
F ( x0) P( x), 其中,xx0
例:掷骰子试验,X为点数,是离散型随 机变量,其可能值为1、2、3、4、5、6, 若求出现的点数不多于3点的概率,则为 求 P( x 3) F (3)
P( x 1) P( x 2) P( x 3)
p(1) p(2) p(3)
方 差:2 = npq ,
标准差: =
npq
四、例1:
试求掷10次硬币,出现3次正面的概率是多少? 解:掷硬币为随机试验,可能的结果有两种, A:正面向上;B:反面向上。 p = P(A)= 1/n =1/2 = 0.5,
q = 1- p = 0.5
则有:P(x=3)= p(3)
x C n p x
0.40 0.48
2、概率的性质 • 任何事件(A)的概率均满足:0≤P(A)≤1; • 必然事件的概率为1;

第三章 常用概率分布之正态分布

第三章 常用概率分布之正态分布

图4.13 离均差的绝对值≤1 , 2 和3 的概率值
随机变量x在区间( μ – kσ, μ + kσ )外取值的概率P ( x<μ – kσ ) + P( x>μ + kσ )为两尾概率,记为α P ( x<μ – kσ ) + P( x>μ + kσ )=α P ( x<μ – kσ ) = P( x>μ + kσ )=α/2 两尾分位数Uα
=0.0227
0.020
fN (x)
0.020
fN (x)
0.016
0.016
0.012
0.012
0.008
P( y 40) 0.9773
P( y 26) 0.2119
0.008
0.004
0.004
0.000 10 15 20 25 30 35 40 45
0.000 10 15 20 25 30 35 40 45
第三章
常用概率分布
第一节 事件与概率 第二节 概率分布 第三节 二项式分布 第四节 正态分布 第五节 样本平均数抽样分布与标准误 第六节 t分布,x2分布和F分布
第三章
常用概率分布
第一节 事件与概率 第二节 概率分布 第三节 二项式分布 第四节 正态分布 第五节 样本平均数抽样分布与标准误 第六节 t分布,x2分布和F分布
首先计算:
查附表2,当u=-0.8时,FN(26)=0.2119,说明这 一分布从-∞到26范围内的变量数占全部变量数的 21.19%,或者说,y≤26概率为0.2119. 同理可得: FN(40)=0.9773
所以:P(26<y≤40)=FN(40)-FN(26)=0.9773-0.2119

生物统计学第三章概率分布

生物统计学第三章概率分布
➢ 只有一个峰,峰值在x = 处 ➢ 曲线关于x = 对称,因而平均数=众数=
中位数 ➢ x轴为曲线向左、右延伸的渐进线
➢ 由两个参数决定: 平均数 和 标准差 • 决定曲线在x 轴上的位置 • 决定曲线的形状
正态分布
平均数的影响
标准差的影响
正态分布
标准正态分布(standard normal distribution)
对于给定的两尾概率求标准正态分布在x 轴上的分位点
/2
/2
对于给定的一尾概率求标准正态分布在x 轴上的分位点
/2
/2
(1)设标准正态分布的右尾(左尾)概率为
,求分位数u值
用2 查附表2,可得一尾概率为 时的分位数u值
= 20.05 = 0.1查表得u = 1.644854 。
(2)
, = 20.01 = 0.02查表得u = 2.326348
离散型随机变量的概率分布
普哇松分布的概率函数
普哇松分布的期望与方差
离散型随机变量的概率分布
例2:某遗传病的发病率为0.0003,某鸡场有10000头 肉鸡,问今年发生该遗传病4头及4头以上的概率有 多少?
λ=μ=np=10000×0.0003=3 x=4 P(x≥4)=1-P(x<4)=1-P(0)-P(1)-P(2)-P(3)
离散型随机变量的概率分布
二项分布的概率函数
二项分布的期望 二项分布的方差
离散型随机变量的概率分布
例1:一头母猪一窝产了10头仔猪,分别求其
中有2头公猪和6头公猪的概率。
产公猪头数的期望值: 产公猪头数的方差:
离散型随机变量的概率分布
普哇松分布(Poisson distribution)

