人教版八年级上册数学课后习题
【初中数学】人教版八年级上册第2课时 列分式方程解决实际问题(练习题)
人教版八年级上册第2课时列分式方程解决实际问题(348)1.某公司在工程招标时,接到甲、乙两个工程队的投标书.甲工程队每施工一天,需付工程款1.5万元,乙工程队每施工一天,需付工程款1.1万元.工程领导小组根据甲、乙两队的投标书测算,形成下列三种施工方案:方案①:甲队单独完成此项工程刚好如期完工;方案②:乙队单独完成此项工程要比规定工期多用5天;方案③:若甲、乙两队合作4天,剩下的工程由乙队独做也正好如期完工.(1)求甲、乙两队单独完成此项工程各需多少天;(2)如果工程不能如期完工,公司每天将损失3000元,如果你是公司经理,你觉得选哪一种施工方案划算?请说明理由.2.某轻轨工程指挥部,要对某轻轨路段工程进行招标,接到了甲、乙两个工程队的投标书.根据投标书知,甲队单独完成这项工程所需天数是乙队单独.若由甲队先做20天,剩下的工程再由甲、乙两队完成这项工程所需天数的23合作60天可完成.(1)求甲、乙两队单独完成这项工程各需多少天;(2)已知甲队每天的施工费用为9.2万元,乙队每天的施工费用为6.8万元.工程预算的施工费用为1000万元.若在甲、乙工程队工作效率不变的情况下使施工时间最短,那么预算的施工费用是否够用?若不够用,需追加预算多少万元?3.小明准备利用暑假从距上海2160千米的某地去“上海迪斯尼乐园”参观游览,如图是他在火车站咨询得到的信息,根据图中信息,求小明乘坐城际直达动车到上海所需的时间.4.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批新产品比乙工厂单独加工完成这批新产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.5.为了响应学校提出的“节能减排,低碳生活”的倡议,班会课上小李建议每位同学都践行“双面打印,节约用纸”.他举了一个实际例子:打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求例子中的A4厚型纸每页的质量.(墨的质量忽略不计)6.“郁郁林间桑葚紫,茫茫水面稻苗青”说的就是味甜汁多,酸甜适口的水果——桑葚.4月份,水果店的小李用3000元购进了一批桑葚,随后的两天他很快以高于进价40%的价格卖出150千克,到了第三天,他发现剩余的桑葚卖相已不太好,于是果断地以低于进价20%的价格将剩余的全部售出,小李一共获利750元,设小李共购进桑葚x千克.(1)根据题意完成下表:(用含x的式子表示)(2)求小李共购进多少千克的桑葚.7.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)若每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.8.某乡镇对公路进行补修,甲工程队计划用若干天完成此项目,甲工程队单独工作了3天后,为缩短完成的时间,乙工程队加入此项目,且甲、乙两工程队每天补修的工作量相同,结果提前3天完成,则甲工程队计划完成此项目的天数是()A.6B.7C.8D.99.哈尔滨市政府欲将一块地建成湿地公园,动用了一台甲型挖土机,4天挖完了这块地的13,后又加一台乙型挖土机,两台挖土机同时工作,结果又用两天就挖完了整片地,那么乙型挖土机单独挖完这块地需要天.10.园林部门计划在一定时间内完成植树任务,甲队独做正好按期完成,乙队独做则要误期3天.现两队合作2天后,余下任务由乙队独做,正好按期完成任务.则原计划多少天完成植树任务?11.A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为x km/h,则根据题意可列方程为()A.180x −180(1+50%)x=1 B.180(1+50%)x−180x=1C.180x −180(1−50%)x=1 D.180(1−50%)x−180x=112.某村电路发生断电,该地供电局组织电工进行抢修.供电局距离该村15千米,抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果他们同时到达.已知吉普车速度是抢修车速度的1.5倍,则抢修车的速度是13.为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x棵,则列出的方程为()A.400x =300x−30B.400x−30=300xC.400x+30=300xD.400x=300x+3014.某校学生利用双休时间去距学校10km的炎帝故里参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.参考答案1(1)【答案】解:设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+5)天.依题意,得4x +4x+5+x−4x+5=1,解得x=20.经检验,x=20是原分式方程的解且符合题意.x+5=25.答:甲队单独完成此项工程需20天,乙队单独完成此项工程需25天.(2)【答案】解:选方案③划算.理由如下:这三种施工方案需要的工程款:方案①:1.5×20=30(万元);方案②:1.1×(20+5)+5×0.3=29(万元);方案③:1.5×4+1.1×20=28(万元).∵30>29>28,∴方案③最节省工程款.2(1)【答案】解:设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要23x天.根据题意,得2023x+60(123x+1x)=1,解得x=180.经检验,x=180是原分式方程的解且符合题意.2 3x=23×180=120.答:甲、乙两队单独完成这项工程分别需120天和180天. (2)【答案】解:设甲、乙两队合作完成这项工程需要y天.则y(1120+1180)=1,解得y=72.需要施工费用:72×(9.2+6.8)=1152(万元).∵1152>1000,∴预算的施工费用不够用,需追加预算152万元.3.【答案】:解:设小明乘坐城际直达动车到上海需要x 小时. 根据题意,得2160x=2160x+6×1.6,解得x =10.经检验,x =10是原方程的根且符合题意. 答:小明乘坐城际直达动车到上海需要10小时.4.【答案】:解:设甲工厂每天加工x 件产品,则乙工厂每天加工1.5x 件产品. 依题意得1200x−12001.5x=10,解得x =40.经检验,x =40是原方程的根,且符合题意.1.5x =60.答:甲工厂每天加工40件新产品,乙工厂每天加工60件新产品.5.【答案】:解:设例子中的A 4厚型纸每页的质量为x 克. 由题意,得400x=2×160x−0.8,解得x =4.经检验,x =4为原方程的解,且符合题意. 答:例子中的A 4厚型纸每页的质量为4克. 6(1)【答案】3000(1+40%)x;3000(1−20%)x;x −150(2)【答案】解:根据题意,得150·3000(1+40%)x+(x −150)·3000(1−20%)x−3000=750解得x =200.经检验,x =200是原方程的解且符合题意. 答:小李共购进200千克桑葚. 7(1)【答案】解:设每本软面笔记本花费x元,则每本硬面笔记本花费(x+1.2)元.由题意,得12 x =21x+1.2,解得x=1.6.此时121.6=211.6+1.2=7.5(不符合题意),所以小明和小丽不能买到相同数量的笔记本.(2)【答案】解:存在.设每本软面笔记本花费m元(1≤m≤12,且m为整数),则每本硬面笔记本花费(m+a)元.由题意,得12m =21m+a,解得a=34m.∵a为正整数,∴m=4,a=3或m=8,a=6或m=12,a=9.当m=8,a=6时,128=2114=1.5(不符合题意).∴a的值为3或9.8.【答案】:D【解析】:设甲工程队计划完成此项目的天数为x天,由题意,得x−3x +x−6x=1,解得x=9,经检验,x=9是原分式方程的根,且符合题意.故选D9.【答案】:4【解析】:∵一台甲型挖土机4天挖完了这块地的13,∴甲型挖土机12天全部挖完这块地,故甲1天完成总工作量的112,设乙型挖土机单独挖这块地需要x天,根据题意可得13+212+2x=1,解得x=4.经检验,x=4是原方程的根,且符合题意.∴乙型挖土机单独挖完这块地需要4天10.【答案】:解:设原计划x天完成植树任务,则乙队单独完成植树任务的时间是(x+3)天.由题意,得2(1x +1x+3)+x−2x+3=1,解得x=6.经检验,x=6是原方程的解且符合题意.答:原计划6天完成植树任务11.【答案】:A12.【答案】:20千米/时【解析】:设抢修车的速度为x千米/时,则吉普车的速度为1.5x千米/时.由题意,得15 x −151.5x=1560,解得x=20.经检验,x=20是原方程的解且符合题意.则抢修车的速度为20千米/时13.【答案】:A14.【答案】:解:设骑车学生的速度为x km/h,则汽车的速度为2x km/h.根据题意,得10x =102x+2060,解得x=15.经检验,x=15是原方程的解且符合题意,2x=2×15=30.答:骑车学生的速度和汽车的速度分别是15km/h,30km/h.。
人教版八年级上册数学课后习题
⼈教版⼋年级上册数学课后习题第4页1、图中有⼏个三⾓形⽤符号表⽰这些三⾓形。
B C2、下列长度的三条线段能否组成三⾓形为什么(1)3,4,8;(2)5,6,11;(3)5,6,10.5页有什么不同这三条△ABC的边BC上的⾼AD在各⾃1、如图,(1)(2)和(3)中的三个B三⾓形的什么位置你能说出其中的规律吗B DC B(D) CD B C2、填空:(1)如下页图(1),AD,BE,CF是△ABC的三条中线,则AB=2____,BD=____,AE=1/2____.(2)如下页图(2),AD,BE,CF是△ABC的三条⾓平分线,则∠1=____,∠3=1/2____,∠ACB=2____,AAF FEE习题1、图中有⼏个三⾓形⽤符号表⽰这些三⾓形。
B D E C2、长为10,7,5,3的四根⽊条,选其中三根组成三⾓形,有⼏种选法为什么3、对于下⾯每个三⾓形,过顶点A 画出中线、⾓平分线和⾼。
(1)(2)(3)4、如图,在△ABC 中,AE 是中线,AD 是⾓平分线,AF 是⾼。
填空:(1) BE=____=1/2____.(2)∠(3)∠AFB=____=90° (4)B E D FC 5、选择题。
下列图形中有稳定性的是()A 、正⽅形B 、长⽅形C 、直⾓三⾓形D 、平⾏四边形 12页例1 如图,在△ABC 中,∠BAC =40°, ∠B = 75°,AD 是△ABC 的⾓平分线.求∠ADB 的度数.CDA B例2:如图,C 岛在A 岛的北偏东50°⽅向,B 岛在A 岛的北偏东80°⽅向,C 岛在B 岛的北偏西40°⽅向。
求下⾯各题.DBCE北13页1.如图,从A 处观测C 处时仰⾓∠CAD =30°,从B 处观测C 处时仰⾓∠CBD =45°.从C 处观测A 、B 两处时视⾓∠ACB 是多少2.如图,⼀种滑翔伞的形状是左右对称的四边形ABCD ,其中∠A=150°,, ∠B=∠D=40°,求∠C 的度数。
人教版八年级数学上册 第十一章三角形 11.3.1多边形 课后练习
人教版八年级数学上册第十一章三角形11.3.1多边形课后练习一、单选题1.若一个多边形从一个顶点,只可以引三条对角线,则它是( )边形.A.五B.六C.七D.八2.下列说法中,正确的是()A.直线有两个端点B.射线有两个端点C.有六边相等的多边形叫做正六边形D.有公共端点的两条射线组成的图形叫做角3.从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()A.n个B.(n-2) 个C.(n-3)个D.)n-1)个4.过一个多边形的一个顶点的所有对角线把多边形分成4个三角形,则这个多边形的边数为()A.3B.4C.5D.65.如果过一个多边形的一个顶点的对角线有7条,则该多边形是( )A.十边形B.九边形C.八边形D.七边形6.多边形的一个顶点处的所有对角线把多边形分成了11个三角形,则经过这一点的对角线的条数是()A.8B.9C.10D.117.把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是()A.16B.17C.18D.198.下列说法不正确的是()A.各边都相等的多边形是正多边形B.正多形的各边都相等C.正三角形就是等边三角形D.各内角相等的多边形不一定是正多边形9.一个正十边形的某一边长为8cm,其中一个内角的度数为144º)则这个正十边形的周长和内角和分别为()A.64cm)1440ºB.80cm)1620ºC.80cm)1440ºD.88cm)1620º10.通过连接对角线的方法,可以把十边形分成互不重叠的三角形的个数()A.7个B.8个C.9个D.10个第II卷(非选择题)请点击修改第II卷的文字说明二、填空题11.)))))—))))))_________)))))))))))_________)))).12.己知正多边形的每个外角都是45°,则从这个正多边形的一个顶点出发,共可以作_______条对角线.13.将一个正方形截去一个角,则其边数___________)14.以线段a=7)b=8)c=9)d=11为边作四边形,可作_________个.15.一个四边形剪去一三角形后余下的多边形为___________边形三、解答题16.已知正n边形的周长为60,边长为a)1)当n=3时,请直接写出a的值;)2)把正n边形的周长与边数同时增加7后,假设得到的仍是正多边形,它的边数为n+7,周长为67,边长为b.有人分别取n等于3)20)120,再求出相应的a与b,然后断言:“无论n取任何大于2的正整数,a与b一定不相等.”你认为这种说法对吗?若不对,请求出不符合这一说法的n的值.17.一个多边形的内角和是它的外角和的3倍,求这个多边形的边数。
