小样本类人概念学习贝叶斯学习PPT课件
合集下载
贝叶斯决策理论课件(PPT 88页)
[计算]0.323
最小错误率的证明
以一维情况为例证明贝叶斯决策确实对 应最小错误率
统计意义上的错误率,即平均错误率, 用P(e)表示
最小错误率的证明
错误率图示
以t为界确实使错误率最小,因为P(e/x)始终取 最小
这个图在哪见过? 与图像分割中最优阈值对应的错误分割结果类
似,最优阈值同样是基于最小错误概率 图像分割蕴含了与模式识别类似的思想,即判
设被试验的人中患有癌症的概率为0.005,即 P(ω1)=0.005,当然P(ω2)=1-0.005=0.995
现任意抽取一人,要判断他是否患有癌症。显然, 因为P(ω2)> P(ω1),只能说是正常的可能性大。如 要进行判断,只能通过化验来实现
寻找样本观测量
设有一种诊断癌症的试验,其结果为 “阳性”和“阴性”两种反应
元素含义:对角线和非对角线
协方差:用来度量变量之间“协同变异”大小的总体参数, 即二者相互影响大小的参数;绝对值越大,相互影响越大
对角阵情形;去相关
多元正态分布的性质
均值向量和协方差矩阵共同决定分布
均值向量有d个分量 协方差矩阵独立元素个数为d(d+1)/2 多元正态分布由d+d(d+1)/2个参数完全决定,
取若干个不同的P(1)值,并分别按最小损失准则确
定相应的最佳决策类域R1、R2,然后计算出其相应
的最小平均损失R*,从而可得最小平均损失R*与先 验概率P(1)的关系曲线。
最小最大决策图示
先验概率为Pa*(1) 的 最小风险分类结果对
应各种先验概率的风 险变化 R a bP(1)
为何 为切 线?
正常人试验反应为阳性的概率=0.01,即 p(x=阳|ω2)=0.01
最小错误率的证明
以一维情况为例证明贝叶斯决策确实对 应最小错误率
统计意义上的错误率,即平均错误率, 用P(e)表示
最小错误率的证明
错误率图示
以t为界确实使错误率最小,因为P(e/x)始终取 最小
这个图在哪见过? 与图像分割中最优阈值对应的错误分割结果类
似,最优阈值同样是基于最小错误概率 图像分割蕴含了与模式识别类似的思想,即判
设被试验的人中患有癌症的概率为0.005,即 P(ω1)=0.005,当然P(ω2)=1-0.005=0.995
现任意抽取一人,要判断他是否患有癌症。显然, 因为P(ω2)> P(ω1),只能说是正常的可能性大。如 要进行判断,只能通过化验来实现
寻找样本观测量
设有一种诊断癌症的试验,其结果为 “阳性”和“阴性”两种反应
元素含义:对角线和非对角线
协方差:用来度量变量之间“协同变异”大小的总体参数, 即二者相互影响大小的参数;绝对值越大,相互影响越大
对角阵情形;去相关
多元正态分布的性质
均值向量和协方差矩阵共同决定分布
均值向量有d个分量 协方差矩阵独立元素个数为d(d+1)/2 多元正态分布由d+d(d+1)/2个参数完全决定,
取若干个不同的P(1)值,并分别按最小损失准则确
定相应的最佳决策类域R1、R2,然后计算出其相应
的最小平均损失R*,从而可得最小平均损失R*与先 验概率P(1)的关系曲线。
最小最大决策图示
先验概率为Pa*(1) 的 最小风险分类结果对
应各种先验概率的风 险变化 R a bP(1)
为何 为切 线?
正常人试验反应为阳性的概率=0.01,即 p(x=阳|ω2)=0.01
《贝叶斯估计》PPT课件
前面的分析总结如下:人们根据先验信息对参数θ
已有一个认识,这个认识就是先验分布π (θ )。通
过试验,获得样本。从而对θ 的先验分布进行调整,
调整的方法就是使用上面的贝叶斯公式,调整的结
果就是后验分布 ( x1,。, xn后) 验分布是三种信息 的综合。获得后验分布使人们对θ 的认识又前进一
1)
,
x
0,1, n
( x)
(n 2)
x (1 )nx ,0 1
(x 1)(n x 1)
即
X ~ Be(x 1, n x 1)
9
贝叶斯统计学首先要想方设法先去寻求θ的先验分布。 先验分布的确定大致可分以下几步: 第一步,选一个适应面较广的分布族作先验分布族, 使它在数学处理上方便一些,这里我们选用β分布族
步,可看出,获得样本的的效果是把我们对θ的认识
由π(θ)调整到 应建立在后验分布
( 。x1,所,以xn)对θ的统计推断就 ( 的x1,基础, xn上) 。
7
例1 设事件A(产品为废品)的概率为 ,即P(A) 。 为了估计 而作n次独立观察,其中事件A出现次数
为X,则有X服从二项分布 b(n, )
第三章 贝叶斯估计
§3.1贝叶斯推断方法 一 、统计推断中可用的三种信息
美籍波兰统计学家耐(E.L.Lehmann1894~1981) 高度概括了在统计推断中可用的三种信息:
1.总体信息,即总体分布或所属分布族给我们 的信息。譬如“总体是指数分布”或“总体是正 态分布”在统计推断中都发挥重要作用,只要有 总体信息,就要想方设法在统计推断中使用。
假设Ⅱ 当给定θ后,从总体p(x|θ)中随机抽取一个样 本X1,…,Xn,该样本中含有θ的有关信息。这种信 息就是样本信息。
贝叶斯估计 PPT
B(1,)的一个样本,试寻求的共轭先验分布?
解 其似然函数为
n
n
n
q(x| )
xi(1)1xi i 1xii(1)n i 1xi
i 1
n x( 1 ) n n x g n ( t|) g 1 ,
其 中 g n ( t |) t( 1 ) n t , 选 取 f () 1 , 则
注 1、贝叶斯估计是使贝叶斯风险达到最小的决策 函数.
