必修三 数学测试题

合集下载

高中数学必修三试题(精品含详细答案)

高中数学必修三试题(精品含详细答案)

数学必修三试卷 姓名一、选择题1.算法的三种基本结构是( )A . 顺序结构、模块结构、条件结构B . 顺序结构、循环结构、模块结构C . 顺序结构、条件结构、循环结构D . 模块结构、条件结构、循环结构2.在输入语句中,若同时输入多个变量,则变量之间的分隔符号是( )A .逗号B .空格C .分号D .顿号3.将两个数a=8,b=17交换,使a=17,b=8,下面语句正确一组是 ( )A .4.如果右边程序执行后输出的结果是132,那么 在程序until 后面的“条件”应为( )A . i > 11B . i >=11C . i <=11D . i<115.右边程序执行后输出的结果是( )A .-1B .0C .1D .26.从2006名学生中选取50名组成参观团,若采用下面的方法选取:先用简单随机抽样从2006人中剔除6人,剩下的2000人再按系统抽样的方法进行,则每人入选的机会( ) A .不全相等 B .均不相等 C .都相等 D .无法确定7.某单位有老年人28 人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36样本,则老年人、中年人、青年人分别各抽取的人数是( )A .6,12,18B .7,11,19C .6,13,17D .7,12,17 8.三位七进制的数表示的最大的十进制的数是( )A.322;B.332;C.342;D.3529.一个样本M 的数据是n x x x ,,,21 ,它的平均数是5,另一个样本N 的数据是,x ,x x n 22221,, 它的平均数是34.那么下面的结果一定正确的是( )10.下列叙述中:①变量间关系有函数关系,还有相关关系 ②回归函数即用函数关系近似地描述相互关系 ③∑=+++=ni nix x x x121 ;④线性回归方程∑∑=-=--∧---=+=ni ini i ix xy y x x,b a bx y 121)())((中,---=x b y a⑤线性回归方程一定可以近似地表示所有相关关系.其中正确的有( )A. ①②③B. ①②④⑤C. ①②③④D. ③④⑤二、填空题11.将二进制数101 101(2) 化为十进制结果为 _ ;再将该数化为八进制数,结果为 ______.12.一个容量为n 的样本分成若干组,已知某组的频数和频率为30和0. 25,则n=________. 13.已知y x ,之间的一组数据:y 与x 之间的线性性回归方程a bx y +=∧必过定点_________________. 14.INPUT xIF 9<x AND x <100 THEN a =x \10b=x MOD 10 (注:“\”是x 除10的商,“M O D”是x 除10的余数)x =10*b+aPRINT x END IFEND上述程序输出x 的含义是____________________.三、解答题15. (1)用辗转相除法求840与1764的最大公约数.(2)用秦九韶算法计算函数24532)(34=-++=x x x x x f 当时的函数值.16.某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量,分别记录抽查数据如下:甲: 102,101,99,98,103,98,99 乙:110,115,90,85,75,115,110 (1)这种抽样方法是哪一种?(2)估计甲、乙两个车间产品的平均数与方差,并说明哪个车间产品较稳定?17. 某次考试,满分100分,按规定:x ≥80者为良好,60≤x<80者为及格,小于60者不及格,设计一个当输入一个同学的成绩x 时,输出这个同学属于良好、及格还是不及格的算法,并画出程序框图.18.为了解某地高一年级男生的身高情况,从其中的一个学校选取容量为60的样本(60名男(1)求出表中a,m的值.(2)画出频率分布直方图和频率折线图.19.某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表(1)画出销售额和利润额的散点图.(2)若销售额和利润额具有相关关系,用最小二乘法计算利润额y对销售额x的回归直线方程.20.袋中有大小相同的红、黄、白三种颜色的球各1个,从中任取1只,有放回地抽取3次.求:(Ⅰ)3只全是红球的概率;(Ⅱ)3只颜色不全相同的概率参考答案一、选择题:二、填空题11.45、55(8) 12.120 13.(1.1475,2.3925) 14.交换十位数与个位数的位置三、解答题 15.解:(1)用辗转相除法求840与1 764 的最大公约数.1 764 = 840×2 + 84 840 = 84×10 +0所以840与1 764 的最大公约数是84(2)根据秦九韶算法,把多项式改写成如下形式:f(x)=(((2x+3)x+0)x+5)x-4 从内到外的顺序依次计算一次多项式当x=2时的值:v 0=2 v 1=2×2+3=7 v 2=7×2+0=14 v 3=14×2+5=33 v 4=33×2-4=62 所以,当x=2时,多项式的值等于6216.解:(1)系统抽样 (2)甲x =100 ,乙x =100 ; 724)1494114(712=++++++=甲s,143.237)100225625225100255100(712=++++++=乙s ,乙甲22s s <,所以甲车间产品较稳定。

高中数学必修三-练习题(包含答案)

高中数学必修三-练习题(包含答案)

必修三测试题参考公式:1. 回归直线方程方程: ,其中, .2.样本方差: 一、填空1. 在下列各图中,每个图的两个变量具有相关关系的图是〔 〕〔1〕 〔2〕 〔3〕 〔4〕A .〔1〕〔2〕B .〔1〕〔3〕C .〔2〕〔4〕D .zs 〔2〕〔3〕 2 下列给变量赋值的语句正确的是〔A 〕3=a 〔B 〕a +1=a 〔C 〕a =b =c =3〔D 〕a =2b +1 3.某程序框图如下所示,若输出的S=41,则判断框内应填( )A .i >3?B .i >4?C .i >5?D .i >6?4.图4中程序运行后输出的结果为().A .7B .8C .9D .10〔第3题〕 〔第4题〕5阅读题5程序,如果输入x =-2,则输出结果y 为().〔A 〕3+π〔B 〕3-π〔C 〕π-5 〔D 〕-π-56.有一人在打靶中,连续射击2次,事件“至少有1次中靶〞的对立事件是〔〕 A.至多有1次中靶B.2次都中靶C.2次都不中靶D.只有1次中靶7.一个袋中装有2个红球和2个白球,现从袋中取出1球,然后放回袋中再取出一球,则取出的两个球同色的概率是〔 〕A.21B.31 C.41 D.52 Input x if x <0 theny =32x π+elseif x >0 then y =52x π-+elsey =0end if end if print y〔第5题〕8.对某班学生一次英语测试的成绩分析,各分数段的分布如下图〔分数取整数〕,由此,估计这次测验的优秀率〔不小于80分〕为〔 〕 A.92% B.24% C.56% D.76%9.袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是〔 〕 A.至少有一个白球;都是白球 B.至少有一个白球;至少有一个红球 C.恰有一个白球;一个白球一个黑球 D.至少有一个白球;红、黑球各一个 10.某算法的程序框图如右所示,该程序框图的功能是().A .求输出a,b,c 三数的最大数B .求输出a,b,c 三数的最小数C .将a,b,c 按从小到大排列D .将a,b,c 按从大到小排列二、填空11.某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆,为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,则这三种型号的轿车应依次抽取、、辆.12.将十进制的数253转为四进制的数应为(4)13.在区间[-1,2]上随机取一个数x ,则|x |≤1的概率为 .14. 某市物价部门对本市的5家商场的某商品的一天销售量与其价格进行调查,5家商场的售价x 元哈销售量y 件之间的一组数据如下所示:价格x 9 9.5 10 10.5 11 销售量y1110865由散点图可知,y 与x 之间有较好的线性相关关系,其线性回归方程是:=-3.2x+,则= . 三 简单题15、〔1〕用辗转相除法求840与1764的最大公约数.〔2〕用秦九韶算法计算函数34532)(34=-++=x x x x x f 当时的函数值。

数学必修三全册试卷及答案.doc

数学必修三全册试卷及答案.doc

第I 卷(选择题)一、单选题(60分)1.某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为116, 124, 118, 122, 120,五名女生的成绩分别为118, 123, 123, 118, 123,下列说法一定正确的是(B )A . 这种抽样方法是一种分层抽样B . 这五名男生成绩的方差大于这五名女生成绩的方差C .这种抽样方法是一种系统抽样D . 该班级男生成绩的平均数小于该班女生成绩的平均数2.掷两枚均匀的骰子,已知点数不同,则至少有一个是3点的概率为( C )A .B .C .D . 3.如图,矩形ABCD 中点E 位边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自ABE 内部的概率等于( D )A .41B .31C .32D .21 4.某杂志社对一个月内每天收到的稿件数量进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数分别是( D )A . 47,45B . 45,47C . 46,46D . 46,455. 在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注数字外完全相同,现从中随机取2个小球,则取出的小球标注的数字之和为3或6的概率是( B ) A.112 B. 310 C.15 D.11010318531416.高三毕业时,甲、乙、丙、丁四位同学站成一排照相留念,则甲丙相邻的概率为( A )A. B. C. D.7.将输入如下图所示的程序框图得结果( A )A.2006 B.C.0 D.8.98和63的最大公约数为( B )A.6 B.7 C.8 D.99.某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为k:5:3,现用分层抽样方法抽出一个容量为120的样本,已知A种型号产品共抽取了24件,则C种型号产品抽取的件数为( B )A.24B.36C.30D.4010.光明中学有老教师25人,中年教师35人,青年教师45人,用分层抽样的方法抽取21人进行身体状况问卷调查,则抽到的中年教师人数为( C )A.9B.8C.7D.611.从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是( B ) A.5,10,15,20,25B.3,13,23,33,43C.1,2,3,4,5D.2,4,8,16,3212.已知一个样本中的数据为1,2,3,4,5,则该样本的标准差为( C )A.1B.C.D.21 2132314 2005x=20052005-二、填空题(20分)13.一个路口的红绿灯,红灯的时间是30秒,黄灯的时间是5秒,绿灯的时间是40秒,当你到达路口时遇见红灯的概率是0.4.14.如图是一容量为100的样本的频率分布直方图.则由图可知样本数据的中位数大约是__13_____.15.数据x1,x2,…,x8平均数为6,标准差为2,则数据2x1−6,2x2−6,…,2x8−6的方差为____16____.16.某住宅小区有居民2万人,分別为本地人和外来人,从中随机抽取200人,调査居民是否使用共享单车作为交通工具,调查的结果如表所示,则该小区居民交通工具为共享单车的人数为____9500______.第II卷(非选择题)三、解答题(70分)17.(10分)甲乙两台机床同时生产一种零件,10天中,两台机床每天生产的次品数分别是:甲 0 1 0 2 2 0 3 1 2 4乙 2 3 1 1 0 2 1 1 0 1(1)求这两组数据的平均数和标准差 1.5 1.2 1.26 0.93(2)判断一下那台机床的性能较好,并说明理由。