新版人教版八年级数学上册全册习题集
新版人教版八年级数学上册全册习题集目录1. 第一章:整数2. 第二章:有理数3. 第三章:代数式4. 第四章:图形的认识5. 第五章:图形的性质6. 第六章:相交线与平行线7. 第七章:三角形8. 第八章:全等三角形9. 第九章:五边形与多边形10. 第十章:集合第一章:整数本章介绍整数的概念、整数之间的大小比较、整数的加减法运算以及整数的乘法运算。
通过题练,加深对整数概念的理解,并掌握整数的运算方法和技巧。
第二章:有理数本章介绍有理数的概念、有理数之间的大小比较、有理数的加减法运算以及有理数的乘除法运算。
通过题练,巩固对有理数概念的掌握,提高有理数运算的能力。
第三章:代数式本章介绍代数式的概念、代数式的计算与化简、代数式的值、代数式的应用等内容。
通过题练,培养代数思维能力,掌握代数式的运算技巧。
第四章:图形的认识本章介绍图形的基本概念和常见图形的性质。
通过题练,加深对图形认识的理解,掌握图形的命名、计算面积和周长的方法。
第五章:图形的性质本章介绍圆和与圆有关的性质,以及相似图形的性质。
通过题练,加深对圆和相似图形性质的理解,提高解决相关问题的能力。
第六章:相交线与平行线本章介绍平行线和相交线的性质,以及平行线与相交线间夹角和对应角的关系。
通过题练,掌握平行线和相交线的性质,提高几何问题的解决能力。
第七章:三角形本章介绍三角形的定义、分类和性质,以及三角形的角平分线和垂线的性质。
通过题练,加深对三角形性质的理解,提高解决相关问题的能力。
第八章:全等三角形本章介绍全等三角形的概念和性质,以及全等三角形的判定方法。
通过题练,掌握全等三角形的判定和应用,提高解决相关问题的能力。
第九章:五边形与多边形本章介绍五边形和多边形的定义、分类和性质,以及多边形的内角和外角的关系。
通过题练,加深对五边形和多边形性质的理解,提高解决相关问题的能力。
第十章:集合本章介绍集合及其表示方法、集合的运算和集合的应用。
通过题练,培养集合思维能力,巩固对集合概念的掌握。
【教材答案】人教版八年级数学上册课本练习题答案()
第11章习题11.1第1题答案图中共6个三角形分别是:△ABD,△ADE,△AEC,△ABE,AADC,△ABC习题11.1第2题答案2种四根木条每三条组成一组可组成四组,分别为:10,7,5;10,7,3;10,5,3;7,5,3.其中7+5>10,7+3=10,5+3<10,5+3>7所以第二组、第三组不能构成三角形,只有第一组、第四组能构成三角形习题11.1第3题答案如下图所示,中线AD、高AE、角平分线AF习题11.1第4题答案(1)EC;BC(2)∠DAC;∠BAC(3)∠AFC(4)1/2BC·AF习题11.1第5题答案C习题11.1第6题答案(1)当长为6 cm的边为腰时,则另一腰长为6 cm,底边长为20-12=8(cm) 因为6+6>8所以此时另两边的长为6cm,8cm(2)当长为6 cm的边为底边时,等腰三角形的腰长为(20-6)/2=7(cm)因为6+7>7所以北时另两边的长分别为7cm,7cm习题11.1第7题答案(1) 当等腰三角形的腰长为5时,三角形的三边为5,5,6因为5+5>6所以三角形周长为5+5+6=16当等腰三角形的腰长为6时,三角形的三边为6,6,5 因为6+5>6所以三角形周长为6+6+5=17所以这个等腰三角形的周长为16或17(2)22习题11.1第8题答案1:2习题11.1第9题答案解:∠1=∠2,理由如下:因为AD平分∠BAC所以∠BAD=∠DAC又DE//AC所以∠DAC=∠1又DF//AB所以∠DAB=∠2所以∠1=∠2习题11.1第10题答案四边形木架钉1根木条五边形木架钉2根木条六边形木架钉3根木条习题11.2第1题答案(1)x=33(2)x=60(3)x=54(4)x=60习题11.2第2题答案(1)一个直角,因为如果有两个直角,三个内角的和就大于180°了(2)一个钝角,如果有两个钝角,三个内角的和就大于180°了(3)不可以,如果外角是锐角,则它的邻补角为钝角,就是钝角三角形,而不是直角三角形了习题11.2第3题答案∠A=50°,∠B=60°,∠C=70°习题11.2第4题答案70°习题11.2第5题答案解:∵AB//CD,∠A=40°∴∠1=∠A=40°∵∠D=45°∴∠2=∠1+∠D=40°+45°=85°习题11.2第6题答案解:∵AB//CD,∠A=45°∴∠1=∠A=45°∵∠1=∠C+∠E∴∠C+∠E=45°又∵∠C=∠E∴∠C+∠C=45°∴∠C=22.5°习题11.2第7题答案解:依题意知:∠ABC=80°-45°-35°∠BAC= 45°+15°=60°,∠C =180°-35°-60°=85°,即∠ACB=85°习题11.2第8题答案解:∠BDC=∠A+∠ACD=62°+35°=97°,∠BFD=180°-∠BDC-∠ABE=180°-97°-20°=63°习题11.2第9题答案解:因为∠A+∠ABC+∠ACB=180°,∠A=100°所以∠ABC+∠ACB=180°-∠A=180°-100°=80°又因为∠1=∠2,∠3=∠4所以∠2=1/2∠ABC,∠4=1/2∠ACB所以∠2 +∠4=1/2(∠ABC+∠ACB)=1/2×80°=40°所以x=180°-(∠2+∠4) =180°-40°=140°所以x=140°习题11.2第10题答案180°;90°;90°习题11.2第11题答案证明:因为∠BAC是△ACE的一个外角所以∠BAC=∠ACE+∠E又因为CE平分∠ACD所以∠ACE= ∠DCE所以∠BAC=∠DCE+∠E又因为∠DCE是△BCE的一个外角所以∠DCE=∠B+∠E所以∠BAC=∠B+ ∠E+∠E=∠B+2∠E习题11.3第1题答案如下图所示,共9条习题11.3第2题答案(1)x=120(2)x=30(3)x=75习题11.3第3题答案多边形的边数 3 4 5 6 8 12 内角和180°360°540°720°1080°1800°外角和360°360°360°360°360°360°习题11.3第4题答案108°;144°习题11.3第5题答案这个多边形是九边形习题11.3第6题答案(1)三角形;(2)解:设这个多边形是n边形,由题意得:(n-2)×180=2×360解得n=6所以这个多边形为六边形习题11.3第7题答案AB//CD,BC//AD(理由略)提示:由四边形的内角和可求得同旁内角互补习题11.3第8题答案(1)是.理由如下:由已知BC⊥CD,可得∠BCD=90°又因为∠1=∠2=∠3所以有∠1=∠2=∠3=45°,即△CBD为等腰直角三角形,且CO是∠DCB的平分线所以CO是△BCD的高。
人教版八年级上册数学课本答案
人教版八年级上册数学课本答案
人教版八年级上册数学课本中有一些练习,这些练习的答案是什么呢?小编整理了关于人教版八年级上册数学课本的答案,希望对大家有帮助!
人教版八年级上册数学课本答案(一) 第50页练习
1.提示:作AOB的平分线交MN于一点,则该点即为P点.(图略)
2.证明:如图12-3-25所示,过点P分别作PF,PG,PH垂直于直线AC,BC,AB
垂足为F,G,H.
∵BD是△ABC中ABC外角的平分线,点P在BD上,PG=PH.同理PE=PG.PF=PC=PH.
故点P到三边AB,BC,CA所在直线的距离相等。
人教版八年级上册数学课本答案(二) 第55页复习题
人教版八年级上册数学课本答案(三) 第60页练习
1.解:(1)(2)(3)(5)是轴对轴图形,它们的对称轴为图中的虚线.
2.(1)(3)是轴对称的,对称轴和对称点略;
(2)不是轴对称的.
猜你感兴趣:
1.人教版八年级上册数学课本习题答案
2.八年级上册数学课后习题答案人教版
3.八年级上数学练习册答案人教版
4.八年级上册数学配套练习册答案人教版
5.八年级数学上册配套练习题答案。
八年级上册数学课本答案人教版
⼋年级上册数学课本答案⼈教版 认真做⼋年级数学课本习题,就⼀定能成功!⼩编整理了关于⼈教版⼋年级数学上册课本的答案,希望对⼤家有帮助! ⼋年级上册数学课本答案⼈教版(⼀) 第41页练习 1.证明:∵ AB⊥BC,AD⊥DC,垂⾜分为B,D, ∴∠B=∠D=90°. 在△ABC和△ADC中, ∴△ABC≌△ADC(AAS). ∴AB=AD. 2.解:∵AB⊥BF ,DE⊥BF, ∴∠B=∠EDC=90°. 在△ABC和△EDC,中, ∴△ABC≌△EDC(ASA). ∴AB= DE. ⼋年级上册数学课本答案⼈教版(⼆) 习题12.2 1.解:△ABC与△ADC全等.理由如下: 在△ABC与△ADC中, ∴△ABC≌△ADC(SSS). 2.证明:在△ABE和△ACD中, ∴△ABE≌△ACD(SAS). ∴∠B=∠C(全等三⾓形的对应⾓相等). 3.只要测量A'B'的长即可,因为△AOB≌△A′OB′. 4.证明:∵∠ABD+∠3=180°, ∠ABC+∠4=180°, ⼜∠3=∠4, ∴∠ABD=∠ABC(等⾓的补⾓相等). 在△ABD和△ABC中, ∴△ABD≌△ABC(ASA). ∴AC=AD. 5.证明:在△ABC和△CDA中, ∴△ABC≌△CDA(AAS). ∴AB=CD. 6.解:相等,理由:由题意知AC= BC,∠C=∠C,∠ADC=∠BEC=90°, 所以△ADC≌△BEC(AAS). 所以AD=BE. 7.证明:(1)在Rt△ABD和Rt△ACD中, ∴Rt△ABD≌Rt△ACD( HL). ∴BD=CD. (2)∵Rt△ABD≌ Rt△ACD, ∴∠BAD=∠CAD. 8.证明:∵AC⊥CB,DB⊥CB, ∴∠ACB=∠DBC=90°. ∴△ACB和△DBC是直⾓三⾓形. 在Rt△ACB和Rt△DBC中, ∴Rt△ACB≌Rt△DBC(HL). ∴∠ABC=∠DCB(全等三⾓形的对应⾓相等). ∴∠ABD=∠ACD(等⾓的余⾓相等). 9.证明:∵BE=CF, ∴BE+EC=CF+EC.∴BC=EF. 在△ABC和△DEF中, ∴△ABC≌△DEF(SSS). ∴∠A=∠D. 10.证明:在△AOD和△COB中. ∴△AOD≌△COB(SAS).(6分) ∴∠A=∠C.(7分) 11.证明:∵AB//ED,AC//FD, ∴∠B=∠E,∠ACB=∠DFE. ⼜∵FB=CE,∴FB+FC=CE+FC, ∴BC= EF. 在△ABC和△DEF中, ∴△ABC≌△DEF(ASA). ∴AB=DE,AC=DF(全等三⾓形的对应边相等). 12.解:AE=CE. 证明如下:∵FC//AB, ∴∠F=∠ADE,∠FCE=∠A. 在△CEF和△AED中, ∴△CEF≌△AED(AAS). ∴ AE=CE(全等三⾓形的对应边相等). 13.解:△ABD≌△ACD,△ABE≌△ACE,△EBD≌△ECD. 在△ABD和△ACD中, ∴△ABD≌△ACD(SSS). ∴∠BAE= ∠CAE. 在△ABE和△ACE中, ∴△ABE≌△ACE(SAS). ∴BD=CD, 在△EBD和△ECD中, :.△EBD≌△ECD(SSS). ⼋年级上册数学课本答案⼈教版(三) 习题12.3 1.解:∵PM⊥OA,PN⊥OB,∴∠OMP=∠ONP=90°.在Rt△OPM和Rt△ONP中,∴Rt△OMP≌Rt△ONP(HL). ∴PM=PN(全等三⾓形的对应边相等).∴OP是∠AOB的平分线. 2.证明:∵AD是∠BAC的平分线,且DE,DF分别垂直于AB ,AC,垂⾜分别为E,F,∴DE=DF.在Rt△BDE和Rt△CDF中,Rt△BDE≌Rt△CDF(HL). ∴EB=FC(全等三⾓形的对应边相等) 3.证明:∵CD⊥AB, BE⊥AC,∴∠BDO=∠CEO= 90°. ∵∠DOB=∠EOC,OB=OC, ∴△DOB≌△EOC ∴OD= OE. ∴AO是∠BAC的平分线. ∴∠1=∠2. 4.证明:如图12 -3-26所⽰,作DM⊥PE于M,DN⊥PF于N, ∵AD是∠BAC的平分线, ∴∠1=∠2. ⼜:PE//AB,PF∥AC, ∴∠1=∠3,∠2=∠4. ∴∠3 =∠4. ∴PD是∠EPF的平分线, ⼜∵DM⊥PE,DN⊥PF,∴DM=DN,即点D到PE和PF的距离相等. 5.证明:∵OC是∠ AOB的平分线,且PD⊥OA,PE⊥OB, ∴PD=PE,∠OPD=∠OPE. ∴∠DPF=∠EPF.在△DPF和△EPF中, ∴△DPF≌△EPF(SAS). ∴DF=EF(全等三⾓形的对应边相等). 6.解:AD与EF垂直. 证明:∵AD是△ABC的⾓平分线,DE⊥AB,DF⊥AC,∴DE=DF.在Rt△ADE和Rt△ADF中,∴Rt△ADE≌Rt△ADF(HL). ∴∠ADE=∠ADF.在△GDE和△GDF中, ∴△GDF≌△GDF(SAS). ∴∠DGE=∠DGF.⼜∵∠DGE+∠DGF=180°,∴∠DGE=∠DGF=90°,∴AD⊥EF. 7,证明:过点E作EF上AD于点F.如图12-3-27所⽰, ∵∠B=∠C= 90°, ∴EC⊥CD,EB⊥AB. ∵DE平分∠ADC, ∴EF=EC. ⼜∵E是BC的中点, ∴EC=EB. ∴EF=EB. ∵EF⊥AD,EB⊥AB, ∴AE是∠DAB的平分线,。
人教版八年级数学上册课后习题答案
人教版八年级上册课后习题答案习题11.11、图中共有6个三角形分别是:ABC ADC ABE AEC ADE ABD ∆∆∆∆∆∆、、、、、2、2种,每三条一组可组成四组,分别为:10,7,5;10,7,3;10,5,3;7,5,3;满足两边之和大于第三边,两边之差小于第三边,只有第一组,第四组能构成三角形。