2、不同的先验分布,对应不同的贝叶斯估计
2、贝叶斯点估计的计算 平方损失下的贝叶斯估计
定理3.2 设 的先验分布为 ( )和损失函数为
L(,d)(d)2
则 的贝叶斯估计
为
d * (x ) E (|X x ) h (|x )d
其 中 h (|x ) 为 参 数 的 后 验 分 布 .
π (1 ) 0 .4 π (2 ) 0 .6
这两个概率是经理的主观判断(也就是先验概率), 为了得到更准确的信息,经理决定进行小规模的试验, 实验结果如下:
A:试制5个产品,全是正品,
由此可以得到条件分布:
p ( A |1 ) ( 0 . 9 ) 5 0 . 5 9 0 p ( A |2 ) ( 0 . 7 ) 5 0 . 1 6 8
t (1)n t
D f{1t (1)n td :n1 ,2,L,t0,1 ,2,L} 0
显然此共轭分布族为 分布的子族,因而,两点
分布的共轭先验分布族为 分布. 常见共轭先验分布
总体分布
参数
共轭先验分布
二项分布
成功概率p
分布 ( , )
泊松分布
均值
分布 ( )
指数分布
均值的倒数
分布 ( )
正态分布 (方差已知)
解 其似然函数为
n
n
n
q(x| )
xi(1)1xi i 1xii(1)n i 1xi
i 1
n x( 1 ) n n x g n ( t|) g 1 ,
其 中 g n ( t |) t( 1 ) n t , 选 取 f () 1 , 则
注 1、贝叶斯估计是使贝叶斯风险达到最小的决策 函数.
2、不同的先验分布,对应不同的贝叶斯估计
2、贝叶斯点估计的计算 平方损失下的贝叶斯估计
定理3.2 设 的先验分布为 ( )和损失函数为
L(,d)(d)2
则 的贝叶斯估计
为
d * (x ) E (|X x ) h (|x )d
其 中 h (|x ) 为 参 数 的 后 验 分 布 .
π (1 ) 0 .4 π (2 ) 0 .6
这两个概率是经理的主观判断(也就是先验概率), 为了得到更准确的信息,经理决定进行小规模的试验, 实验结果如下:
A:试制5个产品,全是正品,
由此可以得到条件分布:
p ( A |1 ) ( 0 . 9 ) 5 0 . 5 9 0 p ( A |2 ) ( 0 . 7 ) 5 0 . 1 6 8
t (1)n t
D f{1t (1)n td :n1 ,2,L,t0,1 ,2,L} 0
显然此共轭分布族为 分布的子族,因而,两点
分布的共轭先验分布族为 分布. 常见共轭先验分布
总体分布
参数
共轭先验分布
二项分布
成功概率p
分布 ( , )
泊松分布
均值
分布 ( )
指数分布
均值的倒数
分布 ( )
正态分布 (方差已知)
第2章 贝叶斯决策理论PPT课件
令每一个x都取使P( P (e | x) p ( x)dx
P(e
|
x)
P P
(1 ( 2
| |
x) x)
P ( 2 | x) P (1 | x) P (1 | x) P ( 2 | x)
最小的值,则所有x产生
的平均错误率最小。
结论可推广至多类
t
P (e) P ( 2 | x) p ( x)dx t P (1 | x) p ( x)dx
t
p ( x | 2 ) P ( 2 )dx t p ( x | 1 ) P (1 )dx
P ( 2 ) P2 (e) P (1 ) P1 (e)
12
基于最小错误率的贝叶斯决策
使误判概率 P (最e ) 小,等价于使正确分类识别的概率 P ( c ) 最大。
贝叶斯决策理论研究了模式类的概率结构完全知道的 理想情况。这种情况实际中极少出现,但提供了一个对 比其它分类器的依据,即“最优”分类器。
5
2.1 引言
符号规定
分类类别数:c
类别状态: i,i1,2, ,c
特征空间维数:d
d维特征空间中的特征向量:x[x1,x2, ,xd]T
先验概率:P (表i ) 示 类出i 现的先验概率,简称为 类的 概i 率
P(1| x)
p(x|1)P(1)
2
p(x|j)P(j)
0.20.9 0.818 0.20.90.40.1
j1
P(2 | x)1P(1| x)0.182 P(1|x)0.818P(2| x)0.182 x1
11
基于最小错误率的贝叶斯决策
关于错误率最小的讨论(一维情况)
错误率是指平均错误率P(e)
2.1 引言
贝叶斯决策理论教材(PPT 94页)
Rexp R x x p x dx
❖ 期望风险反映对整个空间上所有x的取值采取相应的 决策α(x)所带来的平均风险,也即条件风险在特征 空间的平均值。
最小风险准则
❖ 两分类问题的例子:
❖ 似然比公式
0-1 损失
( i
|
j
)
0 1
i j i j
❖ 当作出正确决策时(i=j)时没有损失,而对 任何错误的决策,其损失为1。此时定义的损 失函数为0-1损失函数。
策即为最小风险贝叶斯决策
最小风险准则
最小风险准则
❖ 对于贝叶斯最小风险决策,如果损失函数为“01损失”,即取如下的形式:
i wj
0, 1,
for i j ; i, j 1,
for i j
,c
那么,条件风险为:
c
R i x i j P j x P j x 1 P i x
第2章 贝叶斯决策理论
Bayesian Decision Theory
❖ 模式识别是根据对象特征值将其分类。 d个特征组成特征向量x=[x1,···,xd]T,生成d 维特征 空间,在特征空间一个 x 称为一个模式样本。
❖ Bayes决策理论是用概率统计方法研究决策问题。 ⒈ 为什么可用Bayes决策理论分类? ⑴样本的不确定性:
Neyman-Pearson准则