高中数学必修三练习题精编

高中数学必修三练习题精编

必修三第三章测试卷一、选择题:1.从甲、乙、丙三人中任选两名代表,甲被选中的概率( )A.12B.13C.23D .1 2.将骰子向桌面上先后抛掷2次,其中向上的数之积为12的结果有( )A .2种B .4种C .6种D .8种3.在面积为S 的△ABC 的内部任取一点P ,则△PBC 的面积小于S 2的概率为( ) A.14 B.12 C.34 D.234.从一批产品中取出三件产品,设A =“三件产品全不是次品”,B =“三件产品全是次品”,C =“三件产品不全是次品”,则下列结论正确的是( ) A .A 与C 互斥 B .B 与C 互斥 C .任何两个均互斥 D .任何两个均不互斥 5.如图,是由一个圆、一个三角形与一个长方形构成的组合图形,现用红、蓝两种颜色为其涂色,每个图形只能涂一种颜色,则三个形状颜色不全相同的概率为( )A.34B.38C.14D.186.给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率是( )A.16B.13C.12D.237.在区间[-π,π]内随机取两个数分别记为a ,b ,则使得函数f (x )=x 2+2ax -b 2+π2有零点的概率为( )A.π4 B .1-π4C.4π D.4π-1 8.如图所示,茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中有一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是A.25B.710C.45D.910 9.节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒内间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( )A.14B.12C.34D.7810.一个数学兴趣小组有女同学2名,男同学3名,现从这个数学兴趣小组中任选2名同学参加数学竞赛,则参加数学竞赛的2名同学中,女同学人数不少于男同学人数的概率为( )A.310B.25C.35D.71011.掷一枚均匀的正六面体骰子,设A 表示事件“出现2点”,B 表示“出现奇数点”,则P (A ∪B )等于( )A.12B.23C.13D.2512.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆,在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A.12-1πB.1πC .1-2π D.2π二、填空题:13.取一根长为3 m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1 m如图所示,在正方形内有一扇形(见阴影部分),点P 随意等可能落在正方形内,则这点落在扇形外且在正方形内的概率为________.15.在五个数字1,2,3,4,5中,若随机取出三个数字,则剩下两个数字都是奇数的概率是________.(结果用数值表示)16.从1,2,3,4这四个数字中,任取两个,这两个数字都是奇数的概率是________,这两个数字之与是偶数的概率是________.三、解答题:17.(本小题满分10分)同时抛掷两个骰子(各个面上分别标有数字1,2,3,4,5,6),计算:(1)向上的数相同的概率.(2)向上的数之积为偶数的概率.18.(本小题满分12分)袋子中装有大小与形状相同的小球,其中红球与黑球各1个,白球n 个.从袋子中随机取出1个小球,取到白球的概率是12. (1)求n 的值.(2)记从袋中随机取出一个小球为白球得2分,为黑球得1分,为红球不得分.现从袋子中取出2个小球,求总得分为2分的概率.19.(本小题满分12分)一个袋中装有四个形状、大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机抽取两个球,求取出的球的编号之与不大于4的概率.(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n<m+2的概率.20.(本小题满分12分)小王、小李两位同学玩掷骰子(骰子质地均匀)游戏,规则:小王先掷一枚骰子,向上的点数记为x;小李后掷一枚骰子,向上的点数记为y.(1)在直角坐标系xOy中,以(x,y)为坐标的点共有几个?(2)规定:若x+y≥10,则小王赢;若x+y≤4,则小李赢,其他情况不分输赢.试问这个游戏规则公平吗?请说明理由.21.(本小题满分12分)为了解社会对学校办学质量的满意程度,某学校决定用分层抽样的方法从高中三个年级的家长委员会中共抽取6人进行问卷调查,已知高一、高二、高三的家长委员会分别有54人,18人,36人.(1)求从三个年级的家长委员会中分别应抽的家长人数;(2)若从抽到的6人中随机抽取2人进行调查结果的对比,求这2人中至少有一人是高三学生家长的概率.22.(本小题满分12分)一个质地均匀的正方体的六个面上分别标有数字0,1,2,3,4,5,一个质地均匀的正四面体的四个顶上分别标有数字1,2,3,4.将这个正方体与正四面体同时抛掷一次,正方体正面向上的数字为a,正四面体的三个侧面上的数字之与为b.(1)求事件b=3a的概率;(2)求事件“点(a,b)满足a2+(b-5)2≤9”的概率.必修三综合检测一、选择题1.下列事件中,是随机事件的是( )①从10个玻璃杯(其中8个正品,2个次品)中任取3个,3个都是正品;②同一门炮向同一个目标发射多发炮弹,其中50%的炮弹击中目标;③某人给其朋友打电话,却忘记了朋友电话号码的最后一个数字,就随意在键盘上按了一个数字,恰巧是朋友的电话号码;④同性电荷,相互排斥;⑤某人购买体育彩票中一等奖.A .②③④B .①③⑤C .①②③⑤D .②③⑤2.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为( )A .6B .8C .10D .123.下表是某厂1~4由散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归方程是y ^=-0.7x +a ,则a =( )A .10.5B .5.15C .5.2D .5.254.如图所示的算法流程图中,输出的S 表达式为( )4题图A .1+2+…+49B .1+2+…+50C .11+2+…+49D .11+2+…+505.废品率x%与每吨生铁成本y(元)之间的回归直线方程为y ^=234+3x ,表明( )A .废品率每增加1%,生铁成本增加3x 元B .废品率每增加1%,生铁成本每吨增加3元C .废品率每增加1%,生铁成本增加234元D .废品率不变,生铁成本为234元6.在线段[0,3]上任取一点,则此点坐标大于1的概率是( ) A .34 B .23 C .12 D .137.某公司在2014年上半年的收入x(单位:万元)与月支出y(单位:万元)的统计资料如下表所示:月份 1月份 2月份 3月份 4月份 5月份 6月份收入x 12.3 14.5 15.0 17.0 19.8 20.6支出y 5.63 5.75 5.82 5.89 6.11 6.18根据统计资料,则( )A .月收入的中位数是15,x 与y 有正线性相关关系B .月收入的中位数是17,x 与y 有负线性相关关系C .月收入的中位数是16,x 与y 有正线性相关关系D .月收入的中位数是16,x 与y 有负线性相关关系8.如图所示是用模拟方法估计圆周率π的程序框图,P 表示估计结果,则图中空白框内应填入( )A .P =N 1 000B .P =4N 1 000C .P =M 1 000D .P =4M 1 0009.一个容量100的样本,其数据的分组与各组的频数如下表:组别 [0,10) [10,20) [20,30) [30,40) [40,50) [50,60) [60,70] 频数 12 13 24 15 16 13 7则样本数据落在[10,40)上的频率为( )A .0.13B .0.39C .0.52D .0.6410.如图,样本A 与B 分别取自两个不同的总体,它们的样本平均数分别为xA 与xB ,样本标准差分别为s A 与s B ,则( )A .x A >xB ,s A >s B B .x A <x B ,s A >s BC .x A >x B ,s A <s BD .x A <x B ,s A <s B11.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数与平均数分别是( )A .91.5与91.5B .91.5与92C .91与91.5D .92与9212.如图,边长为2的正方形内有一不规则阴影部分,随机向正方形内投入200粒芝麻,恰有60粒落入阴影部分,则不规则图形的面积为( )A .35B .45C .65D .32二、填空题:13.利用秦九韶算法,求当x=23时,多项式7x3+3x2-5x+11的值的算法.①第一步:x=23,第二步:y=7x3+3x2-5x+11,第三步:输出y;②第一步:x=23,第二步:y=((7x+3)x-5)x+11,第三步:输出y;③算6次乘法,3次加法;④算3次乘法,3次加法.以上描述正确的序号为________.14.有20张卡片,每张卡片上分别标有两个连续的自然数K,K+1,其中K=0,1,2,…,19.从这20张卡片中任取一张,记事件“该卡片上两个数的各位数字之与(例如:若取到标有9,10的卡片,则卡片上两个数的各位数字之与为9+1+0=10)大于14”为A,则P(A)=__________________.15.执行如图所示的程序框图,输出的T=________.16.从参加某知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如图所示.观察图形,估计这次知识竞赛的及格率(大于或等于60分为及格)为________.三、解答题:17.(本小题满分10分)一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球,从中随机取出1球,求:(1)求取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率.18.(本小题满分12分)在一次数学统考后,某班随机抽取10名同学的成绩进行样本分析,获得成绩数据的茎叶图如图所示.(1)计算样本的平均成绩及方差;(2)在这10个样本中,现从不低于84分的成绩中随机抽取2个,求93分的成绩被抽中的概率.19.(本小题满分12分)某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目;(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,①列出所有可能的抽取结果;②求抽取的2所学校均为小学的概率.20.(本小题满分12分)(2015·福建卷)全网传播的融合指数是衡量电视媒体在中国网民中影响力的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.(1)现从融合指数在[4,5)2家进行调研,求至少有1家的融合指数在[7,8]内的概率;(2)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数.21.(本小题满分12分)某车间为了规定工时定额,需要确定加工零件所花费的时间,(1)(2)求出y 关于x 的线性回归方程y ^=b ^x +a ^,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?22.(本小题满分12分)某高校在2012年的自主招生考试成绩中随机抽取100名中学生(1)(2)3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试;(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A 考官进行面试,求:第4组至少有一名学生被考官A 面试的概率.。