几种常见的概率分布率

几种常见的概率分布率
u
❖对于一般正态分布,要先进行标准化,再查表;
标准化的公式为: u = x -
u
=
x-
=
9.2 10
5
= 0.42
正态分布 σ= 10
标准正态分布 σ=1
μ=5 9.2
x
μ=0 0.42 u
例3.7 查标准正态分布u=-0.82 及u=1.15时的F(u)的值 例3.8 随机变量u服从正态分布N(0,1),问随机变量u的值落
在生物统计学中,正态分布占有极其重要的地位。许多生物学 现象所产生的数据,都服从正态分布。
一、 正态分布(x—N (μ,σ2))的密度函数与分布函数
➢ 正态分布的规律是数据分布集
中在平均数附近,并且在平均
数的两侧成对称分布。正态分
布密度函数的图像,称为正态
曲线。
➢ 密度函数: f (x) =
1
正态曲线
p(x)
=
cnx
px (1-
p)n-x
=
n! x!(n -
x)!
p x (1-
p)n-x
= n(n -1)(n - 2)(n - x 1) px (1- p)n-x
=
1(1-
1
)(1-
x! x -1)
(np) x
(1-
p)n-x
(将系数的分子分母同乘以nx)
n
n
x!
= x (1- p)n-x
=
x!
2
=
1
概率函数内的λ ,不但是它的平均数,而且是
它的方差。
λ很大时, γ1和γ2则接近于0,这时的泊松分布近
似于正态分布。
三、 泊松分布应用实例
例3.5 在麦田中,平均每10m2有一株杂草,问每 100m2麦田中,有0株、1株、2株、…杂草的概率 是多少?

生物统计学答案第三章

生物统计学答案第三章

第三章 几种常见的概率分布律3.1 有4对相互独立的等位基因自由组合,问有3个显性基因和5个隐性基因的组合有多少种?每种的概率是多少?这一类型总的概率是多少?答:代入二项分布概率函数,这里φ=1/2。

()75218.02565621562121!5!3!83835==⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=p结论:共有56种,每种的概率为0.003 906 25(1/256 ),这一类型总的概率为 0.21875。

3.2 5对相互独立的等位基因间自由组合,表型共有多少种?它们的比如何? 答:(1)543223455414143541431041431041435434143⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛+表型共有1+5+10+10+5+1 = 32种。

(2)()()()()()()6976000.0024114165014.00241354143589087.002419104143107263.0024127104143105395.00241815414353237.0024124343554322345541322314==⎪⎭⎫⎝⎛==⨯=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==⨯=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==⨯=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==⨯=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛===⎪⎭⎫⎝⎛=隐隐显隐显隐显隐显显P P P P P P 它们的比为:243∶81(×5)∶27(×10)∶9(×10)∶3(×5)∶1 。

3.3 在辐射育种实验中,已知经过处理的单株至少发生一个有利突变的概率是φ,群体中至少出现一株有利突变单株的概率为P a ,问为了至少得到一株有利突变的单株,群体n 应多大?答: 已知φ为单株至少发生一个有利突变的概率,则1―φ为单株不发生一个有利突变的概率为:()()()()()φφφ--=-=--=-1lg 1lg 1lg 1lg 11a a an P n P n P3.4 根据以往的经验,用一般的方法治疗某疾病,其死亡率为40%,治愈率为60%。

