【解析版】周口市扶沟县2020—2021年初二上期末数学试卷
2020-2021年八年级上册期末数学试卷 含解析
八年级(上)期末数学试卷一.选择题(共10小题)1.下列二次根式中属于最简二次根式的是()A.B.C.D.2.下列各组数中,不能作为直角三角形边长的是()A.9,12,15 B.5,12,13 C.1,2,D.,3,5,73.下列四个选项中,错误的是()A.=4 B.=4 C.(﹣)2=4 D.()2=4 4.2019年6月7日是端午节,某幼儿园对全体小朋友爱吃哪种粽子做调查,以决定最终买哪种口味的粽子.下面的调查数据最值得关注的是()A.众数B.中位数C.平均数D.方差5.下列各图能表示y是x的函数是()A.B.C.D.6.给出下列命题,其中错误命题的个数是()①四条边相等的四边形是正方形;②两组邻边分别相等的四边形是平行四边形;③有一个角是直角的平行四边形是矩形;④矩形、平行四边形都是轴对称图形.A.1 B.2 C.3 D.47.以下图形中,既是中心对称图形,又是轴对称图形的是()A.三角形B.菱形C.等腰梯形D.平行四边形8.为了节能减排,鼓励居民节约用电,某市出台了新的居民用电收费标准:(1)若每户居民每月用电量不超过100度,则按0.60元/度计算;(2)若每户居民每月用电量超过100度,则超过部分按0.8元/度计算(未超过部分仍按每度电0.60元/度计算),现假设某户居民某月用电量是x(单位:度),电费为y(单位:元),则y与x的函数关系用图象表示正确的是()A.B.C.D.9.在菱形ABCD中,对角线AC,BD相交于点O,AD=5,AC=8,则OD的长为()A.4 B.5 C.6 D.310.如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2米,梯子的顶端B到地面的距离为7米.现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3米,同时梯子的顶端B下降到B′,那么BB′()A.等于1米B.大于1米C.小于1米D.不能确定二.填空题(共8小题)11.要使代数式有意义,x的取值范围是.12.一组数据:2019,2019,2019,2019,2019,2019的方差是.13.如图,它是一个数值转换机,若输入的a值为,则输出的结果应为.14.如图,以△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=9,S3=25,当S2=时∠ACB=90°.15.在平面直角坐标系中,一次函数y=kx+1的图象与y轴的交点坐标为.16.一次函数y=kx+b(k≠0)的图象如图所示,当x>0时,y的取值范围为.17.在△ABC中,∠C=90°,AC=3,BC=4,点D,E,F分别是AB,AC,BC边的中点,则△DEF的周长是.18.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是(把你认为正确的都填上).三.解答题(共7小题)19.﹣+.20.为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为,图①中m的值为;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?21.如图,四边形ABCD是菱形,BE⊥AD、BF⊥CD,垂足分别为E、F.(1)求证:BE=BF;(2)当菱形ABCD的对角线AC=8,BD=6时,求BE的长.22.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形(涂上阴影).(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2,图3中,分别画一个直角三角形,使它的三边长都是无理数.(两个三角形不全等)23.为了加强公民的节水意识,合理利用水资源,各地采用价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过6立方米时,水费按每立方米a元收费,超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费,该市某户今年5、6月份的用水量和所交水费如下表所示:设某户每月用水量x(立方米),应交水费y(元)(1)求a,c的值;(2)当x≤6,x>6时,分别写出y于x的函数关系式;(3)该户11月份用水量为8立方米,求该户11月份水费是多少元?24.如图,在四边形AOBC中,AC∥OB,顶点O是原点,顶点A的坐标为(0,8),AC=24cm,OB=26cm,点P从点A出发,以1cm/s的速度向点C运动,点Q从点B同时出发,以3m/s 的速度向点O运动.规定其中一个动点到达端点时,另一个动点也随之停止运动;从运动开始,设P(Q)点运动的时间为ts.(1)求直线BC的函数解析式;(2)当t为何值时,四边形AOQP是矩形?25.武胜县白坪一飞龙乡村旅游度假区橙海阳光景点组织20辆汽车装运完A、B、C三种脐橙共100吨到外地销售.按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:(1)设装运A种脐橙的车辆数为x,装运B种脐橙的车辆数为y,求y与x之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?(3)设销售利润为W(元),求W与x之间的函数关系式;若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.参考答案与试题解析一.选择题(共10小题)1.下列二次根式中属于最简二次根式的是()A.B.C.D.【分析】B、D选项的被开方数中含有未开尽方的因数或因式;C选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.【解答】解:因为:B、=4;C、=;D、=2;所以这三项都不是最简二次根式.故选A.2.下列各组数中,不能作为直角三角形边长的是()A.9,12,15 B.5,12,13 C.1,2,D.,3,5,7【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【解答】解:A、92+122=152,符合勾股定理的逆定理,故本选项不符合题意;B、52+122=132,符合勾股定理的逆定理,故本选项不符合题意;C、12+()2=22,符合勾股定理的逆定理,故本选项不符合题意;D、32+52≠72,不符合勾股定理的逆定理,故本选项符合题意.故选:D.3.下列四个选项中,错误的是()A.=4 B.=4 C.(﹣)2=4 D.()2=4 【分析】直接利用二次根式的定义分别分析得出答案.【解答】解:A、=4,正确,不合题意;B、=4,正确,不合题意;C、(﹣)2=4,正确,不合题意;D、()2=16,故原式错误,符合题意;故选:D.4.2019年6月7日是端午节,某幼儿园对全体小朋友爱吃哪种粽子做调查,以决定最终买哪种口味的粽子.下面的调查数据最值得关注的是()A.众数B.中位数C.平均数D.方差【分析】幼儿园最值得关注的应该是哪种粽子爱吃的人数最多,即众数.【解答】解:由于众数是数据中出现次数最多的数,故幼儿园最值得关注的应该是统计调查数据的众数.故选:A.5.下列各图能表示y是x的函数是()A.B.C.D.【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此对各选项分析判断后利用排除法求解.【解答】解:A、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x 的函数,故A选项错误;B、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故B选项错误;C、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故C选项错误;D、对于x的每一个取值,y都有唯一确定的值与之对应关系,所以y是x的函数,故D选项正确.故选:D.6.给出下列命题,其中错误命题的个数是()①四条边相等的四边形是正方形;②两组邻边分别相等的四边形是平行四边形;③有一个角是直角的平行四边形是矩形;④矩形、平行四边形都是轴对称图形.A.1 B.2 C.3 D.4【分析】分别利用矩形、菱形、正方形的相关性质以及其判定方法进而得出答案.【解答】解:①四条边相等的四边形是菱形,故此命题错误,符合题意;②两组邻边分别相等的四边形无法确定形状,故此命题错误,符合题意;③有一个角是直角的平行四边形是矩形,正确,不合题意;④矩形是轴对称图形,平行四边形不是轴对称图形,故此命题错误,符合题意.故选:C.7.以下图形中,既是中心对称图形,又是轴对称图形的是()A.三角形B.菱形C.等腰梯形D.平行四边形【分析】直接利用轴对称图形和中心对称图形的概念求解.【解答】解:A、三角形不是轴对称图形,也不是中心对称图形,故此选项不合题意;B、菱形既是中心对称图形也是轴对称图形,故此选项正确;C、等腰梯形是轴对称图形,不是中心对称图形,故此选项不合题意;D、平行四边形不是轴对称图形,是中心对称图形,故此选项不合题意;故选:B.8.为了节能减排,鼓励居民节约用电,某市出台了新的居民用电收费标准:(1)若每户居民每月用电量不超过100度,则按0.60元/度计算;(2)若每户居民每月用电量超过100度,则超过部分按0.8元/度计算(未超过部分仍按每度电0.60元/度计算),现假设某户居民某月用电量是x(单位:度),电费为y(单位:元),则y与x的函数关系用图象表示正确的是()A.B.C.D.【分析】根据题意求出电费与用电量的分段函数,然后根据各分段内的函数图象即可得解.【解答】解:根据题意,当0≤x≤100时,y=0.6x,当x>100时,y=100×0.6+0.8(x﹣100),=60+0.8x﹣80,=0.8x﹣20,所以,y与x的函数关系为y=,纵观各选项,只有C选项图形符合.故选:C.9.在菱形ABCD中,对角线AC,BD相交于点O,AD=5,AC=8,则OD的长为()A.4 B.5 C.6 D.3【分析】根据菱形的对角线互相垂直,利用勾股定理列式求出OD即可.【解答】解:∵四边形ABCD是菱形,∴OA=OC=AC=4,OB=OD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OD===3,故选:D.10.如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2米,梯子的顶端B到地面的距离为7米.现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3米,同时梯子的顶端B下降到B′,那么BB′()A.等于1米B.大于1米C.小于1米D.不能确定【分析】由题意可知OA=2,OB=7,先利用勾股定理求出AB,梯子移动过程中长短不变,所以AB=A′B′,又由题意可知OA′=3,利用勾股定理分别求OB′长,把其相减得解.【解答】解:在直角三角形AOB中,因为OA=2,OB=7由勾股定理得:AB=,由题意可知AB=A′B′=,又OA′=3,根据勾股定理得:OB′=,∴BB′=7﹣<1.故选:C.二.填空题(共8小题)11.要使代数式有意义,x的取值范围是x≥0且x≠1 .【分析】根据二次根式有意义的条件可得x≥0,根据分式有意义的条件可得x﹣1≠0,再解即可【解答】解:由题意得:x≥0,且x﹣1≠0,解得:x≥0且x≠1,故答案为:x≥0且x≠1.12.一组数据:2019,2019,2019,2019,2019,2019的方差是0 .【分析】根据方差的定义和性质即可解决问题.【解答】解:∵这组数据都是2019,∴数据2019,2019,2019,2019,2019,2019的平均数是2019,∴数据2019,2019,2019,2019,2019,2019的方差是0;故答案为:0.13.如图,它是一个数值转换机,若输入的a值为,则输出的结果应为﹣.【分析】把a的值代入数值转换机中计算即可确定出结果.【解答】解:把a=代入数值转换机中得:[()2﹣4]÷=﹣,故答案为:﹣14.如图,以△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=9,S3=25,当S2=16 时∠ACB=90°.【分析】先设Rt△ABC的三边分别为a、b、c,再分别用a、b、c表示S1、S2、S3的值,由勾股定理即可得出S2的值.【解答】解:设Rt△ABC的三边分别为a、b、c,∴S1=a2=9,S2=b2,S3=c2=25,∵△ABC是直角三角形,∴a2+b2=c2,即S1+S2=S3,∴S2=S3﹣S1=16.故答案为:16.15.在平面直角坐标系中,一次函数y=kx+1的图象与y轴的交点坐标为(0,1).【分析】代入x=0求出y值,进而可得出一次函数的图象与y轴的交点坐标.【解答】解:当x=0时,y=kx+1=1,∴一次函数y=kx+1的图象与y轴的交点坐标为(0,﹣1).故答案为:(0,1).16.一次函数y=kx+b(k≠0)的图象如图所示,当x>0时,y的取值范围为y<3 .【分析】观察函数图象,可找出y值随x值的增大而减小及一次函数图象与y轴的交点坐标,利用一次函数的性质结合x>0即可找出y的取值范围.【解答】解:观察函数图象,可知:y值随x值的增大而减小,且一次函数y=kx+b的图象与y轴交于点(0,3),∴当x>0时,y<3.故答案为:y<3.17.在△ABC中,∠C=90°,AC=3,BC=4,点D,E,F分别是AB,AC,BC边的中点,则△DEF的周长是 6 .【分析】首先利用勾股定理求得斜边长,然后利用三角形中位线定理求得答案即可.【解答】解:∵Rt△ABC中,∠C=90°,AC=3,BC=4,∴AB==5,∵点D、E、F是三边的中点,∴DE=AC,DF=AB,EF=BC,∴△DEF的周长=DE+EF+DF=AC+AB+BC=(AC+AB+BC)=(3+4+5)=6,故答案为:6.18.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是①②④(把你认为正确的都填上).【分析】根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正误,利用解三角形求正方形的面积等知识可以判断④的正误.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC﹣BE=CD﹣DF,∴CE=CF,∴①说法正确;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②说法正确;如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF,∵∠CAF≠∠DAF,∴DF≠FG,∴BE+DF≠EF,∴③说法错误;∵EF=2,∴CE=CF=,设正方形的边长为a,在Rt△ADF中,AD2+DF2=AF2,即a2+(a﹣)2=4,解得a=,则a2=2+,S正方形ABCD=2+,④说法正确,故答案为:①②④.三.解答题(共7小题)19.﹣+.【分析】先将二次根式化为最简,然后合并同类二次根式即可.【解答】解:原式=3﹣2+=.20.为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为40 ,图①中m的值为15 ;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?【分析】(Ⅰ)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;(Ⅱ)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;(Ⅲ)根据题意列出算式,计算即可得到结果.