离散数学 图论-图的基本概念

合集下载

离散图论知识点总结

离散图论知识点总结

离散图论知识点总结一、基本概念图(Graph)是离散数学中的一个重要概念,它由顶点集合V和边集合E组成。

一般用G (V,E)来表示,其中V={v1,v2,…,vn}是有限非空集合,E是V中元素的无序对的集合。

图分为有向图和无向图。

无向图中的边是无序的,有向图中的边是有序的。

图中存在一些特殊的图,比如完全图、树、路径、回路等。

二、图的表示方法1. 邻接矩阵邻接矩阵是一种常见的图的表示方法,它使用一个二维数组来表示图的关系。

对于一个n 个顶点的图,邻接矩阵是一个n*n的矩阵A,其中A[i][j]表示顶点i到顶点j之间是否存在边。

对于无向图,A[i][j]=1表示顶点i与顶点j之间存在边,A[i][j]=0表示不存在。

对于有向图,A[i][j]=1表示i指向j的边存在,A[i][j]=0表示不存在。

2. 邻接表邻接表是另一种常见的图的表示方法。

它将图的信息储存在一个数组中,数组的每个元素与图的一个顶点相对应。

对于每个顶点vi,数组中储存与该顶点邻接的顶点的信息。

邻接表可以用链表或者数组来表示,链表表示的邻接表比较灵活,但是在查找某个边的相邻顶点时需要遍历整个链表。

三、图的性质1. 度图中每个顶点的度是与其相邻的边的数目。

对于无向图,顶点的度等于与其相邻的边的数目;对于有向图,则分为入度和出度。

2. 连通性对于无向图G,若图中任意两个顶点都有路径相连,则称图G是连通的。

对于有向图G,若从任意一个顶点vi到任意一个顶点vj都存在路径,则称G是强连通的。

3. 路径和回路路径是指图中一系列的边,连接图中的两个顶点;回路是指起点与终点相同的路径。

路径的长度是指路径中边的数目。

4. 树和森林一个无向图,如果是连通图且不存在回路,则称为树。

一个无向图,若它不是连通图,则称为森林。

四、图的常见算法1. 深度优先搜索(DFS)深度优先搜索是一种用于图的遍历的算法,它从图的某个顶点vi出发,访问它的所有邻接顶点,再对其中未访问的顶点继续深度优先搜索。