生物统计学 第三章 概率论

生物统计学 第三章 概率论
2 3
即复合事件的概率必等于该事件出现的组合数目乘以
单个事件的概率;而这一复合事件的可能组合数目则相
当于从n(3)个物体中任取其x(2)个物体的组合数。数学上 的组合公式为:
n! C x!(n x)!
x n
(二)二项分布的概率函数
二项式中包含两项,这两项的概率为p、q,并且 p+q=1,可推知变量x的概率函数为:
0 2
• 若期望有0.99的概率获得1头或1头以上的 死去的,至少应该调查多少头?
• 若期望有0.99的概率获得1头或1头以上的 死去的,至少应该调查多少头? 解:应调查的头数应该满足 P(0)=1-0.99=0.01 P(0)=Cn0p0qn=0.01 0.6n=0.01 nlg0.6=lg0.01 n=(lg0.01)/(lg0.6)=-2/(-0.222)=9头
抽取三粒种子(以Y代黄子叶,以G代青子叶), 即n=3,有两粒黄子叶种子,即x=2,这时有3种不
同组合: GGY,GYG,YGG。出现第一粒,第二
粒和第三粒种子是互不影响的,因此这三个事件是 独立事件,由乘法法则可得:
3 3 1 9 P(GGY ) ( )( )( ) 4 4 4 64
3 1 3 9 P (GYG ) ( )( )( ) 4 4 4 64
当p=q,二项式分布呈对称状,如p≠q,则表现偏斜状。
二项分布的几点性质 (1) 当p值较小且n不大时 ,分布是偏倚的。但随着n的增大,分布 逐渐趋于对称 (下图1) (2) 当 p 值趋于0.5,分布趋于对称(下图2) (3) 对于固定的n及p,当k增加时,Pn(k)先随之增加并达到其极大 值,以后又下降 (4) 在n较大,np、nq 较接近时,二项分布接近于正态分布;当 n→∞时,二项分布的极限分布是正态分布

生物统计学 第3章 几种常见的概率分布律

生物统计学 第3章  几种常见的概率分布律
2. 二项分布的概率之和等于1,即
n
Cnk p k q nk (q p)n 1
k 0
3. P( x m) Pn (k m)
m
Cnk p k q nk
(3-2)
4. P( x m) Pn (k m)
nk 0
Cnk p k q nk
(3-3)
k m
5. m2
P(m1 x m2 ) pn (m1 k m2 )
• 平均数:
nK
N
• 方差:
2 nK(N K )( N n)
N 2 (N 1)
2. 负二项分布
• 负二项分布所要求的条件与二项分布是一样 的。不同的是负二项分布需要求出在第x次试 验时,发生第k次事件A的概率。或者说,在x 次试验中,共发生k次事件A,而且事件A的第 k次试验恰恰是在第x次试验发生的。
x 中细菌数服从波松分布。以=0.500代替 (3-10)
式中的λ,得
P( x k ) 0.5k e0.5 (k=0, 1, 2, …) k!
计算结果如表3-3所示。
表3-3 细菌数的波松分布
可见细菌数的频率分布与λ=0.5的波松分布是 相当吻合的 , 进一步说明用波松分布描述单位 容积(或面积)中细菌数的分布是适宜的。
P(x
7)
C170 0.7570.253
10! 0.757 7!3!
0.253
0.2503
【例3.2】 设在家畜中感染某种疾病的概率为20%,现有两 种疫苗,用疫苗A 注射了15头家畜后无一感染,用疫苗B 注射 15头家畜后有1头感染。设各头家畜没有相互传染疾病的可能, 问:应该如何评价这两种疫苗?
二项分布的应用条件有三:
(1)各观察单位只具有互相对立的一种结果,如阳 性或阴性,生存或死亡等,属于二项分类资料;

生物统计学(第3版)杜荣骞 课后习题答案 第三章 几种常见的概率分布律

生物统计学(第3版)杜荣骞 课后习题答案 第三章  几种常见的概率分布律

第三章 几种常见的概率分布律3.1 有4对相互独立的等位基因自由组合,问有3个显性基因和5个隐性基因的组合有多少种?每种的概率是多少?这一类型总的概率是多少?答:代入二项分布概率函数,这里φ=1/2。

()75218.02565621562121!5!3!83835==⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=p结论:共有56种,每种的概率为0.003 906 25(1/256 ),这一类型总的概率为0.218 75。

3.2 5对相互独立的等位基因间自由组合,表型共有多少种?它们的比如何? 答:(1)543223455414143541431041431041435434143⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛+ 表型共有1+5+10+10+5+1 = 32种。

(2)()()()()()()6976000.0024114165014.00241354143589087.002419104143107263.0024127104143105395.00241815414353237.0024124343554322345541322314==⎪⎭⎫⎝⎛==⨯=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==⨯=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==⨯=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==⨯=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛===⎪⎭⎫⎝⎛=隐隐显隐显隐显隐显显P P P P P P它们的比为:243∶81(×5)∶27(×10)∶9(×10)∶3(×5)∶1 。