人教b版数学必修三测试题及答案

人教b版数学必修三测试题及答案

人教b版数学必修三测试题及答案一、选择题(每题3分,共30分)1. 已知函数f(x) = 2x + 3,求f(-1)的值。

A. -1B. 1C. 5D. 7答案:B2. 集合A = {1, 2, 3},集合B = {2, 3, 4},求A∩B。

A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3}答案:B3. 已知复数z = 3 + 4i,求|z|。

A. 5B. √7C. 7D. √51答案:A4. 函数y = x^2 - 4x + c的顶点坐标为(2, -1),求c的值。

A. -1B. 3C. 5D. 9答案:B5. 已知直线方程为y = 2x + 3,求该直线与x轴的交点。

A. (-3/2, 0)B. (0, 3)C. (3/2, 0)D. (-3, 0)答案:C6. 已知等差数列{an}的首项a1 = 2,公差d = 3,求a5的值。

A. 14B. 17C. 20D. 23答案:A7. 已知向量a = (1, 2),向量b = (2, 4),求向量a与向量b的夹角。

A. π/4B. π/3C. π/2D. 2π/3答案:B8. 已知圆的方程为(x - 2)^2 + (y - 3)^2 = 9,求圆心坐标。

A. (2, 3)B. (-2, -3)C. (3, 2)D. (-3, -2)答案:A9. 已知函数f(x) = sin(x) + cos(x),求f(π/4)的值。

A. √2B. 1C. 2D. 0答案:A10. 已知等比数列{bn}的首项b1 = 1,公比q = 2,求b3的值。

A. 4B. 8C. 16D. 32答案:A二、填空题(每题4分,共20分)1. 已知函数f(x) = x^3 - 6x^2 + 11x - 6,求f'(x)。

答案:3x^2 - 12x + 112. 已知圆的直径为10,求圆的半径。

答案:53. 已知向量a = (3, -4),向量b = (-4, 3),求向量a与向量b的点积。

高中数学必修三试卷

高中数学必修三试卷

高中数学必修三试卷第一部分:选择题(共50分)1. 解方程:2x + 5 = 13.2. 设函数 f(x) = x^2 + 2x + 1, 求 f(-2) 的值.3. 若 A 是方阵,AB = I, 则 B = ?4. 已知函数 f(x) = 2^x ,求 f(3) 的值.5. 正方体 ABCDEFGH,A(-1,2,3),B(2,5,3),C(2,2,6)和 E 为对角线BF 的中点,求 BE 的坐标.第二部分:填空题(共30分)1.已知 2x + 5 = 7, 则 x = _____2. 已知sin α = 0.6, 则α 的值应在 _____ 和 _____ 之间.3. 高中四年学期数学平均成绩为 85 ,若前三年的平均成绩为 80 ,四年共有多少门课?4. 画出函数 y = 2x^2 + 3x - 1 的图像,并标明顶点和切线斜率.5. 三角形 ABC 中,已知∠A = 30°,BC = 6,AC = 10,求 AB 的值.第三部分:计算题(共40分)1. 计算 2^3 × 3^2 + 1.2. 计算 1 + 3 + 5 + 7 + 9 + ... + 99.3. 计算 C(7, 3) 的值.4. 一购物车内共有 20 个苹果和 15 个橘子,从中任取一个水果,求取到的是橘子的概率.5. 计算 sin 60° × cos 30°.第四部分:证明题(共80分)1. 证明:对于任意实数 a 和 b,(a + b)^2 = a^2 + 2ab + b^2.2. 证明:若 a + b = 0,则 a = -b.3. 证明:对于任意正整数 n, n^2 + 1 > 2n.4. 证明:在直角三角形 ABC 中,斜边 c 满足 c^2 = a^2 + b^2.5. 证明:若 a × b = 0,则 a = 0 或 b = 0.第五部分:解答题(共100分)1. 用配方法解方程:2x^2 + 4x - 6 = 0.2. 求函数 y = x^2 - 2x 的定义域和值域.3. 在坐标系中,已知 A(2,1),B(4,5),C(6,3),D(5,1),连接线段 AB 和 BA,线段 CD 和 DC,判断是否互相垂直.4. 在平面直角坐标系中,画出椭圆的图像:(x-3)^2/9 + (y-2)^2/4 = 15. 设 P 是等边三角形 ABC 的内部任意一点,分别连接 PA,PB 和PC,证明:PA + PB + PC 恒等于定值.结束语:本试卷共 300 分。

数学必修三测试卷

数学必修三测试卷

必修三测试卷一、选择题:1.某单位有老年人28人,中年人54人,青年人81人.为了调查他们的身体状况,需从他们中抽取一个容量为36的样本,最适合抽取样本的方法是( ).A.简单随机抽样 B.系统抽样C.分层抽样 D.先从老年人中剔除一人,然后分层抽样2.下列说法错误的是( ).A.在统计里,把所需考察对象的全体叫作总体B.一组数据的平均数一定大于这组数据中的每个数据C.平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D.一组数据的方差越大,说明这组数据的波动越大3.从甲、乙两班分别任意抽出10名学生进行英语口语测验,其测验成绩的方差分别为S12= 13.2,S22=26.26,则( ).A.甲班10名学生的成绩比乙班10名学生的成绩整齐B.乙班10名学生的成绩比甲班10名学生的成绩整齐C.甲、乙两班10名学生的成绩一样整齐D.不能比较甲、乙两班10名学生成绩的整齐程度4.下列说法正确的是( ).A.根据样本估计总体,其误差与所选择的样本容量无关B.方差和标准差具有相同的单位C.从总体中可以抽取不同的几个样本D.如果容量相同的两个样本的方差满足S12<S22,那么推得总体也满足S12<S22是错的5.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输人为15,那么由此求出的平均数与实际平均数的差是( ).A.3.5 B.-3 C.3 D.-0.56A.37.0% B.20.2% C.0分 D.4分7.口袋内装有一些大小相同的红球、白球和黒球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黒球的概率是()A.0.42 B.0.28 C.0.3 D.0.78.从装有2个红球和2个黒球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.至少有一个黒球与都是黒球 B.至少有一个黒球与都是黒球C.至少有一个黒球与至少有1个红球 D.恰有1个黒球与恰有2个黒球9.在40根纤维中,有12根的长度超过30mm ,从中任取一根,取到长度超过30mm 的纤维的概率是( )A .4030B .4012C .3012D .以上都不对10.先后抛掷骰子三次,则至少一次正面朝上的概率是( )A .81B . 83C . 85D . 8711. 从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知 P (A )= 0.65 ,P(B)=0.2 ,P(C)=0.1。

高一数学必修三测试题及答案

高一数学必修三测试题及答案

精心整理高一数学必修三测试题及答案数学第一章测试题一.选择题1.A .的C 、原则2、烧水A 、听广播B 、听广播C 、D 、S1吃饭同时听广播、S2泡面、S3烧水同时洗脸刷牙、S4刷水壶3.算法S1m=aS2若b10B.iS4*xENDEND对甲乙两程序和输出结果判断正确的是()A.程序不同结果不同B.程序不同,结果相同C.程序相同结果不同D.程序相同,结果相同10,即能输出AC二.11(第(第12填写:(1);(2);(3)。

13.将二进制数1010101(2)化为十进制结果为;再将该数化为八进制数,结果为.2第一趟第二趟第三趟第四趟15.计算11011(2)-101(2)=(用二进制表示)三、解答题16.S1S2201,第23个数大(1)(第20题)高一上学期第一次月考(数学)必修三(时间:120分钟,满分:120分)一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,把答案写在答题卷中的相应位置上)1.下列关于算法的说法中正确的个数有()①求解某一类问题的算法是的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行2.,B15,A.A.4.则甲、乙两人这几场比赛得分的中位数之和是()A.65B.64C.63D.625.某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;&#8222;;第六组,成绩大于等于18秒且小于等于19秒.右图是按上述分组方法得到的频率分布直方图.设成绩小于17秒的学生人数占全班人数的百分比为x,成绩大于等于15秒且小于17秒的学生人数为y,则从频率分布直方图中可分析出x和y分别为()35B6s=0,求20.现分别甲乙(Ⅰ)用茎叶图表示这两组数据。

数学必修三全册试卷及答案

数学必修三全册试卷及答案

第I 卷(选择题)一、单选题(60分)1.某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为116, 124, 118, 122, 120,五名女生的成绩分别为118, 123, 123, 118, 123,下列说法一定正确的是(B )A . 这种抽样方法是一种分层抽样B . 这五名男生成绩的方差大于这五名女生成绩的方差C .这种抽样方法是一种系统抽样D . 该班级男生成绩的平均数小于该班女生成绩的平均数2.掷两枚均匀的骰子,已知点数不同,则至少有一个是3点的概率为( C )A .B .C .D . 3.如图,矩形ABCD 中点E 位边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自ABE 内部的概率等于( D )A .41B .31C . 32D . 21 4.某杂志社对一个月内每天收到的稿件数量进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数分别是( D )1031853141A . 47,45B . 45,47C . 46,46D . 46,455. 在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注数字外完全相同,现从中随机取2个小球,则取出的小球标注的数字之和为3或6的概率是( B ) A.112 B. 310 C.15 D.1106.高三毕业时,甲、乙、丙、丁四位同学站成一排照相留念,则甲丙相邻的概率为( A )A .B .C .D . 7.将输入如下图所示的程序框图得结果( A )A .2006B .C .0D .8.98和63的最大公约数为( B )A.6 B.7 C.8 D.99.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为k:5:3,现用分层抽样方法抽出一个容量为120的样本,已知A 种型号产品共抽取了24件,则C 种型号产品抽取的件数为( B )121323142005x =20052005-A.24B.36C.30D.4010.光明中学有老教师25人,中年教师35人,青年教师45人,用分层抽样的方法抽取21人进行身体状况问卷调查,则抽到的中年教师人数为( C )A.9B.8C.7D.611.从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是( B ) A.5,10,15,20,25 B.3,13,23,33,43C.1,2,3,4,5 D.2,4,8,16,3212.已知一个样本中的数据为1,2,3,4,5,则该样本的标准差为( C )A.1B.C.D.2二、填空题(20分)13.一个路口的红绿灯,红灯的时间是30秒,黄灯的时间是5秒,绿灯的时间是40秒,当你到达路口时遇见红灯的概率是 0.4 .14.如图是一容量为100的样本的频率分布直方图.则由图可知样本数据的中位数大约是__13_____.15.数据,,…,平均数为6,标准差为2,则数据,,…,的方差为____16____.16.某住宅小区有居民2万人,分別为本地人和外来人,从中随机抽取200人,调査居民是否使用共享单车作为交通工具,调查的结果如表所示,则该小区居民交通工具为共享单车的人数为____9500______.第II卷(非选择题)三、解答题(70分)17.(10分)甲乙两台机床同时生产一种零件,10天中,两台机床每天生产的次品数分别是:甲 0 1 0 2 2 0 3 1 2 4乙 2 3 1 1 0 2 1 1 0 1(1)求这两组数据的平均数和标准差 1.5 1.2 1.26 0.93(2)判断一下那台机床的性能较好,并说明理由。