【解答】解:(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100﹣30﹣25﹣20﹣10=15;故答案为:40;15;(Ⅱ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36;(Ⅲ)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60双为35号.21.如图,四边形ABCD是菱形,BE⊥AD、BF⊥CD,垂足分别为E、F.(1)求证:BE=BF;(2)当菱形ABCD的对角线AC=8,BD=6时,求BE的长.【分析】(1)根据菱形的邻边相等,对角相等,证明△ABE与△CBF全等,再根据全等三角形对应边相等即可证明;(2)先根据菱形的对角线互相垂直平分,求出菱形的边长,再根据菱形的面积等于对角线乘积的一半和底边乘以高两种求法即可求出.【解答】(1)证明:∵四边形ABCD是菱形,∴AB=CB,∠A=∠C,∵BE⊥AD、BF⊥CD,∴∠AEB=∠CFB=90°,在△ABE和△CBF中,,∴△ABE≌△CBF(AAS),∴BE=BF.(2)如图,∵对角线AC=8,BD=6,∴对角线的一半分别为4、3,∴菱形的边长为=5,菱形的面积=5BE=×8×6,解得BE=.22.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形(涂上阴影).(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2,图3中,分别画一个直角三角形,使它的三边长都是无理数.(两个三角形不全等)【分析】(1)画一个边长3,4,5的三角形即可;(2)利用勾股定理,找长为无理数的线段,画三角形即可.【解答】解:23.为了加强公民的节水意识,合理利用水资源,各地采用价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过6立方米时,水费按每立方米a元收费,超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费,该市某户今年5、6月份的用水量和所交水费如下表所示:设某户每月用水量x(立方米),应交水费y(元)(1)求a,c的值;(2)当x≤6,x>6时,分别写出y于x的函数关系式;(3)该户11月份用水量为8立方米,求该户11月份水费是多少元?【分析】(1)根据5月份的收费列式计算即可得到a,再根据6月份的收费分两个部分列式计算即可得解;(2)根据a、c的值分别写出y与x的关系式即可;(3)把x=8代入函数关系式计算即可得解.【解答】解:(1)由表可知,a=7.5÷5=1.5,6×1.5+(9﹣6)c=27,解得c=6;(2)x≤6时,y=1.5x;x>6时,y=6(x﹣6)+1.5×6=6x﹣27,即y=6x﹣27;(3)x=8时,y=6×8﹣27=21元.答:11月份水费是21元.24.如图,在四边形AOBC中,AC∥OB,顶点O是原点,顶点A的坐标为(0,8),AC=24cm,OB=26cm,点P从点A出发,以1cm/s的速度向点C运动,点Q从点B同时出发,以3m/s 的速度向点O运动.规定其中一个动点到达端点时,另一个动点也随之停止运动;从运动开始,设P(Q)点运动的时间为ts.(1)求直线BC的函数解析式;(2)当t为何值时,四边形AOQP是矩形?【分析】(1)首先根据顶点A的坐标为(0,8),AC=24cm,OB=26cm,分别求出点B、C的坐标各是多少;然后应用待定系数法,求出直线BC的函数解析式即可.(2)根据四边形AOQP是矩形,可得AP=OQ,据此求出t的值是多少即可.【解答】解:(1)如图1,∵顶点A的坐标为(0,8),AC=24cm,OB=26cm,∴B(26,0),C(24,8),设直线BC的函数解析式是y=kx+b,则,解得,∴直线BC的函数解析式是y=﹣4x+104.(2)如图2,根据题意得:AP=tcm,BQ=3tcm,则OQ=OB﹣BQ=26﹣3t(cm),∵四边形AOQP是矩形,∴AP=OQ,∴t=26﹣3t,解得t=6.5,∴当t为6.5时,四边形AOQP是矩形.25.武胜县白坪一飞龙乡村旅游度假区橙海阳光景点组织20辆汽车装运完A、B、C三种脐橙共100吨到外地销售.按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:(1)设装运A种脐橙的车辆数为x,装运B种脐橙的车辆数为y,求y与x之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?(3)设销售利润为W(元),求W与x之间的函数关系式;若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.【分析】(1)等量关系为:车辆数之和=20;(2)关系式为:装运每种脐橙的车辆数≥4;(3)总利润为:装运A种脐橙的车辆数×6×1200+装运B种脐橙的车辆数×5×1600+装运C种脐橙的车辆数×4×1000,然后按x的取值来判定.【解答】解:(1)根据题意,装运A种脐橙的车辆数为x,装运B种脐橙的车辆数为y,那么装运C种脐橙的车辆数为(20﹣x﹣y),则有:6x+5y+4(20﹣x﹣y)=100整理得:y=﹣2x+20(1≤x≤9且为整数);(2)由(1)知,装运A、B、C三种脐橙的车辆数分别为x、﹣2x+20、x由题意得:,解得4≤x≤8,因为x为整数,所以x的值为4、5、6、7、8,所以安排方案共有5种.方案一:装运A种脐橙4车,B种脐橙12车,C种脐橙4车;方案二:装运A种脐橙5车,B种脐橙10车,C种脐橙5车,方案三:装运A种脐橙6车,B种脐橙8车,C种脐橙6车,方案四:装运A种脐橙7车,B种脐橙6车,C种脐橙7车,方案五:装运A种脐橙8车,B种脐橙4车,C种脐橙8车;(3)W=6x×1200+5(﹣2x+20)×1600+4x×1000=﹣4800x+160000,∵k=﹣4800<0∴W的值随x的增大而减小,要使利润W最大,则x=4,故选方案为:装运A种脐橙4车,B种脐橙12车,C种脐橙4车.W最大=﹣4800×4+160000=140800(元),答:当装运A种脐橙4车,B种脐橙12车,C种脐橙4车时,获利最大,最大利润为140800元.。
2022-2023学年河南省周口市扶沟县八年级数学第一学期期末考试试题含解析
2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)1.在平面直角坐标系中,点(2,﹣4)在( ) A .第一象限 B .第二象限C .第三象限D .第四象限2.下列式子:①4416333⋅=;②437(3)(3)3-⋅-=-;③223(3)81-⋅-=-;④445222+=.其中计算正确的有( )A .1个B .2个C .3个D .4个3.已知x m =6,x n =3,则x 2m ―n的值为( )A .9B .34C .12D .434.将3-a b ab 进行因式分解,正确的是( ) A .()2a ab b - B .()21ab a - C .()()11ab a a +-D .()21ab a -5.在平面直角坐标系中,如果点A 的坐标为(﹣1,3),那么点A 一定在( ) A .第一象限B .第二象限C .第三象限D .第四象限6.一个正比例函数的图象过点(2,﹣3),它的表达式为( ) A .32y x =-B .23y x =-C .32y x =D .23y x =7.下列命题中,逆命题是真命题的是( ) A .全等三角形的对应角相等; B .同旁内角互补,两直线平行; C .对顶角相等;D .如果0,0a b >>,那么0a b +>8.如图,在△ABC 中,AD ⊥BC ,添加下列条件后,还不能使△ABD ≌△ACD 的是( )A .AB AC = B .BD CD = C .B C ∠=∠ D .AD BD =9.今年植树节,某校甲、乙两班学生参加植树活动.已知甲班每小时比乙班少植2棵树,甲班植60棵树所用时间与乙班植70棵树所用时间相同.若设甲班每小时植树x 棵,则根据题意列出方程正确的是( ) A .60702=+x x B .60702x x C .60702x xD .60702=+x x10.下列标志中属于轴对称图形的是( ) A .B .C .D .二、填空题(每小题3分,共24分)11.若点(,)A m n 和点(3,2)B 关于x 轴对称,则m n 的值是____.12.已知A 地在B 地的正南方3km 处,甲、乙两人同时分别从A 、B 两地向正北方向匀速直行,他们与A 地的距离S (km )与所行时间t(h)之间的函数关系如图所示,当他们行驶3h 时,他们之间的距离为______km.13.如图,平行四边形ABCD 的对角线相交于O 点,则图中有__对全等三角形.14.计算:2422aa a a-=++____________. 15.在坐标系xOy 中,已知点()3,1A 关于x 轴,y 轴的对称点分别为P ,Q ,若坐标轴上的点M 恰使MAP △,MAQ 均为等腰三角形,则满足条件的点M 有______个. 16.已知5a b +=,6ab =,那么22a b +=__________.17.如图,已知直线y=ax+b 和直线y=kx 交于点P (-4,-2),则关于x ,y 的二元一次方程组y ax by kx=+⎧⎨=⎩的解是________.18.若分式232xx +有意义,则x 的取值范围是_______________. 三、解答题(共66分)19.(10分)如图,在ABC ∆中,AB AC =,36A ∠=,DE 是AC 的垂直平分线. (1)求证:BCD ∆是等腰三角形.(2)若BCD ∆的周长是a ,BC b =,求ACD ∆的周长.(用含a ,b 的代数式表示)20.(6分)在ABC ∆中,AB AC =,BAC α∠=()060α︒<<︒,在ABC ∆内有一点D ,连接BD ,60CBD ∠=︒,且BD BC =. (1)如图1,求出ABD ∠的大小(用含α的式子表示)(2)如图2,150BCE ∠=︒,60ABE ∠=︒,判断ABE ∆的形状并加以证明.21.(6分)计算下列各题: (12231(1)2527(2)2--- (2)1(212348)33÷22.(8分)如图,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4). (1)作出与△ABC 关于y 轴对称△A 1B 1C 1,并写出三个顶点的坐标为:A 1(_____),B 1(______),C 1(_______);(2)在x 轴上找一点P ,使PA+PB 的值最小,请直接写出点P 的坐标;23.(8分)已知ABC ∆在平面直角坐标系中的位置如图所示. (1)画出ABC ∆关于y 轴对称的11AB C ∆;(2)每个小方格都是边长为1个单位的正方形,求多边形11ABCC B 的面积.24.(8分)如图,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4). (1)请画出△ABC 向左平移6个单位长度后得到的△A 1B 1C 1; (2)请画出△ABC 关于原点对称的△A 2B 2C 2;(3)P 为x 轴上一动点,当AP +CP 有最小值时,求这个最小值.25.(10分)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?26.(10分)梧州市特产批发市场有龟苓膏粉批发,其中A品牌的批发价是每包20元,B品牌的批发价是每包25元,小王需购买A,B两种品牌的龟苓膏粉共1000包.(1)若小王按需购买A,B两种品牌龟苓膏粉共用22000元,则各购买多少包?(2)凭会员卡在此批发市场购买商品可以获得8折优惠,会员卡费用为500元.若小王购买会员卡并用此卡按需购买1000包龟苓膏粉,共用了y元,设A品牌买了x包,请求出y与x之间的函数关系式;(3)在(2)中,小王共用了20000元,他计划在网店包邮销售这批龟苓膏粉,每包龟苓膏粉小王需支付邮费8元,若每包销售价格A品牌比B品牌少5元,请你帮他计算,A品牌的龟苓膏粉每包定价不低于多少元时才不亏本?(运算结果取整数)参考答案一、选择题(每小题3分,共30分)1、D【分析】根据点的横纵坐标的符号可得所在象限.【详解】解:∵点的横坐标为正,纵坐标为负,∴该点在第四象限.故选:D.【点睛】本题考查平面直角坐标系的知识;用到的知识点为:横坐标为正,纵坐标为负的点在第四象限.2、C【解析】试题解析:①错误,②正确,③正确, ④正确.正确的有3个.故选C.点睛:同底数幂相乘,底数不变,指数相加.3、C【解析】试题解析:试题解析:∵x m =6,x n =3, ∴x 2m -n =2()m n x x ÷=36÷3=12. 故选C. 4、C【分析】多项式3-a b ab 有公因式ab ,首先用提公因式法提公因式ab ,提公因式后,得到多项式()21x -,再利用平方差公式进行分解. 【详解】()()()32111a b ab ab a ab a a -=-=+-,故选C . 【点睛】此题主要考查了了提公因式法和平方差公式综合应用,解题关键在于因式分解时通常先提公因式,再利用公式,最后再尝试分组分解; 5、B【分析】根据平面直角坐标系中点P(a,b),①第一象限:a>1,b>1;②第二象限:a<1,b>1;③第三象限:a<1,b<1;④第四象限:a>1,b<1;据此求解可得. 【详解】解:∵点A 的横坐标为负数、纵坐标为正数, ∴点A 一定在第二象限. 故选:B . 【点睛】本题主要考查坐标确定位置,解题的关键是掌握①第一象限:a>1,b>1;②第二象限:a<1,b>1;③第三象限:a<1,b<1;④第四象限:a>1,b<1. 6、A【分析】根据待定系数法求解即可. 【详解】解:设函数的解析式是y =kx , 根据题意得:2k =﹣3,解得:k =﹣32. 故函数的解析式是:y =﹣32x . 故选:A . 【点睛】本题考查了利用待定系数法求正比例函数的解析式,属于基础题型,熟练掌握待定系数法求解的方法是解题关键. 7、B【分析】先分别写出各命题的逆命题,再分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】解:A.全等三角形的对应角相等的逆命题为对应角相等的三角形全等是假命题,所以A 选项不符合题意;B.同旁内角互补,两直线平行的逆命题为两直线平行,同旁内角互补是真命题,所以B 选项符合题意;C.“对顶角相等”的逆命题是“相等的角是对顶角”是假命题,所以C 选项不符合题意;D. 如果0,0a b >>,那么0a b +>的逆命题为如果0a b +>,那么0,0a b >>是假命题,所以D 选项不符合题意. 故选:B . 【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题. 8、D【分析】根据全等三角形的判定定理解答即可. 【详解】∵AD ⊥BC ∴∠ADC=∠ADB=90°若添加AB=AC,又AD=AD 则可利用“HL”判定全等,故A 正确; 若添加BD=CD ,又AD=AD 则可利用“SAS”判定全等,故B 正确; 若添加∠B=∠C ,又AD=AD 则可利用“AAS”判定全等,故C 正确; 若添加AD=BD ,无法证明两个三角形全等,故D 错误. 故选:D 【点睛】本题考查了直角三角形全等的判定,掌握直角三角形的判定方法“SSS”、“AAS”、“SAS”、“ASA”“HL”是关键. 9、A【分析】根据“甲班植60棵树所用时间与乙班植70棵树所用时间相同”列分式方程即可.【详解】解:由题意可得60702=+x x故选A.【点睛】此题考查的是分式方程的应用,掌握实际问题中的等量关系是解决此题的关键.10、C【解析】根据对称轴的定义,关键是找出对称轴即可得出答案.【详解】解:根据对称轴定义A、没有对称轴,所以错误B、没有对称轴,所以错误C、有一条对称轴,所以正确D、没有对称轴,所以错误故选C【点睛】此题主要考查了对称轴图形的判定,寻找对称轴是解题的关键.