3、略4、(1)EC ;BC(2)∠DAC ;∠BAC(3)∠AFC(4)1/2BC ·AF5、C6、(1)当长为6 cm 的边为腰时,则另一腰长为6 cm ,底边长为20-12=8(cm),因为6+6>8,所以此时另两边的长为6cm ,8cm(2)当长为6 cm 的边为底边时,等腰三角形的腰长为(20-6)/2=7(cm) 因为6+7>7,所以北时另两边的长分别为7cm ,7cm7、(1)当等腰三角形的腰长为5时,三角形的三边为5,5,6 因为5+5>6,所以三角形周长为5+5+6=16;当等腰三角形的腰长为6时,三角形的三边为6,6,5,因为6+5>6 所以三角形周长为6+6+5=17;所以这个等腰三角形的周长为16或17(2)228、1:29、解:∠1=∠2,理由如下:因为AD平分∠BAC,所以∠BAD=∠DAC又DE//AC,所以∠DAC=∠1又DF//AB,所以∠DAB=∠2所以∠1=∠210、四边形木架钉1根木条;五边形木架钉2根木条;六边形木架钉3根木条习题11.21、(1)x=33(2)x=60(3)x=54(4)x=602、(1)一个直角,因为如果有两个直角,三个内角的和就大于180°了(2)一个钝角,如果有两个钝角,三个内角的和就大于180°了(3)不可以,如果外角是锐角,则它的邻补角为钝角,就是钝角三角形,而不是直角三角形了3、∠A=50°,∠B=60°,∠C=70°4、70°5、解:∵AB//CD,∠A=40°,∴∠1=∠A=40°∵∠D=45°,∴∠2=∠1+∠D=40°+45°=85°6、解:∵AB//CD,∠A=45°,∴∠1=∠A=45°∵∠1=∠C+∠E,∴∠C+∠E=45°又∵∠C=∠E,∴∠C+∠C=45°∴∠C=22.5°7、解:因为∠ABC=80°-45°=35°又∠BAC= 45°+15°=60°,所以∠C =180°-35°-60°=85°8、解:∠BDC=∠A+∠ACD=62°+35°=97°,∠BFD=180°-∠BDC-∠ABE=180°-97°-20°=63°9、解:因为∠A+∠ABC+∠ACB=180°,∠A=100°所以∠ABC+∠ACB=180°-∠A=180°-100°=80°又因为∠1=∠2,∠3=∠4,所以∠2=1/2∠ABC,∠4=1/2∠ACB所以∠2 +∠4=1/2(∠ABC+∠ACB)=1/2×80°=40°所以x=180°-(∠2+∠4) =180°-40°=140°,所以x=140°10、180°;90°;90°11、证明:因为∠BAC是△ACE的一个外角所以∠BAC=∠ACE+∠E又因为CE平分∠ACD,所以∠ACE= ∠DCE所以∠BAC=∠DCE+∠E又因为∠DCE是△BCE的一个外角所以∠DCE=∠B+∠E所以∠BAC=∠B+ ∠E+∠E=∠B+2∠E习题11.31、图略,共9条2、x=120;x=30;x=753、多边形的边数3456812内角和180°360°540°720°1080°1800°外角和360°360°360°360°360°360°4、108°;144°5、九边形6、(1)三角形(2)设这个多边形是n边形,(n-2)×180=2×360,解得n=6,所以这个多边形为六边形7、AB//CD,BC//AD8、(1)是,BC⊥CD,所以⊥BCD=90°,又因为⊥1=⊥2=⊥3,所以⊥1=⊥2=⊥3=45°,⊥CBD为等腰直角三角形,CO是⊥DCB的平分线,所以CO是⊥BCD的高(2)CO⊥BD,所以AO⊥BD,即⊥4+⊥5=90°,又因为⊥4=60°,所以⊥5=30°(3)已知⊥BCD= 90°,⊥CDA=⊥1+⊥4=45°+60°=105°,⊥DAB=⊥5+⊥6=2×30°=60°,又因为⊥BCD+⊥CDA+⊥CBA+⊥DAB=360°所以⊥CBA=105°9、解:因为五边形ABCDE的内角都相等,所以⊥E=((5-2)×180°)/5=108°,所以⊥1=⊥2=1/2(180°-108°)=36°,同理⊥3=⊥4=36°,所以x=108-(36+36)=3610、解:平行;BC与EF有这种关系因为六边形ABCDEF的内角都相等所以⊥B=((6-2)×180°)/6=120°因为⊥BAD=60°,所以⊥B+⊥BAD=180°,所以BC//AD因为⊥DAF=120°-60°=60°,所以⊥F +⊥DAF=180°所以EF//AD,所以BC//EF同理可证AB//DE复习题111、解:因为S⊥ABD=1/2BD,AE=5cm2,AE=2 cm,所以BD=5cm 又因为AD是BC边上的中线,所以DC=BD=5cm,BC=2BD=10cm2、x=40;x=70;x=60;x=100;x=1153、多边形的边数:17;25内角和:5×180°;18×180°外角和都是360°4、5条,6个,相等900°5、76、证明:由三角形内角和定理可得:⊥A+⊥1+42°=180°又因为⊥A+10°=⊥1,所以⊥A十⊥A+10°+42°=180°,则⊥A=64°因为⊥ACD=64°,所以⊥A=⊥ACD根据内错角相等,两直线平行,可得AB//CD7、解:⊥⊥C+⊥ABC+⊥A=180°,⊥⊥C+⊥C+1/2⊥C=180°,解得⊥C=72°又⊥BD是AC边上的高,⊥⊥BDC=90°⊥⊥DBC=90°-72°=18°8、解:⊥DAC=90°-⊥C= 20°⊥ABC=180°-⊥C-⊥BAC=60°又⊥AE,BF是角平分线⊥⊥ABF=1/2⊥ABC=30°,⊥BAE=1/2⊥BAC=25°⊥⊥AOB=180°-⊥ABF-⊥BAE=125°9、BD;PC;BD+PC;BP+CP10、解:因为五边形ABCDE的内角都相等所以⊥B=⊥C=((5-2)×180°)/5=108°又因为DF⊥AB,所以⊥BFD=90°在四边形BCDF中,⊥CDF+⊥BFD+⊥B+⊥C=360°所以⊥CDF=360°-⊥BFD-⊥B-⊥C=360°-90°-108°-108°=54°11、证明:(1)因为BE和CF是⊥ABC和⊥ACB的平分线所以⊥1=1/2⊥ABC,⊥2=1/2⊥ACB因为⊥BGC+⊥1+⊥2 =180°所以BGC=180°-(⊥1+⊥2)=180°-1/2(⊥ABC+⊥ACB)(2)因为⊥ABC+⊥ACB=180°-⊥A由(1)得,⊥BGC=180°-1/2(180°-⊥A)=90°+1/2⊥A12、证明:在四边形ABCD中⊥ABC+⊥ADC+⊥A+⊥C=360°因为⊥A=⊥C=90°所以⊥ABC+⊥ADC= 360°-90°-90°=180°又因为BE平分⊥ABC,DF平分⊥ADC所以⊥EBC=1/2⊥ABC, ⊥CDF=1/2⊥ADC所以⊥EBC+⊥CDF=1/2(⊥ABC+⊥ADC)=1/2×180°=90°又因为⊥C=90°,所以⊥DFC+⊥CDF =90°所以⊥EBC=⊥DFC,所以BE//DF习题12.11、对应边:AC和CA对应角:⊥B和⊥D,⊥ACB和⊥CAD,⊥CAB和⊥ACD2、对应边:AN和AM,BN和CM对应角:⊥ANB和⊥AMC,⊥BAN和⊥CAM3、66°4、(1)对应边FG和MH,EF和NM,EG和NH对应角⊥E和⊥N,⊥EGF和⊥NHM(2)由(1)得NM=EF=2.1cm,GE=HN=3.3 cm所以HG=GE-EH=3.3-1.1=2.2cm5、解:⊥ACD=⊥BCE,⊥⊥ABC⊥⊥DEC,⊥⊥ACB=⊥DCE(全等三角形的对应角相等)⊥⊥ACB-⊥ACE=⊥DCE-⊥ACE(等式的基本性质)6、(1)对应边:AB和AC,AD和AE,BD和CE对应角:⊥A和⊥A,⊥ABD和⊥ACE,⊥ADB和⊥AEC(2)因为⊥A=50°,⊥ABD=39°,⊥AEC⊥⊥ADB所以⊥ADB=180°- 50°- 39°=91°,⊥ACE=39°又因为⊥ADB=⊥1+⊥2+⊥ACE,⊥1=⊥2所以2⊥1+39°=91°,所以⊥1= 26°习题13.11、都是轴对称图形,图略2、略3、有阴影的三角形与1,3成轴对称;整个图形是轴对称图形;它共有2条对称轴4、⊥A'B'C'=90°,AB=6cm5、全等;不一定6、解:⊥DE是AC的垂直平分线,AE=3cm⊥AD=CD,CE=AE=3cm又⊥⊥ABD的周长为13cm⊥AB+BD+AD=13cm,AB+BD+CD=13cm,AB+BC=13cm⊥AB+BC+AC=AB+BC+AE+CE=13+3+3=19cm故⊥ABC的周长为19cm7、是,2条8、直线b,d,f9、证明:⊥OA=OC,⊥A =⊥C,⊥AOB=⊥COD⊥⊥AOB⊥⊥COD,⊥OB=OD⊥BE=DE,⊥OE垂直平分BD10、线段AB的垂直平分线与公路的交点是公共汽车站所建的位置11、AB和A'B'所在的直线相交,交点在L上;BC和B'C'所在的直线也相交,且交点在L上;AC和A'C'所在的直线不相交,它们所在的直线与对称轴L平行,成轴对称的两个图形中,如果对应线段所在的直线相交,交点一定在对称轴上,如果对应线段所在的直线不相交,则与对称轴平行12、发射塔应建在两条高速公路m和n形成的角和平分线与线段AB 的垂直平分线的交点位置上,图略13、证明:(1)∵点P在AB的垂直平分线上∴PA=PB,又∵点P在BC的垂直平分线上∴PB=PC,∴PA=PB=PC(2)点P在AC的垂直平分线上,三角形三边的垂直平分线相交于一点,这点到这个三角形三个顶点的距离相等习题13.21、略2、关于x轴对称的点的坐标依次为:(3,-6),(-7,-9),(6,-1),(-3,5),(0,-10)关于y轴对称点的坐标依次为:(-3,6),(7,9),(-6,-1),(3,-5),(0,-10)3、B(1,-1),C(-1,-1),D(-1,1)4、略5、关于x轴对称;向上平移5个单位长度关于y轴对称;先关于x轴作轴对称,再关于y轴作轴对称6、7、略习题13.31、(1)35°,35°(2)解:80°的角是底角时,那么另一个底角为80°,顶角为180°-80°-80°=20°80°的角是顶角时,两个底角相等,均为1/2(180°-80°)=50°所以另外两个角是20°,80°或50°,50°2、证明:⊥AD⊥BC,⊥⊥ADB=⊥DBC又⊥BD平分⊥ABC,⊥⊥ABD=⊥DBC⊥⊥ABD=⊥ADB,⊥AB=AD3、解:⊥五角星的五个角都是顶角为36°的等腰三角形⊥每个底角的度数是1/2×(180°- 36°)=72°⊥⊥AMB=180°-72°=108°4、解:⊥AB=AC,⊥BAC=100°⊥⊥B=⊥C=1/2(180°-⊥BAC)=1/2×(180°-100°)=40°又⊥AD⊥BC,⊥⊥BAD=⊥CAD=1/2⊥BAC=1/2×100°=50°5、证明:⊥CE//DA,⊥⊥A=⊥CEB又⊥⊥A=⊥B,⊥⊥CEB=⊥B⊥CE=CB,⊥⊥CEB是等腰三角形6、证明:⊥AB=AC⊥⊥B=⊥C,又⊥AD=AE⊥⊥ADE=⊥AED,⊥⊥ADB=⊥AEC在⊥ABD和⊥ACE中,有⊥B=⊥C,⊥ADB=⊥AEC,AB=AC⊥⊥ABD⊥⊥ACE(AAS),⊥BD=CE7、解:∵AB=AC,∠=40°∴∠ABC=∠C=1/2×(180°-40°)=70°又∵MN是AB的垂直平分线,∴DA=DB,∴∠A=∠ABD=40°∴∠DBC=∠ABC-∠ABD=70°-40°=30°8、略9、解:对的,因为等腰三角形底边上的中线和底边上的高重合10、证明:⊥BO平分⊥ABC,⊥⊥MBO=⊥CBO⊥MN⊥BC,⊥⊥BOM=⊥CBO,⊥⊥BOM=⊥MBO⊥BM=OM,同理CN=ON⊥AM+MN+AN=AM+OM+ON+AN=AM+BM+CN+AN=AB+AC即⊥AMN的周长等于AB+AC11、解:⊥⊥NBC=84°,⊥NAC=42°,⊥MBC=⊥NAC+⊥C即84°=42°+⊥C,⊥⊥C=42°,⊥BC=BA又⊥BA=15×(10-8)=30(n mile)⊥BC=30n mile,即从海岛B到灯塔C的距离是30n mile12、13略14、解:∵PQ=AP=AQ,∴△APQ是等边三角形∴∠APQ=∠AQP=∠PAQ=60°又∵BP=AP,∴∠BAP=∠B又∵∠BAP+∠B=∠AOQ=60°,∴∠BAP=∠B=30°同理∠CAQ=30°所以∠BAC=∠BAP+∠PAQ+∠CAQ=30°+60°+30°=120°15、略复习题131、1,2,4,5,6是2、略3、证明:连接BC,⊥点D是AB的中点,CD⊥AB⊥AC= BC,同理,AB=BC⊥AC=AB4、点A与点B关于x轴对称;点B与点E关于y轴对称;点C与点E不关于x轴对称,因为它们的纵坐标分别是3,-2,不互为相反数5、⊥D=25°,⊥E=40°,⊥DAE=115°6、证明:⊥AD=BC,BD=AC,AB=AB⊥⊥ABD⊥⊥BAC,⊥⊥C=⊥D又⊥⊥DEA=⊥CEB,AD=BC⊥⊥ADE⊥⊥BCE,⊥AE=BE⊥⊥EAB是等腰三角形7、证明:⊥在⊥ABC中,⊥ACB=90°⊥⊥A+⊥B=90°⊥⊥A=30°,⊥⊥B=60°,BC=1/2AB⊥⊥B+⊥BCD=90°,⊥⊥BCD=30°⊥BD=1/2BC,⊥BD=1/2×1/2AB=1/4AB8、解:等边三角形有3条对称轴,正方形有4条对称轴,正五边形有5条对称轴,正六边形右6条对称轴,正八边形有8条对称轴,正n边形有n条对称轴9、(1)(4)是轴对称;(2)(3)是平移;(1)的对称轴是y轴;(4)的对称轴是x轴;(2)中图形I先向下平移3个单位长度,再向左平移5个单位长度得到图形⊥;(3)中图形I先向右平移5个单位长度,再向下平移3个单位长度得到图形⊥10、证明:因为AD是⊥ABC的角平分线,DE,DF分别垂直于AB,AC 于点E,F,所以DE= DF,⊥DEA= ⊥DFA= 