❖ 对两分类问题,错误率可以写为:
Pe p x R1, x 2 p x R2, x 1
p x | 2 p2 dx p x | 1 p1 dx
R1
R2
p x | 2 dx p2 p x | 1 dx p1
R1
R2
p2 e p2 p1 e p1
ห้องสมุดไป่ตู้
❖ 期望风险反映对整个空间上所有x的取值采取相应的 决策α(x)所带来的平均风险,也即条件风险在特征 空间的平均值。
最小风险准则
❖ 两分类问题的例子:
❖ 似然比公式
0-1 损失
( i
|
j
)
0 1
i j i j
❖ 当作出正确决策时(i=j)时没有损失,而对 任何错误的决策,其损失为1。此时定义的损 失函数为0-1损失函数。
策即为最小风险贝叶斯决策
最小风险准则
最小风险准则
❖ 对于贝叶斯最小风险决策,如果损失函数为“01损失”,即取如下的形式:
i wj
0, 1,
for i j ; i, j 1,
for i j
,c
那么,条件风险为:
c
R i x i j P j x P j x 1 P i x
第2章 贝叶斯决策理论
Bayesian Decision Theory
❖ 模式识别是根据对象特征值将其分类。 d个特征组成特征向量x=[x1,···,xd]T,生成d 维特征 空间,在特征空间一个 x 称为一个模式样本。
❖ Bayes决策理论是用概率统计方法研究决策问题。 ⒈ 为什么可用Bayes决策理论分类? ⑴样本的不确定性:
Neyman-Pearson准则
❖ 对两分类问题,错误率可以写为:
Pe p x R1, x 2 p x R2, x 1
p x | 2 p2 dx p x | 1 p1 dx
R1
R2
p x | 2 dx p2 p x | 1 dx p1
R1
R2
p2 e p2 p1 e p1
ห้องสมุดไป่ตู้
贝叶斯分类器ppt课件
对不相关属性的鲁棒性
各类在不相关属性上具有类似分布
类条件独立假设可能不成立
使用其他技术,如贝叶斯信念网络( Bayesian Belief Networks,BBN)
贝叶斯误差率
13
贝叶斯分类器最小化分类误差的概率 贝叶斯分类使决策边界总是位于高斯分布下两类
1和2的交叉点上
类C2 类C1
计算P(X| No)P(No)和P(X| Yes)P(Yes)
P(X| No)P(No)=0.0024 0.7=0.00168 P(X| Yes)P(Yes)=0 0.3=0
因为P(X| No)P(No)>P(X| Yes)P(Yes), 所以X分类为No
贝叶斯分类器
10
问题
如果诸条件概率P(Xi=xi |Y=yj) 中的一个为0,则它 们的乘积(计算P(X |Y=yj)的表达式)为0
设C=0表示真实账号,C=1表示不真实账号。
15
1、确定特征属性及划分
区分真实账号与不真实账号的特征属性, 在实际应用中,特征属性的数量是很多的,划分也会比
较细致 为了简单起见,用少量的特征属性以及较粗的划分,并
对数据做了修改。
16
选择三个特征属性:
a1:日志数量/注册天数 a2:好友数量/注册天数 a3:是否使用真实头像。
P( y j | X) P( yi | X), 1 i k, i j
根据贝叶斯定理, 我们有
P(y j
|
X)
P(X
| y j )P( y j ) P(X)
由于P(X) 对于所有类为常数, 只需要最大化P(X|yj)P(yj)即可.
朴素贝叶斯分类(续)
4
估计P(yj) 类yj的先验概率可以用 P (yj)=nj/n 估计
各类在不相关属性上具有类似分布
类条件独立假设可能不成立
使用其他技术,如贝叶斯信念网络( Bayesian Belief Networks,BBN)
贝叶斯误差率
13
贝叶斯分类器最小化分类误差的概率 贝叶斯分类使决策边界总是位于高斯分布下两类
1和2的交叉点上
类C2 类C1
计算P(X| No)P(No)和P(X| Yes)P(Yes)
P(X| No)P(No)=0.0024 0.7=0.00168 P(X| Yes)P(Yes)=0 0.3=0
因为P(X| No)P(No)>P(X| Yes)P(Yes), 所以X分类为No
贝叶斯分类器
10
问题
如果诸条件概率P(Xi=xi |Y=yj) 中的一个为0,则它 们的乘积(计算P(X |Y=yj)的表达式)为0
设C=0表示真实账号,C=1表示不真实账号。
15
1、确定特征属性及划分
区分真实账号与不真实账号的特征属性, 在实际应用中,特征属性的数量是很多的,划分也会比
较细致 为了简单起见,用少量的特征属性以及较粗的划分,并
对数据做了修改。
16
选择三个特征属性:
a1:日志数量/注册天数 a2:好友数量/注册天数 a3:是否使用真实头像。
P( y j | X) P( yi | X), 1 i k, i j
根据贝叶斯定理, 我们有
P(y j
|
X)
P(X
| y j )P( y j ) P(X)
由于P(X) 对于所有类为常数, 只需要最大化P(X|yj)P(yj)即可.
朴素贝叶斯分类(续)
4
估计P(yj) 类yj的先验概率可以用 P (yj)=nj/n 估计
贝叶斯决策理论课件(PPT90页)
Some about Bayes(2)
一所学校里面有 60% 的男生,40% 的女生。男生总是穿长 裤,女生则一半穿长裤一半穿裙子。假设你走在校园中, 迎面走来一个穿长裤的学生(很不幸的是你高度近似,你 只看得见他(她)穿的是否长裤,而无法确定他(她)的 性别),你能够推断出他(她)是女生的概率是多大吗?