二、填空题(每小题3分,共24分)11、8【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,先求出m、n的值,再计算(-n)m的值【详解】解:∵A(m,n)与点B(3,2)关于x轴对称,∴m=3,n=2,∴(-n)m=(-2)3=-1.故答案为:-1【点睛】此题主要考查了关于x轴、y轴对称的点的坐标,解决此类题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.12、1.5【详解】因为甲过点(0,0),(2,4),所以S甲=2t.因为乙过点(2,4),(0,3),所以S乙=12t+3,当t=3时,S甲-S乙=6-92=3213、1【分析】根据平行四边形的性质及全等三角形的判定方法进行分析,从而得到答案. 【详解】解:∵ABCD 是平行四边形∴AD =BC ,AB =CD ,AO =CO ,BO =DO ,在△ABO 和△CDO 中,OA OC AOB COD OB OD =⎧⎪∠=∠⎨⎪=⎩,∴△ABO ≌△CDO (SAS ), 同理:△ADO ≌△CBO ;在△ABD 和△CDB 中,AB CDAD CB BD DB =⎧⎪=⎨⎪=⎩,∴△ABD ≌△CDB (SSS ), 同理:△ACD ≌△CAB ; ∴图中的全等三角形共有1对. 故答案为:1. 【点睛】本题主要考查了平行四边形的性质、 全等三角形的判定;熟记平行四边形的性质是解决问题的关键 . 14、2a a- 【分析】根据分式的加减运算的法则,先因式分解复杂的因式,找到最简公分母,通分,然后按同分母的分式相加减的性质计算,在约分,化为最简二次根式. 【详解】解:2422a a a a-++ =42(2)a a a a -++ =24(2)(2)a a a a a -++=24(2)a a a -+ =(2)(2)(2)a a a a +-+=2a a-.故答案为:2a a-. 【点睛】本题考查分式的加减运算. 15、5【分析】如图所示,利用两圆一线的方法,判断点M 的个数即可.【详解】解:如图,分别以A ,Q 为圆心,以AQ 长度为半径画出两个较大的圆,此时x 轴上的点满足与A ,Q 组成等腰三角形有5个,y 轴上的点均可满足与A ,Q 组成等腰三角形,然后分别以A ,P 为圆心以AP 的产生古为半径画出两个较小的圆,此时坐标轴上只有x 轴上的点满足与A ,P 组成等腰三角形,因此点M 恰使MAP △,MAQ 均为等腰三角形共有5个.【点睛】此题主要考查等腰三角形的性质和坐标与图形的性质,解答此题的关键是利用等腰三角形性质判断相关的点. 16、1【分析】根据完全平方公式即可求出答案.【详解】()22222526251213a b a b ab +=+-=-⨯=-=. 故答案为:1. 【点睛】本题考查完全平方公式的应用,关键在于熟练掌握完全平方公式.17、42x y -⎧⎨-⎩== 【分析】直接根据函数图象交点坐标为两函数解析式组成的方程组的解得到答案.【详解】∵直线y=ax+b 和直线y=kx 交点P 的坐标为(-4,-2),∴关于x ,y 的二元一次方程组组y ax b y kx +⎧⎨⎩== 的解为42x y -⎧⎨-⎩== . 故答案为42x y -⎧⎨-⎩==. 【点睛】此题考查一次函数与二元一次方程(组),解题关键在于掌握图像交点的意义. 18、23x ≠- 【分析】根据分式有意义的条件:分母不能为0即可确定x 的取值范围. 【详解】∵分式232x x +有意义 320x ∴+≠ 解得23x ≠- 故答案为:23x ≠-. 【点睛】本题主要考查分式有意义的条件,掌握分式有意义的条件是解题的关键.三、解答题(共66分)19、(1)详见解析;(2)a+b【分析】(1)首先由等腰三角形ABC 得出∠B ,然后由线段垂直平分线的性质得出∠CDB ,即可判定;(2)由等腰三角形BCD ,得出AB ,然后即可得出其周长.【详解】(1)∵AB AC =,36A ∠= ∴180722A B ACB -∠∠=∠== ∵DE 是AC 的垂直平分线∴AD DC =∴36ACD A ∠=∠=∵CDB ∠是ADC ∆的外角∴72CDB ACD A ∠=∠+∠=∴B CDB ∠=∠∴CB CD =∴BCD ∆是等腰三角形;(2)∵AD CD CB b ===,BCD ∆的周长是a∴AB a b =-∵AB AC =∴AC a b =-∴ACD ∆的周长AC AD CD a b b b a b =++=-++=+.【点睛】此题主要考查线段垂直平分线的性质以及等腰三角形的判定与性质,熟练掌握,即可解题.20、(1)1302ABD α∠=︒-;(2)ABE ∆是等边三角形.证明见解析. 【分析】(1)由等腰三角形的性质,得到∠ABC=1(180)2α⨯︒-,由60CBD ∠=︒,即可求出ABD ∠;(2)连接AD ,CD ,则BCD ∆为等边三角形,然后得到ABD ACD ∆≅∆,得到BCE BDA ∠=∠,EBC ABD ∠=∠,从而得到ABD EBC ∆≅∆,则AB EB =,即可得到ABE ∆为等边三角形.【详解】解:(1)AB AC =,BAC α∠=,ABC ACB ∴∠=∠,∴180ABC ACB BAC ∠+∠=︒-∠,()111809022ABC ACB BAC α∴∠=∠=︒--︒∠=, ABD ABC CBD ∠=∠-∠,60CBD ∠=︒, ∴1302ABD α∠=︒-; (2)ABE ∆是等边三角形.理由如下:连接AD ,CDBC BD =,60CBD ∠=︒,BCD ∴∆为等边三角形BD CD ∴=在ABD ∆与ACD ∆中AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩ABD ACD ∴∆≅∆()SSS ,1122BAD CAD BAC α∴∠=∠=∠=, 1302ABD α︒∠=- 111801803015022BDA ABD BAD αα︒∴∠=︒-∠-∠=-+-=︒︒ 150BCE ∠=︒,BCE BDA ∴∠=∠,60ABD DBE ABE ∠︒∠+∠==,60EBC DBE CBD ∠+∠=∠=︒EBC ABD ∴∠=∠在ABD ∆和EBC ∆中BDA BCE BD BCABD EBC ∠=∠⎧⎪=⎨⎪∠=∠⎩ABD EBC ∴∆≅∆()ASA ,AB EB ∴=,60ABE ∠=︒ABE ∴∆是等边三角形.【点睛】本题考查了等边三角形的判定和性质,等腰三角形的性质,全等三角形的判定和性质,角平分线的性质,以及三角形的内角和定理,解题的关键是熟练掌握所学的知识,正确找到边的关系和角的关系,从而进行证明.21、(1)32-;(2)7 【分析】(1)先化简二次根式,计算乘方,然后计算加减乘除,即可得到答案; (2)先化简二次根式,然后计算括号内的运算,再计算单项式除以单项式即可.【详解】解:()1原式()115342=-+⨯-+ 31542=--+ 32=-; ()2原式()432312323=-+÷ 14323=÷7=.【点睛】本题考查了二次根式的混合运算,二次根式的性质,以及有理数的混合运算,解题的关键是熟练掌握运算法则进行解题.22、(1)﹣1,1;﹣4,2;﹣3,4;(2)作图见解析;点P 坐标为(2,0).【分析】(1)分别作出点A ,B ,C 关于y 轴的对称点,再首尾顺次连接即可得; (2)作出点A 关于x 轴的对称点A′,再连接A′B ,与x 轴的交点即为所求.【详解】解:(1)如图所示,△A 1B 1C 1即为所求,由图知,A 1(﹣1,1),B 1(﹣4,2)C 1(﹣3,4),故答案为:﹣1,1;﹣4,2;﹣3,4;(2)如图所示,作出点A 关于x 轴的对称点A′,再连接A′B ,与x 轴的交点即为所求点P ,其坐标为(2,0).【点睛】本题考查了轴对称作图、对称点的坐标特征及距离最短问题,利用对称点的坐标特征作图是关键.23、(1)见解析(2)13【分析】(1)依次找到各顶点关于y 轴的对称点,再顺次连接即可;(2)根据割补法即可求解.【详解】(1)如图,11AB C ∆为所求;(2)多边形11ABCC B 的面积=6×4-2×12×3×3-2×12×2×1=24-9-2=13【点睛】此题主要考查坐标与图形,解题的关键是熟知关于y 轴的坐标特点.24、(1)作图见解析;(2)作图见解析;(3)29【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用关于原点对称点的性质得出对应点位置进而得出答案;(3)直接利用轴对称求最短路线得出P 点位置,再利用勾股定理得出答案.【详解】解:(1)如图所示:△A 1B 1C 1,即为所求;(2)如图所示:△A 2B 2C 2,即为所求;(3)如图所示:P 点即为所求,当AP +CP 有最小值时,这个最小值为: 2225+=29.【点睛】本题考查图形的平移、对称以及最值的问题,难度不大.解题的关键是掌握:点的左右平移实际上就横坐标在改变;点的上下平移就是点的纵坐标在改变;对于轴对称-最短路线问题,解题的关键是找出一点关于对称轴的对称点,连接另一点和对称点,确定出最短路线.25、(1)甲每天修路1.5千米,则乙每天修路1千米;(2)甲工程队至少修路8天.【分析】(1)可设甲每天修路x 千米,则乙每天修路(x ﹣0.5)千米,则可表示出修路所用的时间,可列分式方程,求解即可;(2)设甲修路a 天,则可表示出乙修路的天数,从而可表示出两个工程队修路的总费用,由题意可列不等式,求解即可.【详解】(1)设甲每天修路x 千米,则乙每天修路(x ﹣0.5)千米, 根据题意,可列方程:15151.50.5x x ⨯=-,解得x=1.5, 经检验x=1.5是原方程的解,且x ﹣0.5=1,答:甲每天修路1.5千米,则乙每天修路1千米;(2)设甲修路a 天,则乙需要修(15﹣1.5a )千米, ∴乙需要修路15 1.515 1.51a a -=-(天), 由题意可得0.5a+0.4(15﹣1.5a )≤5.2,解得a≥8,答:甲工程队至少修路8天.考点:1.分式方程的应用;2.一元一次不等式的应用.26、 (3)小王购买A ,B 两种品牌龟苓膏粉分别为633包,433包(4) y =-4x +43533(3) A 品牌的龟苓膏粉每包定价不低于44元时才不亏本【解析】试题分析:(3)设小王需购买A 、B 两种品牌龟苓膏粉分别为x 包、y 包,根据题意列方程解出即可;(4)根据题意,可得y=533+3.8×[43x+45(3333﹣x )],据此求出y 与x 之间的函数关系式即可.(3)先求出小王购买A 、B 两种品牌龟苓膏粉分别为多少包,然后设A 种品牌龟苓膏粉的售价为z 元,则B 种品牌龟苓膏粉的售价为z+5元,所以345z+875(z+5)≥43333+8×3333,据此求出A 品牌的龟苓膏粉每包定价不低于多少元时才不亏本即可. 试题解析:(3)设小王需购买A 、B 两种品牌龟苓膏粉分别为x 包、y 包,则1000{202522000x y x y +=+=,解得:600{400x y ==,∴小王购买A 、B 两种品牌龟苓膏粉分别为633包、433包;(4)y=533+3.8×[43x+45(3333﹣x)]=533+3.8×[45333﹣5x]=533+43333﹣4x=﹣4x+43533,∴y与x之间的函数关系式是:y=﹣4x+43533;(3)由(4),可得:43333=﹣4x+43533,解得x=345,∴小王购买A、B两种品牌龟苓膏粉分别为345包、875包,设A种品牌龟苓膏粉的售价为z元,则B种品牌龟苓膏粉的售价为z+5元,∴345z+875(z+5)≥43333+8×3333,解得z≥4.645,∴A品牌的龟苓膏粉每包定价不低于44元时才不亏本.考点:3.一次函数的应用;4.综合题.。
河南省扶沟县2024届数学八上期末经典试题含解析
河南省扶沟县2024届数学八上期末经典试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.一组数据2,2,4,3,6,5,2的众数和中位数分别是()A.3,2B.2,3C.2,2D.2,42.如图,已知∠ACB=∠DBC,添加以下条件,不能判定△ABC≌△DCB的是()A.∠ABC=∠DCB B.∠ABD=∠DCAC.AC=DB D.AB=DC3.如图,直角坐标系中四边形的面积是()A.4 B.5.5 C.4.5 D.54.估计10+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间5.若等腰三角形的周长为40,一边为16,则腰长为()A.16B.12C.16或12 D.以上都不对6.如图,下列条件中,不能证明△ABC≌△DCB的是( )A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCB C.BO=CO,∠A=∠DD.AB=DC,∠DBC=∠ACB7.如图,长和宽为a、b的长方形的周长为14,面积为10,则ab(a+b)的值为()A.140 B.70 C.35 D.248.小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器,然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h与注水时间t之间的变化情况的是()A.B.C.D.9.视力表中的字母“E”有各种不同的摆放方向,下列图中两个“E”不成..轴对称的是()A.B.C.D.10.在平面直角坐标系xOy中,A(1,3),B(5,1),点M在x轴上,当MA+MB取得最小值时,点M的坐标为( )A.(5,0)B.(4,0)C.(1,0)D.(0,4)二、填空题(每小题3分,共24分)1137.7 ____.(结果精确到1)12.若等腰三角形一腰上的中线把这个三角形的周长分成为12cm和21cm两部分,则这个等腰三角形的底边长为_______.13.若点(,)A m n 和点(3,2)B 关于x 轴对称,则m n 的值是____.14.已知1(1,5)P a -和2(2,1)P b -关于x 轴对称,则2020()a b +值为_____.15.如图:已知AB=AD,请添加一个条件使得△ABC ≌△ADC ,_______(不添加辅助线)16.游泳者在河中逆流而上,于桥A 下面将水壶遗失被水冲走,继续前游30分钟后他发现水壶遗失,于是立即返回追寻水壶,在桥A 下游距桥1.2公里的桥B 下面追到了水壶,那么该河水流的速度是_________.17.若代数式33x -有意义,则x 的取值范围是__. 18.当x_______时,分式22x 无意义,当x=_________时,分式242x x -+的值是0. 三、解答题(共66分)19.(10分)计算:(1)()2()()x y x y x y +-+- (2)()()()()3223624232x y x y xy xy x y y x --÷--+-20.(6分)解不等式组:2(4)32113x x x x -->-⎧⎪-⎨-≥⎪⎩;并将解集在数轴上表示出来.21.(6分)已知:a 2+3a ﹣2=0,求代数的值.22.(8分)如图,平行四边形ABCD 的对角线AC BD 、交于点O ,分别过点C D 、作//,//CF BD DF AC ,连接BF 交AC 于点E .(1)求证: FCE BOE ≌;(2)当ADC ∠等于多少度时,四边形OCFD 为菱形?请说明理由.23.(8分)如图,△ABC三个顶点的坐标分别为A(3,4),B(1,2),C(5,1),(1)请画出△ABC关于y轴对称的图形△A1B1C1,(2)△A1B1C1三个顶点坐标分别为A1,B1,C124.(8分)已知直线y=kx+b(k≠0)经过点A(3,0),B(1,2)(1)求直线y=kx+b的函数表达式;(2)若直线y=x﹣2与直线y=kx+b相交于点C,求点C的坐标;(3)写出不等式kx+b>x﹣2的解.25.(10分)我们提供如下定理:在直角三角形中,30°的锐角所对的直角边是斜边的一半,如图(1),Rt△ABC中,∠C=90°,∠A=30°,则BC=12 AB.