(完整版)高一数学必修三测试题--(附有答案).docx

(完整版)高一数学必修三测试题--(附有答案).docx

必修三测试题一、:(本大共 12小,每小5 分,共 60 分).1.通随机抽用本估体,下列法正确的是( ).A.本的果就是体的果B.数据的方差越大,明数据越定C.本的准差可以近似地反映体的平均状D.本容量越大,可能估就越精确2. 甲校有 3 600 名学生,乙校有 5 400 名学生,丙校有 1 800 名学生,三校学生某方面的情况,划采用分抽法,抽取一个容量90 人的本,在三校分抽取学生().A . 30 人, 30 人, 30 人B. 20 人, 30 人, 10 人C . 30 人, 45 人, 15 人D. 30 人, 50 人, 10 人3. 从装有两个球和两个黑球的口袋内任取两个球,那么互斥而不立的两个事件是()A. “至少有一个黑球”与“都是黑球”B. “至少有一个黑球”与“至少有一个球”C.“恰有一个黑球”与“恰有两个黑球”D.“至少有一个黑球”与“都是球”4. 200 汽通某一段公路,速的率分布直方如下所示,速在[50 , 70) 的汽大有().A. 60 B . 80C. 70D. 140率0.04距0.030.020.014050607080速455.从甲乙两个城市分随机抽取16 台自售机, 其售行, 数据用茎叶表示( 如上所示 ), 甲乙两数据的平均数分甲乙中位数分m甲,m乙,()x ,x ,A. x甲x乙,m甲m乙B. x甲x乙,m甲m乙C. x甲x乙,m甲m乙D. x甲 x乙,m甲m乙6.性回方?bx a程表示的直必的一个定点是() . yA. ( x, y )B. (x,0)C. (0, y)D. (0,0)7. 从 1,2,3,⋯⋯ 9 9 个数字中任取一个,取出的数字偶数的概率().54A . 1B. 0C.9D.98.从数字 1,2, 3, 4, 5中,随机抽取 3 个数字 ( 允重复 ) 成三位数,其各位数字之和等于9的概率 ().18191613A . 125B. 125C. 125D. 1259. 一数据的每一个数据都减去80,得到一新数据,若所得新数据的平均数 1.2, 方差 4.4 ,原来数据的平均数和方差分是()A. 81.2 , 4.4 B.78.8, 4.4C.81.2 , 84.4D.78.8, 75.610.如所示,在心角直角的扇形中,以扇形的两半径的中点心作两个小半,从扇形中随机的取出一点,点来自阴影部分的概率是()1 - 11-212A. B. C. D.11.某袋子中装有 3 个白球, 4 个黑球,从中任取 3 个球,下列事件中是立事件的是()A. 恰有 1 个白球和全是白球B.至少有 1个白球和全是黑球C. 至少有 1 个白球和至多有 2 个白球D.至少有 1个白球和至少有 1 个黑球12.在 5 件品中,有 3 件一等品, 2 件二等品,从中随机取两件,那么下列事件中,概率是0.7的是()A. 都不是一等品B. 恰有一件一等品C. 至少有一件一等品D. 至多有一件一等品二、填空 : (共 6 小,每 5 分,共 30 分)13. 某行的一个窗口有人在排,事件 A ={至少有三人在排},事件A= ___________。