图论--图的基本概念

图论--图的基本概念

图论--图的基本概念1.图:1.1⽆向图的定义:⼀个⽆向图G是⼀个有序的⼆元组<V,E>,其中V是⼀个⾮空有穷集,称作顶点集,其元素称作顶点或结点。

E是⽆序积V&V的有穷多重⼦集,称作边集,其元素称作⽆向边,简称边。

注意:元素可以重复出现的集合称作多重集合。

某元素重复出现的次数称作该元素的重复度。

例如,在多重集合{a,a,b,b,b,c,d}中,a,b,c,d的重复度分别为2,3,1,1。

从多重集合的⾓度考虑,⽆元素重复出现的集合是各元素重复度均为1的多重集。

1.2有向图的定义:⼀个有向图G是⼀个有序的⼆元组<V,E>,其中V是⼀个⾮空有穷集,称作顶点集,其元素称作顶点或结点。

E是笛卡尔积V✖V的有穷多重⼦集,称作边集,其元素为有向边,简称为边。

通常⽤图形来表⽰⽆向图和有向图:⽤⼩圆圈(或实⼼点)表⽰顶点,⽤顶点之间的连线表⽰⽆向边,⽤带箭头的连线表⽰有向边。

与1.1,1.2有关的⼀些概念和定义:(1)⽆向图和有向图统称为图,但有时也把⽆向图简称作图。

通常⽤G表⽰⽆向图,D表⽰有向图,有时也⽤G泛指图(⽆向的或有向的)。

⽤V(G),E(G)分别表⽰G的顶点集和边集,|V(G)|,|E(G)|分别是G的顶点数和边数,有向图也有类似的符号。

(2)顶点数称作图的阶,n个顶点的图称作n阶图。

(3)⼀条边也没有的图称作零图,n阶零图记作N n。

1阶零图N1称作平凡图。

平凡图只有⼀个顶点,没有边。

(4)在图的定义中规定顶点集V为⾮空集,但在图的运算中可能产⽣顶点集为空集的运算结果,为此规定顶点集为空集的图为空图,并将空图记作Ø。

(5)当⽤图形表⽰图时,如果给每⼀个顶点和每⼀条边指定⼀个符号(字母或数字,当然字母还可以带下标),则称这样的图为标定图,否则称作⾮标定图。

(6)将有向图的各条有向边改成⽆向边后所得到的⽆向图称作这个有向图的基图。

(7)若两个顶点v i与v j之间有⼀条边连接,则称这两个顶点相邻。

离散数学图论(图、树)常考考点知识点总结

离散数学图论(图、树)常考考点知识点总结

离散数学图论(图、树)常考考点知识点总结图的定义和表示1.图:一个图是一个序偶<V , E >,记为G =< V ,E >,其中:① V ={V1,V2,V3,…, Vn}是有限非空集合,Vi 称为结点,V 称为节点集② E 是有限集合,称为边集,E中的每个元素都有V中的结点对与之对应,称之为边③与边对应的结点对既可以是无序的,也可以是有序的表示方法集合表示法,邻接矩阵法2.邻接矩阵:零图的邻接矩阵全零图中不与任何结点相邻接的结点称为孤立结点,两个端点相同的边称为环或者自回路3.零图:仅有孤立节点组成的图4.平凡图:仅含一个节点的零图无向图和有向图5.无向图:每条边都是无向边的图有向图:每条边都是有向边的图6.多重图:含有平行边的图(无向图中,两结点之间包括结点自身之间的几条边;有向图中同方向的边)7.线图:非多重图8.重数:平行边的条数9..简单图:无环的线图10.子图,真子图,导出子图,生成子图,补图子图:边和结点都是原图的子集,则称该图为原图的子图真子图(该图为原图的子图,但是不跟原图相等)11.生成子图:顶点集跟原图相等,边集是原图的子集12.导出子图:顶点集是原图的子集,边集是由顶点集在原图中构成的所有边构成的图完全图(任何两个节点之间都有边)13.完全图:完全图的邻接矩阵主对角线的元素全为0,其余元素都是114.补图:完全图简单图15.自补图:G与G的补图同构,则称自补图16.正则图:无向图G=<V,E>,如果每个顶点的度数都是k,则图G称作k-正则图17.结点的度数利用邻接矩阵求度数:18.握手定理:图中结点度数的总和等于边数的两倍推论:度数为奇数的结点个数为偶数有向图中,所有结点的入度=出度=边数19.图的度数序列:出度序列+入度序列20.图的同构:通俗来说就是两个图的顶点和边之间有双射关系,并且每条边对应的重数相同(也就是可任意挪动结点的位置,其他皆不变)21.图的连通性及判定条件可达性:对节点vi 和vj 之间存在通路,则称vi 和vj 之间是可达的22.无向图的连通性:图中每两个顶点之间都是互相可达的23..强连通图:有向图G 的任意两个顶点之间是相互可达的判定条件:G 中存在一条经过所有节点至少一次的回路24.单向连通图:有向图G 中任意两个顶点之间至少有一个节点到另一个节点之间是可达的判定条件:有向图G 中存在一条路经过所有节点25.弱连通图:有向图除去方向后的无向图是连通的判定条件:有向图邻接矩阵与转置矩阵的并是全一的矩阵26.点割:设无向图G=<V,E>为联通图,对任意的顶点w  V,若删除w及与w相关联的所有边后,无向图不再联通,则w称为割点;27.点割集:设无向图G=<V,E>为连通图,若存在点集 ,当删除 中所有顶点及与V1顶点相关联的所有边后,图G不再是联通的;而删除了V1的任何真子集 及与V2中顶点先关的所有边后,所得的子图仍是连通图,则称V1是G的一个点割集设无向图G=<V,E>为连通图,任意边e  E,若删除e后无向图不再联通,则称e 为割边,也成为桥28.边割集:欧拉图,哈密顿图,偶图(二分图),平面图29.欧拉通路(回路):图G 是连通图,并且存在一条经过所有边一次且仅一次的通路(回路)称为拉通路(回路)30.欧拉图:存在欧拉通路和回路的图31.半欧拉图:有通路但没有欧拉回路32.欧拉通路判定:图G 是连通的,并且有且仅有零个或者两个奇度数的节点欧拉回路判定:图G 是连通的,并且所有节点的度数均为偶数有向欧拉图判定:图G 是连通的,并且所有节点的出度等于入度33.哈顿密图:图G 中存在一条回路,经过所有点一次且仅一次34..偶图:图G 中的顶点集被分成两部分子集V1,V2,其中V1nV2= o ,V1UV2= V ,并且图G 中任意一条边的两个端点都是一个在V1中,一个在V2中35.平面图:如果把无向图G 中的点和边画在平面上,不存在任何两条边有不在端点处的交叉点,则称图G 是平面图,否则是非平面图36.图的分类树无向树和有向树无向树:连通而不含回路的无向图称为无向树生成树:图G 的某个生成子图是树有向树:一个有向图,略去所有有向边的方向所得到的无向图是一棵树最小生成树最小生成树:设G -< V . E 是连通赋权图,T 是G 的一个生成树,T 的每个树枝所赋权值之和称为T 的权,记为W ( T . G 中具有最小权的生成树称为G 的最小生成树最优树(哈夫曼树)设有一棵二元树,若对所有的树叶赋以权值w1,w2… wn ,则称之为赋权二元树,若权为wi 的叶的层数为L ( wi ),则称W ( T )= EWixL ( wi )为该赋权二元树的权,W )最小的二元树称为最优树。