3.3 在辐射育种实验中,已知经过处理的单株至少发生一个有利突变的概率是φ,群体中至少出现一株有利突变单株的概率为P a ,问为了至少得到一株有利突变的单株,群体n 应多大?答: 已知φ为单株至少发生一个有利突变的概率,则1―φ为单株不发生一个有利突变的概率为:()()()()()φφφ--=-=--=-1lg 1lg 1lg 1lg 11a a an P n P n P3.4 根据以往的经验,用一般的方法治疗某疾病,其死亡率为40%,治愈率为60%。

第三章 概率与概率分布 华中农业大学生物统计学讲义

第三章 概率与概率分布 华中农业大学生物统计学讲义

该试验样本空间由10个等可能的基本事件构成,即n=10,而事 件A所包含的基本事件有3个,即抽得编号为1、2、3中的任何一 个,事件A便发生。
P(A)=3/10=0.3
P(B)=5/10=0.5
12 3 4 5
6
7
8 9 10
一、概率基本概念
A=“一次取一个球,取得红球的概率”
10个球中取一个球,其可能结果有10个基本事件(即每个球 被取到的可能性是相等的),即n=10 事件A:取得红球,则A事件包含3个基本事件,即m=3
P(A)=3/10=0.3
12 3 4 5
6
7
8
9 10
一、概率基本概念
B= “一次取5个球,其中有2个红球的概率” 10个球中任意取5个,其可能结果有C105个基本事件,即n= C105 事件B =5个球中有2个红球,则B包含的基本事件数m= C32 C73
P(B) = C32 C73 / C105 = 0.417
2、在一定条件下可能发生也可能不 发生。
(二)频率(frequency)
一、概率基本概念
若在相同的条件下,进行了n次试验,在这n 次试验中,事件A出现的次数m称为事件A出现的 频数,比值m/n称为事件A出现的频率(frequency), 记为W(A)=m/n。
0≤W(A) ≤1
例:
一、概率基本概念
设样本空间有n个等可能的基本事件所构成,其中事件A包 含有m个基本事件,则事件A的概率为m/n,即P(A)=m/n。
古典概率(classical probability) 先验概率(prior probability)
一、概率基本概念
1 2 3 4 5 6 7 8 9 10
随机抽取一个球,求下列事件的概率; (1)事件A=抽得一个编号< 4 (2)事件B =抽得一个编号是2的倍数

第三章常用概率分布生物统计学课件

第三章常用概率分布生物统计学课件
【例 3·2】 对 100 株树苗进行嫁接,观察 其成活株数,其可能结果是 “0 株成活”,“1 株成活”,……,“100 株成活”。 用x表示 成活株数,则x的取值为0、1、2、……、100。
上一张 下一张 主 页 退 出
【例3·3】 抛掷一枚硬币,其可能结 果是“币值一面朝上” 、“币值一面朝 下”。“币值一面朝上”用1表示,“币 值一面朝下”用0表示,用x表示试验结果, 则x的取值为0、1。
如“取得1个数字是2的倍数”是一个复合 事件,它由“取得1个数字是2”、“是4”、 “是6”、…… 、“是20”10个基本事件组合 而成。
(2)必然事件 在一定条件下必然会发生的事件称为必然
事件,用Ω表示。
上一张 下一张 主 页 退 出
(3)不可能事件 在一定条件下不可能发生的事件称为不可
能事件,用ф表示。 必然事件与不可能事件实际上是确定性现
第三章 常用概率分布
本章在介绍概率论中最基本的两个概念— —事件、概率的基础上,重点介绍生物科学研 究中常用的几种随机变量的概率分布——二项 分布、正态分布以及样本平均数的抽样分布、t 分布、 2 分布和F分布。
上一张 下一张 主 页 退 出
第一节 事件与概率
一、事 件 (一)必然现象与随机现象
在自然界与生产实践和科学试验中,人 们会观察到各种各样的现象,把它们归纳起 来,大体上分为两大类:
上一张 下一张 主 页 退 出
从表3-1可看出,随着实验次数的增多, 1粒小麦种子发芽这个事件的概率越来越稳定地 接近0.7,我们就把0.7作为这个事件的概率。
在一般情况下,随机事件的概率 p 是不可 能准确得到的。通常以试验次数n充分大时随机 事件A的频率作为该随机事件概率的近似值。