90°又因为DA=DA,所以Rt⊥ADE⊥Rt⊥ADF所以AE=AF,所以AD垂直平分EF11、证明:⊥⊥ABC是等边三角形⊥AB=BC=AC,⊥A=⊥B=⊥C=60°又⊥AD= BE=CF,⊥BD=CE=AF⊥⊥ADF⊥⊥BED⊥⊥CFF,⊥DF=ED=FE所以⊥DEF是等边三角形12、略13、证明:⊥⊥ABC是等边三角形,D是AC的中点⊥⊥ABC=⊥ACB=60°,⊥ABD=⊥DBC=1/2⊥ABC=30°⊥⊥ACB=⊥CEB+⊥CDE ,⊥⊥CED=1/2⊥ACB=30°⊥⊥DBC=⊥CED ,⊥DB=DE14、15略习题14.126310108646543)2(11a b a a a x b )不对,()不对,()不对,()不对,(不对,)不对,、(248334616-22a b a q p x 、、、、- 8753231094.446-183⨯-、、、、y x b a y xaa a ab ab b a x x b ab 4618510228-42322233++-+--+、、、、33232222;842;5214;483;6161;1895y x x x x y y x x x x x x --+--+-++-++-、 2222343121;43;16;4;16b a ab x x p m x ab ++-+--;、 021,-272==+=时,原式当、原式x x x 82;15125-822-+-x x x 、B 30289⨯、6101.5810⨯、13、2323253103103)32()2()2()2(222b a n m n m n m n m =⋅=⋅=⋅=+ 14、938;1>=x x 习题14.2 999996;3999999;425;94;1;9412222222b b a y x y x ----、9604;3969;94249;144;92416;2520422222222b ab a m m y xy x b ab a +-+++-++、168;961244;12;2458532422222+-++-+--++--x x y x y xy x y xy x x x 、2121,31,101242=-==+=时,原式当、原式y x y xy 5、5cm6、224)2()2()2(222ab a b a b a πππππ=⨯=--+ 7、19 8、778<x 9、61,23-==y x习题14.3)2)(3();23(q p 2)4(3);23(512---+-+m a q p c a bc a a )(;、))((3);127.0)(127.0();2)(2(3);61)(61(2y x y x p p y x y x b b -+-+-+-+、222222)(;)85(;)()21(;)7(;)15(3c b a a m n y m t ++--+-+、 4、314;5105.08⨯ ))((3;)2();2)(2(;)(522y x y x a y x y p p b a -+---++、 6、2207、222cm 84.1754=-r R ππ8、)1(4)2()1(4222222-=---=-⨯x x x x x 或 9、12±=m10、略11、)35)(35();2)(2(-+-+x x x x复习题14 39204;96.3599;12444;55;344;4122242297+--++--+y x y xy x x x b ab a y x 、xz y x a a b ---87;232;94;322252、 22)233(;)2();(2);45)(45(3+----+y x b a b a x y x y x 、 )(t 101.248412⨯、)(28.622)1(275km R R ≈=-+πππ、3232;46;4;298622-+---+xy z yz y x x 、 222)2(;)3();12)(12)(14();3)(3(7b a y x y x x x x x x +---++-+、17;4822=+=y x xy 、9、370.32(t )10、(1)规律:3×9-2×10=7;14×8-7×15=7(2)是有同样规律(3)设左上角数字为n ,其后面数字为n+1,其下面数字为n+7,右下角数字为n+8,则(n+1)(n+7)-n(n+8)=n2+7n+n+7-n2-8n=711、证明:∵(2n+1)2-(2n -1)2=[(2n+1)+(2n -1)][(2n+1)-(2n -1)]=4n ×2=8n ,又∵n 是整数,∴8n 是8的倍数∴两个连续奇数的平方差是8的倍数12、略习题15.1分式万字;、;11;/2.0101201--+t h km x n m nm n m b b a b a c m a x x y x b x -++-+++-,2,,3,1512),(43,3,122分式:、整式: 3、x ≠0;x ≠3;x ≠-5/3;x ≠±44、(1)(2)都相等,利用分式的基本性质可求出5、yx n m b a x y 2;34;2;52-- 263;23;516-++x b a a c b x ;、)32)(32(9124,)32)(32(2;)(22,)(2;3,318;69,62722222222222-++--+++-m m m m m m mn y x xy y x y x b a ac b a bc y x y xy 、8、(1)x ≠0且x ≠1(2)x 取任意实数 min 10120-120009+ωω、 10、玉米的单位面积产量为n/m ,水稻的单位面积产量为(2n+q)/(m+p)11、解:大长方形的面积为222b ab a ++因为大长方形的长为2(a+b ) 则大长方形的宽为)(2)(2222m b a b a b ab a +=+++ 12、正确;不正确,正确答案为x y x-13、a b a b x -≠==且5;1习题15.2xy m n xz y c a 4;;21;412-、 xy x x x x x y x b a a -++---;6;)2(32;122、 abz y x b 45;;2;2534262-、 xa x x -13;11;1)1(314++-;、 yx y x y p mn n p m ab 81;)(27;20158;10752232++-、)(322;823;)(;622224333222b a ab b a y x y x y x y x a b a b -++++-+、n mb a yz x ab 12;27;2;673323--、-7-7-5-5103.01105.67102108⨯⨯⨯;;;、-8-510109;、)(10km mq nptt q p m n =⋅⋅、倍、3-m 10m11)(33122t a a m+、)/(2132h km t t n-、)(5.02)5.0(14h n n n --、))()(()()()(;15222222a c c b b a c b b a a c mnp n m p ----+-+-++、15、略习题15.31、x=3/4;x=7/6;无解;x=4;x=-3;x=1;x=-6/7;12、(1)方程两边同乘x -1,得1+a( x -1) =x -1去括号,得1+ax -a=x -1移项,合并同类项,得(a -1)x=a -2因为a≠1,所以a -1≠0方程两边同除以a-1,得x=(a-2)/(a-1)检验:当x=(a-2)/(a-1)时,x-1=(a-2)/(a-1)-1= (a-2-a+1)/(a-1)=(-1)/(a-1)≠0所以x=(a-2)/(a-1)是原方程的解(2)方程两边同乘x(x+1),得m(x+1) -x=0去括号,得mx+m-x=0移项,得(m-1)x=-m因为m≠1,所以m-1≠0方程两边同除以m-1,得x=(-m)/(m-1)检验:因为m≠0,m≠1,所以x(x+1)=-m/(m-1)×[-m/(m-1)+1]=m/[(m-1)2]≠0所以x=-m/(m-1)是原分式方程的解3、解:设甲、乙两人的速度分别是3x km/h,4x km/h列方程,得6/3x+1/3=10/4x解得x=3/2经检验知x=3/2是原分式方程的解则3x=9/2,4x=6答:甲、乙两人的速度分别是9/2 km/h,6 km/h4、A型机器人每小时搬运90kg,B型机器人每小时搬运60kg5、解:设李强单独清点完这批图书需要x h,张明3 h清点完这批图书的一半,则每小时清点这批图书的1/6,根据两人的工作量之和是总工作量的1/2,列方程得:1.2×(1/x+1/6)=1/2,解得x=4经检验知x=4是原分式方程的解答:如果李强单独清点这批图书需要4 h6、解:因为小水管的口径是大水管的1/2,那么小水管与大水管的横截面积比为S小/S大=πr2/[π(2r)2]=1/4.设小水管的注水速度为xm3/min,那么大水管的注水速度为4xm3/min由题意得(1/2 V)/X+(1/2 V)/4x=t,解得x=5V/8t经检验,x=5V/8t是方程的根,它符合题意所以4x=5V/2t答:小水管的注水速度为5V/8tm3/min,大水管的注水速度为5V/2tm3/min7、解:设原来玉米平均每公顷产量是xt,则现在平均每公顷产量是(x+a)t,根据增产前后土地面积不变列方程,得m/x=(m+20)/(x+a)解得x=ma/20检验:因为m,a都是正数,x=ma/20时,x(x+a)≠0所以x=ma/20是原分式方程的解答:原来和现在玉米平均每公顷的产量是ma/20t与(ma/20+a)t 8、解:设第二小组速度为x m/min,则第一小组速度为1. 2x m/min由题意,得450/x-(450 )/1.2x=15,解得x=5检验:当x=5时,1.2x≠0,所以x=5是原分式方程的解此时1.2x=1.2×5=6 (m/min)答:两小组的攀登速度分别为6 m/min,5 m/min设第二小组的攀登速度为x m/min,那么第一小组的攀登速度为ax m/min根据题意得h/x=h/ax+t方程丙边同乘ax,得ha=h+atx解得x=(ha-h)/at经检验x=(ha-h)/at是原分式方程的解,(ha-h)/at·a=(ha-h)/t答:第一小组的攀登速度是(ha-h)/tm/min第二小组的攀登速度是(ha-h)/atm/min9、解:一飞机在顺风飞行920 km和逆风飞行680 km共用去的时间,正好等于它在无风时飞行1600 km用去的时间.若风速为40 km/h,求飞机在无风时飞行的速度设飞机在无风时的飞行速度为xkm/h,则顺风速度为(x+ 40) km/h,逆风速度为(x-40) km/h根据题意列方程得:920/(x+40)+680/(x-40)=(1 600)/x解得x=800/3检验:x=800/3时,x(x+40) (x-40)≠0所以x=800/3是原分式方程的解答:飞机在无风时的飞行速度为800/3krn/h复习题152)(2;;51;115;312b a ab y x z a n b a x +++分式:、整式: 2629622222229;;42442;1;2422zy x y x v u uv v u yx t s st s ---+-+-、 2224222;;1;1;168;161642;163y x ba b b a x x qr r q p x x x b -+--++-+-;、 6354-=x 、无解; 5、232;212≠±≠-≠-≠x x x x 且且 6、的值的值;小于;大于2212- 7、当x=-7时,11)2(3)1(2---+x x 与的值相等8、设现在平均每天生产x 台机器,则原计划每天生产(x -50)台机器 根据题意600/x=450/(x -50),解得x= 200检验:当x=200时,x(x - 50)≠0所以x=200是原分式方程的解答:现在平均每天生产200台机器9、设一个农民人工收割小麦每小时收割xhm2,则收割机每小时收割小麦150xhm2.根据题意,得10/150x=10/100x -1,解得x=1/30.经检验知x=1/30是原分式方程的解,所以150x=150×1/30=5(hm2).答:这台收割机每小时收割5hm2小麦10、设前一小时的平均行驶速度为x km/h ,则一小时后的平均速度为1.5x km /h根据题意,得180/x=1+(180-x)/1.5x+40/60,解得x=60经检验知x=60是原分式方程的解答:前一小时的行驶速度为60 km /h-0.22.3,33121,1111=-=+===+--=时,原式当原式;时,原式当、原式x x x x x )(2,)()(2122222r R r R S a S r R r R a -+-==-+-πππ所以、13、不能为0,此时式子没有意义。
数学人教版八年级上册习题及答案