要决策分类的类别数是一定的
引言
在连续情况下,假设对要识别的物理对象有d种特征
观察量x1,x2,…xd,这些特征的所有可能的取值范围构 成了d维特征空间。
称向量 x x1, x2, , xd T x Rd 为d维特征向量。
假设要研究的分类问题有c个类别,类型空间表示
为:
1,2 , ,i ,c
P(B|LB)∝P(LB|B)P(B)∝0.75P(B) P(~B|LB)∝P(LB|~B)P(~B)∝0.25(1-P(B)) 而西安的出租车10辆中有9辆是绿色的,则给出了先验概率P(B)=0.1,于 是有 P(B|LB)∝0.75×0.1=0.075 P(~B|LB)∝0.25(1-P(B))=0.25×0.9=0.225 P(B|LB)=0.075/0.072+0.225=0.25 P(~B|LB)=0.225/0.072+0.225=0.75 因此肇事车辆为绿色。
Neyman-Pearson准则
问题:先验概率和损失未知
通常情况下,无法确定损失。 先验概率未知,是一个确定的值 某一种错误较另一种错误更为重要。
基本思想:
要求一类错误率控制在很小,在满足此条件的 前提下再使另一类错误率尽可能小。
用lagrange乘子法求条件极值
Neyman-Pearson准则
和绿色的区分的可靠度是75%; 假设随后你又了解到第3条信息:(3)西安的出租车10辆
小样本类人概念学习-贝叶斯学习
贝叶斯网络与贝叶斯统计相结合能够充分利用领域知识和样本数据的信息。 贝叶斯网络用弧表示变量间的依赖关系,用概率分布表来表示依赖关系的强 弱,将先验信息与样本知识有机结合起来。
3、Bayesian network
3.2贝叶斯网络应用实例—胸部疾病诊所(Chest Clinic)构建模型
Chest Clinic(Data)
4
5
征属性充分多时,朴素贝叶斯分类对个别属性的抗干扰性。 计算每个类别条件下各个特征属性划分的频率
使用分类器进行鉴别
P(C=0)P(x|C=0)=P(C=0)P(0.05<a1<0.2|C=0)P0.1<a2<0.8|C=0)P( a3=0|C=0)=0.89*0.5*0.7*0.2=0.0623 P(C=1)P(x|C=1)=P(C=1)P(0.05<a1<0.2|C=1)P0.1<a2<0.8|C=1)P(a3 =0|C=1)=0.89*0.5*0.7*0.2=0.0623
输入:特征属性和训练样本
输出:分类器
输入:分类器和待分类项 输出:待分类项与类别的映射关系
2、Bayesian基础知识
2.5.2 朴素贝叶斯分类器应用——检测SNS社区中不真实账号
设C=0表示真实账号,C=1表示不真实账号 1
确定特征属性及划分
特征属性:a1:日志数量/注册天数,a2:好友数量/注册天数,a3: 是否使用真实头像。
导入新 数据
3、Bayesian network
3.2贝叶斯网络应用实例—胸部疾病诊所(Chest Clinic)继续添加证据
按照流程依此问病人一些问题,如她最近是不是去过亚洲国家,如果答案 是“是”。现在获得的信息就影响了BN模型,BN模型的参数会发生进一 步的改变。将Visit To Asia==100%导入模型。
贝叶斯分类ppt课件
Q1 什么是分类
超市中的物品分类
生活中的垃圾分类
Q1 什么是分类
由此可见,分类是跟 我们的生活息息相关 的东西,分类让生活 更加有条理,更加精 彩.
生活信息的分类
Q1 什么是分类
分类就是把一些新的数据项映射到给定类别的中的某 一个类别,比如说当我们发表一篇文章的时候,就可以自 动的把这篇文章划分到某一个文章类别。
下面给出划分:a1:{a<=0.05, 0.05<a<0.2, a>=0.2} a2:{a<=0.1, 0.1<a<0.8, a>=0.8} a3:{a=0(不是),a=1(是)}
2、获取训练样本 这里使用运维人员曾经人工检测过的1万个账号作为训练样本。
3、计算训练样本中每个类别的频率 用训练样本中真实账号和不真实账号数量分别除以一万,得到:
对于X (去年退税 否, 婚姻状况=婚姻中, 可征税收入 120K)
Q2 分类的流程
动物种 类 狗 猪 牛 麻雀 天鹅 大雁
动物A 动物B
体型
中 大 大 小 中 中 大 中
翅膀数 量 0 0 0 2 2 2 0 2
脚的只数
4 4 4 2 2 2 2 2
是否产 蛋 否 否 否 是 是 是 是 否
朴素贝叶斯分类实例 检测SNS社区中不真实账号
下面讨论一个使用朴素贝叶斯分类解决实际问 题的例子。
这个问题是这样的,对于SNS社区来说,不真 实账号(使用虚假身份或用户的小号)是一个普遍 存在的问题,作为SNS社区的运营商,希望可以 检测出这些不真实账号,从而在一些运营分析报告 中避免这些账号的干扰,亦可以加强对SNS社区 的了解与监管。
• 由于P(X)对于所有类为常数,只需要P(X|H)*P(H) 最大即可。
02 贝叶斯决策理论精品资料PPT课件
n 那么当 R (1|x)R (2|x)n 时,采取第1个行动。即:
1 P ( 1 1 |x ) 1 P ( 2 2 | x ) 2 P ( 1 1 |x ) 2 P ( 2 2 |x )
( 1 1 2 ) P ( 1 1 |x ) ( 2 2 1 ) P 2 (2 |x )
( 1 1 2 ) P ( 1 x |1 ) P ( 1 ) ( 2 2 1 ) P ( 2 x |2 ) P ( 2 )
加上相同的树,或取自然对数。那么不等式的关系是不变的。因 此不考虑损失时的贝叶斯判别函数:
gi(x)p(i|x)p(x|p (ix ))p(i)
n 可以写成:
gi(x)p(x|i)p(i)
g i(x ) ln p (x| i) ln p (i)
n
比鱼的时如ω罐候1对头分的于里类罐上装后头面入采里的了取装例 鲈 的入子 鱼 行了动λω鲑111就鱼,=λ要ω那222偏么=,0向客那。于户么鲈便很客鱼宜难户ω的感1会比鲑到很鲑鱼有生鱼。损气ω因失;2贵此。如。设那果如当么鲑果真这鱼鲈正个ω2
类装将λ21别入x=归0是了类.2鲑鲑。为鱼鱼可鲑ωω以鱼22的)看的ω时2到损(造候,失成,上λ鲑1将2面=鱼x的2归, ω公类2设的式为当罐变鲈真头成鱼正里了ω类装1:(别入造是了成鲈鲈鲈鱼鱼鱼ωωω111的的)的时罐损候头失,里