生物统计学课件ch3常用的概率分布

生物统计学课件ch3常用的概率分布
(2) 每次试验的条件不变。即每次试验中,结 果A发生的概率不变,均为 π 。
(3) 各次试验独立。即一次试验出现什么样的 结果与前面已出现的结果无关。
成功次数的概率分布——二项分布
• 例 设某毒理试验采用白鼠共3只,它们有 相同的死亡概率π,相应存活概率为1-π。记 试验后白鼠死亡的例数为X,分别求X=0、 1、2和3的概率
35
30
25
人数
20
15
10
5
0
2.7~ 3.1~ 3.5~ 3.9~ 4.3~ 4.7~ 5.1~ 5.9~56..53~
血清总胆固醇(mmol/L)
如果样本量很大,组段很多,矩形顶端组 成的阶梯型曲线可变成光滑的分布曲线。
大多数情况下,可采用一个函数拟合这 一光滑曲线。这种函数称为概率密度函数
把钱分成7份,赢了4局的就拿4份,赢了3局 的就拿3份呢?或者一人分一半呢?
频率与概率 frequency and probability
样本的实际发生率称为频率。设在相同条 件下,独立重复进行n次试验,事件A出现f 次,则事件A出现的频率为f/n。
概率:随机事件发生的可能性大小,用大 写的P 表示;取值[0,1]。
p(X=xi) p(x1) p(x2) …… p(xk) ……
离散型随机变量分布的特点:
(1) 0 p(xi ) 1(i 1, 2,...)
(2) p(xi ) 1 所有xi
离散型随机变量的概率分布举例
f(x)
抗体滴度 人数, x 比例, f(x)
1:10
4
.058
1:20
3
.043
二项分布的概率计算
例 如 果 =0.4,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单侧(尾)概率:
0.05时,u = 1.64(-1.64)
0.01时,u = 2.33(-2.33)
抽样分布 P43 原总体
样本统计量的概率分布 称为抽样分布
样本1
x1
样本2 样本n n
x2
xn
统计量
新总体
正态总体样本平均数的抽样分布
数的分 (n>30)
1、中心极限定理:从正态总体N(µ,σ2)抽样,样本均 布服从正态分布;若从非正态总体抽样,当n→∞
P (Z u )P (Z u ) 直接查表
标准正态分布的概率计算
标准正态分布函数表----附表1 (p. 297)
(1) 直接查附表1,P(Z 0.64)= 0.7389; (2) P( Z 1.53)= 1 - P( Z 1.53)= 1 – 0.9370 = 0.0630; (3) P (2.12 Z 0.53)= P (Z -0.53)- P (Z 2.12)
13 0 ! 0e 33 1 !1e 33 2 2 !e 33 3 3 !e 3
=0.3528
连续型随机变量的概率分布
正态分布(normal distribution)
➢具有如下概率密度函数的随机变量称为正态 分布随机变量:
1
(x)2
f (x)
e[
]
2
22
x
= 期望 2 = 方差
X~N(,2)
样本均数的分布亦接2近正态分布。
的期望为
2、设原总体的期望为,方差为 ,则样本平均数
x
样,本方均差数为的均2 x/数n(期n 望) x —N(,
(2) 0.01 , = 20.01 = 0.02查表得u = 2.326348
标准正态分布几个常用的分位数值:
双侧(尾)概率:
下面是标0.准0正5态时分,布u的=几个1.特96殊的且常用的分位数值:
0.01时,当u双=尾概2.率58为0.05时,u = 1.96 当双尾概率为0.01时,u = 2.58 当右尾概率(左尾概率)为0.05 时,u = 1.64(-1.64) 当右尾概率(左尾概率)为0.01 时,u = 2.33(-2.33)
例1:一头母猪一窝产了10头仔猪,分别求其
中有2头公猪和6头公猪的概率。
f (2) C1200.52(1 0.5)102 10! 0.520.58 2!(10 2)!
f (6) C1600.56(1 0.5)106 10! 0.560.54 6!(10 6)!
0.0439
0.2051
产公猪头数的期望值: E (X ) n p 1 0 .5 5 产公猪头数的方差:
正态分布
正态分布概率密度函数的几何表示
f (x)
正态曲线
x
曲线下某区间的面积即为随机变量在该区间取值的概率
正态分布
正态分布的特点
➢只有一个峰,峰值在x = 处 ➢曲线关于x = 对称,因而平均数=众数=中
位数 ➢x轴为曲线向左、右延伸的渐进线
➢由两个参数决定: 平均数 和 标准差 • 决定曲线在x 轴上的位置 • 决定曲线的形状
第三章 常用概率分布
二项分布 普哇松分布 正态分布 抽样分布
离散型随机变量的概率分布
二项分布(binomial distribution)
假设:1. 在相同条件下进行了n次试验 2. 每次试验只有两种可能结果(1或0) 3. 结果为1的概率为p,为0的概率为1-p 4. 各次试验彼此间是独立的
在n次试验中,结果为1的次数(X = 0,1,2, ,n)服从二项分布,表示为
Z服从正态分布 Z~N(0,1) 标准正态分布
正态分布标准正态分布的概率源自度函数f(z) 1 e[z2] z
2 2
0
正态分布
标准正态分布的概率计算
➢ 附表1 (p. 297)
u
u
P(Zu) f(z)d z
1 e(z2)dz
2 2
正态分布
(1) P( Z u) 或 P(Z -u) (u > 0)
X~B(n,p)
离散型随机变量的概率分布
二项分布的概率函数
f(x)Cn xpx(1p)nx
E (X ) xif(xi) np
n! px(1p)nx (x0,1,2, ,n) x!(nx)!
二项分布的期望
E (X ) xif(xi) np
二项分布的方差
2Va (X)rn(p 1p)
离散型随机变量的概率分布
正态分布
平均数的影响
标准差的影响
正态分布
标准正态分布(standard normal distribution)
对于 X~N(,2)