因式分解专题过关1.将下列各式分解因式22(1)3p﹣6pq(2)2x+8x+82.将下列各式分解因式3322(1)xy﹣xy(2)3a﹣6ab+3ab.3.分解因式222222(1)a(x﹣y)+16(y﹣x)(2)(x+y)﹣4xy4.分解因式:222232(1)2x﹣x(2)16x﹣1(3)6xy﹣9xy﹣y(4)4+12(x﹣y)+9(x ﹣y)5.因式分解:(1)2am﹣8a(2)4x+4xy+xy23226.将下列各式分解因式:322222(1)3x﹣12x(2)(x+y)﹣4xy7.因式分解:(1)xy﹣2xy+y 223(2)(x+2y)﹣y228.对下列代数式分解因式:(1)n(m﹣2)﹣n(2﹣m)(2)(x﹣1)(x﹣3)+19.分解因式:a﹣4a+4﹣b10.分解因式:a﹣b﹣2a+111.把下列各式分解因式:42422(1)x﹣7x+1(2)x+x+2ax+1﹣a22222(3)(1+y)﹣2x(1﹣y)+x(1﹣y)(4)x+2x+3x+2x+112.把下列各式分解因式:32222224445(1)4x﹣31x+15;(2)2ab+2ac+2bc﹣a﹣b﹣c;(3)x+x+1;(4)x+5x+3x﹣9;(5)2a﹣a﹣6a﹣a+2.3243222242432因式分解专题过关1.将下列各式分解因式22(1)3p﹣6pq;(2)2x+8x+8分析:(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)3p﹣6pq=3p(p﹣2q),222(2)2x+8x+8,=2(x+4x+4),=2(x+2).2.将下列各式分解因式3322(1)xy﹣xy(2)3a﹣6ab+3ab.分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.2解答:解:(1)原式=xy(x﹣1)=xy(x+1)(x﹣1);222(2)原式=3a(a﹣2ab+b)=3a(a﹣b).3.分解因式222222(1)a(x﹣y)+16(y﹣x);(2)(x+y)﹣4xy.分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.解答:解:(1)a(x﹣y)+16(y﹣x),=(x﹣y)(a﹣16),=(x﹣y)(a+4)(a﹣4);22222222222(2)(x+y)﹣4xy,=(x+2xy+y)(x﹣2xy+y),=(x+y)(x﹣y).4.分解因式:222232(1)2x﹣x;(2)16x﹣1;(3)6xy﹣9xy﹣y;(4)4+12(x﹣y)+9(x﹣y).222分析:(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.2解答:解:(1)2x﹣x=x(2x﹣1);2(2)16x﹣1=(4x+1)(4x﹣1);223222(3)6xy﹣9xy﹣y,=﹣y(9x﹣6xy+y),=﹣y(3x﹣y);222(4)4+12(x﹣y)+9(x﹣y),=[2+3(x﹣y)],=(3x﹣3y+2).5.因式分解:2322(1)2am﹣8a;(2)4x+4xy+xy分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.22解答:解:(1)2am﹣8a=2a(m﹣4)=2a(m+2)(m﹣2);322222(2)4x+4xy+xy,=x(4x+4xy+y),=x(2x+y).6.将下列各式分解因式:322222(1)3x﹣12x(2)(x+y)﹣4xy.分析:(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答:解:(1)3x﹣12x=3x(1﹣4x)=3x(1+2x)(1﹣2x);22222222222(2)(x+y)﹣4xy=(x+y+2xy)(x+y﹣2xy)=(x+y)(x﹣y).7.因式分解:22322(1)xy﹣2xy+y;(2)(x+2y)﹣y.分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.解答:解:(1)xy﹣2xy+y=y(x﹣2xy+y)=y(x﹣y);22(2)(x+2y)﹣y=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).223222328.对下列代数式分解因式:(1)n(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.分析:(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.解答:解:(1)n(m﹣2)﹣n(2﹣m)=n(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);22(2)(x﹣1)(x﹣3)+1=x﹣4x+4=(x﹣2).229.分解因式:a﹣4a+4﹣b.分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.222222解答:解:a﹣4a+4﹣b=(a﹣4a+4)﹣b=(a﹣2)﹣b=(a﹣2+b)(a﹣2﹣b).10.分解因式:a﹣b﹣2a+1分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a﹣2a+1为一组.222222解答:解:a﹣b﹣2a+1=(a﹣2a+1)﹣b=(a﹣1)﹣b=(a﹣1+b)(a﹣1﹣b).11.把下列各式分解因式:42422(1)x﹣7x+1;(2)x+x+2ax+1﹣a(3)(1+y)﹣2x(1﹣y)+x(1﹣y)(4)x+2x+3x+2x+1分析:(1)首先把﹣7x变为+2x﹣9x,然后多项式变为x﹣2x+1﹣9x,接着利用完全平方公式和平方差公式分解因式即可求解;4222(2)首先把多项式变为x+2x+1﹣x+2ax﹣a,然后利用公式法分解因式即可解;222(3)首先把﹣2x(1﹣y)变为﹣2x(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;222422222424322222222(4)首先把多项式变为x+x+x++x+x+x+x+x+1,然后三个一组提取公因式,接着提取公因式即可求解.4242222222解答:解:(1)x﹣7x+1=x+2x+1﹣9x=(x+1)﹣(3x)=(x+3x+1)(x﹣3x+1);424222222(2)x+x+2ax+1﹣a=x+2x+1﹣x+2ax﹣a=(x+1)﹣(x﹣a)=(x+1+x2﹣a)(x+1﹣x+a);22242224(3)(1+y)﹣2x(1﹣y)+x(1﹣y)=(1+y)﹣2x(1﹣y)(1+y)+x222222(1﹣y)=(1+y)﹣2x(1﹣y)(1+y)+[x(1﹣y)]=[(1+y)﹣x(12222﹣y)]=(1+y﹣x+xy)432432322222(4)x+2x+3x+2x+1=x+x+x++x+x+x+x+x+1=x(x+x+1)+x(x+x+1)432322+x2+x+1=(x2+x+1)2.12.把下列各式分解因式:(1)4x3﹣31x+15;(3)x5+x+1;((2)2a2 b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(4)x3 +5x2+3x﹣9;。
人教版初中八年级数学上册第十二章《全等三角形》习题(含答案解析)
一、选择题1.如图,AB ∥CD ,BE 和CE 分别平分∠ABC 和∠BCD ,AD 过点E ,且AD ⊥AB ,点P 为线段BC 上一动点,连接PE .若AD =14,则PE 的最小值为( )A .7B .10C .6D .52.如图O 是ABC 内的一点,且O 到三边AB 、BC 、CA 的距离==OF OD OE .若70A ∠=︒,则BOC ∠( ).A .125°B .135°C .105°D .100° 3.如图,AB ⊥CD ,且AB =CD .E 、F 是AD 上两点,CE ⊥AD ,BF ⊥AD .若CE =a ,BF =b ,EF =c ,则AD 的长为( )A .a +cB .b +cC .a +b -cD .a -b +c 4.如图,ABC 的面积为26cm ,AP 垂直B 的平分线BP 于P ,则PBC 的面积为( )A .21cmB .22cmC .23cmD .24cm5.如图,AP 平分∠BAF ,PD ⊥AB 于点D ,PE ⊥AF 于点E ,则△APD 与△APE 全等的理由是( )A .SSSB .SASC .SSAD .AAS6.如图,在Rt △ABC 中,∠ACB =90°,BC =5cm ,在AC 上取一点E ,使EC =BC ,过点E 作EF ⊥AC ,连接CF ,使CF =AB ,若EF =12cm ,则下列结论不正确的是( )A .∠F =∠BCFB .AE =7cmC .EF 平分ABD .AB ⊥CF 7.下列说法正确的是( )①近似数232.610⨯精确到十分位;②在2,()2--,38-,2--中,最小的是38-;③如图所示,在数轴上点P 所表示的数为15-+;④用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;⑤如图,在ABC 内一点P 到这三条边的距离相等,则点P 是三个角平分线的交点.A .1B .2C .3D .48.在以下图形中,根据尺规作图痕迹,能判定射线AD 平分∠BAC 的是( )A .图2B .图1与图2C .图1与图3D .图2与图3 9.下列命题的逆命题是假命题的是( )A .直角三角形两锐角互余B .全等三角形对应角相等C .两直线平行,同位角相等D .角平分线上的点到角两边的距离相等10.下列命题中,假命题是( )A .在同一平面内,垂直于同一条直线的两直线平行B .到线段两端点距离相等的点在这条线段的垂直平分线上C .一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等D .一边长相等的两个等腰直角三角形全等11.已知:如图,BD 为△ABC 的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA ,过E 作EF ⊥AB ,F 为垂足,下列结论:①△ABD ≌△EBC②∠BCE+∠BCD =180°③AD=AE=EC ④ BA+BC=2BF 其中正确的是( )A .①②③B .①③④C .①②④D .①②③④ 12.对于ABC 与DEF ,已知∠A=∠D ,∠B=∠E ,则下列条件:①AB=DE ;②AC=DF ;③BC=DF ;④AB=EF 中,能判定它们全等的有( )A .①②B .①③C .②③D .③④ 13.如图,点C ,D 在线段AB 上,AC DB =,AE //BF ,添加以下哪一个条件仍不能判定△AED ≌△BFC ( )A .ED CF =B .AE BF =C .E F ∠=∠D .ED //CF14.如图,在Rt ABC 和Rt ADE △中,90,,ACB AED AB AD AC AE ∠=∠===,则下列说法不正确的是( )A .BC DE =B .BAE DAC ∠=∠ C .OC OE =D .EAC ABC ∠=∠ 15.如图,要判定△ABD ≌△ACD ,已知AB =AC ,若再增加下列条件中的一个,仍不能说明全等,则这个条件是( )A .CD ⊥AD ,BD ⊥ADB .CD =BDC .∠1=∠2D .∠CAD =∠B AD二、填空题16.如图,点C 在AOB ∠的平分线上,CD OA ⊥于点D ,且2CD =,如果E 是射线OB 上一点,那么CE 长度的最小值是___________.17.如图,四边形ABCD 中,AC BC =,90ACB ADC ∠=∠=︒,10CD =,则BCD ∆的面积为______.18.如图,ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于点D ,DE ⊥AB ,垂足为E ,且AB =10cm ,则DEB 的周长是_____cm .19.如图,两根旗杆间相距22米,某人从点B沿BA走向点A,一段时间后他到达点M,=.已知旗杆此时他分别仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM DMBD的高为12米,该人的运动速度为2米/秒,则这个人运动到点M所用时间是________秒.20.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若BC=8cm,BD=5cm,AB=10cm,则S△ABD=______.21.如图,点D在BC上,DE⊥AB于点E,DF⊥BC交AC于点F,BD=CF,BE=CD.若∠AFD=145°,则∠EDF=_____.≅,延长BC,分别交AD,ED于点F,G,若22.如图,ABC ADE∠=________︒.∠=︒,10120B∠=︒,30EABCAD∠=︒,则CFD23.如图,线段AB ,CD 相交于点O ,AO=BO ,添加一个条件, 能使AOC BOD ≅,所添加的条件的是___________________________.24.如图,ABC 中,∠C =90°,AD 平分∠BAC , AB =5,CD =2,则ABD △的面积是______25.ABC 中,4AB =,6AC =, 则第三边BC 边上的中线m 的取值范围是______. 26.如图,在△ABC 和△DBC 中,∠ACB=∠DBC=90°,E 是BC 的中点,DE ⊥AB ,垂足为F ,AB=DE .若BD=8cm ,则AC 的长为_________.三、解答题27.如图,点E ,F 在线段BD 上,已知AF BD ⊥,CE BD ⊥,//AD CB ,DE BF =,求证:AF CE =.28.如图,AB ⊥CB ,DC ⊥CB , E 、F 在 BC 上,AF=DE ,BE=CF ,求证:AB =DC .29.如图,点,,,B F C E 在一条直线上,,//,//AB DE AB ED AC FD =.求证:(1) AC DF =(2)FB CE =30.作图:已知ABC 和线段r ,请在ABC 内部作点P ,使得点P 到AC 和BC 的距离相等,并且点A 到点P 的距离等于定长r .(不写作法,保留痕迹)。
人教版八年级数学上册《全等三角形》课后作业
11.1 《全等三角形》课后练习
1.如图(1),把△ABC 沿直线BC 翻折180,得△ABC ≌ , 对应边分别为 、 、 ,
对应角分别为 、 、 .