P(y|x)P(x| y)P(y) P(x)
n 换一种写法:
P(j |x)P(x| P(jx)P )(j)
P(j |x)P(x| P(jx)P )(j)
n 这就是著名的贝叶斯公式。其中P(ωj)叫做先验概率,就是类别出现 的可能性;p(x|ωj)叫条件概率,就是在ωj时x出现的可能性;p(ωj|x) 叫后验概率;p(x)是该样例出现的可能性。
贝叶斯估计课件培训讲学
§1.2贝叶斯公式的密度函数形式
3. 从贝叶斯观点看,样本 x (x1, xn ) 的产生要分两步
进行。首先设想从先验分布 ( ) 产生一个样本 ' ,这一步 是“老天爷”做的,人们是看不到的,故用“设想”二字。
第二步是从总体分布 p(x | ' ) 产生一个样本 x (x1, xn ) ,
对 作出推断的只是条件分布 ( | x)
§1.2贝叶斯公式的密度函数形式
(后验分布 posterior distribution)。它的计算公式是
( | x) h(x, ) p(x | ) ( )
m(x) p(x | ) ( )d
这就是贝叶斯公式的密度函数形式。这个在样本 x 给定 下, 的条件分布被称为 的后验分布。它是集中了总 体、样本和先验等三种信息中有关 的一切信息,而又 排除一切与 无关的信息之后所得到的结果。
最后可得 的后验分布
(|x ) h ( x ,) ( n 2 ) ( x 1 ) 1 ( 1 ) ( n x 1 ) 1 ,0 1 m ( x ) ( x 1 ) ( n x 1 )
这个分布不是别的,就是参数为 x 1的 n x 1 的 贝 塔 分 布 , 这 个 分 布 记 为 beta(x 1, n x 1) 。
后验分布是三种信息的综合,先验分布反应人们在抽样前 对参数的认识,后验分布反应人们在抽样后对参数的认识
Bayes统计推断原则:对参数 所作任何推断(参数估计,假
设检验等)都必须建立在后验分布基础上.
§1.2贝叶斯公式的密度函数形式
例:为了提高某产品质量,公司经理考虑投资100万改进设 备,下属部门提出两种实施意见: 意见1:改进生产设备后,高质量产品占90% 意见2:改进生产设备后,高质量产品占70% 但经理根据以往两部门建议情况认为.意见1的可信度只 有40%,而意见案2的可信度只有60%,
贝叶斯学习过程PPT课件
0 0
n 0
0
n ˆn
先验知识和经验数据各自的贡献取决于 和 的比值,这个比值称为决断因子(dogmatism)
当获得足够多的样本后, 和 的具体数值 的精确假定变得无关紧要, 将收敛于样本均 值
第28页/共48页
高斯情况:单变量, 未知, 已知
• 观察结论
• 随着样本数n的递增, 单调递
,其中的未知参数表示为向量
第20页/共48页
贝叶斯估计
• 贝叶斯估计 • 最大似然估计
第21页/共48页
贝叶斯估计
• 为明确数据集D的作用,类似于ML估计,贝叶斯决策所需后验概率可重新写作 • 简化
第22页/共48页
贝叶斯估计
• 核心问题
• 已知一组训练样本D,这些样本都是从固定但未知的概率密度函数p(x)中独立抽取的,要求根据这些样 本估计
第13页/共48页
ML估计-高斯情况: 未知
μ
•
• 在 下的对数似然
• 对数似然方程
• 的ML估计
数据集D的样本均值
第14页/共48页
ML估计-高斯情况: 和
• x为单变量情况 • 参数向量 • 在 下的对数似然
均未知
• 对数似然方程
μΣ
第15页/共48页
ML估计-高斯情况: 和
• x为单变量情况 • 的ML估计
第11页/共48页
最大化问题
• ML估计的解通过最大化似然函数或对数似然函数实现
第12页/共48页
最大化问题 • 记 表示p维参数向量
, 表示梯度算子
• 全局最大值的必要条件(似然方程)
或
等价的(对数似然方程)
• 似然方程或对数似然方程的解并不是获得全局最大值的充分条件
简单贝叶斯方法ppt课件
P ( X x | C 0 ) P ( C 0 ) P ( X x | C 0 ) P ( C 0 ) 0 0 P ( C 0 | X x ) 0 P ( X x ) P ( X x | C 1 ) P ( C 1 ) P ( X x | C 0 ) P ( C 0 ) 0 0 0
从这个意义上讲,它是一个“执果索因”的条 件概率计算公式.相对于事件B而言 ,概率论中 把 P(Ai) 称为先验概率( Prior Probability), 而 把 P(Ai|B) 称 为 后 验 概 率 ( Posterior Probability),这是在已有附加信息(即事件 B已发生)之后对事件发生的可能性做出的重新 认识,体现了已有信息带来的知识更新.
简单贝叶斯方法
本节内容纲要
• • • • • • 贝叶斯定理回顾 简单贝叶斯(Naï ve Bayes) 贝叶斯分类法:二类别 对分类法的实用评价 不对称错误分类代价和贝叶斯风险分类 贝叶斯风险分类:多类别
贝叶斯定理回顾
定义 事件组A1,A2,…,An (n可为),称为样 本空间S的一个划分,若满足:
– 目标是预测类别C – 特别地, 我们想找能够最大化P(C| A1, A2,…,An )的 C值
• 能否从直接数据中估计P(C| A1, A2,…,An )?
贝叶斯分类方法
• 方法:
– 使用贝叶斯定理对于分类变量C的所有值计算后验概率 P(C | A1, A2, …, An) ,
P ( A A A | C ) P ( C ) P ( C | A A A ) P ( A A A )
i 1
P ( A P ( B |A j) j)
式子就称为贝叶斯公式。
贝叶斯定理回顾
从这个意义上讲,它是一个“执果索因”的条 件概率计算公式.相对于事件B而言 ,概率论中 把 P(Ai) 称为先验概率( Prior Probability), 而 把 P(Ai|B) 称 为 后 验 概 率 ( Posterior Probability),这是在已有附加信息(即事件 B已发生)之后对事件发生的可能性做出的重新 认识,体现了已有信息带来的知识更新.