离散数学第十四章图论基本概念

离散数学第十四章图论基本概念
19
14.2 通路与回路
定义14.11 给定图G=<V,E>(无向或有向的),G中顶点与
边的交替序列 = v0e1v1e2…elvl,
vi1, vi 是 ei 的端点.
(1) 通路与回路: 为通路;若 v0=vl, 为回路,l 为回路长
度.
(2) 简单通路与回路:所有边各异, 为简单通——v的出度 d(v)——v的入度 d(v)——v的度或度数 (3) (G), (G) (4) +(D), +(D), (D), (D), (D), (D) (5) 奇顶点度与偶度顶点
8
握手定理
定理14.1 设G=<V,E>为任意无向图,V={v1,v2,…,vn}, |E|=m, 则
v的闭邻N 域 D(v)ND(v){v}
9. 标定图与非标定图 10. 基图
6
多重图与简单图
定义14.3 (1) 无向图中的平行边及重数 (2) 有向图中的平行边及重数(注意方向性) (3) 多重图 (4) 简单图 在定义14.3中定义的简单图是极其重要的概念
7
顶点的度数
定义14.4 (1) 设G=<V,E>为无向图, vV, d(v)——v的度数, 简称度 (2) 设D=<V,E>为有向图, vV,
n
d(vi ) 2m
i1
证 G中每条边 (包括环) 均有两个端点,所以在计算G中各顶点 度数之和时,每条边均提供2度,m 条边共提供 2m 度.
定理14.2 设D=<V,E>为任意有向图,V={v1,v2,…,vn}, |E|=m, 则
n
n
n
d (v i)2 m , 且d (v i)d (vi) m

离散数学第8章 图论

离散数学第8章 图论
ij
为d(vi,vj)。
8.2
图的矩阵表示
一、图的邻接矩阵 二、图的连接矩阵
三、图的关联矩阵
二、图的连接矩阵 定义 8-9 设图 G= ( V , E ),其中 V={v1 ,
v2 , … , vn } , n 阶方阵 C= ( cij ),称为图 G 的连接 矩阵,其中第i行j列的元素
1 c ij 0
利用邻接矩阵,我们可以 (1)判断G中任意两个结点是否相连接;
方法是:对 l=1,2,…,n–1,依次检查Al的(i,j)
项元素
(l ( ) ij)是否为0,若都为0,那么结点v 与v 不 a ij i j
相连接,否则vi与vj有路相连接。 (2)计算结点vi与vj之间的距离。
(1) ( 2) ( n 1) 中至少有一个不为0, 若 aij , aij , , aij 则可断定vi与vj相连接,使 a (l ) 0 的最小的 l 即
若中有相同的结点,设为ur= uk(r<k),则子路ur+1…uk可以从 中删去而形成一条较短的路= viu1…ur uk+1…uh–1 vj,仍连接vi到 vj 。 若中还有相同的结点,那么重复上述过程又可形成一条 更短的路,…。这样,最后必得到一条真路,它连接vi到vj, 并短于前述任一非真路。因此,只有真路才能是短程。
非真 生成
真 生成
真 非生成
非真 非生成
真 非生成
七、路与回路 定义:图G中l条边的序列{v0,v1}{v1,v2}…{vl–1,vl}称为连
接v0到vl的一条长为 l 的路。它常简单地用结点的序列 v0v1v2…vl–1vl来表示。其中v0和vl分别称为这条路的起点和终点。 开路:若v0vl,则称路v0v1v2…vl–1vl为开路; 回路:若v0=vl,则称路v0v1v2…vl–1vl为回路; 真路:若开路v0v1v2…vl–1vl中,所有结点互不相同(此时所有 边也互不相同),则称该路为真路; 环:在回路v0v1v2…vl–1v0中,若v0,v1,v2,…,vl–1 各不相同 (此时所有边也互不相同),则称该回路为环。