2.如图(2),将△ABC 绕点A 旋转180,得△ABC ≌ , 对应边分别为 、 、 ,
对应角分别为 、 、 .
(友情提示:对应顶点要写在相应的位置)
3.如图(3),△ABC 沿直线BC 向右平移线段BC 的长后与△ECD 重合,则△ABC ≌ ,
对应边分别为 、 、 ,
对应角分别为 、 、 .
图(3)
3.如图:△OCA ≌△OBD ,C 和B,A 和D 是对应点,写出这两个三角形中相等的边和角.
4.如图:△EFG ≌△NMH ,∠F 和∠M 是对应角.在△EFG 中,FG 是最长边.在△NMH 中,MH 是最长边. 2.1, 1.1, 3.3===EF cm EH cm NH cm .
(1)写出其他对应边及对应角.
(2)求线段NM 及线段HG 的长度.
图(1)
图(2)
5.如图:△ABC≌△DEC,CA和CD,CB和CE是对应边,∠ACD和∠BCE相等吗?为什么?
6.如图,△ABC≌△DEF,且A、D、B、E在同一直线上,试找出图中互相平行的线段,并说明理由.
7.如图,△AEC≌△ADB,点E和点D为对应点.试说明(1)BE =CD;(2)∠DCO =∠EBO.。
人教版数学八年级上册课后习题参考答案
人教版数学八年级上册课后习题参考答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第3页习题答案1. 2010年为+108.7mm; 2009年为-81.5 mm; 2008年为+53.5 mm.2.这个物体又移动了-1 m表示物体向左移动了1m这时物体又回到了原来的位置第4页习题答案1.解:有5个三角形,分别是△ABE,△ABC,△BEC,△BDC,△EDC.2.解:(1)不能;(2)不能;(3)能.理由略第5页习题答案:1.解:图(1)中∠B为锐角,图(2)中∠B为直角,图(3)中∠B为钝角,图(1)中AD在三角形内部,图(2)中AD 为三角形的一条直角边,图(3)中AD在三角形的外部.锐角三角形的高在三角形内部,直角三角形的直角边上的高与另一条直角边重合,钝角三角形有两条高在三角形外部.2.(1)AF(或BF) CD AC (2)∠2 ∠ABC ∠4或∠ACF第7页习题答案:解:(1)(4)(6)具有稳定性第8页习题11.1答案1.解:图中共6个三角形,分别是△ABD,△ADE,△AEC,△ABE,AADC,△ABC.2.解:2种.四根木条每三条组成一组可组成四组,分别为10,7,5;10,7,3;10,5,3;7,5,3.其中7+5>10,7+3=10,5+3<10,5+3>7,所以第二组、第三组不能构成三角形,只有第一组、第四组能构成三角形,3.解:如图11-1-27所示,中线AD、高AE、角平分线AF.4.(1) EC BC (2) ∠DAC ∠BAC (3)∠AFC (4)1/2BC.AF5.C6.解:(1)当长为6 cm的边为腰时,则另一腰长为6 cm,底边长为20-12=8(cm),因为6+6>8,所以此时另两边的长为6 cm,8 cm.(2)当长为6 cm的边为底边时,等腰三角形的腰长为(20-6)/2=7(cm),因为6+7>7,所以北时另两边的长分别为7 cm,7cm.7.(1) 解:当等腰三角形的腰长为5时,三角形的三边为5,5,6,因为5+5>6,所以三角形周长为5+5+6=16:当等腰三角形的腰长为6时,三角形的三边为6,6,5,因为6+5>6,所以三角形周长为6+6+5=17.所以这个等腰三角形的周长为16或17;(2)22.8.1:2 提示:用41/2BC.AD—丢AB.CE可得.9.解:∠1=∠2.理由如下:因为AD平分∠BAC,所以∠BAD=∠DAC.又DE//AC,所以∠DAC=∠1. 又DF//AB,所以∠DAB=∠2. 所以∠1=∠2.10.解:四边形木架钉1根木条;五边形木架钉2根木条;六边形木架钉3根木条人教版八年级上册数学第13页练习答案1.解:因为∠CBD=∠CAD+∠ACB,所以∠ACB=∠CBD-∠CAD=45°-30°=15°.2.解:在△ACD中,∠D+∠DAC+∠DCA=180°,在△ABC中,∠B+∠BAC+∠BCA=180°,所以∠D+∠DAC+∠DCA+∠B+∠BAC+∠BCA=∠D+∠B+ ∠BAD+∠BCD=180°+180°=360°.所以40°+40°+150°+∠BCD= 360°. 所以∠BCD=130°人教版八年级上册数学第14页练习答案1.解:∠ACD=∠B.理由:因为CD⊥AB,所以△BCD是直角三角形,∠BDC=90°,所以∠B+∠BCD=90°,又因为∠ACB= 90°,所以∠ACD+∠BCD=∠ACB=90°,所以∠ACD=∠B(同角的余角相等).2.解:△ADE是直角三角形,理由:因为∠C=90。
人教版八年级数学上册《第十二章全等三角形》课后练习及答案解析
人教版八年级数学上册《第十二章全等三角形》课后练习及答案解析一、选择题(每小题3分,共30分) 1.下列说法正确的是( )A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等 2. 如图所示,a,b,c 分别表示△ABC 的三边长,则下面与△ABC 一定全等的三角形是( )3.如图所示,已知△ABE ≌△ACD ,∠1=∠2,∠B=∠C , 下列不正确的等式是( ) B.∠BAE=∠CADA.AB=AC C.BE=DC D.AD=DE 4. 在△ABC 和△A /B /C /中,AB=A /B /,∠B=∠B /,补充条件后仍不一定能保证△ABC ≌△A /B /C /,则补充的这个条件是( )A .BC=B /C / B .∠A=∠A / C .AC=A /C /D .∠C=∠C / 5.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE都是等边三角形,则下列结论不一定成立的是( )A.△ACE ≌△BCDB.△BGC ≌△AFCC.△DCG ≌△ECFD.△ADB ≌△CEA6. 要测量河两岸相对的两点A,B 的距离,先在AB 的垂线BF 上取两点C,D ,使CD=BC ,再作出BF 的垂线DE ,使A,C,E 在一条直线上(如图所示),可以说明△EDC ≌△ABC ,得ED=AB ,因此测得ED 的长就是AB 的长,判定△EDC ≌△ABC 最恰当的理由是( ) 第3题图第5题图 第2题图第6题图AB C DA.边角边B.角边角C.边边边D.边边角7.已知:如图所示,AC=CD ,∠B=∠E=90°,AC ⊥CD ,则不正确的结论是( )A .∠A 与∠D 互为余角B .∠A=∠2C .△ABC ≌△CED D .∠1=∠28. 在△ABC 和△FED 中,已知∠C=∠D ,∠B=∠E ,要判定这两个三角形全等,还需要条件( ) A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F 9.如图所示,在△ABC 中,AB=AC ,∠ABC 、∠ACB 的平分线BD ,CE 相交于O 点,且BD 交AC 于点D ,CE 交AB 于 点E .某同学分析图形后得出以下结论:①△BCD ≌△CBE ; ②△BAD ≌△BCD ;③△BDA ≌△CEA ;④△BOE ≌△COD ;⑤△ACE ≌△BCE ,上述结论一定正确的是( ) A.①②③ B.②③④ C.①③⑤ D.①③④10、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有( ) A 、3个 B 、2个 C 、1个 D 、0个二、填空题(每题3分,共21分)11.如图6,AC=AD,BC=BD,则△ABC≌ ;应用的判定方法是 .12.如图7,△ABD≌△BAC,若AD=BC,则∠BAD的对应角为 .13.已知AD是△ABC的角平分线,DE⊥AB于E,且DE=3cm ,则点D到AC的距离为 .B C DA 图6 D O CBA 图8 A D CB图7 第9题图 第7题图14.如图8,AB与CD交于点O,OA=OC,OD=OB,∠AOD= ,根据 可得△AOD≌△COB,从而可以得到AD= .15.如图9,∠A=∠D=90°,AC=DB,欲使OB=OC,可以先利用“HL”说明 ≌ 得到AB=DC,再利用“ ”证明△AOB≌ 得到OB=OC. 16.如果两个三角形的两条边和其中一边上的高分别对应相等,那么这两个三角形的第三边所对的角的关系是 .17.如图10,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带________去配,这样做的数学依据是是 . 三、解答题(共29分)18. (6分)如右图,已知△ABC 中,AB =AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由.解: ∵AD 平分∠BAC∴∠________=∠_________(角平分线的定义)在△ABD 和△ACD 中⎪⎪⎩⎪⎪⎨⎧∴△ABD ≌△ACD ( ) 19. (8分)如图,已知△≌△是对应角.(1)写出相等的线段与相等的角;(2)若EF=2.1 cm ,FH=1.1 cm ,HM=3.3 cm ,求MN和HG 的长度.第19题图图10 DCBA20.(7分)如图,A、B两建筑物位于河的两岸,要测得它们之间的距离,可以从B点出发沿河岸画一条射线BF,在BF上截取BC=CD,过D作DE∥AB,使E、C、A在同一直线上,则DE的长就是A、B之间的距离,请你说明道理.21.(8分)已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.四、解答题(共20分)22.(10分)已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DAE;②DF⊥BC.B C EF A23.(10分)如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.12章·全等三角形(详细答案)一、选择题 CBDCD BDCDC二、填空题 11、△ABD SSS 12、∠ABC 13、3cm 14、∠COB SAS CB 15、△ABC △DCB AAS △DOC 16、相等 17、○3 两角和它们的夹边分别相等的两个三角形全等三、解答题18、AD CAD AB=AC ∠BAD=∠CAD AD=AD SAS19、B 解:(1)EF=MN EG=HN FG=MH ∠F=∠M ∠E=∠N ∠EGF=∠MHN (2)∵△EFG ≌△NMH ∴MN=EF=2.1cm∴GF=HM=3.3cm ∵FH=1.1cm ∴HG=GF -FH=3.3-1.1=2.2cm 20、解:∵DE ∥AB ∴∠A=∠E在△ABC 与△CDE 中∠A=∠E BC=CD∠ACB=∠ECD∴△ABC ≌△CDE(ASA)∴AB=DE21、证明:∵AB ∥DE∴∠A=∠EDF∵BC ∥EFCA∴∠ACB=∠F∵AD=CF∴AC=DF在△ABC与△DEF中∠A=∠EDFAC=DF∠ACB=∠F△ABC≌△DEF(ASA)四、解答题22、证明:①∵BE⊥CD∴∠BEC=∠DEA=90°在Rt△BEC与Rt△DEA中BC=DABE=DE∴Rt△BEC≌Rt△DEA(HL)②∵Rt△BEC≌Rt△DEA∴∠C=∠DAE∵∠DEA=90°∴∠D+∠DAE=90°∴∠D+∠C=90°∴∠DFC=90°∴DF⊥BC23、证明:在△ABC与△ADC中1=∠2AC=AC3=∠4∴△ABC≌△ADC(ASA)∴CB=CD在△ECD与△ECB中CB=CD∠3=∠4CE=CE∴△ECD≌△ECB(SAS)∴∠5=∠6第十二章全等三角形一、填空题(每小题4分,共32分).1.已知:///ABC A B C ∆∆≌,/A A ∠=∠,/B B ∠=∠,70C ∠=︒,15AB cm =,则/C ∠=_________,//A B =__________.2.如图1,在ABC ∆中,AB=AC ,AD ⊥BC 于D 点,E 、F 分别为DB 、DC 的中点,则图中共有全等三角形_______对.图1 图2 图33. 已知△ABC ≌△A ′B ′C ′,若△ABC 的面积为10 cm 2,则△A ′B ′C ′的面积为______ cm 2,若△A ′B ′C ′的周长为16 cm ,则△ABC 的周长为________c m . 4. 如图2所示,∠1=∠2,要使△ABD ≌△ACD ,需添加的一个条件是________________(只添一个条件即可).5.如图3所示,点F 、C 在线段BE 上,且∠1=∠2,BC =EF ,若要使△ABC ≌△DEF ,则还需补充一个条件________,依据是________________.6.三角形两外角平分线和第三个角的内角平分线_____一点,且该点在三角形______部. 7.如图4,两平面镜α、β的夹角 θ,入射光线AO 平行于β,入射到α上,经两 次反射后的出射光线CB 平行于α,则角θ等于________.8.如图5,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △ 的面积为______.二、选择题(每小题4分,共24分) 9.如图6,AE =AF ,AB =AC ,E C 与B F 交于点O ,∠A =600,∠B =250,则∠E OB 的度数为( )A 、600B 、700C 、750D 、85010.△ABC ≌△DEF ,且△ABC 的周长为100 cm ,A 、B 分别与D 、E 对应,且AB =35 cm ,DF =30 cm ,则EF 的长为( ) A .35 cm B .30 cm C .45 cm D .55 cm11.图7是一个由四根木条钉成的框架,拉动其中两根木条后,它的形状将会改变,若固定其形状,下列有四种加固木条的方法,不能固定形状的是钉在________两点上的木条.( )A .A 、FB .C 、E C .C 、AD .E 、F12.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD= BC ,再定出BF 的垂线DE ,使A 、C 、E 在一条直线上,可以证明△EDC ≌△ABC , 得到ED=AB ,因此测得ED 的长就是AB 的长(如图8),判定△EDC ≌△ABC 的理由是( )NAMC B图7 图8 图9 图10A.边角边公理 B.角边角公理; C.边边边公理 D.斜边直角边公理13.如图9,在△ABC中,∠A:∠B:∠C=3:5:10,又△MNC≌△ABC,则∠BCM:∠BCN等于()A.1:2 B.1:3C.2:3 D.1:414.如图10,P是∠AOB平分线上一点,CD⊥OP于F,并分别交OA、OB于CD,则CD_____P点到∠AOB两边距离之和.( )A.小于B.大于C.等于D.不能确定三、解答题(共46分)中,∠ACB=90°,延长BC至B',使15.已知如图11,ABCC B'=BC,连结A B'.求证:△AB B'是等腰三角形.图11第十二章全等三角形。
