初三数学(下册)试题:单元练习测试题_题型归纳

合集下载

最新人教版九年级数学单元测试题全册含答案

最新人教版九年级数学单元测试题全册含答案

最新人教版九年级数学单元测试题全册含
答案
本文档包含了最新人教版九年级数学单元测试题全册以及相关的答案。

这些测试题可以帮助学生复和巩固数学知识,并检验他们在各个单元中的研究情况。

本文档的目的是为教师和学生提供一个方便的资源,以便他们能够更好地准备和应对数学单元测试。

通过解答这些测试题,学生可以了解自己对各个知识点的掌握程度,并及时进行补充研究。

测试题的答案部分会帮助学生核对自己的答案,并了解正确的解题方法。

这有助于他们纠正错误、提高解题能力,并在考试中取得更好的成绩。

本文档中的测试题均按照最新的人教版九年级数学教材编写,并尽量简洁明了。

题目类型多样,涵盖了各个数学知识点,包括代数、几何、概率等。

每个单元的测试题都相对独立,可根据需要选择和使用。

请注意,本文档中的内容均经过审核,并按照最新的教学要求编写。

然而,由于教材更新和不同教育机构之间的差异,建议在使用前先与教师核对,以确保测试题的适用性。

希望这份文档能对教师和学生在九年级数学研究中有所帮助。

祝大家学业进步,取得优异成绩!
*注意:本文档中的测试题和答案仅供参考,请勿用于非法用途。

作者和提供者不承担任何因使用本文档而产生的法律责任。

*。

人教版九年级下册数学各单元测试卷及答案(全套)

人教版九年级下册数学各单元测试卷及答案(全套)

第二十六章综合测试一、选择题(30分) 1.已知反比例函数ky x=的图象经过点2,3(),那么下列四个点中,也在这个函数图象上的是( ) A .()6,1-B .()1,6C .()2,3-D .()3,2-2.已知矩形的面积为220 cm ,设该矩形的一边长为 cm y ,另一边的长为 cm x ,则y 与x 之间的函数图象大致是( )ABCD3.已知点(),P a m ,(),Q b n 都在反比例函数2y x=-的图象上,且0a b <<,则下列结论一定正确的是( ) A .0m n +<B .0m n +>C .m n <D .m n >4.如图,ABC △的三个顶点分别为(1,2)A ,(4,2)B ,(4,4)C .若反比例函数ky x=在第一象限内的图象与ABC △有交点,则k 的取值范围是( )A .14k ≤≤B .48k ≤≤C .216k ≤≤D .816k ≤≤5.在同一平面直角坐标系中,若正比例函数1y k x =的图象与反比例函数2k y x=的图象没有公共点,则( ) A .120k k +<B .120k k +>C .120k k <D .120k k >6.如果点()12,A y -,()21,B y -,()32,C y 都在反比例函数(0)ky k x=>的图象上,那么1y ,2y ,3y 的大小关系是( ) A .132y y y <<B .213y y y <<C .123y y y <<D .321y y y <<7.反比例函数3(0)y x x=-<的图象如图所示,则矩形OAPB 的面积是( ) A .3B .3-C .32D .32-8.