离散数学中的图论基础知识讲解

离散数学中的图论基础知识讲解

离散数学中的图论基础知识讲解图论是离散数学中的一个重要分支,研究的是图的性质和图中的关系。

图论在计算机科学、网络科学、运筹学等领域有着广泛的应用。

本文将从图的基本概念、图的表示方法、图的遍历算法以及一些常见的图论问题等方面进行讲解。

一、图的基本概念图是由顶点和边组成的一种数学结构。

顶点表示图中的元素,边表示元素之间的关系。

图可以分为有向图和无向图两种类型。

1. 无向图:无向图中的边没有方向,表示的是两个顶点之间的无序关系。

如果两个顶点之间存在一条边,那么它们之间是相邻的。

无向图可以用一个集合V表示顶点的集合,用一个集合E表示边的集合。

2. 有向图:有向图中的边有方向,表示的是两个顶点之间的有序关系。

如果从顶点A到顶点B存在一条有向边,那么A指向B。

有向图可以用一个集合V表示顶点的集合,用一个集合E表示有向边的集合。

二、图的表示方法图可以用多种方式进行表示,常见的有邻接矩阵和邻接表两种方法。

1. 邻接矩阵:邻接矩阵是一个二维数组,其中的元素表示两个顶点之间是否存在边。

如果顶点i和顶点j之间存在边,那么矩阵的第i行第j列的元素为1;否则为0。

邻接矩阵适用于表示稠密图,但对于稀疏图来说,会造成空间浪费。

2. 邻接表:邻接表是一种链表的数据结构,用来表示图中的顶点和边。

每个顶点对应一个链表,链表中存储与该顶点相邻的顶点。

邻接表适用于表示稀疏图,节省了存储空间。

三、图的遍历算法图的遍历是指按照某一规则访问图中的所有顶点。

常见的图的遍历算法有深度优先搜索(DFS)和广度优先搜索(BFS)。

1. 深度优先搜索:深度优先搜索是一种递归的搜索算法。

从某个顶点出发,首先访问该顶点,然后递归地访问与它相邻的未访问过的顶点,直到所有的顶点都被访问过。

2. 广度优先搜索:广度优先搜索是一种迭代的搜索算法。

从某个顶点出发,首先访问该顶点,然后依次访问与它相邻的所有未访问过的顶点,再依次访问与这些顶点相邻的未访问过的顶点,直到所有的顶点都被访问过。

离散数学中的图论代表知识点介绍

离散数学中的图论代表知识点介绍

离散数学中的图论代表知识点介绍离散数学是数学的一个分支,它主要研究离散对象以及其离散性质和离散结构。

图论作为离散数学的重要组成部分,以图为研究对象,研究了图的基本概念、图的表示方法以及图的性质和应用。

本文将介绍离散数学中的图论代表知识点。

1. 图的基本概念图是由顶点集合和边集合组成的离散结构,用V表示顶点集合,E表示边集合。

图可以分为有向图和无向图两种类型。

有向图中的边是有方向的,而无向图中的边是无方向的。

图中的顶点可以表示为V={v1, v2, v3, ...},边可以表示为E={(vi, vj)}。

在图中,两个顶点之间有边相连时,称这两个顶点是相邻的。

2. 图的表示方法图可以用多种方式来表示。

常见的表示方法有邻接矩阵和邻接表。

邻接矩阵是一个二维数组,其中的元素表示两个顶点之间是否存在边。

邻接表则是通过链表的方式来表示图的结构,每个顶点都对应一个链表,链表中存储着与该顶点相邻的顶点。

3. 图的性质图论研究了图的许多性质和特性。

其中一些重要的性质包括连通性、路径、回路、度数、树和连通分量等。

连通性是指图中任意两个顶点之间是否存在路径。

如果图中任意两个顶点都存在路径相连,则图被称为连通图。

反之,如果存在无法通过路径相连的顶点对,则图为非连通图。

连通图中的任意两个顶点之间至少存在一条路径。

路径是指从一个顶点到另一个顶点的顶点序列。

路径的长度是指路径上边的数量。

最短路径是指两个顶点之间边的数量最少的路径。

回路是指路径起点和终点相同的路径。

如果回路中除起点和终点以外的顶点不重复出现,则称为简单回路。

度数是指图中顶点的边的数量。

对于有向图来说,度数分为入度和出度,分别表示指向该顶点的边和从该顶点指出的边的数量。

树是一种无回路的连通图,它具有n个顶点和n-1条边。

树是图论中一个重要的概念,它有广泛的应用。

连通分量是指图中的极大连通子图,即在该子图中的任意两个顶点都是连通的,且该子图不能再加入其他顶点使其连通。

离散数学图论基本概念解释

离散数学图论基本概念解释

离散数学图论基本概念解释离散数学是一个研究离散对象及其关系和操作的数学分支,而图论则是离散数学的一个重要分支,用于研究图结构以及图中各种相关问题。

本文将对离散数学图论的基本概念进行解释。

一、图的定义图是指由一组顶点和连接这些顶点的边组成的数学结构。

图可以用G=(V, E)来表示,其中V表示顶点集合,E表示边的集合。

顶点之间的连接关系用边来表示,边有可能是有向的或无向的。

二、图的分类1. 无向图:图中的边没有方向,表示顶点之间的无序关系。

无向图可以是简单图(没有自环和重复边)或多重图(包含自环和多条重复边)。