简单贝叶斯方法
本节内容纲要
• • • • • • 贝叶斯定理回顾 简单贝叶斯(Naï ve Bayes) 贝叶斯分类法:二类别 对分类法的实用评价 不对称错误分类代价和贝叶斯风险分类 贝叶斯风险分类:多类别
贝叶斯定理回顾
定义 事件组A1,A2,…,An (n可为),称为样 本空间S的一个划分,若满足:
– 目标是预测类别C – 特别地, 我们想找能够最大化P(C| A1, A2,…,An )的 C值
• 能否从直接数据中估计P(C| A1, A2,…,An )?
贝叶斯分类方法
• 方法:
– 使用贝叶斯定理对于分类变量C的所有值计算后验概率 P(C | A1, A2, …, An) ,
P ( A A A | C ) P ( C ) P ( C | A A A ) P ( A A A )
i 1
P ( A P ( B |A j) j)
式子就称为贝叶斯公式。
贝叶斯定理回顾
贝叶斯公式PPT学习教案
k1
故
(1-p)4=0.41
1-p=0.8
p=0.2
A至多出现一次的概率为:
P4(0)+P4(1) (1 p)4 C14p(1 p)3
0.84 C14 0.20.83 =0.82
第16页/共20页
例10 (分赌注问题)甲、乙各下注a元,以猜硬币方式 赌博,五局三胜,胜者获得全部赌注。若甲赢得第 一局后,赌博被迫中止,赌注该如何分?
第14页/共20页
例4 甲、乙、丙三人独立射击一个目标,命中率分别为 0.4,0.5,0.7,若只有一人击中,目标被摧毁的概率是 0.2,若二人击中,则目标被摧毁的概率是0.6,若三人 都击中,目标一定被摧毁。若目标被摧毁,求它是一人 摧毁的概率。
解:用Ai表示有i个人击中目标,i=0,1,2,3
=1-0.1×0.2 =0.98
第12页/共20页
例2 一名士兵用步枪射击飞机,命中率为0.004。求: (1)若250名士兵同时射击,飞机被击中的概率。 (2)多少名士兵同时射击,才能使飞机被击中的概率达 到99%?
解:用Ai表示第i名士兵击中飞机,P(Ai)=0.004
(1)P(A1 ... A250) 1 P(A1)...P(A250) 1 0.996250 0.63
P(B)
P(B)
=P(A)
即A与B独立。
第9页/共20页
(2)若事件A与B独立,则A与B,A与B,A与B中的 每一对事件都相互独立。 证:P(AB) P(A AB)
P(A) P(AB) =P(A)-P(A)P(B) =P(A)(1-P(B)) P(A)P(B) 由(1)可知,A与B独立。 类似可证其它两对事件独立。
111115 35 32 38
贝叶斯决策分析培训教材(PPT39页)
若不作进一步调查研究,则采用方案1(即采用新产品)可获期望利润3.
同理可计算得:P(B2|A)=0. 经财务部门预算,进行一次试销调查花费60万元。 因亏损的先验概率较大,故该厂还要研 若进一步调查研究,则可获期望利润值6. 经过必要的风险估计后,他们估计出:
第一节 引言
一、问题的提出
在实际进行决策时,我们一直强调要调查研究, 注意预测,以掌握机会,制订对策,明确结果, 改进决策过程,提高决策水平。
这种对验前概率分布要否采取一些方法、途径 和手段以获取新信息来进行修正,其效果如何, 是否值得等一系列分析就称为后验预分析。
3.验后分析
根据预后验分析,如果认为采集信息和 进行调查研究是值得的,那么就应该决 定去做这项工作。
验后分析就是根据实际发生的调查结果 的信息修正验前概率的方法。
4.序贯分析
贝叶斯定理:
设B1,B2,……Bn是一组互斥的完备事件集, 即所有Bi互不相容,∪Bi=Ω,且P(Bi)>0,则 对任一事件有:
P(Bi
|
A)
P(Bi A) P( A)
P(Bi )P( A | Bi )
n
P(Bi )P( A | Bi )
i 1
其中:
P(Bi)为试验前就已知道了的概率,称为验前概率或先验概率; P(A)为边际概率,它按全概率公式求得; P(Bi|A)表示试验发生后,由于事件A发生而引起Bi发生的条件概率, 它是对先验概率P(Bi)的一种修正,故称验后概率或修正概率。
P(A| B) P(AB) P(B)
乘法公式: 对任意两个事件A与B,有: P(AB)=P(A|B)P(B)=P(B|A)P(A) 对任意三个事件A1,A2,A3,有: P(A1A2A3)=P(A1)P(A2|A1)P(A3|A1A2) 依次可以推广到四个或更多的事件上去。
同理可计算得:P(B2|A)=0. 经财务部门预算,进行一次试销调查花费60万元。 因亏损的先验概率较大,故该厂还要研 若进一步调查研究,则可获期望利润值6. 经过必要的风险估计后,他们估计出:
第一节 引言
一、问题的提出
在实际进行决策时,我们一直强调要调查研究, 注意预测,以掌握机会,制订对策,明确结果, 改进决策过程,提高决策水平。
这种对验前概率分布要否采取一些方法、途径 和手段以获取新信息来进行修正,其效果如何, 是否值得等一系列分析就称为后验预分析。
3.验后分析
根据预后验分析,如果认为采集信息和 进行调查研究是值得的,那么就应该决 定去做这项工作。
验后分析就是根据实际发生的调查结果 的信息修正验前概率的方法。
4.序贯分析
贝叶斯定理:
设B1,B2,……Bn是一组互斥的完备事件集, 即所有Bi互不相容,∪Bi=Ω,且P(Bi)>0,则 对任一事件有:
P(Bi
|
A)
P(Bi A) P( A)
P(Bi )P( A | Bi )