必修三-数学测试题

必修三-数学测试题

必修三数学测试题一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.在频率分布直方图中,各个长方形的面积表示()A.落在相应各组的数据的频数B.相应各组的频率C.该样本所分成的组数D.该样本的样本容量[答案]B[解析]在频率分布直方图中,横轴是组距,纵轴是频率组距,故各个长方形的面积=组距×\f(频率,组距)=频率.2.下边程序执行后输出的结果是()错误!A.-1B.0C.1D.2[答案]B[解析]S=5+4+3+2+1;此时n=0.3.用秦九韶算法计算多项式f(x)=x6-12x5+60x4-160x3+240x2-192x+64,当x=2时的值为()A.0 ﻩB.2C.-2 D.4[答案]A[解析]先将多项式f(x)进行改写:f(x)=x6-15x5+60x4-160x3+240x2-192x+64=(((((x-12)x+60)x-160)x+240)x-192)·x+64.然后由内向外计算得v0=1,v1=v0x+a5=1×2-12=-10,v2=v1x+a4=-10×2+60=40,v3=v2x+a3=40×2-160=-80,v4=v3x+a2=-80×2+240=80,v5=v4x+a1=80×2-192=-32,v6=v5x+a0=-32×2+64=0.所以多项式f(x)当x=2时的值为f(2)=0.4.一班有学员54人,二班有学员42人,现在要用分层抽样的方法从两个班中抽出一部分人参加4×4方队进行军训表演,则一班和二班分别被抽取的人数是()A.9人、7人B.15人、1人C.8人、8人D.12人、4人[答案]A[解析]一班抽取人数54×\f(16,96)=9(人),二班抽取人数42×1696=7(人).5.观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿体重在(2700,3 000)范围内的频率为()A.0.001 ﻩB.0.1C.0.2D.0.3[答案]D[解析]频率=0.001×300=0.3.6.期中考试以后,班长算出全班40个人数学成绩的平均分为M,如果把M当成一个同学的分数,与原来的40个分数一起,算出这41个分数的平均值为N,那么M N为()A.错误!B.1C.\f(41,40)ﻩD.2[答案]B[解析]设40个同学的成绩分别为x1,x2,…,x40,而x41=M,则M=错误!,∴x1+x2+…+x40=40M,N=错误!=错误!=M,故选B.7.对一个容量为50的样本数据进行分组,各组的频数如下:[12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),6;[30.5,33.5),3.根据累积频率分布,估计不大于30的数据大约占()A.94%B.6%C.95%D.90%[答案]A[解析]由于大于30的数据大约占错误!×100%=6%,∴不大于30的数据大约占1-6%=94%,故选A.8.如果执行下面的程序框图,输入n=6,m=4,那么输出的p等于()A.720ﻩB.360C.240D.120[答案]B[解析]p=1×(6-4+1)×(6-4+2)×(6-4+3)×(6-4+4)=3×4×5×6=360.9.已知x、y的取值如下表:x0 1 3 4y 2.2 4.3 4.8 6.7)A.2.6 ﻩB.-2.6C.4.5ﻩD.2[答案]A[解析]错误!=错误!=2,错误!=错误!=4.5.把(2,4.5)代入回归方程得a=2.6.10.如果执行下面的程序框图,那么输出的S等于( )A.10ﻩB.22C.46ﻩD.94[答案]C[解析]i=2时,S=2(1+1)=4;i=3时,S=2(4+1)=10;i=4时,S=2(10+1)=22;i=5时,S=2(22+1)=46.此时满足条件,输出S.11.经显示,家庭用液化气量(单位:升)与气温(单位:度)有一定的关系,如图所示,图(1)表示某年12个月中每个月的平均气温,图(2)表示某家庭在这年12个月中每个月的用气量,根据这些信息,以下关于家庭用气量与气温关系的叙述中,正确的是()A.气温最高时,用气量最多B.当气温最低时,用气量最少C.当气温大于某一值时,用气量随气温升高而增加D.当气温小于某一值时,用气量随气温降低而增加[答案]C[解析]经比较可以发现,2月份用气量最多,而2月份温度不是最高,故排除A,同理可排除B.从5,6,7三个月的气温和用气量可知C正确.[点评]从图上看,尽管10至12月气温在降低,用气量在增加,但不能选D,因为不满足“气温小于某一数值时”的要求,因此考虑问题一定要全面.12.(2012·江西高考卷)小波一星期的总开支分布图如图(1)所示,一星期的食品开支如图(2)所示,则小波一星期的鸡蛋开支占总开支的百分比为()A.30%ﻩB.10%C.3%D.不能确定[答案]C[解析]本题是一个读图题,图形看懂结果很容易计算.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.经问卷调查,某班学生对摄影分别持“喜欢”“不喜欢”和“一般”三种态度,其中持“一般”态度的比“不喜欢”的多12人,按分层抽样方法从全班选出部分学生座谈摄影,如果选出的是5位“喜欢”摄影的同学、1位“不喜欢”摄影的同学和3位持“一般”态度的同学,那么全班学生中“喜欢”摄影的比全班人数的一半还多________人.[答案] 3[解析]设持“不喜欢”态度的有x人,则持“一般”态度的有(x+12)人,持“喜欢态度”的有y人,则错误!=错误!=错误!,∴x=6,y=30.∴全班人数为6+30+18=54,则30-错误!×54=3.14.下列程序输出的结果是________.a=54321b=0DOt=a MOD10 1b=b*10+ta=INT(a/10)LOOPUNTILt<=0PRINT“b=”;bEND[答案]12 345[解析]第一次执行循环体后,t=1,b=1,a=5432,第二次执行循环体后,t=2,b=12,a=543,依次下去可得b=12345.15.(1)(1 011 010)2=()10;(2)(154)6=()7.[答案](1)90(2)130[解析](1)将二进制数化为十进制数,就是将二进制的末位乘以该位的权20,倒数第二位乘以该位的权21,…,依次类推,最后把各位的结果相加即可.(1011 010)2=0×20+1×21+0×22+1×23+1×24+0×25+1×26=90.(2)不同进位制之间的转化(除十进制),我们可以把需要转化数化成十进制数,然后再把十进制数化为要转化的进位制的数.(154)6=4×60+5×61+1×62=4+30+36=(70)10.故(70)10化为七进制数如上图所示,故(70)10=(130)7.16.为了解某地高一年级男生的身高情况,从其中的一个学校选取容量为60的样本(60名男生的身高,单位:cm),分组情况如下:[答案] 0.45[解析]172.5~179.5的频数为60×0.1=6.∴165.5~172.5的频数为60-6-21-6=27.∴对应频率a=错误!=0.45.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)某政府机关在编工作人员100人,其中副处级以上干部10人,一般干部70人,工人20人.上级机关为了了解政府机构改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,并写出具体实施抽取的步骤.[解析]因为机构改革关系到各种人的不同利益,所以采用分层抽样为妥.因为错误!=错误!,所以错误!=2,错误!=14,错误!=4.故从副处级以上干部中抽取2人,从一般干部中抽取14人,从工人中抽取4人.因副处级以上干部与工人的人数较少,把他们分别按1~10与1~20编号,然后采用抽签法分别抽取2人和4人;对一般干部70人进行01,02,…,70编号,然后用随机数法从中抽取14人.18.(本小题满分12分)在音乐唱片超市里,每张唱片售价25元.顾客如果购买5张以上(含5张)唱片,则按照九折收费;如果顾客购买10张以上(含10张)唱片,则按照八五折收费.请设计一个完成计费工作的算法,画出程序框图.[解析]算法步骤如下:第一步,输入a.第二步,若a<5,则C=25a;否则,执行第三步.第三步,若a<10,则C=22.5a;否则(a≥10),C=21.25a.第四步,输出C,算法结束.程序框图如下图所示.19.(2011~2012·山西模拟)(本小题满分12分)如图甲是某市有关部门根据对当地干部的月收入情况调查后画出的样本频率分布直方图,已知图中从左向右第一组的频数为4000.在样本中记月收入在[1000,1500),[1500,2000),[2000,2500),[2500,3000),[3000,3500),[3500,4000)的人数依次为A1,A2,…,A6.图乙是统计图甲中月工资收入在一定范围内的人数的程序框图,求输出的S(用数字作答).[解析]方法一:先求样本容量x,再分别计算A2,A3,…,A6.在频率分布直方图中,小长方形的高是频率/组距,所以A1=4000=0.0008×500x,解得x=10000.从而,A2=0.0004×500×10000=2000,A3=0.0003×500×10000=1500,A4=0.00025×500×10000=1250,A5=0.00015×500×10000=750,A6=0.0001×500×10000=500,所以图乙输出的S=A2+A3+…+A6=6000.方法二:先求样本容量x,再计算A2+A3+…+A6.在频率分布直方图中,小长方形的高是频率/组距,所以A1=4000=0.008×500x,解得x=10000.所以,图乙输出的S=A2+A3+…+A6=10000-A1=10000-4000=6000.[答案]6000[点评]本例由程序框图转化到频率分布直方图,由图读数,体现了转化与化归思想.20.(本小题满分12分)甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲82817978 958893 84乙9295807583809085(1)用茎叶图表示这两组数据;若将频率视为概率,对甲学生在培训后参加的一次数学竞赛成绩进行预测,求甲的成绩高于80分的概率;(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两中)考虑,你认为选派哪位学生参加合适?请说明理由.[解析](1)作出茎叶图如下:记“甲同学在一次数学竞赛中成绩高于80分”为事件A,则P(A)=错误!=错误!,答:甲的成绩高于80分的概率为34.(2)派甲参赛比较合适.理由如下:错误!甲=错误!(70×2+80×4+90×2+8+9+1+2+4+8+3+5)=85,错误!乙=错误!(70×1+80×4+90×3+5+0+0+3+5+0+2+5)=85,s\o\al(2,甲)=错误![(78-85)2+(979-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5,s错误!=错误![(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41,∵错误!甲=错误!乙,s错误!<s错误!,∴甲的成绩较稳定,派甲参赛比较合适.21.(本小题满分12分)为了了解某地区中小学教学水平受教学资源的影响情况,对某地区中小学进行调查,已知该地区中小学人数的分布情况如下表(单位:人):学段城市县镇农村小学357 000 221600 258100初中226 200 134 200 11 290高中112 000 43300 6 300 请根据上述基本数据,设计一个样本容量为总体容量的千分之一的抽样方案.[分析]要根据样本容量的大小灵活选取抽样方法.[解析]方案具体如下:第一步:确定城市、县镇、农村分别被抽取的个体数,城市、县镇、农村的学生数分别为:357000+226 200+112 000=695 200,221600+134 200+43 300=399 100,258 100+11 290+6 300=275 690.因为样本容量与总体容量的比为1 1 000,所以样本中包含的各部分个体数分别为:695 200×错误!≈695,399 100×错误!≈399,275 690×错误!≈276.第二步:将城市的被抽取个体数分配到小学、初中、高中三个学段.因为城市小学、初中、高中的人数比为:357 000226200112000=17851131560,1 785+1 131+560=3 476,所以小学、初中、高中被抽取的人数分别为:1 785×6953476≈357,1 131×错误!≈226,560×错误!≈112.第三步:将县镇的被抽取的个体数分配到小学、初中、高中三个学段.由于县镇小学、初中、高中的人数比为:221 600134 20043 300=2 216 1 342433,2 216+1 342+433=3 991,所以小学、初中、高中被抽取的人数分别为:2 216×3993 991≈222,1 342×3993 991≈134,433×3993991≈43.第四步:使用同样的方法将农村的被抽取的个体数分配到小学、初中、高中三个学段,结果是农村的小学、初中、高中被抽取的人数分别为:259,11,6.第五步:再用合适的方法在对应的各个部门抽取个体,在各层中抽取的个体数目如下表所示:学段城市县镇农村小学357 222 259初中226 134 11高中11243 6[点拨] 在确定各层所抽取的个体数时,若不是整数,可以采用四舍五入的方法来处理.按照上表数目在各个层中用简单随机抽样方法抽取个体,合在一起形成所需的样本.22.(本小题满分12分)下表中数据是退水温度x(℃)对黄硐延长性y(%)效应的试验结果,y是以延长度计算的.x(℃)300 400 500 600 700800y(%) 40 50 55 6067 70(2)指出x,y是否线性相关;(3)若线性相关,求y关于x的回归方程;(4)估计退水温度是1000℃时,黄硐延长性的情况.[分析] 由散点图判断线性相关,直接代入公式求回归方程的系数a,b.[解](1)散点图如下图所示(2)由散点图可以看出样本点分布在一条直线的附近,可见y与x线性相关.(3)列表如下,并用科学计算器进行有关计算.i 1 2 3 4 5 6x i300 400 500600 700 800yi40 50 55 60 67 70xiyi12000 20 000 27 500 36000 46 900 56000x 错误!90000160 000250000 360000 490 000 640000ii于是可得错误!=错误!=错误!≈0.059.错误!=错误!-错误!错误!≈57-0.059×550=24.55.因此所求的回归直线方程为错误!=0.059x+24.55.\s\up6(^)=0.059×1 000+24.55=83.55,(4)将x=1 000代入回归方程,得y即退水温度是1000℃时,黄硐延长性大约是83.627%.[点拨] 知道x与y是线性相关关系,无须进行相关性检验,否则,应首先进行相关性检验.如果本身两个变量不具备相关关系,即使求出回归直线方程也毫无意义.。

数学必修3测试题及答案

数学必修3测试题及答案

数学必修3测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的图像?A. 直线B. 抛物线C. 双曲线D. 圆答案:B2. 函数y=2x+1的斜率是多少?A. 1B. 2C. -1D. -2答案:B3. 已知函数f(x)=x^2-4x+3,求f(2)的值。

A. 1B. 3C. 5D. 7答案:A4. 等差数列的前三项分别是1,3,5,那么第n项的通项公式是?A. 2n-1B. 2n+1C. 2n-3D. 2n+3答案:A5. 求和公式S_n=n/2*(a_1+a_n)中,S_10的值是多少,如果a_1=1,d=2?A. 100B. 110C. 120D. 130答案:C6. 已知集合A={1,2,3},B={2,3,4},那么A∩B等于?A. {1,2,3}B. {2,3}C. {1,2}D. {3,4}答案:B7. 函数y=x^3-3x^2+2的导数是?A. 3x^2-6xB. 3x^2-6x+2C. x^2-6x+2D. x^3-6x+2答案:A8. 已知等比数列的前两项分别是2和6,那么第三项是?A. 18B. 12C. 24D. 36答案:A9. 圆的方程x^2+y^2=25的半径是多少?A. 5B. 25C. √25D. √5答案:A10. 函数y=sin(x)的周期是?A. 2πB. πC. 1D. 2答案:A二、填空题(每题4分,共20分)1. 已知函数f(x)=x^2-6x+8,求f(3)的值。