如图,在同一平面直角坐标系中,一次函数1y kx b =+(k ,b 是常数,且0k ≠)与反比例函数2cy x=(c 是常数,且0c ≠)的图象相交于(3,2)A --,(2,3)B 两点,则不等式12y y >的解集是( ) A .32x -<<B .3x -<或2x >C .30x -<<或2x >D .02x <<9.如图,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数4y x =-和2y x=的图象交于点A 和点B .若点C 是x 轴上任意一点,连接AC ,BC ,则ABC △的面积为( ) A .3B .4C .5D .610.如图,点A ,B 在反比例函数()10y x x =>的图象上,点C ,D 在反比例函数()0ky k x=>的图象上,AC BD y ∥∥轴,已知点A ,B 的横坐标分别为1,2,OAC △与ABD △的面积之和为32,则k 的值为( ) A .4 B .3 C .2 D .32二、填空题(24分)11.在ABC △的三个顶点(2,3)A -,(4,5)B --,(3,2)C -中,可能在反比例函数(0)ky k x=>的图象上的点是_________.12.若一个反比例函数的图象经过点(,)A m m 和(2,1)B m -,则这个反比例函数的解析式为_________. 13.如图,已知反比例函数ky x=(k 为常数,0k ≠)的图象经过点A ,过A 点作AB x ⊥轴,垂足为B ,若AOB △的面积为1,则k =_________.14.已知一次函数y ax b =+与反比例函数ky x=的图象相交于(4,2)A ,(2,)B m -两点,则一次函数的解析式为_________.15.若点(,2)A m -在反比例函数4y x=的图象上,则当函数值2y -≥时,自变量x 的取值范围是_______.16.如图,直线l x ⊥轴于点P ,且与反比例函数11(0)k y x x=>及22(0)k y x x =>的图象分别交于点A ,B ,连接OA ,OB ,已知OAB △的面积为2.则12k k -=_______. 17.如图,反比例函数ky x=的图象经过ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD DC ⊥,ABCD 的面积为6,则k =_______.18.如图,在平面直角坐标系中,反比例函数(0)ky x x=>的图象与边长是6的正方形OABC 的两边AB ,BC 分别相交于M ,N 两点,OMN △的面积为10.若动点P 在x 轴上,则PM PN +的最小值是_______.三、解答题(8+8+10+10+10=46分)19.如图,在平面直角坐标系中有三点(1,2),(3,1),(2,1)--,其中有两点同时在反比例函数ky x=的图象上,将这两点分别记为A ,B ,另一点记为C . (1)求出k 的值.(2)求直线AB 对应的一次函数的解析式.(3)设点C 关于直线AB 的对称点为O ,P 是x 轴上的一个动点,直接写出PC PD +的最小值(不必说明理由).20.如图,一次函数y kx b =+与反比例函数6(0)y x x=>的图象交于(),6A m ,()3,B n 两点。