Z
X
标准化
E (Z ) 1[E (X ) ] 1( ) 0
V(Z a ) 1 r 2 [ V(X a ) V r(a ) ]r 1 2 (2 0 ) 1
= 0.2981 – 0.0136 = 0.2811。
标准正态分布的双侧分位数
标准正态分布的双侧分位数表 ----附表2 (p. 299)
对于给定的两尾概率求标准正态分布在x 轴上的分位点
/2
/2
(1)设标准正态分布的两尾概率之和 0.05,求分位数u值。
由附表2可直接查得分位数为u = 1.959964
(2) 0.01 , 分位数为u = 2.575829
标准正态分布的双侧分位数表 ----附表2 (p. 299)
对于给定的一尾概率求标准正态分布在x 轴上的分位点
0.05
/2
0.01
/2
(1)设标准正态分布的右尾(左尾)概率为 0.05,求分位数u值
用2 查附表2,可得一尾概率为 时的分位数u值 = 20.05 = 0.1查表得u = 1.644854 。
V ( X ) a n ( r 1 p p ) 1 0 . 0 5 0 .5 0 .25
离散型随机变量的概率分布
普哇松分布(Poisson distribution)
描述稀有事件的试验,对于二项分布 X~B(n,p) 如果概率P很小,试验次数n很大 ,则二项分布 趋近普哇松分布,表示为:
x ~ p()
离散型随机变量的概率分布
普哇松分布的概率函数
p(X x) x e
x!
普哇松分布的期望与方差
2
离散型随机变量的概率分布
例2:某遗传病的发病率为0.0003,某鸡场有10000头 肉鸡,问今年发生该遗传病4头及4头以上的概率有 多少?
λ=μ=np=10000×0.0003=3 x=4 P(x≥4)=1-P(x<4)=1-P(0)-P(1)-P(2)-P(3)
相关文档
最新文档