答案:-12. 等差数列的前n项和公式为S_n=n/2*(a_1+a_n),当n=5,a_1=2,d=3时,S_5的值是。

答案:403. 函数y=cos(x)的值域是。

答案:[-1,1]4. 已知圆心在(2,3),半径为5的圆的方程是。

答案:(x-2)^2+(y-3)^2=255. 函数y=ln(x)的定义域是。

答案:(0,+∞)三、解答题(每题10分,共50分)1. 已知函数f(x)=x^3-6x^2+9x+1,求导数f'(x)。

必修3数学测试题及答案

必修3数学测试题及答案

必修3数学测试题及答案一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是:A. \( y = x^2 \)B. \( y = x^3 \)C. \( y = \sin(x) \)D. \( y = \cos(x) \)答案:C2. 已知 \( a \) 和 \( b \) 是两个不相等的实数,且 \( a^2 - 3a + 2 = 0 \) 和 \( b^2 - 3b + 2 = 0 \),那么 \( a + b \) 的值为:A. 0B. 1C. 3D. -3答案:C3. 函数 \( y = x^2 - 4x + 4 \) 的顶点坐标是:A. (2, 0)B. (2, -4)C. (-2, 4)D. (-2, 0)答案:A4. 计算 \( \int_{0}^{1} x^2 dx \) 的结果是:A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. 1D. 2答案:C5. 已知 \( \sin(\alpha) = \frac{1}{2} \),那么 \( \cos(\alpha) \) 的值是:A. \( \frac{\sqrt{3}}{2} \)B. \( -\frac{\sqrt{3}}{2} \)C. \( \frac{1}{2} \)D. \( -\frac{1}{2} \)答案:B6. 函数 \( y = \ln(x) \) 的定义域是:A. \( (0, +\infty) \)B. \( (-\infty, 0) \)C. \( (-\infty, +\infty) \)D. \( [0, +\infty) \)答案:A7. 已知 \( \tan(\theta) = 2 \),则 \( \sin(\theta) \) 的值是:A. \( \frac{2}{\sqrt{5}} \)B. \( \frac{1}{\sqrt{5}} \)C. \( \frac{2}{\sqrt{1+4}} \)D. \( \frac{1}{\sqrt{1+4}} \)答案:C8. 计算 \( \lim_{x \to 0} \frac{\sin(x)}{x} \) 的结果是:A. 1B. 0C. \( \infty \)D. \( -\infty \)答案:A9. 函数 \( y = \frac{1}{x} \) 在 \( x = 1 \) 处的导数是:A. 0B. 1C. -1D. \( \infty \)答案:C10. 已知 \( \cos(\alpha) = \frac{\sqrt{2}}{2} \),那么\( \sin(\alpha) \) 的值是:A. \( \frac{\sqrt{2}}{2} \)B. \( -\frac{\sqrt{2}}{2} \)C. 1D. 0答案:A二、填空题(每题4分,共20分)1. 函数 \( y = x^3 - 3x \) 的导数是 \( y' = \_\_\_\_\_ \)。