n
P(Bi )P( A | Bi )
i 1
其中:
P(Bi)为试验前就已知道了的概率,称为验前概率或先验概率; P(A)为边际概率,它按全概率公式求得; P(Bi|A)表示试验发生后,由于事件A发生而引起Bi发生的条件概率, 它是对先验概率P(Bi)的一种修正,故称验后概率或修正概率。
P(A| B) P(AB) P(B)
乘法公式: 对任意两个事件A与B,有: P(AB)=P(A|B)P(B)=P(B|A)P(A) 对任意三个事件A1,A2,A3,有: P(A1A2A3)=P(A1)P(A2|A1)P(A3|A1A2) 依次可以推广到四个或更多的事件上去。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
即P F 1 ,F 2 .....F n C iP C ii 1 ,m
m
由于各个特征属性是条件独立:PC i PFj C i i 1,m ,j 1,n j
4. 如果 P C k F m a x P C 1 F , P C 2 F . . . . . . P C m F , k 1 , m 则 F Ck
1 确定特征属性及划分
7
2、Bayesian基础知识
2.4 理论知识—贝叶斯法则
P(h | D) P(D | h)P(h) P(D)
P(h) 假设h的先验概率 P(D) 训练数据D的先验概率 P(D | h) 假设h成立时观察到数据D的概率 P(h | D) 给定训练数据D时h成立的概率
用P(h)表示在没有训练数据前假设h拥有的先验概率,反映了h是正确假设的机 会的背景知识,如果没有P(h),可以简单地先赋予相同的先验概率
11
2、Bayesian基础知识
•2.5.1朴素贝叶斯分类器流程图
输出:特征属性和训练样本
输入:特征属性和训练样本 输出:分类器 输入:分类器和待分类项 输出:待分类项与类别的映射关系
12
2、Bayesian基础知识
2.5.2 朴素贝叶斯分类器应用——检测SNS社区中不真实账号
设C=0表示真实账号,C=1表示不真实账号
Byvalent to:
a rg m a x cP w c * P c /P w
Since P(w) is the same for every possible c, we can ignore it, giving:
argm axcPwc*Pc
小样本下的类机器学习
贝叶斯学习
1
1、小样本机器学习
深度学习是基于大数据通过多层网络实现机器自动识别有效的特征,显然数 据越多其效果相对就会越好。
在没有大数据情况下,深度学习的效果将会显著下降。对于人类来说,没有 知识的积累,没有相应的专业知识,依然能够模仿学习,因为人类面对陌生 环境依然能够通过学习做出适应变化。
在贝叶斯方法计算复杂度较高时,它们仍可作为一个最优的决策标准衡量其 05
他方法;
4
2、Bayesian基础知识
2.2 贝叶斯学习应用领域
5
2、Bayesian基础知识
2.3 贝叶斯学习方法的难度
难度之一:获取先验知识 需要概率的先验知识,当概率预先未知时,
可以基于背景知识、预先准备好的数据以 及基准分布的假定来估计这些概率; 难度之二:计算复杂度 一般情况下,确定贝叶斯最优假设的计算代 价比较大(在某些特定情形下,这种计算 代价可以大大降低)。
2. 有类别集合 CC 1,C2, Cm
3. 朴素贝叶斯分类器是计算出概率最大的那个分类,即求下面算式的最大值:
P C i F 1 , F 2 . . . . . F n P F 1 , F 2 . . . . . F n C iP C i / P F 1 , F 2 . . . . . F n i 1 , m
P(c)表示某个正确的词的出现“概率”,它可以用“频率”代替。 P(w|c)表示在试图拼写c的情况下,出现拼写错误w的概率。
9
2、Bayesian基础知识
2.5 朴素贝叶斯分类器
朴素贝叶斯分类模型(Naïve Bayes或Simple Bayesian)假定特征向量 的各分量间相对于决策变量是相对独立的,各分量独立地作用于决策变量。
例如:
➢ 只看下面有什么牌来决策的就是频率学派
➢ 除了看下面有什么牌,还考虑了这个牌是谁打 出的,什么时候打出的,这个人打出所有牌友 什么联系等一系列问题的就是贝叶斯学派;
3
2、Bayesian基础知识
2.2 贝叶斯学习方法的特性
01 可以根据观察到的每个训练样例能够增量地降低或升高某假设的估计概率。 02 先验知识可以与观察数据一起决定假设的最终概率; 03 贝叶斯方法可允许假设做出不确定性的预测; 04 新的实例分类可由多个假设一起做出预测,用它们的概率来加权;
“小样本机器学习”作为机器学习的另一条途径,由相关领域内的专家人工 提取出有用的特征,配合少量的数据进行机器学习。在此主要以Bayesian学
习方法为核心。
Sample:small
mount
Sample:Big data
2
2、Bayesian基础知识
2.1 频率学派VS贝叶斯学派
频率派把需要推断的参数Θ看做是固
朴素贝叶斯的思想基础:对于给出的待分类项,求解在此项出现的条件下 各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。
朴 素
C
贝
叶
斯
分
类
器
F1
F2
F3
F4
Fn
10
2、Bayesian基础知识
2.5.1朴素贝叶斯分类器数学定义
1.