请利用以上定理及有关知识,解决下列问题:如图(2),边长为6的等边三角形ABC中,点D从A出发,沿射线AB方向有A向B运动点F同时从C出发,以相同的速度沿着射线BC方向运动,过点D作DE⊥AC,DF交射线AC于点G.(1)当点D运动到AB的中点时,直接写出AE的长;(2)当DF⊥AB时,求AD的长及△BDF的面积;(3)小明通过测量发现,当点D在线段AB上时,EG的长始终等于AC的一半,他想当点D运动到图3的情况时,EG的长始终等于AC 的一半吗?若改变,说明理由;若不变,说明理由.26.(10分)先化简,再求值:21123369⎛⎫+÷ ⎪-+-+⎝⎭m m m m m ,其中m=9.参考答案一、选择题(每小题3分,共30分)1、B【解题分析】根据众数的意义,找出出现次数最多的数,根据中位数的意义,排序后找出处在中间位置的数即可.【题目详解】解:这组数据从小到大排列是:2,2,2,3,4,5,6,出现次数最多的数是2,故众数是2;处在中间位置的数,即处于第四位的数是中位数,是3,故选:B .【题目点拨】考查众数、中位数的意义,即从出现次数最多的数、和排序后处于之中间位置的数.2、D【分析】根据全等三角形的判定定理 逐个判断即可.【题目详解】A 、∵在△ABC 和△DCB 中ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DCB (ASA ),故本选项不符合题意;B 、∵∠ABD =∠DCA ,∠DBC =∠ACB ,∴∠ABD +∠DBC =∠ACD +∠ACB ,即∠ABC =∠DCB ,∵在△ABC 和△DCB 中ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DCB (ASA ),故本选项不符合题意;C 、∵在△ABC 和△DCB 中BC CB ACB DBC AC DB =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DCB (SAS ),故本选项不符合题意;D 、根据∠ACB =∠DBC ,BC =BC ,AB =DC 不能推出△ABC ≌△DCB ,故本选项符合题意;故选:D .【题目点拨】本题考查了全等三角形的判定定理,能灵活运用全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .3、C【解题分析】过A 点作x 轴的垂线,垂足为E ,将不规则四边形分割为两个直角三角形和一个直角梯形求其面积即可.【题目详解】解:过A 点作x 轴的垂线,垂足为E ,直角坐标系中四边形的面积为:1×1÷2+1×2÷2+(1+2)×2÷2=0.1+1+3=4.1.故选:C .【题目点拨】本题主要考查了点的坐标的意义以及与图形相结合的具体运用.割补法是求面积问题的常用方法.4、B 【解题分析】解:∵3104<,∴41015<+<.故选B . 10 的取值范围是解题关键.5、C【分析】分两种情况:腰长为12和底边长为12,分别利用等腰三角形的定义进行讨论即可.【题目详解】若腰长为1,则底边为401628-⨯=此时,三角形三边为16,16,8,可以组成三角形,符合题意;-÷=若底边长为1,则腰长为(4016)212此时,三角形三边为12,12,16,可以组成三角形,符合题意;综上所述,腰长为12或1.故选:C.【题目点拨】本题主要考查等腰三角形的定义,掌握等腰三角形的定义并分情况讨论是解题的关键.6、D【解题分析】试题分析:根据题意知,BC边为公共边.A.由“SSS”可以判定△ABC≌△DCB,故本选项错误;B.由“SAS”可以判定△ABC≌△DCB,故本选项错误;C.由BO=CO可以推知∠ACB=∠DBC,则由“AAS”可以判定△ABC≌△DCB,故本选项错误;D.由“SSA”不能判定△ABC≌△DCB,故本选项正确.故选D.考点:全等三角形的判定.7、B【分析】直接利用长方形面积求法以及长方形周长求法得出ab,a+b的值,进而得出答案.【题目详解】解:∵长和宽为a、b的长方形的周长为14,面积为10,∴2(a+b)=14,ab=10,则a+b=7,故ab(a+b)=7×10=1.故选:B.【题目点拨】此题主要考查了单项式乘以多项式,正确得出a+b的值是解题关键.8、D【题目详解】试题分析:一注水管向小玻璃杯内注水,水面在逐渐升高,当小杯中水满时,开始向大桶内流,这时最高水位高度不变,当桶水面高度与小杯一样后,再继续注水,水面高度在升高,升高的比开始慢.故选D.考点:函数的图象.9、D【分析】根据两个图形成轴对称的定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么称这两个图形成轴对称,逐一分析即可.【题目详解】解:A 选项中两个“E ” 成轴对称,故本选项不符合题意;B 选项中两个“E ” 成轴对称,故本选项不符合题意;C 选项中两个“E ” 成轴对称,故本选项不符合题意;D 选项中两个“E ” 不成轴对称,故本选项符合题意;故选D .【题目点拨】此题考查的是两个图形成轴对称的识别,掌握两个图形成轴对称的定义是解决此题的关键.10、B【分析】根据对称性,作点B 关于x 轴的对称点B ′,连接AB ′与x 轴交于点M ,根据两点之间线段最短,后求出'AB 的解析式即可得结论.【题目详解】解:如图所示: 作点B 关于x 轴的对称点B ′, 连接AB ′交x 轴于点M ,此时MA+MB =MA+MB ′=AB ′, 根据两点之间线段最短,因为:B (5,1),所以:'(5,1)B -设直线'AB 为y kx b =+把'(1,3),(5,1)A B -代入函数解析式: 351k b k b +=⎧⎨+=-⎩ 解得:14k b =-⎧⎨=⎩ 所以一次函数为:4y x =-+,所以点M 的坐标为(4,0)故选:B .【题目点拨】本题考查了轴对称-最短路线问题,解决本题的关键是掌握对称性质.二、填空题(每小题3分,共24分)11、6。
2022-2023学年河南省扶沟县数学八年级第一学期期末调研试题含解析
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)1.若2x + m 与x + 2 的乘积中不含的x 的一次项,则m 的值为()A.-4 B.4 C.-2 D.22.在4y,4y,6x y+,2x y+,xπ中分式的个数有()A.1个B.2个C.3个D.4个3.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P=()A.70°B.80°C.90°D.100°4.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是()A.7,7B.8,7.5C.7,7.5D.8,6.55.若关于x的一元一次不等式组122x ax x->⎧⎨->-⎩无解,则a的取值范围是( )A.a≥1B.a>1 C.a≤-1 D.a<-16.如图,△ABC 中,AD 垂直BC 于点D ,且AD=BC ,BC 上方有一动点P 满足12PBC ABC S S ∆∆=,则点P 到B 、C 两点距离之和最小时,∠PBC 的度数为( )A .30°B .45°C .60°D .90°7.若21x y =⎧⎨=-⎩是下列某二元一次方程组的解,则这个方程组为( )A .351x y x y +=⎧⎨+=⎩B .251x y x y -=⎧⎨+=⎩C .231x y x y =⎧⎨=+⎩D .325x y y x =-⎧⎨+=⎩8.下列图形中对称轴只有两条的是( )A .B .C .D .9.如图,在△ABC 中,AB =6,BC =5,AC =4,AD 平分∠BAC 交BC 于点D ,在AB 上截取AE =AC ,则△BDE 的周长为( )A .8B .7C .6D .510.如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC+PQ 的最小值是( )A .245B .5C .6D .811.下列逆命题是真命题的是( )A .如果x=y ,那么x 2=y 2B .相等的角是内错角C .有三个角是60°的三角形是等边三角形D .全等三角形的对应角相等 12.要使分式21x x --有意义,x 的取值范围满足( ) A .x ≠2B .x ≠1C .x ≠1且x ≠2D .x ≠1或x ≠2二、填空题(每题4分,共24分) 13.一个六边形的内角和是 ___________.14.点P (2,1)--关于x 轴的对称点坐标为________. 15.若2m a =,3n a =,则32m n a -=_____________.16.ABC 中,90C ∠=︒,30B ∠=︒,斜边6AB =,则AC 的长为__________. 17.已知A 地在B 地的正南方3km 处,甲、乙两人同时分别从A 、B 两地向正北方向匀速直行,他们与A 地的距离S (km )与所行时间t(h)之间的函数关系如图所示,当他们行驶3h 时,他们之间的距离为______km.18.在平面直角坐标系中,点A ,B 的坐标分别为(3,5),(3,7),直线y =2x +b 与线段AB 有公共点,则b 的取值范围是______. 三、解答题(共78分)19.(8分)如图1,已知△ABC 和△EFC 都是等边三角形,且点E 在线段AB 上.(1)求证:BF ∥AC ;(2)过点E 作EG ∥BC 交AC 于点G ,试判断△AEG 的形状并说明理由;(3)如图2,若点D 在射线CA 上,且ED =EC ,求证:AB =AD +BF . 20.(8分)已知,ABC ∆在平面直角坐标系中的位置如图所示.(1)把ABC ∆向下平移2个单位长度得到111A B C ∆,请画出111A B C ∆; (2)请画出111A B C ∆关于y 轴对称的222A B C ∆,并写出2A 的坐标; (3)求ABC ∆的面积.21.(8分)先化简,再求值:(2x+1)(2x −1)−(x+1)(3x −2),其中x= −1. 22.(10分)在学习了轴对称知识之后,数学兴趣小组的同学们对课本习题进行了深入研究,请你跟随兴趣小组的同学,一起完成下列问题.(1)(课本习题)如图①,△ABC 是等边三角形,BD 是中线,延长BC 至E ,使CE=CD . 求证:DB=DE(2)(尝试变式)如图②,△ABC 是等边三角形,D 是AC 边上任意一点,延长BC 至E ,使CE=AD . 求证:DB=DE .(3)(拓展延伸)如图③,△ABC 是等边三角形,D 是AC 延长线上任意一点,延长BC 至E ,使CE=AD 请问DB 与DE 是否相等? 并证明你的结论.23.(10分)如图,某中学校园内有一块长为(3)a b +米,宽为(2)a b +米的长方形地块.学校计划在中间留一块边长为()a b +米的正方形地块修建一座雕像,然后将阴影部分进行绿化.(1)求绿化的面积.(用含a b 、的代数式表示) (2)当3,1a b ==时,求绿化的面积.24.(10分)(1)解分式方程:23111x x x=---;(2)化简:2221211a a a a a a +⎛⎫÷- ⎪-+-⎝⎭ 25.(12分)观察下列等式: 112()(2)()(2)22⨯---=-⨯-;4422233⨯-=⨯;111123232⨯-=⨯;……根据上面等式反映的规律,解答下列问题:(1)请根据上述等式的特征,在括号内填上同一个实数: 2⨯( )-5=( )5⨯; (2)小明将上述等式的特征用字母表示为:2x y xy -=(x 、y 为任意实数). ①小明和同学讨论后发现:x 、y 的取值范围不能是任意实数.请你直接写出x 、y 不能取哪些实数.②是否存在x 、y 两个实数都是整数的情况?若存在,请求出x 、y 的值;若不存在,请说明理由.26. “推进全科阅读,培育时代新人”. 某学校为了更好地开展学生读书节活动,随机调查了八年级50名学生最近一周的读书时间,统计数据如下表: 时间/小时 678 910 人数5 8121510(1)写出这50名学生读书时间的众数、中位数、平均数; (2)根据上述表格补全下面的条形统计图,参考答案一、选择题(每题4分,共48分) 1、A【分析】先将(2x + m ) (x + 2)根据多项式乘多项式展开,找出所有含x 的一次项,合并系数,使含x 的一次项的系数为0,即可求出m 的值.【详解】解:22()()2422(42) 2 2x x mx x m m m x x x m =+++=+++++, ∵乘积中不含x 的一次项, ∴4=0m +, ∴=4m -. 故答案选:A . 【点睛】本题考查多项式乘多项式的运算,属于基础题.理解不含某一项就是指含有这项的系数为0,注意合并同类项求解. 2、B【解析】判断一个式子是否是分式,关键要看分母中是否含有未知数,然后对分式的个数进行判断. 【详解】解:分式有4y ,6x y+,共2个, 故选:B . 【点睛】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.3、C【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠A的度数,根据补角的定义求出∠ACB的度数,根据三角形的内角和即可求出∠P的度数,即可求出结果.【详解】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∵∠ABP=20°,∠ACP=50°,∴∠ABC=2∠ABP=40°,∠ACM=2∠ACP=100°,∴∠A=∠ACM-∠ABC=60°,∠ACB=180°-∠ACM=80°,∴∠BCP=∠ACB+∠ACP=130°,∵∠BPC=20°,∴∠P=180°-∠PBC-∠BCP=30°,∴∠A+∠P=90°,故选:C.【点睛】本题考查了角平分线的定义,一个三角形的外角等于与它不相邻的两个内角和以及补角的定义以及三角形的内角和为180°,掌握角平分线的定义是解题的关键.4、C【分析】中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.【详解】解:由条形统计图中出现频数最大条形最高的数据是在第三组,7环,故众数是7(环);因图中是按从小到大的顺序排列的,最中间的环数是7(环)、8(环),故中位数是7.5(环).故选C.【点睛】本题考查众数和中位数的定义.解题关键是,当所给数据有单位时,所求得的众数和中位数与原数据的单位相同,不要漏单位.5、A【解析】{122x ax x->->-①②,由①得,x<1,由②得,x>a,∵此不等式组无解,∴a⩾1.故选A.点睛:此题主要考查了已知不等式的解集,求不等式中另一未知数的问题.可以先将另一未知数当做已知处理,求出解集与已知解集比较,进而求得另一个未知数.求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.6、B【分析】根据12PBC ABCS S∆∆=得出点P到BC的距离等于AD的一半,即点P在过AD的中点且平行于BC的直线l上,则此问题转化成在直线l上求作一点P,使得点P到B、C两点距离之和最小,作出点C关于直线l的对称点C’,连接BC’,然后根据条件证明△BCC’是等腰直角三角形即可得出∠PBC的度数.【详解】解:∵12PBC ABCS S∆∆=,∴点P到BC的距离=12 AD,∴点P在过AD的中点E且平行于BC的直线l上,作C点关于直线l的对称点C’,连接BC’,交直线l于点P,则点P即为到B、C两点距离之和最小的点,∵AD⊥BC,E为AD的中点,l∥BC,点C和点C’关于直线l对称,∴CC’=AD=BC,CC’⊥BC,∴三角形BCC’是等腰直角三角形,∴∠PBC=45°.故选B.【点睛】本题主要考查了轴对称变换—最短距离问题,根据三角形的面积关系得出点P在过AD的中点E且平行于BC的直线l上是解决此题的关键.7、B【分析】运用代入排除法进行选择或分别解每一个方程组求解.【详解】A.x=2,y=﹣1不是方程x+3y=5的解,故该选项错误;B.x=2,y=﹣1适合方程组中的每一个方程,故该选项正确.C.x=2,y=﹣1不是方程组中每一个方程的解,故该选项错误;D.x=2,y=﹣1不是方程组中每一个方程的解,故该选项错误.