高中数学必修三全册练习题

高中数学必修三全册练习题

本册综合素能检测时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.下列各项中最小的数是( ) A .111111(2) B .20106 C .1000(4) D .101(8)[答案] A[解析] 111111(2)=1×25+1×24+1×23+1×22+1×21+1×20=63,210(6)=2×62+1×61+0×60=78,1000(4)=1×43+0×42+0×41+0×40=64,101(8)=1×82+0×81+1×80=65,故最小的数为111111(2).2.某单位有工程师6人,技术员12人,技工18人,要从这些人中抽取一个容量为n 的样本.如果采用系统抽样和分层抽样抽取,则不用剔除个体;如果样本容量增加1,则在采用系统抽样时,需要在总体中先剔除1个个体,则n 的值为( )A .6B .12C .18D .3 [答案] A[解析] 由于要用分层抽样三层之比为123,因此,凡为6的整倍数,又样本容量增加1时需要删除1人,所以35n +1为整数,因此n =6,故选A.3.奥林匹克会旗中央有5个互相套连的圆环,颜色自左至右,上方依次为蓝、黑、红,下方依次为黄、绿,象征着五大洲.在手工课上,老师将这5个环分发给甲、乙、丙、丁、戊五位同学制作,每人分得1个,则事件“甲分得红色’’与“乙分得红色”是( )A .对立事件B .不可能事件C .互斥但不对立事件D .不是互斥事件[答案] C[解析] 甲、乙不能同时得到红色,因而这两个事件是互斥事件;又甲、乙可能都得不到红色,即“甲或乙分得红色”的事件不是必然事件,故这两个事件不是对立事件.4.在长为12 cm 的线段AB 上任取一点C.现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积大于20 cm 2的概( )A.16B.13C.23D.45[答案] C[解析] 设AC =x cm ,则BC =(12-x )cm(0<x <12).面积S =x ·(12-x )>20,解得2<x <10,∴矩形面积大于20 cm 2的概率为10-212=23.故选C.5.某程序框图如图所示,现输入选项中的四个函数,则可以输出的是( )A .f (x )=|x |xB .f (x )=ln(x 2+1-x )C .f (x )=e x +e -xe x -e -xD .f (x )=x 21+x 4[答案] B[解析] 由框图知f (x )应满足:奇函数,有零点.A 中的函数不能输出,因为此函数没班级:_________姓名:_________学号:______-----------------------------密--------------------------------------封-----------------------------------线-------------------------------有零点;B 中函数可以输出;C 中函数不存在零点,故不能输出;D 中函数为偶函数,也不能输出,故选B.6.如图是某年青年歌手大奖赛中,七位评委为甲、乙两名选手打出的分数的茎叶图(其中m 为数字0~9中的一个).去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别a 1,a 2,则一定有( )A .a 1>a 2B .a 1<a 2C .a 1=a 2D .a 1,a 2的大小与m 的值有关 [答案] B[解析] 去掉一个最高分和一个最低分后,甲选手得分是81,85,85,84,85,则平均数是a 1=15(81+85+85+84+85)=84;乙选后得分是84,84,86,84,87,则平均数是a 2=15(84+84+86+84+87)=85>84,所以a 1<a 2.7.(2014·浙江)在3张奖卷中有一、二等奖各1张,另一张无奖,甲、乙两人各抽取1张,两人都中奖的概率是( )A.16B.13C.12D.23[答案] B[解析] 设三张卷分别用A ,B ,C 代替,A 一等奖;B 二等奖;C 无奖,甲、乙各抽一张共包括(A ,B ),(A ,C ),(B ,A ),(B ,C ),(C ,A ),(C ,B )6种基本事件,其中甲、乙都中奖包括两种,P =26=13,故选B.8.(2015·江苏卷)根据如图所示的伪代码,可知输出的结果S 为( )A .7B .5C .9D .11[答案] A[解析] 第一次循环:S =3,I =4;第二次循环:S =5,I =7;第三次循环:S =7,I=10;结束循环,输出S =7.9.如果数据x 1,x 2,…,x n 的平均数为x ,方差为s 2,则5x 1+2,5x 2+2,…,5x n +2的平均数和方差分别为( )A.x ,s 2 B .5x +2,s 2 C .5x +2,25s 2 D.x ,25s 2[答案] C[解析] 本题考查平均数与方差的计算公式.由平均数与方差的计算公式分析可得5x 1+2,5x 2+2,…,5x n +2的平均数为5x +2,方差为25s 2,故选C.10.(2015·广东佛山高三教学质量检测(一))某程序框图如下图所示,该程序运行后输出的S 的值是( )A .-3B .-12C.13 D .2[答案] A[解析] 该程序框图的运行过程是: S =2,i =1,i =1≤2 010成立, S =1+21-2=-3; i =1+1=2,i =2≤2 010成立, S =1+(-3)1-(-3)=-12;i =2+1=3,i =3≤2010成立, S =1+(-12)1-(-12)=13;i =3+1=4, i =4≤2 010成立; S =1+131-13=2;i =4+1=5, …….对于判断框内i 的值,n ∈N ,当i =4n +1时,S =2;当i =4n +2时,S =-3;当i =4n +3时,S =-12;当i =4n +4时,S =13.由于2 010=4×502+2,则S =-3.该程序框图中含有当型循环结构,判断框内的条件不成立时循环终止,即i =2 011时开始不成立,输出S =-3.11.(2015·石家庄模拟)从某高中随机选取5名高三男生,其身高和体重的数据如下表所示:身高 x (cm) 160 165 170 175 180 体重y (kg)6366707274根据上表可得回归直线方程y ^=0.56x +a ^,据此模型预报身高为172 cm 的高三男生的体重为( )A .70.09B .70.12C .70.55D .71.05[答案] B[解析] 由表中数据得x =160+165+170+175+1805=170,y =63+66+70+72+745=69.将(x ,y )代入y ^=0.56x +a ^,∴69=0.56×170+a ^,∴a ^=-26.2,∴y ^=0.56x -26.2. ∴当x =172时,y =70.12,故选B.12.(2015·全国卷)根据下面给出的2004年至2003年我国二氧化硫排放量(单位:万吨)柱形图.以下结论不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关 [答案] D[解析] 由柱形图得,从2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.(2012·江苏高考卷)某学校高一、高二、高三年级的学生人数之比为334,现用分层抽样的方法从该校高中三个年极的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.[答案]15[解析]由已知,高二人数占总人数的310,所以抽取人数为310×50=15.14.102,238的最大公约数是________.[答案]34[解析]利用辗转相除法或更相减损术可得最大公约数是34.15.(2014·福建高考)如右图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.[答案]0.18[解析]由题意知,这是个几何概型问题,S阴影S正方形=1801000=0.18.∵S正方形=1,∴S阴影=0.18.16.某篮球队6名主力队员在最近三场比赛中投进的三分球个数如下表所示:队员12345 6三分球个数a1a2a3a4a5a6下图是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框应填________,输出的s=________.[答案]i≤6?(i<7?)a1+a2+a3+a4+a5+a6[解析]由题意可知,程序框图是要统计6名队员投进的三分球的总数,由程序框图的循环逻辑知识可知,判断框应填i≤6?,输出的结果就是6名队员投进的三分球的总数,而6名队员投进的三分球数分别为a1,a2,a3,a4,a5,a6,故输出的s=a1+a2+…+a6.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)(2014·山东)海关对同时从A、B、C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示,工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.地区 A B C数量50150100(1)求这6件样品中来自A、B、C各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进一步检测,求这2件商品来自相同地区的概率.[解析](1)因为工作人员是按分层抽样抽取样品,所以各地区抽取样品的比例为:AB C=50150100=13 2各地区抽取的商品数分别别为A:6×16=1;B:6×36=3;C:6×26=2.(2)设各地商品分别为A、B1、B2、B3、C1、C2所以所含基本事件共有(A,B1),(A,B2),(A,B3),(A,C1),(A,C2),(B1,B2),(B1,B3),(B1,C1),(B1,C2),(B2,B3),(B2,C1),(B2,C2),(B3,C1),(B3,C2),(C1,C2)15种不同情况,样本事件包括(B1,B2),(B1,B3),(B2,B3),(C1,C2)4种情况.所以,这两件商品来自同一地区的概率为P =415.18.(本小题满分12分)高一(1)班参加校生物竞赛学生的成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:(1)求高一(1)班参加校生物竞赛的人数及分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;(2)若要从分数在[80,100]之间的学生中任选2人进行某项研究,求至少有1人分数在[90,100]之间的概率.[解析](1)因为分数在[50,60)之间的频数为2,频率为0.008×10=0.08,所以高一(1)班参加校生物竞赛的人数为20.08=25.分数在[80,90)之间的频数为25-2-7-10-2=4,频率为425=0.16,所以频率分布直方图中[80,90)间的矩形的高为0.1610=0.016.(2)设“至少有1人分数在[90,100]之间”为事件A,将[80,90)之间的4人编号为1、2、3、4,[90,100]之间的2人编号为5、6.在[80,100]之间任取2人的基本事件有:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15个.其中,至少有1人分数在[90,100]之间的基本事件有9个,根据古典概型概率的计算公式,得P(A)=915=35.[易错点拨]在茎叶图的基础上,计算频率分布直方图中某个小矩形的高是较新颖的命题方式,计算时,要注意理解小矩形的高的意义.对于古典概型的概率的求解很重要的一步是列举基本事件,此时,要注意避免重复与迹漏.19.(本小题满分12分)某城市理论预测2014年到2018年人口总数(单位:十万)与年份的关系如下表所示:年份2014+x 0123 4人口总数y 5781119(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的回归方程y^=b^x+a^;(3)据此估计2019年该城市人口总数.(参考数据:0×5+1×7+2×8+3×11+4×19=132,02+12+22+32+42=30)[解析](1)概据题中数表画出数据的散点图如下图所示.(2)由题中数表,知x=15(0+1+2+3+4)=2,y=15(5+7+8+11+19)=10.所以b=5i=1x i y i-5x-y5i=1x2i-5x-2=3.2,a ^=y -b ^x =3.6.所以回归方程为y ^=3.2x +3.6.(3)当x =5时,y ^=3.2×5+3.6=19.6(十万)=196(万). 答:估计2019年该城市人口总数约为196万.20.(本小题满分12分)(2014·福建)根据世行2013年新标准,人均GDP 低于1035美元为低收入国家;人均GDP 为1035~4085元为中等偏下收入国家;人均GDP 为4085~12616美元为中等偏上收入国家;人均GDP 不低于12616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP 如下表:行政区 区人口占城市人口比例区人均GDP(单位:美元)A 25% 8000B 30% 4000C 15% 6000D 10% 3000 E20%10000(1)判断该城市人均GDP 是否达到中等偏上收入国家标准;(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP 都达到中等偏上收入国家标准的概率.[解析] (1)设城市人口总数为a ,该城市人均GDP 为:8000×0.25a +4000×0.30a +6000×0.15a +3000×0.10a +10000×0.20aa =6400因为6400∈[4085,12616)所以该城市人均GDP 达到了中等偏上国家标准.(2)从“5个行政区中随机抽取2个”所有的基本事件是:{A ,B },{A ,C },{A ,D },{A ,E },{B ,C },{B ,D },{B ,E },{C ,D },{C ,E },{D ,E },共10种情况,其中2个行政区都达到中等以上国家标准的有{A ,C },{A ,E },{C ,E },共3种情况因此P =310. 21.(本小题满分12分)随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图所示.(1)根据茎叶图判断哪个班的平均身高较高; (2)计算甲班的样本方差;(3)现从乙班这10名同学中随机抽取两名身高不低于173 cm 的同学,求身高为176 cm 的同学被抽中的概率.[探究] (1)茎叶图中的数据越集中在上部,则说明该班的平均身高较高;(2)先求出平均数,再代入方差公式即可;(3)写出所有基本事件,再统计基本事件的总数和所求事件包含的基本事件的个数,利用古典概型计算概率.[解析] (1)由题中茎叶图可知:甲班身高集中于160~179 cm 之间,而乙班身高集中于170~180 cm 之间,因此乙班平均身高高于甲班.(2)甲班的平均身高为x =110(158+162+163+168+168+170+171+179+179+182)=170,甲班的样本方差为 s 2=110[(158-170)2+(162-170)2+(163-170)2+(168-170)2+(168-170)2+(170-170)2+(171-170)2+(179-170)2+(179-170)2+(182-170)2]=57.2.(3)设“身高为176 cm 的同学被抽中”的事件为A ,用(x ,y )表示从乙班10名同学中抽中两名身高不低于173 cm 的同学的身高,则所有的基本事件有(181,173),(181,176),(181,178),(181,179),(179,173),(179,176),(179,178),(178,173),(178,176),(176,173),共10个基本事件,而事件A 含有(181,176),(179,176),(178,176),(176,173),共4个基本事件,故P (A )=410=25.22.(本小题满分12分)近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的分类垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计 1 000吨生活垃圾,数据统计如下(单位:吨):(1)(2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱,“可回收物”箱,“其他垃圾”箱的投放量分别为a 、b 、c ,其中a >0,a +b +c =600.当数据a 、b 、c 的方差s 2最大时,写出a 、b 、c 的值(结论不要求证明),并求出此时s 2的值.[解析] (1)厨余垃圾投放正确的概率为P =“厨余垃圾”箱里厨余垃圾量厨余垃圾总量=400400+100+100=23.