2. 有向图:图中的边有方向,表示顶点之间的有序关系。

有向图也可以是简单图或多重图。

3. 加权图:顶点之间的边带有权重,用于表示边的强度或成本。

加权图可以是无向图或有向图。

三、图的常用术语1. 顶点的度:无向图中与某个顶点连接的边的数量称为该顶点的度。

在有向图中,顶点的度分为出度和入度,分别表示从该顶点出发的边的数量和指向该顶点的边的数量。

2. 路径:在图中,路径是指由一系列顶点和它们之间所连接的边组成的序列。

路径的长度是指路径中经过的边的数目。

3. 连通图:如果图中的任意两个顶点都存在一条路径相连,则称该图为连通图。

如果图非连通,则称为非连通图。

4. 完全图:如果一个无向图的任意两个顶点之间都有边相连,则称该图为完全图。

完全图有边n(n-1)/2条,其中n表示顶点的数量。

四、图的表示方法1. 邻接矩阵:邻接矩阵是一种以二维矩阵的形式来表示图的方法。

矩阵的行和列分别表示顶点,矩阵中的元素表示相应的边。

如果两个顶点之间存在边,就用1表示;否则,用0表示。

2. 邻接表:邻接表是一种以链表的形式来表示图的方法。

每个顶点都对应一个链表,链表中存储与该顶点相连的其他顶点。

五、图的遍历算法1. 深度优先搜索(DFS):DFS是一种用于遍历图的算法,它从一个初始顶点开始,沿着一条路径一直走到底,然后回溯到上一个顶点,再继续沿另一条路径走到底。

离散数学第七章图的基本概念

离散数学第七章图的基本概念

4.无向图的连通性
若无向图G中任何两顶点都连通,则称G是连通图.
对于任意的无向图G.设V1,V2,…,Vk是顶点之间连通关系的 等价类,则称他们的导出子图为G的连通分支.用p(G)表示G 的连通分支数.
V1 e1
e2 e3
V3
e4 V2
V4
a
de
h
i
b
c
f
g
5.有向图的连通性
若略去有向图D中各边的键头,所得无向图是无向连通图,则 称D是弱连通图(或称D是连通图).
(2) mij d (vi )(i 1,2,..., n)
j 1
mn
nm
n
(3) mij mij d(vi ) 2m
j1 i1
i1 j1
i 1
m
(4) mij 0 vi是孤立点 j 1
(5)若第j列与第k列相同, 则说明e j与ek为平行边.
2.有向图的关联矩阵
设有向图D=<V,E>,V={v1,v2,…,vn},E={e1,e2,…,em} 1, vi为ej的始点
e1,e2,e3},{e1,e2,
e2
e4},{e9}等边割集 ,e9是桥.
e3 V4
e5 e6
V5 e4
V6
e9
V7
7.3 图的矩阵表示
1.无向图的关联矩阵
设无向图G=<V,E>,V={v1,v2,…,vn},E={e1,e2,…,em}
令mij为顶点vi与ej的关联次数, 则称(mij)n×m为G的关联矩阵.记为M(G)
若Γ 满足:vi-1,vi为ei的端点(若G为有向图,vi-1是ei的始 点,vi是ei的终点)i=1,2,…,k,则称Γ 为G中通路,v0,vk分 别称为通路的始点和终点,Γ 中边的数目k称为通路长度.

第五章 图的基本概念-离散数学

第五章 图的基本概念-离散数学
3
Co
e4
e7
bo
oc
8
图 论
无向完全图:每对顶点间均有边相连的无向 简单图。N阶无向完全图记作Kn.
o o K2 o K3 o o o o K4
1 2
o o
o o o K5 o o
无向完全图Kn, 有边数
n( n − 1)
竞赛图:在的每条边上任取一个方向的有 向图.
9
图 论
有向完全图:每对顶点间均有一对方向相反 的边相连的有向图。例如:
2
图 论
5.1 图的定义及相关术语 5.2 通路 回路 图的连通性 5.3 图的矩阵表示 5.4 无向树 5.5 欧拉图和哈密顿图 5.6 平面图
3
图 论
§5.1 图的定义及相关术语
例1. 多用户操作系统中的进程状态变换图:
就绪 r 进程调度 ro 执行 e o w V={r,e,w}
E={<r,e>,<e,w>,<w,r>}
图 论
2
2. 回路:如果一条路的起点和终点是一个顶 点,则称此路是一个回路. ov e e 如右图中的 v o ov e e L1=v0 e1v1 e5v3 e6v2e4v0 e e L2= v0 e1v1 e5v3e2v0
0 1 4 1 2 3 5 6
2
o v3
22
3. 迹与闭迹
图 论
简单通路(迹) 顶点可重复但边不可重复的通路。 简单回路(闭迹) 边不重复的回路。 4. 路径与圈 初级通路(路径) 顶点不可重复的通路。 初级回路(圈) 顶点不可重复的回路。 例如右图中: o v0 L1=v0 e1v1 e5v3 e6v2e4v0 e1 e4 L2= v0 e1v1 e5v3e2v0 o v2 e2 e3 L3=v0 e1v1 e5v3 e2v0 e3v3 e6v2e4v0 v1 o e5 e6 L1和L2是闭迹, 也是圈. o v3 L3是闭迹,而不是圈.