故选B.【点睛】本题考查了方程组的解的定义,即适合方程组的每一个方程的解是方程组的解.8、C【分析】根据对称轴的定义,分别找出四个选项的中的图形的对称轴条数,即可得到答案.【详解】圆有无数条对称轴,故A不是答案;等边三角形有三条对称轴,故B不是答案;长方形有两条对称轴,故C是答案;等腰梯形只有一条对称轴,故D不是答案.故C为答案.【点睛】本题主要考查了对称轴的基本概念(如果沿着某条直线对折,对折的两部分是完全重合的,那么这条直线就叫做这个图形的对称轴),熟记对称轴的概念是解题的关键.9、B【详解】解:∵AD是∠BAC的平分线,∴∠EAD=∠CAD在△ADE和△ADC中,AE=AC,∠EAD=∠CAD,AD=AD,∴△ADE≌△ADC(SAS),∴ED=CD,∴BC=BD+CD=DE+BD=5,∴△BDE的周长=BE+BD+ED=(6−4)+5=7故选B.【点睛】本题考查全等三角形的应用.三角形全等的判定定理有:边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS)、HL.通过证明三角形全等可以得到相等的边或角,可将待求量进行转化,使问题迎刃而解.10、A【分析】过C作CM⊥AB于M,交AD于P,过P作PQ⊥AC于Q,由角平分线的性质得出PQ=PM,这时PC+PQ有最小值,为CM的长,然后利用勾股定理和等面积法求得CM的长即可解答.【详解】过C作CM⊥AB于M,交AD于P,过P作PQ⊥AC于Q,∵AD是∠BAC的平分线,∴PQ=PM,则PC+PQ=PC+PM=CM,即PC+PQ有最小值,为CM的长,∵在Rt△ABC中,∠ACB=90°,AC=6,BC=8,∴由勾股定理得:AB=10,又1122ABCS AB CM AC BC==△,∴6824105 CM⨯==,∴PC+PQ的最小值为245,故选:A.【点睛】本题考查了角平分线的性质、最短路径问题、勾股定理、三角形等面积法求高,解答的关键是掌握线段和最短类问题的解决方法:一般是运用轴对称变换将直线同侧的点转化为异侧的点,从而把两条线段的位置关系转换,再根据两点之间线段最短或垂线段最短,使两条线段之和转化为一条直线来解决.11、C【分析】先写出各选项的逆命题,然后逐一判断即可得出结论.【详解】A.如果x=y,那么x2=y2的逆命题为:如果x2=y2,那么x=y,是假命题,故A 选项不符合题意;B . 相等的角是内错角的逆命题为:内错角相等,是假命题,故B 选项不符合题意;C . 有三个角是60°的三角形是等边三角形的逆命题为:等边三角形的三个角都是60°,是真命题,故C 选项符合题意;D . 全等三角形的对应角相等的逆命题为:对应角相等的两个三角形全等,是假命题,故D 选项不符合题意;故选C .【点睛】此题考查的是写一个命题的逆命题和判断逆命题的真假,掌握平方的意义、等边三角形的性质和全等三角形的判定是解决此题的关键.12、B【分析】根据分式有意义的条件可得x−1≠0,再解即可.【详解】解:由题意得:x ﹣1≠0,解得:x ≠1,故选:B .【点睛】本题考查了分式有意义的条件.关键是掌握分式有意义的条件是分母不等于零.二、填空题(每题4分,共24分)13、720°【分析】根据多边形内角和公式即可求解.【详解】根据多边形的内角和定理可得:六边形的内角和=(6-2)×180°=720°. 【点睛】本题多边形的内角和,熟记公式是关键.14、(2,1)-【分析】根据点的坐标关于坐标轴对称的方法“关于谁对称,谁就不变,另一个互为相反数”可直接求解.【详解】解:由点P (2,1)--关于x 轴的对称点坐标为(2,1)-;故答案为(2,1)-.【点睛】本题主要考查点的坐标关于坐标轴对称,熟练掌握点的坐标关于坐标轴对称的方法是解题的关键.15、89 【分析】根据幂的乘方以及同底数幂的除法法则的逆运算解答即可. 【详解】解:∵a m =2,a n =3,∴a 3m-2m =(a m )3÷(a n )2=23÷32=89, 故答案为:89. 【点睛】本题主要考查了幂的乘方以及同底数幂的除法法则的逆运算,熟记幂的运算法则是解答本题的关键.16、1【分析】根据题意,画出图形,然后根据10°所对的直角边是斜边的一半即可求出结论.【详解】解:如图所示:ABC 中,90C ∠=︒,30B ∠=︒,斜边6AB =,∴AC=132AB = 故答案为:1.【点睛】此题考查的是直角三角形的性质,掌握10°所对的直角边是斜边的一半是解决此题的关键.17、1.5【详解】因为甲过点(0,0),(2,4),所以S 甲=2t .因为乙过点(2,4),(0,3),所以S 乙=12t+3,当t=3时,S 甲-S 乙=6-92=3218、-1≤b ≤1【分析】由一次函数图象上点的坐标特征结合直线与线段有公共点,即可得出关于b 的一元一次不等式,解之即可得出b 的取值范围.【详解】解:当x=3时,y =2×3+b=6+b ,∴若直线y =2x +b 与线段AB 有公共点,则6567b b +≥⎧⎨+≤⎩,解得-1≤b ≤1 故答案为:-1≤b ≤1.【点睛】本题考查了一次函数图象上点的坐标特征,利用一次函数图象上点的坐标特征结合直线与线段有公共点,列出关于b 的一元一次不等式是解题的关键.三、解答题(共78分)19、(1)见解析;(2)△AEG 是等边三角形;理由见解析;(3)见解析.【分析】(1)如图1,根据等边三角形的性质得到∠ACB=∠ECF=60°,AC=BC ,CE=FC ,推出△ACE ≌△FCB ,得到∠CBF=∠A=60°,于是得到∠CBF =∠ACB ,根据平行线的判定定理即可得到AC ∥BF ;(2)过E 作EG ∥BC 交AC 于G ,根据等边三角形的判定定理可证明△AEG 是等边三角形;(3)由(2)可知∠DAE=∠EGC=120°,可证明△ADE ≌△GCE ,进而得到AD=CG ,再由(1)BF=AE=AG ,于是可证得AB=BF+AD.【详解】解:(1)如图1,∵△ABC 和△EFC 都是等边三角形,∴∠ACB=∠ECF=∠A= 60°,AC=BC ,CE=FC ,∴∠1+∠3=∠2+∠3,∴∠1=∠2,在△ACE 与△FCB 中,12AC BC CE CF =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△FCB ,∴∠CBF=∠A =60°,∴∠CBF =∠ACB,∴AC∥BF;(2)△AEG是等边三角形,理由如下:如图,过E作EG∥BC交AC于G,∵∠ABC=∠ACB=60°,∴∠AEG=∠AGE=60°,∴△AEG是等边三角形.(3)如图2,过E作EG∥BC交AC于G,由(2)可知△AEG是等边三角形,∴AE=EG=AG,∠GAE=∠AGC=60°,∴∠DAE=∠EGC=120°,∵DE=CE,∴∠D=∠1,∴△ADE≌△GCE,∴AD=CG,∴AC=AG+CG=AG+AD,由(1)得△ACE≌△FCB,∴BF=AE,∴BF=AG ,∴AC=BF+AD ,∴AB=BF+AD.【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质,正确的作出辅助线是解题的关键.20、(1)见解析;(2)(4,-1);(3)6.1.【分析】(1)首先确定A 、B 、C 三点向下平移2个单位长度后的对应点位置,然后再连接即可;(2)首先确定A 1、B 1、C 1关于y 轴对称的对称点,然后再连接即可;(3)把△ABC 放在一个矩形内,利用矩形的面积减去周围多余三角形的面积即可.【详解】解:(1)如图所示:(2)如图所示:A 2的坐标(4,-1);(3)△ABC 的面积:3×1-12×2×3-12×1×1-12×2×3=11-3-2.1-3=6.1. 【点睛】本题主要考查了作图--轴对称变换和平移变换,关键是找出组成图形的关键点平移后的对应点位置.21、(1)21x x -+;3【分析】利用平方差公式以及多项式乘多项式展开后,再合并同类项,代入x= −1即可求解.【详解】()()()()2121132x x x x +--+-()22413232?x x x x =---+-22413232?x x x x =--+-+ 21x x =-+,当1x =-时,原式()1113=--+=.【点睛】本题主要考查了整式的混合运算,关键是掌握整式乘法的计算法则,正确把式子化简.22、(1)见详解;(2)见详解;(3)DB=DE 成立,证明见详解【分析】(1)由等边三角形的性质,得到∠CBD=30°,∠ACB=60°,由CD=CE ,则∠E=∠CDE=30°,得到∠E=∠CBD=30°,即可得到DB=DE ;(2)过点D 作DG ∥AB ,交BC 于点G ,证明△BDC ≌△EDG ,根据全等三角形的性质证明结论;(3)过点D 作DF ∥AB 交BE 于F ,由“SAS ”可证△BCD ≌△EFD ,可得DB=DE .【详解】证明:(1)∵△ABC 是等边三角形∴∠ABC=∠BCA=60°,∵点D 为线段AC 的中点,∴BD 平分∠ABC ,AD=CD ,∴∠CBD=30°,∵CD=CE ,∴∠CDE=∠CED ,又∵∠CDE+∠CED=∠BCD ,∴2∠CED=60°,∴∠CED=30°=∠CBD , ∴DB=DE ;(2)过点D 作DG ∥AB ,交BC 于点G ,如图,∴∠DGC=∠ABC=60°,又∠DCG=60°,∴△DGC 为等边三角形,∴DG=GC=CD ,∴BC-GC=AC-CD ,即AD=BG ,∵AD=CE ,∴BG=CE ,∴BC=GE ,在△BDC 和△EDG 中,60DC DG BCD EGD BC EG =⎧⎪∠=∠=︒⎨⎪=⎩,∴△BDC ≌△EDG (SAS )∴BD=DE ;(3)DB=DE 成立,理由如下:过点D 作DF ∥AB 交BE 于F ,∴∠CDF=∠A ,∠CFD=∠ABC ,∵△ABC 是等边三角形∴∠ABC=∠BCA=∠A=60°,BC=AC=AB ,∴∠CDF=∠CFD=60°=∠ACB=∠DCF , ∴△CDF 为等边三角形∴CD=DF=CF ,又AD=CE ,∴AD-CD=CE-CF ,∴BC=AC=EF ,∵∠BCD=∠CFD+∠CDF=120°,∠DFE=∠FCD+∠FDC=120°,∴∠BCD=∠DFE ,且BC=EF ,CD=DF ,∴△BCD ≌△EFD (SAS )∴DB=DE .【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,以及平行线的性质,正确添加恰当辅助线构造全等三角形是本题的关键.23、(1)2(53)a ab +平方米;(2)54平方米.【分析】(1)绿化的面积=长方形的面积-边长为()a b +米的正方形的面积,据此列式计算即可;(2)把a 、b 的值代入(1)题中的代数式计算即可.【详解】解:(1)2(3)(2)()a b a b a b ++-+ 2222652a ab b a ab b =++---2(53)a ab =+平方米;(2)当3,1a b ==时,22535333154a ab +=⨯+⨯⨯=.所以绿化的面积为54平方米.【点睛】本题主要考查了整式乘法的应用,正确列式、熟练掌握运算法则是解题的关键.24、(1)14x =-;(2)2a a 1-. 【解析】(1)分式方程去分母转化为整式方程,求出整式方程的解可得x 的值,经检验是分式方程的解;(2)原式括号中两项通分并进行同分母减法计算,同时利用除法法则变形、约分即可求解.【详解】(1)解:()231x x =---14x =- 经检验:14x =-是原方程的解,所以原方程的解为14x =-. (2)原式()()()212111a a a a a a a +-+=÷-- ()()()21111a a a a a a +-=⋅+- 2a a 1=-. 【点睛】本题考查了解分式方程以及分式方程的混合运算,熟练掌握运算法则是正确解题的关键.25、 (1) 53-;(2)①x 不能取-1,y 不能取2;②x=0,y=0;x=1,y=1;x=-3,y=3;x=-2,y=4; 【分析】(1)设所填数为x,则2x-5=5x ;(2)①假如2x y xy -=,则2,12x y y x x y ==+-,根据分式定义可得;②由①可知21x y x =+或2y x y =-,x≠-1,y≠2,代入尝试可得. 【详解】(1)设所填数为x,则2x-5=5x解得x=53- 所以所填数是53-(2)①假如2x y xy -= 则2,12x y y x x y==+- 所以x≠-1,y≠2即:x 不能取-1,y 不能取2;②存在, 由①可知21x y x =+或2y x y =-,x≠-1,y≠2 所以x,y 可取的整数是:x=0,y=0;x=1,y=1;x=-3,y=3;x=-2,y=4;【点睛】考核知识点:分式的值.理解分式定义是关键.26、(1)众数是9,中位数是8.5,平均数是8.34;(2)见解析【分析】(1)根据众数的定义、中位数的定义和平均数公式即可求出结论; (2)根据表格补全条形统计图即可.【详解】解:()1这50名学生读书时间的众数是9,中位数是(8+9)÷2=8.5, 平均数是(6×5+7×8+8×12+9×15+10×10)÷50=8.34.()2补全的条形统计图如下:【点睛】此题考查的是求一组数据的中位数、众数、平均数和补全条形统计图,掌握众数的定义、中位数的定义和平均数公式是解决此题的关键.。
2021年周口市初二数学上期末模拟试卷(含答案)
一、选择题1.某市铺设一条长660米的管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天铺设的管道长比计划增加10%,结果提前6天完工,求实际每天铺设管道长度及实际施工天数,小明列出方程:660660(110%)x x -+=6,题中x 表示的量为( ) A .实际每天铺设管道长度 B .实际施工天数C .计划施工天数D .计划每天铺设管道的长度2.如图,若x 为正整数,则表示3211327121(1)(1)543x x x x x x x x x--++--÷++++的值的点落在( ).A .段①B .段②C .段③D .段④3.已知1x =是分式方程2334ax a x +=-的解,则a 的值为( ) A .1-B .1C .3D .3-4.22()-n b a (n为正整数)的值是( )A .222+n n b aB .42n n b aC .212+-n n b aD .42-nn b a5.已知3x y +=,1xy =,则23x xy y -+的值是()A .7B .8C .9D .126.已知435x y +-与2(24)x y --互为相反数,则x y 的值为( ) A .2- B .2 C .1- D .1 7.已知552a =,443b =,334c =,则a ,b ,c 的大小关系是( ) A .a b c >>B .b c a >>C .c a b >>D .a c b >>8.已知2|5213|(310)0x y x y +-+--=,则x y 的立方根为( ) A .1B .1-C .2D .2-9.等腰三角形的两边a ,b 满足7260a b --=,则它的周长是( ) A .17 B .13或17C .13D .1910.若海岛N 位于海岛M 北偏东30°的方向上,则从海岛N 出发到海岛M 的航线可能是( )A .B .C .D .11.下列说法正确的( )个.①0.09的算术平方根是0.03;②1的立方根是±1;③3.1<10<3.2;④两边及一角分别相等的两个三角形全等. A .0B .1C .2D .312.将一个直角三角板和一把直尺如图放置,如果∠α=47°,则∠β的度数是( )A .43°B .47°C .30°D .60°二、填空题13.科学家使用冷冻显微术测定细菌蛋白结构的分辨率达到0.22纳米,也就是0.00000000022米.将0.00000000022用科学记数法表示为__________. 14.已知(3)1a a -=,则整数a 的值为______. 15.因式分解269x y xy y -+-=______.16.如图,两个阴影图形都是正方形,用两种方式表示这两个正方形的面积和,可以得到的等式为______.17.