(2)设“生活垃圾投放错误”为事件A ,则事件A 表示“生活垃圾投放正确”.事件A 的概率为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即P (A )=400+240+601 000=710,所以P (A )=1-P (A )=1-710=310.(3)当a =600,b =0,c =0时,方差s 2取得最大值. 因为x =13(a +b +c )=200,所以s 2=13[(600-200)2+(0-200)2+(0-200)2]=80 000.[名题点睛] 本题结合一个特殊设计的表格给出各类数据,显然,可用的与不可用的数据均在表中,合理应用表中的数据是求解本题的关键.在求解事件的概率时,可考虑利用对立事件求解题.在限定条件下,可根据条件及方差公式判断何时“方差最大”,抓住这一关键性的条件,问题就容易解决了.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修三 数学测试题一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.在频率分布直方图中,各个长方形的面积表示( ) A .落在相应各组的数据的频数 B .相应各组的频率 C .该样本所分成的组数 D .该样本的样本容量 [答案] B[解析]在频率分布直方图中,横轴是组距,纵轴是频率组距,故各个长方形的面积=组距×频率组距=频率. 2.下边程序执行后输出的结果是( )n =5S =0WHILE S <15S =S +nn =n -1WEND PRINT n ENDA .-1B .0C .1D .2[答案] B[解析]S =5+4+3+2+1;此时n =0.3.用秦九韶算法计算多项式f(x)=x 6-12x 5+60x 4-160x 3+240x 2-192x +64,当x =2时的值为( )A .0B .2C .-2D .4 [答案] A[解析]先将多项式f(x)进行改写:f(x)=x 6-15x 5+60x 4-160x 3+240x 2-192x +64=(((((x -12)x +60)x -160)x +240)x -192)·x +64.然后由内向外计算得v 0=1,v 1=v 0x +a 5=1×2-12=-10, v 2=v 1x +a 4=-10×2+60=40, v 3=v 2x +a 3=40×2-160=-80, v 4=v 3x +a 2=-80×2+240=80, v 5=v 4x +a 1=80×2-192=-32, v 6=v 5x +a 0=-32×2+64=0.所以多项式f(x)当x =2时的值为f(2)=0.4.一班有学员54人,二班有学员42人,现在要用分层抽样的方法从两个班中抽出一部分人参加4×4方队进行军训表演,则一班和二班分别被抽取的人数是( )A .9人、7人B .15人、1人C .8人、8人D .12人、4人[答案] A[解析]一班抽取人数54×1696=9(人),二班抽取人数42×1696=7(人).5.观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿体重在(2 700,3 000)范围内的频率为( )A .0.001B .0.1C .0.2D .0.3[答案] D[解析]频率=0.001×300=0.3.6.期中考试以后,班长算出全班40个人数学成绩的平均分为M ,如果把M 当成一个同学的分数,与原来的40个分数一起,算出这41个分数的平均值为N ,那么M N 为( )A .4041 B .1 C .4140D .2[答案] B[解析]设40个同学的成绩分别为x 1,x 2,…,x 40, 而x 41=M ,则M =x 1+x 2+x 3+…+x 4040,∴x 1+x 2+…+x 40=40M ,N =x 1+x 2+…+x 40+M 41=40M +M 41=M ,故选B .7.对一个容量为50的样本数据进行分组,各组的频数如下:[12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),6;[30.5,33.5),3.根据累积频率分布,估计不大于30的数据大约占( ) A .94% B .6% C .95% D .90%[答案] A[解析]由于大于30的数据大约占350×100%=6%,∴不大于30的数据大约占1-6%=94%, 故选A .8.如果执行下面的程序框图,输入n =6,m =4,那么输出的p 等于( )A .720B .360C .240D .120[答案] B[解析]p =1×(6-4+1)×(6-4+2)×(6-4+3)×(6-4+4)=3×4×5×6=360. 9.已知x 、y 的取值如下表:x 0 1 3 4 y2.24.34.86.7从散点图分析,y 与x 线性相关,且回归方程为y ^=0.95x +a ,则a 的值为( ) A .2.6 B .-2.6 C .4.5 D .2[答案] A[解析]x =0+1+3+44=2,y =2.2+4.3+4.8+6.74=4.5.把(2,4.5)代入回归方程得a =2.6.10.如果执行下面的程序框图,那么输出的S 等于( )A .10B .22C .46D .94[答案] C[解析]i =2时,S =2(1+1)=4; i =3时,S =2(4+1)=10; i =4时,S =2(10+1)=22; i =5时,S =2(22+1)=46.此时满足条件,输出S.11.经显示,家庭用液化气量(单位:升)与气温(单位:度)有一定的关系,如图所示,图(1)表示某年12个月中每个月的平均气温,图(2)表示某家庭在这年12个月中每个月的用气量,根据这些信息,以下关于家庭用气量与气温关系的叙述中,正确的是()A.气温最高时,用气量最多B.当气温最低时,用气量最少C.当气温大于某一值时,用气量随气温升高而增加D.当气温小于某一值时,用气量随气温降低而增加[答案]C[解析]经比较可以发现,2月份用气量最多,而2月份温度不是最高,故排除A,同理可排除B.从5,6,7三个月的气温和用气量可知C正确.[点评]从图上看,尽管10至12月气温在降低,用气量在增加,但不能选D,因为不满足“气温小于某一数值时”的要求,因此考虑问题一定要全面.12.(2012·江西高考卷)小波一星期的总开支分布图如图(1)所示,一星期的食品开支如图(2)所示,则小波一星期的鸡蛋开支占总开支的百分比为()A.30% B.10%C.3% D.不能确定[答案]C[解析]本题是一个读图题,图形看懂结果很容易计算.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.经问卷调查,某班学生对摄影分别持“喜欢”“不喜欢”和“一般”三种态度,其中持“一般”态度的比“不喜欢”的多12人,按分层抽样方法从全班选出部分学生座谈摄影,如果选出的是5位“喜欢”摄影的同学、1位“不喜欢”摄影的同学和3位持“一般”态度的同学,那么全班学生中“喜欢”摄影的比全班人数的一半还多________人.[答案] 3[解析]设持“不喜欢”态度的有x人,则持“一般”态度的有(x+12)人,持“喜欢态度”的有y人,则x+123=x1=y5,∴x=6,y=30.∴全班人数为6+30+18=54,则30-12×54=3.14.下列程序输出的结果是________. a =54 321 b =0 DOt =a MOD 10 1 b =b *10+t a =INT (a /10) LOOP UNTIL t <=0 PRINT “b =”;b END[答案] 12 345[解析]第一次执行循环体后,t =1,b =1,a =5 432, 第二次执行循环体后,t =2,b =12,a =543, 依次下去可得b =12 345. 15.(1)(1 011 010)2=( )10; (2)(154)6=( )7. [答案] (1)90 (2)130[解析](1)将二进制数化为十进制数,就是将二进制的末位乘以该位的权20,倒数第二位乘以该位的权21,…,依次类推,最后把各位的结果相加即可.(1 011 010)2=0×20+1×21+0×22+1×23+1×24+0×25+1×26=90.(2)不同进位制之间的转化(除十进制),我们可以把需要转化 数化成十进制数,然后再把十进制数化为要转化的进位制的数.(154)6=4×60+5×61+1×62=4+30+36=(70)10.故(70)10化为七进制数如上图所示,故(70)10=(130)7.16.为了解某地高一年级男生的身高情况,从其中的一个学校选取容量为60的样本(60名男生的身高,单位:cm ),分组情况如下:[答案] 0.45[解析]172.5~179.5的频数为60×0.1=6. ∴165.5~172.5的频数为60-6-21-6=27. ∴对应频率a =2760=0.45.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)某政府机关在编工作人员100人,其中副处级以上干部10人,一般干部70人,工人20人.上级机关为了了解政府机构改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,并写出具体实施抽取的步骤.[解析]因为机构改革关系到各种人的不同利益,所以采用分层抽样为妥. 因为20100=15,所以105=2,705=14,205=4.故从副处级以上干部中抽取2人,从一般干部中抽取14人,从工人中抽取4人. 因副处级以上干部与工人的人数较少,把他们分别按1~10与1~20编号,然后采用抽签法分别抽取2人和4人;对一般干部70人进行01,02,…,70编号,然后用随机数法从中抽取14人.18.(本小题满分12分)在音乐唱片超市里,每张唱片售价25元.顾客如果购买5张以上(含5张)唱片,则按照九折收费;如果顾客购买10张以上(含10张)唱片,则按照八五折收费.请设计一个完成计费工作的算法,画出程序框图.[解析]算法步骤如下: 第一步,输入a.第二步,若a<5,则C =25a ;否则,执行第三步. 第三步,若a<10,则C =22.5a ;否则(a ≥10),C =21.25a.第四步,输出C,算法结束.程序框图如下图所示.19.(2011~2012·山西模拟)(本小题满分12分)如图甲是某市有关部门根据对当地干部的月收入情况调查后画出的样本频率分布直方图,已知图中从左向右第一组的频数为4000.在样本中记月收入在[1000,1500),[1500,2000),[2000,2500),[2500,3000),[3000,3500),[3500,4000)的人数依次为A1,A2,…,A6.图乙是统计图甲中月工资收入在一定范围内的人数的程序框图,求输出的S(用数字作答).[解析]方法一:先求样本容量x,再分别计算A2,A3,…,A6.在频率分布直方图中,小长方形的高是频率/组距,所以A1=4000=0.0008×500x,解得x=10000.从而,A2=0.0004×500×10000=2000,A3=0.0003×500×10000=1500,A4=0.00025×500×10000=1250,A5=0.00015×500×10000=750,A6=0.0001×500×10000=500,所以图乙输出的S=A2+A3+…+A6=6000.方法二:先求样本容量x,再计算A2+A3+…+A6.在频率分布直方图中,小长方形的高是频率/组距,所以A 1=4000=0.008×500x ,解得x =10000.所以,图乙输出的S =A 2+A 3+…+A 6=10000-A 1=10000-4000=6000. [答案] 6000[点评] 本例由程序框图转化到频率分布直方图,由图读数,体现了转化与化归思想. 20.(本小题满分12分)甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲 82 81 79 78 95 88 93 84 乙 92 95 80 75 83 80 90 85(1)用茎叶图表示这两组数据;若将频率视为概率,对甲学生在培训后参加的一次数学竞赛成绩进行预测,求甲的成绩高于80分的概率;(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两中)考虑,你认为选派哪位学生参加合适?请说明理由.[解析](1)作出茎叶图如下:记“甲同学在一次数学竞赛中成绩高于80分”为事件A ,则P(A)=68=34,答:甲的成绩高于80分的概率为34.(2)派甲参赛比较合适.理由如下: x 甲=18(70×2+80×4+90×2+8+9+1+2+4+8+3+5)=85, x乙=18(70×1+80×4+90×3+5+0+0+3+5+0+2+5)=85, s 2甲=18[(78-85)2+(979-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5,s 2乙=18[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41,∵x甲=x乙,s2甲<s2乙,∴甲的成绩较稳定,派甲参赛比较合适.21.(本小题满分12分)为了了解某地区中小学教学水平受教学资源的影响情况,对某地区中小学进行调查,已知该地区中小学人数的分布情况如下表(单位:人):学段城市县镇农村小学357 000 221 600 258 100初中226 200 134 200 11 290高中112 000 43 300 6 300 请根据上述基本数据,设计一个样本容量为总体容量的千分之一的抽样方案.[分析]要根据样本容量的大小灵活选取抽样方法.[解析]方案具体如下:第一步:确定城市、县镇、农村分别被抽取的个体数,城市、县镇、农村的学生数分别为:357 000+226 200+112 000=695 200,221 600+134 200+43 300=399 100,258 100+11 290+6 300=275 690.因为样本容量与总体容量的比为1 1 000,所以样本中包含的各部分个体数分别为:695 200×11 000≈695,399 100×11 000≈399,275690×11 000≈276.第二步:将城市的被抽取个体数分配到小学、初中、高中三个学段.因为城市小学、初中、高中的人数比为:357 000226 200112 000=1 785 1 131560,1 785+1 131+560=3 476,所以小学、初中、高中被抽取的人数分别为:1 785×6953 476≈357,1131×6953 476≈226,560×6953 476≈112.第三步:将县镇的被抽取的个体数分配到小学、初中、高中三个学段.由于县镇小学、初中、高中的人数比为:221 600134 20043 300=2 216 1 342433,2 216+1 342+433=3 991,所以小学、初中、高中被抽取的人数分别为:2216×3993 991≈222,1 342×3993 991≈134,433×3993 991≈43.第四步:使用同样的方法将农村的被抽取的个体数分配到小学、初中、高中三个学段,结果是农村的小学、初中、高中被抽取的人数分别为:259,11,6.第五步:再用合适的方法在对应的各个部门抽取个体,在各层中抽取的个体数目如下表所示:学段城市县镇农村小学357 222 259初中226 134 11高中112 43 6[点拨]在确定各层所抽取的个体数时,若不是整数,可以采用四舍五入的方法来处理.按照上表数目在各个层中用简单随机抽样方法抽取个体,合在一起形成所需的样本.22.(本小题满分12分)下表中数据是退水温度x(℃)对黄硐延长性y(%)效应的试验结果,y是以延长度计算的.x(℃) 3 700 800y(%) 4(2)指出x,y是否线性相关;(3)若线性相关,求y关于x的回归方程;(4)估计退水温度是1000℃时,黄硐延长性的情况.[分析]由散点图判断线性相关,直接代入公式求回归方程的系数a,b.[解](1)散点图如下图所示(2)由散点图可以看出样本点分布在一条直线的附近,可见y与x线性相关.(3)列表如下,并用科学计算器进行有关计算.i 1 2 3 4 5 6x i 3 700 800y i 4x i y i12 000 20 000 27 500 36 000 46 900 56 000x2i90 000 160 000 250 000 360 000 490 000 640 000x =550,y =57,∑6i =1x 2i =1 990 000,∑6i =1x i y i =198 400.于是可得b ^=∑6i =1x i y i -6x y ∑6i =1x 2i -6x2=198 400-6×550×571 990 000-6×5502≈0.059. a ^=y -b ^x ≈57-0.059×550=24.55. 因此所求的回归直线方程为y ^=0.059x +24.55.(4)将x =1 000代入回归方程,得y ^=0.059×1 000+24.55=83.55, 即退水温度是1 000℃时,黄硐延长性大约是83.627%.[点拨] 知道x 与y 是线性相关关系,无须进行相关性检验,否则,应首先进行相关性检验.如果本身两个变量不具备相关关系,即使求出回归直线方程也毫无意义.。

相关文档
最新文档