人教版八年级上册数学课后练习题:11.1.1 三角形的边
三角形的边一、填空题1.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为__ cm .2.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=_____.3.三角形的两边长分别为5cm 和12cm ,第三边与前两边中的一边相等,则三角形的周长为_____. 4.在ABC ∆中,24a b ==,,若第三边c 的长度是偶数,则△ABC 的周长为_____________.5.已知三角形两边的长分别为1和2,如果第三边的长也是整数,那么第三边的长为______.6.若a ,b 是等腰的ABC ∆两边,且满足()2370a b -+-=,则此三角形的周长为______.7.三角形一边长为40,一边长为50,求第三边a 的取值范围__ .8.已知a b c 、、为三角形的三边,则b+a+c________2a9.△ABC 的三边长分别为a ,b ,c ,化简|a +b ﹣c |﹣|b ﹣a ﹣c |+|a ﹣b ﹣c |=_____.二、单选题10.(2019·淮安)下列长度的3根小木棒不能搭成三角形的是( )A .2cm ,3cm ,4cmB .1cm ,2cm ,3cmC .3cm ,4cm ,5cmD .4cm ,5cm ,6cm11.(2019·自贡)已知三角形的两边分别为1和4,第三边长为整数 ,则该三角形的周长为( ) A .7 B .8 C .9 D .1012.(2019·扬州)已知n 正整数,若一个三角形的三边长分别是n+2、n+8、3n ,则满足条件的n 的值有( ) A .4个 B .5个 C .6个 D .7个13.(2019·义乌)若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( )A .1B .2C .3D .814.用12根火柴棒(等长)拼成一个三角形,火柴棒不允许剩余、重叠和折断,能摆出的三角形的个数是( ) A .1 B .2 C .3 D .415.从长度分别为4cm 、5cm 、6cm 、9cm 的小木棒中任意取3根,可以搭成的三角形的个数是 A .1个 B .2个 C .3个 D .4个16.三条线段a ,b ,c 分别满足下列条件,其中能构成三角形的是( )A .4a b +=,9a b c ++=B .::1:2:3a b c =C .::2:3:4a b c =D .::2:2:4a b c =17.已知三角形三边分别为2,a-1,4,那么a 的取值范围是( )A .1<a <5B .2<a <6C .3<a <7D .4<a <6三、解答题18.已知在△ABC 中,AB=5,BC=2,AC 的长为奇数.(1)求△ABC 的周长;(2)判定△ABC 的形状,并说明理由.19.已知a ,b ,c 是三角形ABC 三边之长,化简:|a +b ﹣c |+|a ﹣b ﹣c |﹣|b ﹣a ﹣c |﹣|c +b ﹣a |.20.一个等腰三角形的周长是28cm .(1)已知腰长是底边长的3倍,求各边的长;(2)已知其中一边长为6cm ,求各边的长.21.如图,P 是△ABC 内一点,连结BP ,并延长交AC 于点D .(1)试探究AB +BC +CA 与2BD 的大小关系;(2)试探究AB +CA 与PB +PC 的大小关系.22.(1)已知三角形的三边长a ,b ,c 都是整数,并且a b c ≤<,7b =,则这样的三角形共有多少个. (2)已知三角形的三边长a ,b ,c 是三个连续的自然数,三角形的周长小于19,则这样的三角形有多少个. (3)已知三角形三边长a ,b ,c 都是整数,并且a b c ≤≤,30a b c ++=,则这样的三角形有多少个.答案1.22 3.29cm. 4.10 5.26.17 7.10<a<90. 8.>9.3b﹣a﹣c10-17:BCDCCCCC18.解(1)由题意得:5-2<AC<5+2,即:3<AC<7,∵AC为奇数,∴AC=5,∴△ABC的周长为5+5+2=12;(2)∵AB=AC,∴△ABC是等腰三角形.19.解:∵a,b,c为三角形的三边,∴a+b>c,b+c>a,a+c>b,c+b>a,∴a+b-c>0,a-b-c<0,b-a-c<0,c+b-a>0,∴原式=a+b-c+(b+c-a)-(a+c-b)-(c+b-a)=a+b-c+b+c-a-a-c+b-c-b+a=2b-2c.20.解(1)设底边长为xcm,则腰长是3xcm,x+3x+3x=28,解得:x=4,所以3x=12(cm),故,该等腰三角形的各边长为:4cm,12cm,12cm;(2)若底边长为6cm,设腰长为ycm,则:6+2y=28,得:y=11,所以三边长分别为:6cm,11cm,11cm,若腰长为6cm,设底边长为acm,则:6+6+a=28,得a=16,又因为6+6=12<16,故舍去,综上所述,该等腰三角形的三边长分别为:6cm,11cm,11cm.21.解:(1)根据三角形三边关系可得AB+AD>BD,BC+CD>BD,∴AB+AD+BC+CD>2BD,∴AB+BC+CA>2BD.(2)根据三角形三边关系可得AB+AD>BD,PD+CD>PC,∴AB+AD+PD+CD>BD+PC,∴AB+AD+CD>BD-PD+PC,即AB +CA >PB +PC .22.解(1)∵7a ≤且a 为整数,∴a 可能为1,2,3,4,5,6,7.当1a =,7b =时,68c <<,即7c =,不满足a b c ≤<,故舍去. 当2a =,7b =时,59c <<,即6c =或7或8,又∵a b c ≤<,故8c =.…依次讨论,满足条件的三角形共有21个.(2)设三角形的三边分别为a ,1a +,2a +,则()12a a a ++>+,故1a >. 又()()1219a a a ++++<,故163a <. 又a 为自然数,所以2,3,4,5a =.故这样的三角形有4个.(3)因为a b c ≤≤,所以()1103c a b c ≥++=. 又a b c +>,所以2a b c c ++>, 故()1152c a b c <++=,所以1015c ≤<. 又c 为整数,故10,11,12,13,14c =.当10c =时,有20,,a b a b c +=⎧⎨≤≤⎩ ∴1010b ≤≤, ∴10b =,10a =,有1个三角形.当11c =时,有19,,a b a b c +=⎧⎨≤≤⎩ ∴9.511b ≤≤,∴10,9b a =⎧⎨=⎩或11,8,b a =⎧⎨=⎩有2个三角形. 同理当12,13,14c =时,分别有4,5,7个三角形,故共有个三角形.。
数学人教版八年级上册课后练习题
15.3 分式方程第1课时 分式方程及其解法一、选择题1.下列方程是分式方程的是( )(A) (B) (C) (D)2.(2013温州)若分式的值为0,则x 的值是( ) . x =﹣3 D 3.(2013益阳)分式方程的解是( )x =3 x = . x= 4.关于x 的方程的解为x =1,则a 应取值( ) A.1 B.3 C.-1D.-3 5.(2013年黄石)分式方程3121x x =-的解为( ) A.1x = B.2x = C.4x = D.3x =6.(2012浙江丽水)把分式方程转化为一元一次方程时,方程两边需同乘以( ) 2513x x =+-315226y y -+=-212302x x +-=81257x x +-=4332=-+x a ax xx 142=+A.xB.2xC.x+4D.x (x+4)7.要使x x --442与xx --54互为倒数,则x 的值是( ) A 0 B 1 C 1- D21 8.若3x 与61x -互为相反数,则x 的值为( ) A.13 B.-13C.1D.-1 二、填空题9.(2013淮安)方程的解是 . 10.(2013苏州)方程=的解为 . 11.(2010年浙江省金华)分式方程112x =-的解是. 12.(2010山东德州)方程x x 132=-的解为x =___________. 13.方程的解是. 14.(2013绍兴)分式方程=3的解是 . 15.若分式方程2()2(1)5x a a x -=--的解为3x =,则a 的值为__________. 16.若方程212x a x +=--的解是最小的正整数,则a 的值为________. 17.如果424x x --的值与54x x --的值相等,则x =___________. 三、解答题18.解下列分式方程(1) (2)xx 527=-313221x x +=--11222x x x -=---(3); (4). 19.设,当为何值时,与的值相等? 20.(2012江苏泰州市)当x 为何值时,分式的值比分式的值大3?21.已知关于271326x x x +=++xx x --=+-3423123111x A B x x ==+--,x A B x x --2321-x 的取值范围。
2024年人教版八年级上册数学第四单元课后练习题(含答案和概念)
2024年人教版八年级上册数学第四单元课后练习题(含答案和概念)试题部分一、选择题:1. 在人教版八年级上册数学第四单元中,下列哪个图形是平行四边形?()A. 四边形ABCD,AB∥CD,AD∥BCB. 四边形EFGH,EF∥GH,EG∥FH,且EF=GHC. 四边形IJKL,IK∥JL,IJ∥KL,但IK≠JLD. 四边形MNOP,MN∥OP,MO∥NP,但MN≠OP2. 下列哪个条件可以判定一个四边形是矩形?()A. 有一个角是直角B. 对角线相等C. 对角线互相平分D. 对角线互相垂直平分3. 在直角坐标系中,点A(2,3)关于原点对称的点是()A. (2,3)B. (2,3)C. (2,3)D. (3,2)4. 下列哪个比例式可以说明三角形ABC与三角形DEF相似?()A. AB/DE = BC/EFB. AB/DE = AC/DFC. AB/DE = AC/EFD. BC/EF = AC/DF5. 若平行四边形ABCD的周长为20cm,AD=6cm,则BC的长度为()A. 4cmB. 5cmC. 6cmD. 8cm6. 下列哪个图形既是轴对称图形,又是中心对称图形?()A. 等腰三角形B. 矩形C. 正五边形D. 梯形7. 下列哪个条件可以判定两个三角形全等?()A. 两边和它们的夹角分别相等B. 两边和其中一边的对角分别相等C. 两角和其中一边分别相等D. 两角和它们的夹边分别相等8. 在直角三角形中,若一个锐角的度数是30°,则另一个锐角的度数是()A. 30°B. 45°C. 60°D. 90°9. 下列哪个图形的面积可以通过底乘以高的一半来计算?()A. 矩形B. 三角形C. 平行四边形D. 梯形10. 若等腰梯形的上底为5cm,下底为15cm,高为6cm,则该梯形的面积为()A. 45cm²B. 60cm²C. 75cm²D. 90cm²二、判断题:1. 平行四边形的对角线互相平分。
人教版数学 八年级上册 八年级上册 课后练习题
一、单选题
1. 下列运算正确的是()
A.4a3b÷2a2=2a B.(a3)4=a12
C.(x﹣y)2=x2﹣2xy﹣y2D.(x+y)(﹣x﹣y)=y2﹣x2
2. 如图所示的“钻石”型网格(由边长都为1个单位长度的等边三角形组成),其中已经涂黑了3个小三角形(阴影部分表示),请你再只涂黑一个小三角形,使它与阴影部分合起来所构成的图形是一个轴对称图形,一共有()种涂法.
A.1 B.2 C.3 D.4
3. 下列多项式是完全平方式的是().