如图,点C 在线段AB 上(不与点A ,B 重合),在AB 的上方分别作△ACD 和△BCE ,且AC =DC ,BC=EC ,∠ACD =∠BCE =α,连接AE ,BD 交于点P .下列结论:①AE=DB ;②当α=60°时,AD =BE ;③∠APB =2∠ADC ;④连接PC ,则PC 平分∠APB .其中正确的是__________.(把你认为正确结论的序号都填上)18.在△ABC 中,按以下步骤作图:①分别以A ,C为圆心,以大于12AC 的同样长为半径画弧,两弧相交于两点M ,N ; ②作直线MN 交AB 于点D ,连结CD .请回答:若BC=DC ,∠B=100°,则∠ACB的度数为____.19.如图,在△ABC 中,∠C =90°,AD 是∠BAC 的角平分线,若BC =8cm ,BD =5cm ,AB=10cm,则S △ABD =______.20.如图,在ABC 中,80B ∠=︒,BAC ∠和BCD ∠的平分线交于点E ,则E ∠的度数是______.三、解答题21.先化简,再求值.(1)22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中x 是9的平方根; (2)2222221211⎛⎫-+-÷ ⎪-+-⎝⎭a a a aa a a ,然后从-1,0,1,2中选一个合适的数作为a 的值代入求值.22.解分式方程:63122xx x -=--. 23.观察下列关于自然数的等式:(1)217295⨯+⨯= ① (2)2282106⨯+⨯= ② (3)2392117⨯+⨯= ③ ……根据上述规律解决下列问题: (1)完成第四个等式__________.(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性. 24.如图,//AB CD ,点E 在CB 的延长线上,A E ∠=∠,AC ED =.(1)求证:BC CD =;(2)连接BD ,求证:ABD EBD ∠=∠.25.已知:AB BD ⊥,ED BD ⊥,AC CE =,BC DE =.(1)试猜想线段AC 与CE 的位置关系,并证明你的结论.(2)若将CD 沿CB 方向平移至图2情形,其余条件不变,结论12AC C E ⊥还成立吗?请说明理由.(3)若将CD 沿CB 方向平移至图3情形,其余条件不变,结论12AC C E ⊥还成立吗?请说明理由.26.如图,//AE DF ,BE DF ⊥于点G ,190B ∠+∠=︒.(1)判断CD 与AB 的位置关系,并说明理由. (2)若50A ∠=︒,求出DEG ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据计划所用时间-实际所用时间=6,可知方程中未知数x 所表示的量. 【详解】解:设原计划每天铺设管道x 米,则实际每天铺设管道()110%x +,根据题意,可列方程:6606(110%)660x x -=+, 所以小明所列方程中未知数x 所表示的量是计划每天铺设管道的长度, 故选:D . 【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是依据所给方程还原等量关系.2.B解析:B 【分析】将原式分子分母因式分解,再利用分式的混合运算法则化简,最后根据题意求出化简后分式的取值范围,即可选择. 【详解】原式221(1)71211543(1)x x x x x x x-++=-++++ 1(3)(4)11(1)(4)3xx x x xx x x x -++=-++++ 1111x x x-=-++ 1x x =+ 又因为x 为正整数,所以1121x x ≤<+, 故选B . 【点睛】本题考查分式的化简及分式的混合运算,最后求出化简后的分式的取值范围是解答本题关键.解析:D 【分析】先将分式方程化为整式方程,再将1x =代入求解即可. 【详解】解:原式化简为81233ax a x +=-, 将1x =代入 得81233a a +=- 解得-3a =.当a =-3时a -x=-3-1=-4≠0 ∴a =-3 故选则:D . 【点睛】本题考查分式方程的解.会将分式方程化为整式方程,解题关键将方程的解代入转化为a 的方程.4.B解析:B 【分析】根据分式的乘方计算法则解答. 【详解】2422()-=nn n b b a a . 故选:B . 【点睛】此题考查分式的乘方计算法则:等于分子、分母分别乘方,熟记法则是解题的关键.5.A解析:A 【分析】先把3x y +=代入原式,可得23x xy y -+=22xy +,结合完全平方公式,即可求解.【详解】 ∵3x y +=,∴23x xy y -+=2()x xy x y y -++=22x xy xy y -++=22x y +,∵1xy =,∴23x xy y -+=22x y +=22()23217x y xy +-=-⨯=,故选A . 【点睛】本题主要考查代数式求值,熟练掌握完全平方公式及其变形公式,是解题的关键.解析:D 【分析】根据相反数和非负数的性质即可求出x 、y 的值,再代入xy 中即可. 【详解】根据绝对值和偶次方的性质可知,4350x y +-≥,224)0(x y --≥又∵435x y +-和2(24)x y --是相反数,即2435(24)0x y x y +-+--=.∴435=024=0x y x y +-⎧⎨--⎩ ,解得:=2=1x y ⎧⎨-⎩,∴2(1)1x y =-=. 故选:D . 【点睛】本题考查相反数和非负数的性质、代数式求值以及求解二元一次方程组.根据题意列出二元一次方程组求出x 、y 的值是解答本题的关键.7.B解析:B 【分析】由552a =,443b =,334c =,比较5432,3,4的大小即可. 【详解】解:∵555112=(2)a =,444113(3)b == ,333114(4)c == ,435342>> ,∴411311511(3)(4)(2)>>,即b c a >>, 故选B . 【点睛】本题考查了幂的乘方的逆运算及数的大小的比较,解题的关键是熟练掌握幂的乘方运算法则.8.B解析:B 【分析】根据绝对值和平方式的非负性得到关于x 、y 的方程组,然后解方程组求得x 、y 值,代入求得xy 即可求解. 【详解】 解:由题意,得:521303100x y x y +-=⎧⎨--=⎩,解得:31x y =⎧⎨=-⎩,∴x y =(﹣1)3=﹣1, ∴x y 的立方根为﹣1, 故选:B . 【点睛】本题考查解二元一次方程组、绝对值和平方式的非负性、代数式求值、立方根,正确列出方程组是解答的关键.9.A解析:A 【分析】根据绝对值和二次根式的性质求出a ,b ,再根据等腰三角形的性质判断即可; 【详解】∵70a -=,∴70260a b -=⎧⎨-=⎩,解得73a b =⎧⎨=⎩,∵a ,b 是等腰三角形的两边,∴当7a =为腰时,三边分别为7,7,3,符合三角形三边关系, 此时三角形的周长77317++=;当3b =为腰时,三边为3,3,7,由于33+<7,故不符合三角形的三边关系; ∴三角形的周长为17. 故答案选A . 【点睛】本题主要考查了等腰三角形的性质、绝对值性质和二次根式的性质,准确计算是解题的关键.10.D解析:D 【分析】根据题意画出图形,再利用“上北下南”求出方向角即可. 【详解】 解:如图:∵海岛N位于海岛M的北偏东30°方向上,∴海岛N在海岛M上方,故排除A、B选项,根据直角三角形中30°角所对的边等于斜边的一半,排除选项C,故选D.【点睛】本题考查了方向角,解题的关键是熟练掌握方向角的概念.11.B解析:B【分析】根据平方根、立方根、无理数的估算和三角形全等判定定理进行判断即可.【详解】解:①0.09的算术平方根是0.3,不是0.03,因此①不正确;②1的立方根是1,不是±1,因此②不正确;③因为3.12=9.91,3.22=10.24,而9.91<10<10.24,所以3.110<3.2,因此③正确;④只有两边夹角对应相等的两个三角形全等,而两边及一角分别相等的两个三角形不一定全等.因此④不正确;所以正确的只有③,故选:B.【点睛】本题考查平方根、立方根、无理数的估算以及三角形全等判定定理,掌握平方根、立方根的意义、掌握无理数的估算方法和三角形全等的判断方法是正确判断的前提.12.A解析:A【分析】延长BC交刻度尺的一边于D点,利用平行线的性质,对顶角的性质,将已知角与所求角转化到Rt△CDE中,利用内角和定理求解.【详解】如图,延长BC交刻度尺的一边于D点,∵AB ∥DE , ∴∠β=∠EDC ,又∵∠CED =∠α=47°,∠ECD =90°, ∴∠β=∠EDC =90°﹣∠CED =90°﹣47°=43°. 故选:A . 【点睛】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.二、填空题13.2×10-10【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10−n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解解析:2×10-10 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.00000000022=2.2×10−10, 故答案为:2.2×10−10. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.14.24【分析】由于底数和指数都不确定所以本题分三种情况进行讨论即可求解【详解】①若时∴;②若时1的任何次幂都等于1∴;③若时-1的偶次幂等于1∴而∴符合题意;故答案为:024【点睛】本题主要考查了零指解析:2、4 【分析】由于(3)1aa -=,底数和指数都不确定,所以本题分三种情况进行讨论即可求解. 【详解】①若30a -≠时,(3)1a a -=,∴0a =;②若31a -=时,1的任何次幂都等于1,∴4a =;③若31a -=-时,-1的偶次幂等于1,∴2a =,而2(23)1-=,∴2a =符合题意;故答案为:0、2、4.【点睛】本题主要考查了零指数幂的性质以及有理数的乘方,正确把握定义是解题关键. 15.-y (x-3)2【分析】提公因式-y 再利用完全平方公式进行因式分解即可;【详解】解:-x2y+6xy-9y=-y (x2-6x+9)=-y (x-3)2故答案为:-y (x-3)2;【点睛】本题考查了因式解析:-y (x-3)2【分析】提公因式-y ,再利用完全平方公式进行因式分解即可;【详解】解:-x 2y+6xy-9y=-y (x 2-6x+9)=-y (x-3)2,故答案为:-y (x-3)2;【点睛】本题考查了因式分解的方法,掌握提公因式法、公式法是正确解答的关键.16.(a+b )2-2ab=a2+b2【分析】利用各图形的面积求解即可【详解】解:两个阴影图形的面积和可表示为:a2+b2或 (a+b )2-2ab 故可得: (a+b )2-2ab=a2+b2故答案为:(a+解析:(a+b )2-2ab = a 2+b 2【分析】利用各图形的面积求解即可.【详解】解:两个阴影图形的面积和可表示为:a 2+b 2或 (a+b )2-2ab ,故可得: (a+b )2-2ab = a 2+b 2故答案为:(a+b )2-2ab = a 2+b 2【点睛】本题主要考查了完全平方公式的几何背景,解题的关键是明确四块图形的面积. 17.①③④【分析】根据SAS 证明△ACE ≌△DCB 可判断①;根据△ACD 和△BCE 是等边三角形但AC 不一定等于BC 可判断②;由三角形的外角性质可判断③;由△ACE ≌△DCB 可知AE=BD 根据全等三角形的解析:①③④【分析】根据SAS 证明△ACE ≌△DCB 可判断①;根据△ACD 和△BCE 是等边三角形,但AC 不一定等于BC 可判断②;由三角形的外角性质可判断③;由△ACE ≌△DCB 可知AE=BD ,根据全等三角形的面积相等,从而证得AE 和BD 边上的高相等,即CH=CG ,最后根据角的平分线定理的逆定理即可证得∠APC=∠BPC ,故可判断④.【详解】解:①∵∠ACD=∠BCE ,∴∠ACD+∠DCE=∠DCE+∠BCE ,∴∠ACE=∠DCB ,在△ACE 和△DCB 中CA CD ACE DCB CE CB ⎧⎪∠∠⎨⎪⎩===,∴△ACE ≌△DCB (SAS ),∴AE=DG ,故①正确;②∵AC =DC ,BC=EC ,∠ACD =∠BCE =60°,∴△ACD 和△BCE 是等边三角形,∴AD=AC =DC ,BE=BC=EC ,但AC 不一定等于BC ,故AD 不一定等于BE ,所以②错误;③∵∠APB 是△APD 的外角,∴∠APD=∠ADP+∠DAP由①得△ACE ≌△DCB∴∠CAE=∠CDB∵AC=DC∴∠CAD=∠CDA∴∠APD=∠ADC+∠DAC=2∠ADC ,故③正确;④如图,分别过点C 作CH ⊥AE 于H ,CG ⊥BD 于G ,∵△ACE ≌△DCB ,∴AE=BD ,S △ACE =S △DCB ,∴AE 和BD 边上的高相等,即CH=CG ,∴∠APC=∠BPC ,故④正确;故答案为:①③④.本题考查了等腰三角形的性质,等边三角形的判定与性质,全等三角形的判定和性质,角的平分线定理及其逆定理,本题的关键是借助三角形的面积相等求得对应高相等.18.30°【分析】依据等腰三角形的性质即可得到∠BDC的度数再根据线段垂直平分线的性质即可得出∠A的度数进而得到∠ACB的度数【详解】解:根据题意如图:∵BC=DC∠ABC=100°∴∠BDC=∠CBD解析:30°【分析】依据等腰三角形的性质,即可得到∠BDC的度数,再根据线段垂直平分线的性质,即可得出∠A的度数,进而得到∠ACB的度数.【详解】解:根据题意,如图:∵BC=DC,∠ABC=100°,∴∠BDC=∠CBD=180°-100°=80°,根据题意得:MN是AC的垂直平分线,∴CD=AD,∴∠ACD=∠A,∴∠A=1(18080)50⨯︒-︒=︒,2∴∠ACB=∠CBD-∠A=80°-50°=30°.故答案为:30°.【点睛】此题主要考查了线段垂直平分线的性质以及等腰三角形的性质.解题时注意线段垂直平分线上任意一点,到线段两端点的距离相等.19.15cm2【分析】过点D作DE⊥AB于E根据角平分线的性质可得DE=CD根据三角形的面积公式即可求得△ABD的面积【详解】解:过点D作DE⊥AB于E∵AD是∠BAC的角平分线∠C=90°DE⊥AB∴解析:15cm2【分析】过点D作DE⊥AB于E,根据角平分线的性质可得DE=CD,根据三角形的面积公式即可求得△ABD的面积.解:过点D作DE⊥AB于E,∵AD是∠BAC的角平分线,∠C=90°,DE⊥AB ∴DE=DC,∵BC=8cm,BD=5cm,∴DE=DC=3cm,∴S△ABD=12·AB·DE=12×10×3=15(cm2),故答案为:15cm2.【点睛】本题考查角平分线的性质、三角形的面积公式,熟练掌握角平分线的性质是解答的关键.20.40°【分析】根据角平分线的性质可得∠EAC=∠BAC∠ECD=∠BCD最后根据三角形外角的性质解答即可【详解】解:∵∠BAC的平分线与∠BCD的平分线交于点E∴∠EAC=∠BAC∠ECD=∠BCD解析:40°【分析】根据角平分线的性质可得∠EAC=12∠BAC,∠ECD=12∠BCD,最后根据三角形外角的性质解答即可.【详解】解:∵∠BAC的平分线与∠BCD的平分线交于点E,∴∠EAC=12∠BAC,∠ECD=12∠BCD,∵∠BCD-∠BAC=∠B=80°,∴∠ECD-∠EAC=12(∠BCD-∠BAC)=40°,∵E是△ACE的外角∴∠E=∠ECD-∠EAC=40°.故答案为40°.【点睛】本题主要考查了三角形内角和定理、角平分线的定义以及三角形的外角的性质等知识点,灵活利用三角形外角的性质是解答本题的关键.三、解答题21.(1)3x ;±1;(2)1a a +,2a =,值为32【分析】 (1)先化简,后把x=3或x=-3分别代入求值;(2)先化简,根据分母不能为零的原则,选择数值代入计算即可.