设 FF1,F2,
Fn为一个待分类项,而F
为F
i
的一个特征属性
定的未知常数,是确定的一个值,同
时样本X是随机的,所以频率派重点
研究样本空间,大部分的概率计算都
是针对样本X 的分布;
贝叶斯派的观点则截然相反,他们认 为参数Θ是随机变量,而样本X是固 定的,由于样本是固定的,所以他们
概 率 论
重点研究的是参数Θ的分布。
Bayesian and probability
6
2、Bayesian基础知识
2.4 理论知识—先验概率VS后验概率
先验概率是指根据以往经验和分析得到的概率,它往往作为“由因求果”问题 中的“因”出现。
后验概率是指在得到“结果”的信息后重新修正的概率,是基于新的信息,修 正原来的先验概率后所获得的更接近实际情况的概率估计。
先验概率和后验概率是相对的。如 果以后还有新的信息引入,更新了 现在所谓的后验概率,得到了新的 概率值,那么这个新的概率值被称 为后验概率
类似地,P(D)表示训练数据D的先验概率,P(D|h)表示假设h成立时D的概率 机器学习中,关心的是P(h|D),即给定D时h的成立的概率,称为h的后验概率
8
2、Bayesian基础知识
2.4 理论知识—贝叶斯的简单应用
Google基于贝叶斯方法的拼写检查
P cw P w c * P c /P w argmaxcPcw
m
由于各个特征属性是条件独立:PC i PFj C i i 1,m ,j 1,n j
4. 如果 P C k F m a x P C 1 F , P C 2 F . . . . . . P C m F , k 1 , m 则 F Ck
1 确定特征属性及划分
7
2、Bayesian基础知识
2.4 理论知识—贝叶斯法则
P(h | D) P(D | h)P(h) P(D)
P(h) 假设h的先验概率 P(D) 训练数据D的先验概率 P(D | h) 假设h成立时观察到数据D的概率 P(h | D) 给定训练数据D时h成立的概率
用P(h)表示在没有训练数据前假设h拥有的先验概率,反映了h是正确假设的机 会的背景知识,如果没有P(h),可以简单地先赋予相同的先验概率
11
2、Bayesian基础知识
•2.5.1朴素贝叶斯分类器流程图
输出:特征属性和训练样本
输入:特征属性和训练样本 输出:分类器 输入:分类器和待分类项 输出:待分类项与类别的映射关系
12
2、Bayesian基础知识
2.5.2 朴素贝叶斯分类器应用——检测SNS社区中不真实账号
设C=0表示真实账号,C=1表示不真实账号
Byvalent to:
a rg m a x cP w c * P c /P w
Since P(w) is the same for every possible c, we can ignore it, giving:
argm axcPwc*Pc
小样本下的类机器学习
贝叶斯学习
1
1、小样本机器学习
深度学习是基于大数据通过多层网络实现机器自动识别有效的特征,显然数 据越多其效果相对就会越好。
在没有大数据情况下,深度学习的效果将会显著下降。对于人类来说,没有 知识的积累,没有相应的专业知识,依然能够模仿学习,因为人类面对陌生 环境依然能够通过学习做出适应变化。
在贝叶斯方法计算复杂度较高时,它们仍可作为一个最优的决策标准衡量其 05
他方法;
4
2、Bayesian基础知识
2.2 贝叶斯学习应用领域
5
2、Bayesian基础知识
2.3 贝叶斯学习方法的难度
难度之一:获取先验知识 需要概率的先验知识,当概率预先未知时,
可以基于背景知识、预先准备好的数据以 及基准分布的假定来估计这些概率; 难度之二:计算复杂度 一般情况下,确定贝叶斯最优假设的计算代 价比较大(在某些特定情形下,这种计算 代价可以大大降低)。
2. 有类别集合 CC 1,C2, Cm
3. 朴素贝叶斯分类器是计算出概率最大的那个分类,即求下面算式的最大值:
P C i F 1 , F 2 . . . . . F n P F 1 , F 2 . . . . . F n C iP C i / P F 1 , F 2 . . . . . F n i 1 , m
P(c)表示某个正确的词的出现“概率”,它可以用“频率”代替。 P(w|c)表示在试图拼写c的情况下,出现拼写错误w的概率。
9
2、Bayesian基础知识
2.5 朴素贝叶斯分类器
朴素贝叶斯分类模型(Naïve Bayes或Simple Bayesian)假定特征向量 的各分量间相对于决策变量是相对独立的,各分量独立地作用于决策变量。
例如:
➢ 只看下面有什么牌来决策的就是频率学派
➢ 除了看下面有什么牌,还考虑了这个牌是谁打 出的,什么时候打出的,这个人打出所有牌友 什么联系等一系列问题的就是贝叶斯学派;
3
2、Bayesian基础知识
2.2 贝叶斯学习方法的特性
01 可以根据观察到的每个训练样例能够增量地降低或升高某假设的估计概率。 02 先验知识可以与观察数据一起决定假设的最终概率; 03 贝叶斯方法可允许假设做出不确定性的预测; 04 新的实例分类可由多个假设一起做出预测,用它们的概率来加权;
“小样本机器学习”作为机器学习的另一条途径,由相关领域内的专家人工 提取出有用的特征,配合少量的数据进行机器学习。在此主要以Bayesian学
习方法为核心。
Sample:small
mount
Sample:Big data
2
2、Bayesian基础知识
2.1 频率学派VS贝叶斯学派
频率派把需要推断的参数Θ看做是固
朴素贝叶斯的思想基础:对于给出的待分类项,求解在此项出现的条件下 各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。
朴 素
C
贝
叶
斯
分
类
器
F1
F2
F3
F4
Fn
10
2、Bayesian基础知识
2.5.1朴素贝叶斯分类器数学定义
1.
设 FF1,F2,
Fn为一个待分类项,而F
为F
i
的一个特征属性
定的未知常数,是确定的一个值,同
时样本X是随机的,所以频率派重点
研究样本空间,大部分的概率计算都
是针对样本X 的分布;
贝叶斯派的观点则截然相反,他们认 为参数Θ是随机变量,而样本X是固 定的,由于样本是固定的,所以他们
概 率 论
重点研究的是参数Θ的分布。
Bayesian and probability
6
2、Bayesian基础知识
2.4 理论知识—先验概率VS后验概率
先验概率是指根据以往经验和分析得到的概率,它往往作为“由因求果”问题 中的“因”出现。
后验概率是指在得到“结果”的信息后重新修正的概率,是基于新的信息,修 正原来的先验概率后所获得的更接近实际情况的概率估计。
先验概率和后验概率是相对的。如 果以后还有新的信息引入,更新了 现在所谓的后验概率,得到了新的 概率值,那么这个新的概率值被称 为后验概率
类似地,P(D)表示训练数据D的先验概率,P(D|h)表示假设h成立时D的概率 机器学习中,关心的是P(h|D),即给定D时h的成立的概率,称为h的后验概率
8
2、Bayesian基础知识
2.4 理论知识—贝叶斯的简单应用
Google基于贝叶斯方法的拼写检查
P cw P w c * P c /P w argmaxcPcw