A.﹣4x﹣4
B.
C.
D.
4. 如果一个长方形的面积为,它的一边长为,那么它的另一边长为()
A.B.C.D.
5. 如图,已知,直线l与直线a,b分别交于点A,B,在直线l,b上分别截取
,,使,分别以M,N为圆心、以大于的长为半径作弧,两弧在内交于点P,作射线,交直线a于点C,若,则
的度数是()
A.B.C.D.
二、填空题
6. 计算=___________.=_____________.
7. 已知:如图,AD是△ABC中BC边上的高,∠ABC=42°,AE平分∠BAC,∠ACB=70°,则∠DAE=_________度.
8. 分式有意义,则的取值范围是______
三、解答题
9. 已知m-n=2,求代数式的值.
10. 已知,如图,点,,,在同一直线上,,,
.
求证:,.11. 分解因式
(1)﹣4a2+4ab﹣b2;(2)a3+a2b﹣ab2﹣b3.。
2024年人教版八年级上册数学第二单元课后练习题(含答案和概念)
2024年人教版八年级上册数学第二单元课后练习题(含答案和概念)试题部分一、选择题:1. 在人教版八年级上册数学第二单元中,下列哪个图形是平行四边形?()A. 四边形ABCD,AB∥CD,AD∥BCB. 四边形EFGH,EF∥GH,EG∥FH,且EF=GHC. 四边形IJKL,IK∥JL,IJ∥KLD. 四边形MNOP,MN=NO=OP=PM2. 若平行四边形ABCD的对角线交于点O,下列哪个结论是正确的?()A. OA=OC,OB=ODB. OA=OB,OC=ODC. OA=BC,OB=CDD. OA=BD,OB=AC3. 下列关于平行四边形性质的说法,错误的是()A. 平行四边形的对边相等B. 平行四边形的对角相等C. 平行四边形的邻角互补D. 平行四边形的对角线互相平分4. 在平行四边形ABCD中,若AB=6cm,BC=8cm,则对角线AC的取值范围是()A. 2cm<AC<14cmB. 2cm<AC<10cmC. 4cm<AC<14cmD. 4cm<AC<10cm5. 下列关于矩形性质的说法,错误的是()A. 矩形的对边平行且相等B. 矩形的四个角都是直角C. 矩形的对角线相等D. 矩形的对角线互相垂直6. 若一个平行四边形的四个角都是直角,那么这个平行四边形是()A. 矩形B. 菱形C. 正方形D. 无法确定7. 在矩形ABCD中,若对角线AC和BD的交点为O,下列哪个结论是正确的?()A. OA=OC,OB=ODB. OA=OB,OC=ODC. OA=BC,OB=CDD. OA=BD,OB=AC8. 下列关于菱形性质的说法,错误的是()A. 菱形的对边平行B. 菱形的四条边相等C. 菱形的对角相等D. 菱形的对角线互相垂直9. 在菱形ABCD中,若对角线AC和BD的交点为O,下列哪个结论是正确的?()A. OA=OC,OB=ODB. OA=OB,OC=ODC. OA=BC,OB=CDD. OA=BD,OB=AC10. 下列关于正方形性质的说法,错误的是()A. 正方形的四条边相等B. 正方形的四个角都是直角C. 正方形的对角线相等D. 正方形的对角线互相垂直且平分二、判断题:1. 平行四边形的对角线互相平分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4页1、图中有几个三角形?用符号表示这些三角形。
DC2、(1)3,4,8;(2)5,6,11;(3)5,6,10.5页1、如图,(1)(2)和(3)中的三个B有什么不同?这三条△ABC的边BC上的高AD在各自三角形的什么位置?你能说出其中的规律吗?B(D) C D B2、(1)如下页图(1),AD,BE,CF是△ABC的三条中线,则AB=2____,BD=____,AE=1/2____.(2)如下页图(2),AD,BE,CF是△ABC的三条角平分线,则∠1=____,∠3=1/2____,∠ACB=2____,AAF FEEB DC BD C 习题11.11、图中有几个三角形?用符号表示这些三角形。
E C2、长为3、C B C B C(2)(34ABC中,AD是角平分线,AF是高。
填空:(1)BE=____=1/2____.(2)∠A(3)∠AFB=____=90°(4)E DF C5、选择题。
下列图形中有稳定性的是()A、正方形B、长方形C、直角三角形D、平行四边形12页例1如图,在△ABC 中,∠BAC =40°, ∠B =75°,AD 是△ABC 的角平分线.求∠ADB 的度数.CDA B例2B岛在A岛的北偏东80°方向,C 岛在13页1.°,从B处观测C处时仰角∠CBD=45°.是多少?2.ABCD,其中∠A=150°,,∠B=D14页1、D,∠ACD与∠B有什么关系?为什么?CD B2、如图,∠C=90°,∠1=∠2,△ADE是直角三角形吗?为什么?北AB 15页练习说出下列图形中,∠1和∠2的度数:80° 21 40°160° 1 2 30° 2 40° (1)(2)(3)A E 70°40° 2 1B C D 16页习题11.21、 求下列图形中x 的值:X ° 39° 108°想2、(1)一个三角形最多有几个直角三角形?为什么? (2)一个三角形最多有几个钝角?为什么? (3)直角三角形的外角可以是锐角吗?为什么?3、△ABC 中,B A ∠=∠+10°,C B ∠=∠+10°。
求△ABC 各内角的度数。
4、如图,,12,AD BC ⊥∠=∠65C ∠=°。
求BAC ∠的度数。
211、 画出下列多边形的全部对角线:2、 四边形的一条对角线将四边形分成几个三角形?从五边形的一个顶点出发,可以画出几条对角线?它们将五边形分成几个三角形? 24页练习1、 求出下列图形中x 的值:2、 一个多边形的各内角都等于120°,它是几边形?3、 一个多边形的内角和与外角和相等,它是几边形? 24页习题11.31、画出下列多边形的全部对角线:2、求出下列图形中x 的值:3、填表多边形的边数 3 4 5 6 8 12 内角和 外角和 4、 计算正五边形和正十边形的每个内角的度数。
5、 一个多边形的内角和等于1260°,它是几边形?6、 (1)一个多边形的内角和是外角和的一半,它是几边形? 习题111、 如图,在△ABC 中,AD ,AE 分别是边BC 上的中线和高,AE=2cm ,21.5ABC S cm ∆=,求BC 和DC 的长。
2、 3、填表多边形的边数 7 20 内角和 15⨯180° 23⨯180° 外角和3、 从八边形的一个顶点出发,可以作几条对角线?它们将八边形分成几个三角形?这些三角形的内角和与八边形的内角和有什么关系?4、 一个多边形的内角和比四边形的内角和多540°,并且这个多边形的各内角都相等。
这个多边形的每个内角等于多少度? 32页练习1、 说出下图中两个全等三角形的对应边、对应角。
2、△OCA≌△OBD,点C和点B,点A和点D是对应顶点。
说出这两个三角形中相等的边和角。
习题12.11、△ABC ≌△CDA,AB 与CD,BC 与DA 是对应边,写出其它对应边及对应角。
2、2、△ABN ≌△ACM,∠ABN 和∠ACM 是对应角,AB 和AC 是对应边,写出其它对应边及对应角。
4、如图,△EFG ≌△NMH,∠F 和∠M 是对应角.(1)FG 与MH 平行吗?为什么?(2)判断线段EH 与NG 的大小关系,并说明理由.36页例1:如图,△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,求证:△ABD≌△ACD。
证明:因为D是BC的中点,所以BD=____()___ABD ACD___ABD__ACD___________ABBD⎧⎪∆∆=∆∆⎨⎪=⎩=在与中,所以根据37页练习1、如图,C是AB的中点,AD=CE,CD=BE。
求证:△ACD≌△CBE。
2、工人师傅常用角尺平分一个任意角。
做法如下:如图,38页例2:如图,CD=CA,BC=CE,求证:△证明:()___ABC DEC___ABC__DEC___________BCACB⎧⎪∆∆∠=∆∆⎨⎪=⎩=在与中,所以根据42页例题例5、如图,AC⊥BC,BD⊥AD,AC=BD,求证:△ABD≌△BAC。
证明:因为AC⊥BC,BD⊥AD(已知)所以∠____=∠____=90°()()()__________________________________________ABC⎧⎪∆⎨=⎪⎩= 在Rt和中,所以根据44页7.如图,△ABC中,∠B=∠C,AD是高。
求证:(1)BD=CD,(2)∠BAD=∠CAD。
证明:因为AD是高所以∠____=∠()()()_________________________________________________∠⎧⎪∠∠⎨⎪=⎩=在与中=,所以根据60页1、练习:下面的图形是轴对称图形吗?如果是,指出它的对称轴。
2、下列给出的的每幅图形中,两个图案是成轴对称吗?如果是,试着找出它们的对称轴,并找出一对对称点。
62页1、如图,AB =AC ,MB =MC ,直线AM 是线段BC 的垂直平分线吗? 解:因为AB =AC ,所以点A 在___________________(据到两端点距离相等的点在_______) 又因为MB =MC ,所以点M 在___________________(据到两端点距离相等的点在_______) 所以直线AM 是线段BC 的垂直平分线(据两点确定____________) 68页练习1、如图,把下列图形补成关于直线L 对称的图形。
70页练习练习1 分别写出下列各点关于x 轴和y 轴对称的点 的坐标:(-2,6),(1,-2),(-1,3), (-4,-2),(1,0).轴和y 轴对称的点)、)、写出点B ,C ,D .求证:∠B =BD =CD , AD =AD ,1,BC B ∴ △ABD ≌△ACD (SSS ). ∴ ∠B =∠C . 77页练习1、如图,在下列等腰三角形中,分别求出它们的底角的度数。
可计算得:底角为:______ 可计算得:底角为:______2、如图,△ABC 是等腰直角三角形(AB =AC ,∠BAC =90°)AD 是底边BC 上的高,(1)请你在右图中标出∠B ,∠C ,∠BAD ,∠ (3) 3、 如图,在△ABC 中,AB=AD=DC ,∠BAD C 度数。
AB DC 78页例题例2求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:∠CAE 是△ABC 的外角,∠1 =∠2,AD ∥BC . 求证:AB =AC . 证明:∵ AD ∥BC , ∴ ∠1 =∠B(两直线平行,同位角相等), ∠2 =∠C(两直线平行,内错角相等).例3已知等腰三角形底边长为a ,底边上的高的长为h ,求作这个等腰三角形. 作法:(1)作线段AB =a ;(2)作线段AB 的垂直平分线MN ,与AB 相交于点D;(3)在MN上取一点C,使DC =h;(4)连接AC,BC,则△ABC 就是所求作的等腰三角形.79页练习1、如图,∠A =36°,∠DBC =36°,∠C =72°,图中一共有几个等腰三角形?找出其中的一个等腰三角形给予证明.2、如图,把一张长方形的纸沿着对角线折叠,重合部分是一个等腰三角形吗?为什么?3、求证:如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形.4、如图,AC 和BD 相交于点O,且AB∥DC,OA =OB.求证:OC =OD.80页练习例4如图,△ABC 是等边三角形,DE∥BC, 分别交AB,AC 于点D,E.求证:△ADE 是等边三角形.证明:∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°.∵DE∥BC,∴∠B =∠ADE,∠C =∠AED.∴∠A=∠ADE =∠AED.∴△ADE 是等边三角形.80页练习1、试画出等边三角形的三条对称轴,你能发现什么?2、如图,在等边△ABC 中,AD是BC上的高,∠BDE=∠CDF=60°,图中哪些与BD相等的线段?81页练习例5如图是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱BC、DE 垂直于横梁AC,AB =7.4 cm,∠A =30°,立柱BC、DE 要多长?Rt△ABC 中,∠C =90°,∠B =2∠A,∠B 和∠A 各是多少度?边AB 与BC 之间有什么关系?81页复习巩固1、(1)等腰三角形的一个角是110°,它的另外两个角的度数是多少度?(2)等腰三角形的一个角是80°,它的另外两个角的度数是多少度?2、如图,AD//BC,BD平分∠ABC。
求证AB=AD。
AC36°的等腰三角形,为了画出五角星,还需要∠AMB等于多少度。
3、如图,厂房屋顶钢架外框是等腰三角形,其中AB=AC,立柱AD BC,且顶角∠BAC=120°,∠B,∠C,∠BAD,∠C AD各是多少度?如图,∠A=∠B,CE//DA,CE交AB于点E。
求证:△CEB是等腰三角形。
5、点D、E在△ABC的边BC上,AB=AC,AD=AE。
求证:BD=CE。
C6、MN交AC于点D。
求∠DBC的NC913.如图,D,E分别是AB,AC的中点,CD⊥AB,垂足为D,BE⊥AC,垂足为E。
求证AC=AB。
B4、B、C、D、E中,哪两个点关于x轴对称?哪两个点关于y轴对称?点C和点E关于x轴对称吗?为什么?5、如图,在△ABC中,∠ABC=50°,∠ACB=80°,延长CB至D,使DB=BA,延长BC至E,使CE=CA,连接AD,AE。