【详解】(1)原式=212(2)2(2)x x x x x x +-+-⎛⎫⨯ ⎪--⎝⎭ =23(2)2(2)x x x x -⨯-- =3x, ∵x 是9的平方根, ∴3x =±,∴原式=±1.(2)原式=2(1)(1)(1)(1)(1)(1)a a a a a a a ⎛⎫-++-⨯ ⎪-+⎝⎭ 1a a+=, 由题意当1,1,0a =-时,原分式没有意义, ∴2a =,此时原分式32=. 【点睛】本题考查了分式的化简求值,选值时,确保每一个分式有意义是解题的关键. 22.1x =-【分析】分式方程整理后,去分母转化为整式方程,求出整式方程的解得到 x 的值,经检验即可得到分式方程的解【详解】解:方程两边乘()2x -,得632x x +=-.1x =-.检验:当1x =-时,20x -≠.所以,原方程的解为1x =-.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.(1)4×10+2×12=82;(2)n (n+6)+2(n+8)=(n+4)2,验证见解析·【分析】(1)由①②③三个等式得出规律,即可得出结果;(2)由规律得出答案,再验证即可.【详解】解:(1)根据题意得:第四个等式为:4×10+2×12=82;(2)猜想的第n 个等式为:n (n+6)+2(n+8)=(n+4)2,验证:左边=n (n+6)+2(n+8)=n 2+6n+2n+16=n 2+8n+42=(n+4)2=右边,∴n (n+6)+2(n+8)=(n+4)2.【点睛】本题主要考查了数字的变化规律、完全平方公式、归纳推理等知识;根据题意得出规律是解决问题的关键.24.(1)见解析;(2)见解析.【分析】(1)根据平行线的性质可得∠ABC=∠ECD ,则可利用AAS 证明△ABC ≌△ECD ,再由全等三角形的性质可证得结论;(2)根据“等边对等角”可得∠DBC=∠BDC ,结合∠ABC=∠ECD ,可得∠ABD=∠ABC+∠DBC =∠ECD+∠BDC ,再利用三角形的外角性质得∠EBD =∠ECD+∠BDC ,即可证明∠ABD=∠EBD .【详解】证明:(1)∵AB ∥CD ,∴∠ABC=∠ECD ,在△ABC 和△ECD 中,ABC ECD A EAC ED ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△ECD (AAS ),∴BC=CD .(2)证明:如图,∵BC=CD ,∴∠DBC=∠BDC ,∵∠ABC=∠ECD ,∴∠ABD=∠ABC+∠DBC =∠ECD+∠BDC ,又∵∠EBD =∠ECD+∠BDC ,∴∠ABD=∠EBD .【点睛】本题考查了全等三角形的判定与性质、等腰三角形的性质等知识,掌握全等三角形的判定与性质及等腰三角形的性质是解题的关键.25.(1)AC CE ⊥,见解析;(2)成立,理由见解析;(3)成立,理由见解析【分析】(1)先用HL 判断出Rt Rt ABC CDE ≌△△,得出A DCE ∠=∠,进而判断出90DCE ACB ∠+∠=︒,即可得出结论;(2)同(1)的方法,即可得出结论;(3)同(1)的方法,即可得出结论.【详解】解:(1)AC CE ⊥理由如下:∵AB BD ⊥,ED BD ⊥,∴90B D ∠=∠=︒在Rt ABC △和Rt CDE △中AC CE BC DE =⎧⎨=⎩∴()Rt Rt HL ABC CDE △△≌, ∴A DCE ∠=∠∵90B ∠=︒,∴90A ACB ∠+∠=︒,∴()18090ACE DCE ACB ∠=︒-∠+∠=︒,∴AC CE ⊥;(2)成立,理由如下:∵AB BD ⊥,ED BD ⊥,∴90B D ∠=∠=︒,在1Rt ABC 和2Rt C DE △中121AC C E BC DE =⎧⎨=⎩, ∴()12Rt Rt HL ABC C DE ≌△△,∴2A C E D ∠=∠,∵90B ∠=︒,∴190B A AC ∠+∠=︒,∴2190DC E AC B ∠+∠=︒,在12C FC 中,()122118090C FC DC E AC B ∠=︒-∠+∠=︒,∴12AC C E ⊥;(3)成立,理由如下:∵AB BD ⊥,ED BD ⊥,∴190ABC D ∠=∠=︒在1Rt ABC 和2Rt C DE △中121AC C E BC DE =⎧⎨=⎩, ∴()12Rt Rt HL ABC C DE ≌△△,∴2A C E D ∠=∠,∵190ABC ∠=︒,∴190B A AC ∠+∠=︒,在12C FC 中,()2112180=90C FC DC E AC B ∠=︒-∠+∠︒,∴12AC C E ⊥.【点睛】此题是几何变换综合题,主要考查了全等三角形的判定和性质,直角三角形的性质,判断出12Rt Rt ABC C DE ≌△△是解本题的关键.26.(1)//CD AB ,证明见解析;(2)40°【分析】(1)先求证D DFB ∠=∠,再根据平行线判定得到//CD AB ;(2)先求出B 的度数,再根据平行线的性质得到DEG ∠的度数.【详解】(1)//CD AB ;理由如下:∵BE DF ⊥,∴90FGB ∠=︒,∴18090DFB B FGB ∠+∠=︒-∠=︒,∵190B ∠+∠=︒,∴1DFB ∠=∠,∵//AE DF ,∴1D ∠=∠,∴D DFB ∠=∠,∴//CD AB .(2)∵//AE DF ,50A ∠=︒,∴50DFB A ∠=∠=︒,∵90DFB B ∠+∠=︒,∴40B ∠=︒,∵//CD AB ,∴40DEG B ∠=∠=︒.【点睛】考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行,④a ∥b ,b∥c⇒a∥c.。
2023-2024学年河南省周口市扶沟县八年级(上)期末数学试卷+答案解析
2023-2024学年河南省周口市扶沟县八年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列运算正确的是( )A. B. C. D.2.下列各式从左到右的变形中,是因式分解的为( )A. B.C. D.3.芯片内部有数以亿计的晶体管,为追求更高质量的芯片和更低的电力功耗,需要设计体积更小的晶体管.目前,某品牌手机自主研发了最新型号芯片,其晶体管栅极的宽度为米,将数据用科学记数法表示为( )A. B. C. D.4.若分式的值为零,则x的值是( )A. 1B.C.D. 25.下列各分式中是最简分式的是( )A. B. C. D.6.如图,点B,F,C,E共线,,,添加一个条件,不能判断≌的是( )A.B.C.D.7.一项工程,甲单独做需要m天,乙单独做需要n天,若甲、乙合作,需要几天能完成这项工程( )A. 天B. 天C. 天D. 天8.如图,在四边形ABCD中,,,,对角线BD平分,则的面积为( )A.B. 8C. 15D. 无法确定9.若是一个二项式的平方,则m的值为( )A. B. 10 C. 4或 D. 或1010.二、填空题:本题共5小题,每小题3分,共15分。
11.计算:______.12.若代数式有意义,则实数x的取值范围是______.13.我国平均每平方千米的陆地上,一年从太阳得到的能量相当于燃烧煤所产生的能量,北京陆地面积约是,则在北京陆地上,一年内从太阳得到的能量相当于燃烧__________ t煤所产生的能量.14.如图,将的BC边对折,使点B与点C重合,DE为折痕,若,,则______.15.如图,O是射线CB上一点,,,动点P从点C出发沿射线CB以的速度运动,动点Q从点O出发沿射线OA以的速度运动,点P,Q同时出发,设运动时间为,当是等腰三角形时,t的值为______.三、解答题:本题共8小题,共75分。
河南省周口市扶沟县2020-2021学年八年级上学期期末数学试题
河南省周口市扶沟县2020-2021学年八年级上学期期末数学
试题
学校:___________姓名:___________班级:___________考号:___________
x≠)”中的运算符号,则覆盖的是()2.墨迹覆盖了等式“3x2
x x
=(0
二、填空题
11.如果等腰三角形的一个外角是80°,那么它的底角的度数为__________. 12.把多项式269m n mn n ++分解因式的结果是________________________.
13.若()22316x m x +-+是完全平方式,则常数m 的值是______.
14.定义a ※b =a (b +1),例如2※3=2×(3+1)=2×
4=8.则(x ﹣1)※x 的结果为_____. 15.如图,在平面直角坐标系中,以A (2,0),B (0,t )为顶点作等腰直角△ABC (其中∠ABC=90°,且点C 落在第一象限内),则点C 关于y 轴的对称点C’的坐标为___.(用
t的代数式表示)
524
x-
⎛⎫
AB、EB的数量关系为;
(2)猜想论证
当点D在直线AB上运动时,如图2,是点D在射线AB上,如图3,是点D在射线BA 上,请你写出这两种情况下,线段BD、AB、EB的数量关系,并对图2的结论进行证明;
(3)拓展延伸
若AB=5,BD=7,请你直接写出△ADE的面积.。
2020年-2021年八年级数学上册期末试题(含答案)
一、选择题(每小题3分,共24分)1.4的算术平方根是()A .4 B .2C .2D .22.在给出的一组数0,,5,3.14,39,722中,无理数有()A .1个B .2个C .3个D .5个3. 某一次函数的图象经过点(1,2),且y 随x 的增大而减小,则这个函数的表达式可能是()A .42x yB .13x yC .13x y D .42x y 4.为了让人们感受丢弃废旧电池对环境造成的影响,某班环保小组的6名同学记录了自己家中一个月内丢弃废电池的数量,结果如下(单位:个):7,5,6,4,8,6,如果该班有45名学生,那么根据提供的数据估计该月全班同学各家总共丢弃废旧电池的数量约为()A.180B.225C.270D.3155.下列各式中,正确的是A .16=±4B .±16=4C .327= -3D .2(4)= - 46.将三角形三个顶点的横坐标都减2,纵坐标不变,则所得三角形与原三角形的关系是()A .将原图向左平移两个单位B .关于原点对称C .将原图向右平移两个单位D .关于y 轴对称7.对于一次函数y= x+6,下列结论错误的是 A .函数值随自变量增大而增大B .函数图象与x 轴正方向成45°角C .函数图象不经过第四象限D .函数图象与x 轴交点坐标是(0,6)8.如图,点O 是矩形ABCD 的对称中心,E 是AB 边上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC=3,则折痕CE=A .2 3B .332C .3D .6二、填空题(每小题3分,共24分)9.在ABC 中,,13,15AC AB高,12AD 则ABC 的周长为.10.已知a 的平方根是8,则它的立方根是.11.如图,已知直线y=ax+b 和直线y=kx 交于点P (-4,-2),则关于x ,y 的二元一次方程组,.y ax b ykx 的解是________.12..四根小木棒的长分别为 5 cm,8 cm,12 cm ,13 cm ,任选三根组成三角形,其中有________个直角三角形.13.已知O (0, 0),A (-3, 0),B (-1, -2),则△AOB 的面积为______.14.小明家准备春节前举行80人的聚餐,需要去某餐馆订餐.据了解餐馆有10人坐和8人坐两种餐桌,要使所订的每个餐桌刚好坐满,则订餐方案共有_____种.15.若一次函数0k b kx y 与函数121x y的图象关于X 轴对称,且交点在X 轴上,则这个函数的表达式为: . h16.如图,已知b ax y 和kx y 的图象交于点P ,根据图象可得关于X 、Y 的二元一次方程组0ykxb y ax 的解是 .三、解答题17.化简(本题10分每题5分)ABCDEO(第8题图)(第11题图)2020年-2021学年八年级数学上册期末测试卷(含答案)①21631526②(2+3)(23)+ 21218.解下列方程组(本题10分每题5分)①1553yxy x ②)5(3)1(55)1(3xy y x 19.本题10分)折叠矩形ABCD 的一边AD ,使点D 落在BC 边的F 点处,若AB=8cm ,BC=10cm ,求EC 的长.20.(本题9分)某校为了公正的评价学生的学习情况.规定:学生的平时作业、期中考试、期末考试三项成绩分别按2:3:5的比例计入学期总评成绩.小明、小亮、小红的平时作业、期中考试、期末考试的数学成绩如下表,计算这学期谁的数学总评成绩最高?21.(本题12分)如图,直线PA 是一次函数1y x 的图象,直线PB 是一次函数22y x 的图象.(1)求A 、B 、P 三点的坐标;(6分)(2)求四边形PQOB 的面积;(6分)平时成绩期中成绩期末成绩小明96]9490小亮909693小红90909622.(本题9分)甲、乙两件服装的成本共500元,商店老板为获取利润,决定甲服装按50℅的利润标价,乙服装按40%的利润标价出售.在实际出售时,应顾客要求,两件服装均按标价9折出售,这样商店共获利157元,求两件服装的成本各是多少元?X|k|b|1.c|o|m23.(本题10分)某工厂要把一批产品从A地运往B地,若通过铁路运输,则每千米需交运费15元,还要交装卸费400元及手续费200元,若通过公路运输,则每千米需要交运费25元,还需交手续费100元(由于本厂职工装卸,不需交装卸费).设A地到B地的路程为x km,通过铁路运输和通过公路运输需交总运费y1元和y2元,(1)求y1和y2关于x的表达式.(6分)(2)若A地到B地的路程为120km,哪种运输可以节省总运费?(4分)24.(本题12分)某大酒店客房部有三人间、双人间和单人间客房,收费数据如下表(例如三人间普通间客房每人每天收费50元).为吸引客源,在“十一黄金周”期间进行优惠大酬宾,凡团体入住一律五折优惠.一个50人的旅游团在十月二号到该酒店住宿,租住了一些三人间、双人间普通客房,并且每个客房正好住满,一天一共花去住宿费1510元.普通间(元/人/天)豪华间(元/人/天)贵宾间(元/人/天)三人间50 100 500双人间70 150 800单人间100 200 1500(1)三人间、双人间普通客房各住了多少间?(5分)(2)设三人间共住了x人,则双人间住了人,一天一共花去住宿费用y元表示,写出y与x的函数关系式;(5分)(3)如果你作为旅游团团长,你认为上面这种住宿方式是不是费用最少?为什么?(2分)数学试卷答案一、选择题1C 2C 3D 4C 5C 6A 7D 8A 二、填空题9.42或32 10、411.2-y -4x ;12. 1;13.3;14.3;15、121x y16、24yx 三、计算题[来源:学|科17. ①56②134 18.①223225yx②75yx 19在RtECF 中,根据勾股定理得:222EFFCEC即222)8(4x x解得3x …………………9分∴EC=3cm ………………………………………………………………………………10分20、解:根据题意,3人的数学总评成绩如下:小明的数学总评成绩为:4.92532590394296(分)…………………3分小亮的数学总评成绩为:3.93532593396290(分)…………………6分小红的数学总评成绩为:93532596390290(分)……………………8分因此,这学期中小亮的数学总评成绩最高…………………………………………9分21、(1)解:在1x y中,当y=0时,则有:x+1=0 解得:1x ∴)0,1(A …2分在22x y中,当y=0时,则有:022x解得:1x∴)0,1(B …4分由221xyx y 得3431yx∴)34,31(P ……………………………………6分(2)解:过点P 作PC ⊥x 轴于点C ,由)34,31(P 得:3434PC…………………8分由)0,1(A ,)0,1(B 可得:11,11OBOA∴AB=OA+OB=2 ∴3434221.21PCAB SABP22、解:设甲服装的成本价是x 元,乙服装的成本价是y 元,根据题意得:157500%)401(9.0%)501(9.0500yx y x ………………………………4分解得:200300yx ……………………………………………………………………8分因此,甲服装的成本是300元,乙服装的成本是200元.…………………………9分23、(1)解:根据题意得:200400151x y 即600151x y wW w .X k b 1. c O m100252x y ………………………………………………6分(2)当x=120时,2400600120151y 3100100120252y ∵21y y ∴铁路运输节省总运费……………………………………………………………10分24、(1)解:设三人间普通客房住了x 间,双人间普通客房住了y 间.根据题意得:15102%50703%50505023yxy x……………………………………………2分解得:138yx ……………………………………………………………………………4分因此,三人间普通客房住了8间,双人间普通客房住了13间.…………………………5分(2)x 50…………………………………………………………………………………7分根据题意得:xxy503525即175010x y………………………10分(3)不是,由上述一次函数可知,y 随x 的增大而减小,当三人间住的人数大于24人时,所需费用将少于1510元.………………………………………………………………12分。