《离散数学》课件第14章图的基本概念

《离散数学》课件第14章图的基本概念
像这种形状不同,但本质上是同一个图的现象称 为图同构。
定义14.5(图同构)设两个无向图G1=<V1,E1>, G2=<V2,E2>,如果存在双射函数f:V1→V2,使得对 于 任 意 的 e=(vi,vj)∈E1 当 且 仅 当 e’=(f(vi), f(vj))∈E2,并且e与e’的重数相同,则称G1和G2是 同构的,记作G1≌G2。
若vi=vj,则称ek与vi的关联次 数为2;
若vi不是ek的端点,则称ek与vi 的关联次数为0。
无边关联的顶点称为孤立点 (isolated vertex) 。
19
定义(相邻) 设无向图G=<V,E>, 若∃et∈E且et=(vi,vj),则称vi和vj是相邻的 若ek,el∈E且有公共端点,则称ek与el是相邻的。
素称为有向边,简称边。 由定义,有向图的边ek是有序对<vi,vj>,称vi,
vj是ek的端点,其中vi为ek的始点(origin),vj为ek 的终点(terminus)。
当vi=vj时,称ek为环,它是vi到自身的有向边。
11
每条边都是无向边的图称为无向图(undirected graph)。
定义(邻接与相邻) 设有向图D=<V,E>, 若∃et∈E且et=<vi,vj>,则称vi邻接到vj,vj邻接 于vi。 若ek,el∈E且ek的终点为el的始点,则称ek与el是相 邻的。
20
定义14.4(度) 设G=<V,E>为一无向图,∀v∈V,称 v作为边的端点的次数之和为v的度数,简称为度 (degree),记为d(v)。
定理14.2 (有向图握手定理)设D=<V,E>为任 意的有向图,V={v1,v2,…,vn},|E|=m,则