周口市2021版八年级上学期数学期末考试试卷(II)卷
周口市2021版八年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共12分)1. (1分)(2019·阜新) 如图,CB为⊙O的切线,点B为切点,CO的延长线交⊙O于点A,若∠A=25°,则∠C的度数是()A . 25°B . 30°C . 35°D . 40°2. (1分)如图AB∥DE,∠1=30°,∠C=80°,则∠2=()A . 110°B . 150°C . 50°D . 无法计算3. (1分)五边形的外角和等于()A . 180°B . 360 °C . 540°D . 720°4. (1分)根据下列已知条件,能画出唯一的△ABC的是()A . AB=3,BC=4,∠C=40°B . AB=4,BC=3,∠A=30°C . ∠C=90°,AB=6D . ∠A=60°,∠B=45°,AB=45. (1分)在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球()A . 12个B . 16个C . 20个D . 30个6. (1分)方程的解为()A . =B . =−C . =−2D . 无解7. (1分) y3n+1可写成()A . (y3)n+1B . (yn)3+1C . y•y3nD . (yn)n+18. (1分) (2017八下·灌阳期中) 正方形是轴对称图形,它的对称轴共有()A . 1条B . 2条C . 3条D . 4条9. (1分) (2019七下·三明期末) 若a2﹣b2=,a﹣b=,则a+b的值为()A . ﹣B .C . ﹣3D . 310. (1分) (2020八上·淮阳期末) 化简的结果中,二次项的系数是()A .B .C .D .11. (1分) (2019八上·兰州期中) 现规定一种新的运算“*”:a*b=ab ,如3*2=32=9,则 *3=()A .B . 8C .D .12. (1分) (2017八上·台州期末) 下列各式中,计算正确的是()A . x(2x-1)=2x2-1B .C . (a+2)2=a2+4D . (x+2)(x-3)=x2+x-6二、填空题 (共3题;共3分)13. (1分)如图,平面直角坐标系xOy中,点A(5,﹣2)、点B(3,﹣4),M、N为x轴和y轴上的动点,四边形ABNM的周长最小为________.14. (1分)= ________15. (1分)(2017·昌乐模拟) 分解因式:9﹣a2=________.三、解答题 (共5题;共8分)16. (1分)解方程: = .17. (2分) (2019八上·浦东月考) 已知: ,求代数式的值18. (2分) (2020七下·金华期中) 计算:(1)2a²b(-3b²c)-4ab3(2) |-3|-( -1)0+()-219. (2分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?请完成下列问题:(1)未降价之前,某商场衬衫的总盈利为________ 元.(2)降价后,设某商场每件衬衫应降价x元,则每件衬衫盈利________元,平均每天可售出________件(用含x的代数式进行表示)(3)请列出方程,求出x的值.20. (1分) (2016八上·怀柔期末) 列方程解应用题李明和王军相约周末去怀柔图书馆看书,请根据他们的微信聊天内容求李明乘公交、王军骑自行车每小时各行多少公里?参考答案一、单选题 (共12题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共3题;共3分)13-1、14-1、15-1、三、解答题 (共5题;共8分)16-1、17-1、18-1、18-2、19-1、19-2、19-3、20-1、。
扶沟县八年级数学期末试卷
一、选择题(每题4分,共20分)1. 下列各数中,有理数是()A. √-1B. √2C. πD. 3.142. 下列各式中,正确的是()A. (a+b)² = a² + 2ab + b²B. (a-b)² = a² - 2ab + b²C. (a+b)(a-b) = a² - b²D. (a+b)(a-b) = a² + 2ab + b²3. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 14. 若a=2,b=-1,则a² - 2ab + b²的值为()A. 3B. 1C. 0D. -35. 下列各式中,错误的是()A. a² = |a|B. (a+b)² = a² + 2ab + b²C. (a-b)² = a² - 2ab + b²D. (a+b)(a-b) = a² - b²二、填空题(每题4分,共20分)6. 若a=5,b=-3,则a² + 2ab + b²的值为______。
7. 已知x² - 4x + 4 = 0,则x的值为______。
8. 若|a| = 3,则a的值为______。
9. 若x² = 9,则x的值为______。
10. 若a² + b² = 25,且a > 0,b < 0,则a的值为______。
三、解答题(每题10分,共30分)11. (1)若m² - 6m + 9 = 0,求m的值。
(2)若a² - 4a + 4 = 0,求a的值。
12. 已知一元二次方程x² - 5x + 6 = 0,求该方程的解。
13. 若一个数的平方是9,求这个数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点:二元一次方程组的解;因式分解-运用公式法.
专题:运算题.
分析:依照解二元一次方程组的方法,可得二元一次方程组的解,依照代数式求值的方法,可得答案.
解答:解: ,
①×2﹣②得
﹣8y=1,
y=﹣ ,
把y=﹣ 代入 ②得
2x﹣ =5,
点评:本题考查了分式的性质.注意:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.
11.(3分)分式 , , 的最简公分母是12x2yz2.
考点:最简公分母.
分析:确定最简公分母的方法是:
(1)取各分母系数的最小公倍数;
(2)凡单独显现的字母连同它的指数作为最简公分母的一个因式;
(3)同底数幂取次数最高的,得到的因式的积确实是最简公分母.
三、解答题(本大题共8个小题,满分75分)
16.(8分)运算:
(1)4(x+1)2 ﹣(2x+5)(2x﹣5);
(2)[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷3x2y.
17.(8分)解方程: .
18.(9分)已知: ,试说明不论x为任何有意义的值,y值均不变.
19.(9分)化简分式( ﹣ )÷ ,并从﹣1≤x≤3中选一个你认为合适的整数x代入求值.
8.(3分)若3x=4,9y=7,则3x﹣2y的值为()
A. B. C.﹣3D.
考点:同底数幂的除法;幂的乘方与积的乘方.
分析:由3x=4,9y=7与3x﹣2y=3x÷32y=3x÷(32)y,代入即可求得答案.
解答:解:∵3x=4,9y=7,
∴3x﹣2y=3x÷32y=3x÷(32)y=4÷7= .
15.(3分)已知2m=x,43m=y,用含有字母x的代数式表示y:x6.
考点:幂的乘方与积的乘方.
专题:运算题.
分析:先把43m利用幂的乘方的逆运算表示成底数是2的幂的形式,再整体代入x=2m即可.
解答:解:∵2m=x,
∴43m=(22)3m=(2m)6=x6.
故答案是x6.
点评:本题考查了幂的乘方的 逆运算.解题的关键是灵活把握幂的运 算公式.
考点:平方差公式;合并同类项;同底数幂的乘法;完全平方公式.
分析:分别依照合并同类项、平方差公式、同底数幂的乘法及完全平方公式进行逐一运算即可.
解答:解:A、错误,应该为3a+2a=5a;
B、(2a+b)(2a﹣b)=4a2﹣b2,正确;
C、错误,应该为2a2•a3=2a5;
D、错误,应该为(2a+b)2=4a2+4ab+b2.
三、解答题(本大题共8个小题,满分75分)
16.(8分)运算:
(1)4(x+1)2﹣(2x+5)(2x﹣5);
(2)[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷3x2y.
考点:整式的混合运算.
专题:运算题.
分析:(1)原式第一项利用完全平方公式展开,第二项利用平方差公式化简,去括号合并即可得到结果;
解答:解: ,
方程两边都乘以x﹣1得:x﹣2(x﹣1)=m,
∵关于x的分式方程 无解,
∴x﹣1=0,
∴x=1,
把x=1代入方程x﹣2(x﹣1)=m得:1﹣2(1﹣1)=m,
m=1,
故选A.
点评:本题考查了分式方程的解,关键是能依照题意得出方程x﹣1=0.
6.(3分)下列分式是最简分式的是()
A. B. C. D.
解答:解:原式= = .
故选:B.
点评:本题考查了约分.约分时,分子与分母都必须是乘积式,假如是多项式的,必须先分解因式.
5.(3分)关于x的分式方程 无解,则m的值是()
A.1B.0C.2D.﹣2
考点:分式方程的解.
分析:先去分母得出整式方程x﹣2(x﹣1)=m,依照分式方程无解得出x﹣1=0,求出x,把x的值代入整式方程x﹣2(x﹣1)=m,求出即可.
点评:式子必须同时满足分式有意义和二次根式有意义两个条件.
分式有意义的条件为:分母≠0;
二次根式有意义的条件为:被开方数≥0.
此类题的易错点是忽视了二次根式有意义的条件,导致漏解情形.
4.(3分)化简 的结果是()
A.2n2B. C. D.
考点:约分.
分析:分子利用完全平方公式进行因式分解,分母利用提取公因式法进行因式分解,然后约分即可.
x= ,
x2﹣4y2=( ) = ,
故答案为: .
点评:本题考查了二元一次方程组的解,先求出二元一次方程组的解,再求代数式的值.
14.(3分)设a=192×918,b=8882﹣302,c=10532﹣7472,则数a,b,c按从小到大的顺序排列,结果是a<c<b.
考点:因式分解的应用.
分析:运用平方差公式进行变形,把其中一个因数化为918,再比较另一个因数,另一个因数大的那个数就大.
22.(10分)(1)运算:(a﹣2)(a2+2a+4)=.
(2x﹣y)(4x2+2xy+y2)=.
(2)上面的整式乘法运算结果专门简洁,你又发觉一个新的乘法公式(请用含a,b的字母表示).
(3)下列各式能用你发觉的乘法公式运算的是()
A.(a﹣3)(a2﹣3a+9)
B.(2m﹣n)(2m2+2mn+n2)
A. =15%B . =15%C.92﹣x=15%D.x=92×15%
8.(3分)若3x=4,9y=7,则3x﹣2y的值为()
A. B. C.﹣3D.
二、填空题(每小题3分,共21分)
9.(3分)(﹣0.4)2020•( )2020=.
10.(3分)当a,b满足关系时,分式 = .
11.(3分)分式 , , 的最简公分母是.
20.(9分)在下列三个不为零的式子:x2﹣4x,x2+2x,x2﹣4x+4中,请你选择其中两个进行加法运算,并把结果因式分解.
21.(10分)列方程或方程组解应用题:
据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.
故答案为:﹣1.
点评:本题考查了幂的乘方和积的乘方,解答本题的关键是把握幂的乘方和积的乘方的运算法则.
10.(3分)当a,b满足关系a≠b时,分式 = .
考点:分式的差不多性质 .
分析:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.
解答:解:依题意得a﹣b≠0,
解得a≠b.
故答案为:a≠b.
考点:最简分式.
分析:要判定分式是否是最简分式,只需判定它能否化简,不能化简的即为最简分式.
解答:解:A、 =﹣1;
B、 = ;
C、 分子、分母中不含公因式,不能化简,故为最简分式;
D、 = .
故选:C.
点评:本题考查 最简分式,是简单的基础题.
7.(3分)某商店销售一种玩具,每件售价92元,可获利15%,求这种玩具的成本价.设这种玩具的 成本价为x元,依题意列方程正确的是()
3.(3分)假如代数式 有意义,那么x的取值范畴是()
A.x≥0B.x≠1C.x>0D.x≥0且x≠1
4.(3分)化简 的结果是()
A.2n2B. C. D.
5.(3分)关于x的分式方程 无解,则m的值是()
A.1B.0C.2D.﹣2
6.(3分)下列分式是最简分式的是()
A. B. C. D.
7.(3分)某商店销售一种玩具,每件售价92元,可获利15%,求这种玩具的成本价.设这种玩具的成本价为x元,依题意列方程正确的是()
解答:解: , , 的分母分别是2x2y、3xy2、4xz,故最简公分母是12x2yz2;
故答案是:12x2yz2.
点评:本题考查了最简公分母.通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要把握.
12.(3分)把多项式3m2﹣6mn+3n2分解因式的结果是3(m﹣n)2.
故选A.
点评:此题考查了同底数幂的除法与幂的乘方的应用.此题难度适中,注意将3x﹣2y变形为3x÷(32)y是解此题的关键.
二、填空题(每小题3分,共21分)
9.(3分)(﹣0.4)2020•( )2020=﹣1.
考点:幂的乘方与积的乘方.
分析:依照幂的乘方和积的乘方的运算法则求解.
解答:解:(﹣0.4)2020•( )2020=( ﹣0.4× )2020=﹣1.
解答:解:a=192×918=361×918,
b=8882﹣302=(888﹣30)×(888+30)=858×918,
c=10532﹣7472=(1053+747)×(1053﹣747)=1800×306=600×918,
因此a<c<b.
故答案为:a<c<b.
点评:本题要紧考查了因式分解的应用,解题的关键是运用平方差公式进行化简得出一个因数为918.
河南省周口市扶沟县2020-2020学年八年级上学期期末数学试卷
参考答案与试题解析
一、选择题(每小题3分,共24分)
1.(3分)若分式 的值为 零,则x的值为()
A.0B.1C.﹣1D.±1
考点:分式的值为零的条件.
专题:运算题.
分析:分式的值是0的条件是:分子为0,分母不为0,由此条件解出x.
解答:解:由x2﹣1=0,
故选B.
点评:此题比较简单,解答此题的关键是熟知以下概念:
(1)同类项:所含字母相同,同时所含字母指数也相同的项叫同类项;