离散数学 第7章 图论

离散数学 第7章 图论

v2 v3
v4
v3
(b) 图G
v3 (c) 图G’
(a) 完全图K5
图G是图G’ 相对于图K5的补图。 图G’不是图G 相对于图K5的补图。(图G’中有结点v5 )
例:276页图7-1.7 图(c)是图(b)相对于图(a)的补图。 图(b)不是图(c)相对于图(a)的补图。
25
7-1
图的同构
图的基本概念
8
7-1
图的基本概念
1.无向图:每条边均为无向边的图称为无向图。 2.有向图:每条边均为有向边的图称为有向图。 3.混合图:有些边是无向边,有些边是有向边的图称 为混合图。
v1 (孤立点) v5 V1’
v1 v2
v2
v4 v3 (a)无向图
V2’
V3’ (b)有向图 V4’
v4 v3 ( c ) 混合图
17
7-1
图的基本概念
三、特殊的图
定义4 含有平行边的图称为多重图。 不含平行边和环的图称为简单图。
定义5 简单图G=<V,E>中,若每一对结点间均有边 相连,则称该图为完全图。
无向完全图:每一条边都是无向边 不含有平行边和环 每一对结点间都有边相连
有n个结点的无向完全图记为Kn。
18
7-1
图的基本概念
推论 在一个具有n个结点的图中,如果从结点vj 到结点vk存在一条路,则从结点vj到结点vk 必存在一条边数小于n的通路。
32
7-2
路与回路
定理7-2.1的证明 如果从结点vj到vk存在一条路,该路上的结点序列 是vj…vi…vk,如果在这条中有l条边,则序列中必有 l+1个结点,若l>n-1,则必有结点vs,它在序列中不止 出现一次,即必有结点序列vj…vs…vs…vk,在路中去 掉从vs到vs的这些边,仍是vj到vk的一条路,但此路比 原来的路边数要少,如此重复进行下去,必可得到一 条从vj到vk的不多于n-1条边的路。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、图的同构
定义:设G1=<Vl,E1>,G2=<V2,E2>为两个无向图(有向图), 若存在双射函数 f:V1 → V2 对于 ∀vi,vj V1,(vi,vj) E1 当且仅当 (f(vi),f(vj)) E2 并且(vi,vj) 与(f(vi),f(vj))的重数 相同,则称G1与G2是同构的,记作Gl ≅ G2。 对有向图有相同的定义。
4、结点的度
1) 定义4 设G=<V,E>为无向图,∀ v ∈V,称v作为边的端点的 次数之和为v的度数,简称为度,记作dG(v), 简记为d(v),即为:结点v 所关联的边的总条数 关于有向图D=<V,E> 有: ∀v∈V,称v作为边的始点的次数之和为v的出度,记作d+(v), 称v作为边的终点的次数之和为v的入度,记作d-(v) 称d+(v)+ d-(v)为 v的度数,记作dD(v). 2) 称度数为1的顶点为悬挂顶点,与它关联的边称为悬挂边 根据结点的度数可将结点分为: 度为偶数(奇数)的顶点称为偶度顶点(奇度顶点). 一个环提供的度为2(有向图的环提供入度1和出度1)
度数分配 1 2 1 按出度与入度分配: 入度列 1 1 0 出度列 0 1 1 入度列 0 出度列 1 入度列 1 出度列 0 2 0 0 2 0 1 1 0 度数分配 2 2 0 按出度与入度分配: 入度列 1 1 0
出度列 1
1
0
这只是对较为简单的情 况给出的非同构图,对 于一般的情况(n,m)图 到目前为止还没有解决
定义说明了:两个图的各结点之间,如果存在着一一对应关系 f 这种对应关系又保持了结点间的邻接关系, 那么这两个图就是同构的 在有向图的情况下, f 不但应该保持结点间的邻接关系,还应 该保持边的方向。
结点数相同边数相同 结点的度相同 但是两个图 不同构
注: 1) 两个图同构的必要条件
阶数相同(顶点) 边数相同 度数相同的顶点数相同 同构的必要条件,并不是充分条件 2)图之间的同构关系可看成全体图集合上的二元关系。 具有自反性,对称性和传递性,是等价关系。 同构的图为一个等价类,在同构的意义之下都可以看 成是一个图。
3)定义:(G) = max{d(v)|v∈V(G)} 为图G中结点最大的度 δ(G) = min{d(v)|v∈V(G)} 为图G中结点最小的度 简记为、δ 定义: -(D) = max{d-(v)|v∈V(D)} 为图D中结点最大的入度 +(D) = max{d+(v)|v∈V(D)} 为图D中结点最大的出度 δ-(D) = min{d-(v)|v∈V(D)} 为图D中结点最小的入度 δ+(D) = min{d+(v)|v∈V(D)} 为图D中结点最小的出度
图论
图的基本概念
七座桥所有的走法一共有7!=5040种。 1736年,在经过一年的研究之后,29岁的欧拉提交 了《哥尼斯堡七桥》的论文,圆满解决了这一问题, 同时开创了数学新分支---图论。
图论
在许多应用领域中:地图导航、网络技术 研究及程序流程分析都会遇到由“结点” 和“边”组成的图 在计算机许多学科中如:数据结构、操作 系统、网络理论、信息的组织与检索均离 不开由这种“结点”和“边”组成的图以 及图的特殊形式--树。 图与树是建立和处理离散对象及其关系重 要工具。如地图导航、周游问题、图像分 割等等。
例:无向图G = < V,E >
其中 顶点集合 V={v1,v2,v3,v4 } 边集合 E={(v1,v2),(v2,v3),(v3,v2), (v3,v1),(v2,v2),(v2,v2),(v1,v2),} 园括号表示无向边 有平行边
2) 定义2 一个有向图是一个有序的二元组<V,E>,记作D,其中 (1) V ≠ ø 称为顶点集,其元素称为顶点或结点. (2)E为边集,它是笛卡儿积 VⅹV的有穷多重子集,其元素称 为有向边,简称边(弧). 有向图D=<V,E> 其中 V={v1,v2,v3 } 边集合E={<v1,v2>,<v2,v1>, <v2,v1>,<v2,v3>,<v3,v3> <v3,v3>}
4) 结点的度数序列
(1) 设G=<V,E>为一个n阶无向图,V={v1,v2,…,vn} 称d(v1),d(v2),… ,d(vn) 为G的度数列 注:由推论可知,不是任何一个非负整数序列均可作为一个图的度数列。 条件:奇度数的结点个数应该是偶数个 (2)序列的可图化:对一个整数序列d=(d1,d2,…dn),若存在以n个顶点的n 阶无向图G,有d(vi)=di ,称该序列是可图化的。 特别的,如果得到的是简单图,称该序列是可简单图化的。 (3)定理 设非负整数列d=(d1,d2,…,dn),则d是可图化的当且仅当 ∑di 是偶数(序列之和必须是偶数) (4)由于简单图中没有平行边及环 定理:设G为任意n阶无向简单图,则(G)<= n-1。 每个结点至多与其他n-1个结点相邻 例:给定5个序列哪些是可图化的?哪些是可简单图化的? d1=(5,5,4,4,2,1) d2=(5,4,3,2,2) d3=(d1,d2,…dn) 其中 d1>d2>…>dn>=1 且Σdi= 偶数 d4=(3,3,3,1) 分析 d5=(4,4,3,3,2,2)
三、特殊图-完全图与正则图
1)完全图 定义 设G为n阶无向简单图,若G中每个顶点均与其余的n—1个顶点相邻, 则称G为n阶无向完全图,简称n阶完全图,记作Kn(n≥1). 设D为n阶有向简单图,若D中每个顶点都邻接到其余的n—1个顶点, 又邻接于其余的 n—1个顶点,则称D是 n 阶有向完全图. 可画图表示(无向图5阶、有向图3阶和4阶) 2)完全图的性质: n阶无向完全图G的边数与结点的关系 m = n (n-1)/2 n阶有向完全图G的边数与结点的关系 m = n (n-1)
2、设G=<V,E>为图,V1⊂V 且V1≠ ø ,称以V1为顶点集,以G 中两个端点都在V1中的边组成边集E1的图为G的V1导出的子图, 记作G[V1]. 可画图表示 G 及 G[V1](P279图14.5)结点导出的子图 又设E1 ⊂ E且 E1 ≠ ø ,称以 E1为边集,以E1中边关联 的顶点为顶点集V1的图为G的E1导出的子图,记作G[E1].
2
3)正则图 定义 设G为n阶无向简单图,若∀ v∈V(G),均有d(v)=k 则称G为 k-正则图 k-正则图的边数与结点个数的关系 : m = k n /2 如:3-正则图
四、子图、生成子图、导出子图
1、定义 设G=<V,E>,G‘=<V’,E’>为两个图(同为无向图或有向图) 若V’⊆ V 且 E’⊆ E ,则称G‘是G的子图,G为G‘的母图,记作G’⊆G, 又若V‘⊂V 或 E’ ⊂ E,则称G‘为G的真子图 若V’=V(且E’⊆ E),则称G‘为G的生成子图(全部顶点)
例 (1)画出4阶3条边的所有非同构的无向简单图.
结点个数与边数相点: 1 1 1 3 相应的图 2 2 1 1 2 2 2 0
例 (2)画出3阶2条边的所有非同构的有向简单图 结点个数与边数相同,只需找出顶点度(出度及入度)数序列不同的图 结点总度数: 2*2=4
一、图的概念
1、无序积定义:设A,B为任意的两个集合, 称 { {a,b} ┃ a∈A∧b∈B }为A与B的无序积,记作A & B 其元素{a,b} 可简记为(a,b) 2、图的定义 1)定义1 一个无向图是一个有序的二元组 < V,E >,记作G,其中 (1) V ≠ ø 称为顶点集,其元素称为顶点或结点. (2) E称为边集,它是无序积V&V的多重子集,其元素称为无向边, 简称为边.
5、握手定理(欧拉)
1)定理1 设G=<V,E>为任意无向图,V={v1,v2,…,vn},|E| = m, 则 ∑d(vi) = 2m (所有结点的度数值和为边数的2倍) 证: G中每条边(包括环)均有两个端点,所以在计算G中各顶点度数之和 时,每条边均提供2度,当然,m条边共提供2m度 2) 定理2 设D=<V,E>为任意有向图,V={v1,v2,…,vn},|E| = m , 则 ∑d+(vi) = ∑d-(vi) = m. 且∑d(vi)=2m 3) 推论 任何图(无向的或有向的)中,奇度顶点的个数是偶数个
6)邻接: 边的相邻:ek,el∈E.若ek与el至少有一个公共端点, 则称ek与el是相邻的 顶点的相邻:若∃et∈E,使得et = <vi,vj>, 则称vi为et的始点,vj为et的终点, 并称vi邻接到vj,vj邻接于vi 两个结点为一条边的端点,则称两个结点互为邻接点, 也称边关联于这两个结点,或称两个结点邻接于此边。 7)平行边: 在无向图中,关联一对顶点的无向边如果多于1条,则称这些 边为平行边,平行边的条数称为重数. 在有向图中,关联一对顶点的有向边如果多于1条,并且它们 的方向相同,则称这些边为平行边. 8)多重图和简单图:含平行边的图称为多重图 既不含平行边也不含环的图称为简单图.(主要讨论简单图)
(与前面的关系的图表示相当)
3、有关图的术语
1)用G表示无向图,D表示有向图。 有时用V(G),E(G)分别表示G的顶点集和边集。 2)用|V(G)|,|E(G)|分别表示G的顶点数和边数 若|V(G)|=n,则称G为n阶图。对有向图有相同定义。 3)在图G中,若边集E(G)=ø ,则称G为零图 若G为n阶图,则称G为n阶零图,记作Nn,特别是称N1为平凡图 4)在用图形表示一个图时,若给每个结点和每一条边均指定一个 符号(字母或数字),则称这样的图为标定图。 5) 常用ek表示边(vi,vj)( 或<vi,vj> ) 设G=<V,E> 为无向图,ek = (vi,vj)∈E, 则称vi,vj为ek的端点, ek与vi、vj是彼此相关联的. 起、终点相同的边称为环 不与任何边关联的结点称为孤立点(包括有向图)
相关文档
最新文档