【初三数学】滁州市九年级数学下(人教版)第二十八章 《锐角三角函数》单元综合练习题(含答案解析)

【初三数学】滁州市九年级数学下(人教版)第二十八章 《锐角三角函数》单元综合练习题(含答案解析)

九年级数学人教版《锐角三角函数》单元测试题(Word 版有答案)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在Rt △ABC 中,∠C =90°,各边都扩大2倍,则锐角A 的正弦值( )A .扩大2倍B .缩小12 C .不变 D .无法确定2.在Rt △ABC 中,∠C =90°,AB =5,BC =3,则∠A 的余弦值是( )A.35B.34C.43D.453.已知在Rt △ABC 中,∠C =90°,∠A =α,BC =2,那么AB 的长等于( )A.2sin α B .2sin α C.2cos αD .2cos α 4.在Rt △ABC 中,∠C =90°,sinA =45,AC =6 cm ,则BC 的长度为( )A .6 cmB .7 cmC .8 cmD .9 cm 5.在Rt △ABC 中,∠B =90°,tanA =512,则cosA =( )A.125 B.1213 C.513 D.5126.三角形的三个内角之比为1∶2∶3,则最小角的正切值是( )A .1 B.22 C.33D. 3 7.(-sin60°,cos60°)关于y 轴对称的点的坐标是( )A .(32,12) B .(-32,12) C .(-32,-12) D .(-12,-32) 8.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( )A .2 B.255 C.55 D.129.如图,在△ABC 中,AD ⊥BC ,垂足为D.若AC =62,∠C =45°,tan ∠ABC =3,则BD 等于( )A .2B .3C .3 2D .2 310.如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,则下列结论不正确的是( )A .sinB =AD AB B .sinB =ACBCC .sinB =AD AC D .sinB =CDAC11.将宽为2 cm 的长方形纸条折叠成如图所示的形状,那么折痕PQ 的长是( )A.23 3 cm B.433 cm C. 5 cm D .2 cm12.某数学兴趣小组同学进行测量大树CD 高度的综合实践活动,如图,在点A 处测得直立于地面的大树顶端C 的仰角为36°,然后沿在同一剖面的斜坡AB 行走13 m 至坡顶B 处,再沿水平方向行走6 m 至大树脚底点D 处,斜面AB 的坡度(或坡比)i =1∶2.4,那么大树CD 的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)( )A .8.1 mB .17.2 mC .19.7 mD .25.5 m13.如图,在矩形ABCD 中,点E 是CD 的中点,点F 是BC 上一点,且FC =2BF ,连接AE ,EF.若AB =2,AD =3,则cos ∠AEF 的值是( )A. 3B.32 C.22 D.1214.如图,以坐标原点O 为圆心,半径为1的弧交坐标轴于A ,B 两点,P 是AB ︵上一点(不与A ,B 重合),连接OP ,设∠POB =α,则点P 的坐标是( )A .(sin α,sin α)B .(cos α,cos α)C .(sin α,cos α)D .(cos α,sin α)15.如图,已知点C 与某建筑物底端B 相距306米(点C 与点B 在同一水平面上),某同学从点C 出发,沿同一剖面的斜坡CD 行走195米至坡顶D 处,斜坡CD 的坡度(或坡比)i =1∶2.4,在D 处测得该建筑物顶端A 的俯视角为20°,则建筑物AB 的高度约为(精确到0.1米,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)( )A .29.1米B .31.9米C .45.9米D .95.9米16.如图,在四边形ABCD 中,∠BAD =∠ADC =90°,AB =AD =22,CD =2,点P 在四边形ABCD 的边上,若点P 到BD 的距离为32,则点P 的个数为( )A .1B .2C .3D .4二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.计算:cos 245°+3tan60°+cos30°+2sin30°-2tan45°= .18.张丽不慎将一道数学题沾上了污渍,变为“如图,在△ABC 中,∠B =60°,AB =63,tanC =,求BC 的长度”.张丽翻看答案后,得知BC =6+33,则部分为 . 19.如图,把n 个边长为1的正方形拼接成一排,求得tan ∠BA 1C =1,tan ∠BA 2C =13,tan∠BA 3C =17,计算tan ∠BA 4C =113,…,按此规律,写出tan ∠BA n C = .(用含n 的代数式表示)三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)Rt△ABC中,∠C=90°,c=0.8,b=0.4,解这个直角三角形.解:21.(本小题满分9分)△ABC中,(3·tanA-3)2+|2cosB-3|=0.(1) 判断△ABC的形状;(2) 若AB=10,求BC,AC的长.解:22.(本小题满分9分)如图,在水平地面上有一幢房屋BC与一棵树DE,在地面观测点A处测得屋顶C与树梢D的仰角分别是45°与60°,∠CAD=60°,在屋顶C处测得∠DCA=90°.若房屋的高BC=6 m.求树高DE.解:23.(本小题满分9分)如图,某船由西向东航行,在点A处测得小岛O在北偏东60°方向,船航行了10海里后到达点B,这时测得小岛人教版数学九年级下册第二十八章锐角三角函数单元提优卷人教版数学九年级下册第二十八章锐角三角函数单元提优卷一、选择题1.在Rt△ABC中,∠C=90°,若将各边长度都扩大为原来的5倍,则∠A的正弦值( D ) A.扩大为原来的5倍B .缩小为原来的15C .扩大为原来的10倍D .不变2.小明在某次投篮中刚好把球打到篮板的点D 处后进球.已知小明与篮框底的距离BC=5米,眼睛与地面的距离AB=1.7米,视线AD 与水平线AE 的夹角为a ,如图所示.若tana=310,则点D 到地面的距离CD 是( C )A.2.7米B.3.0米C.3.2米D.3.4米3.如图,已知“人字梯”的5个踩档把梯子等分成6份,从上往下的第二个踩档与第三个踩档的正中间处有一条60 cm 长的绑绳EF ,tan α=,则“人字梯”的顶端离地面的高度AD 是( B )A . 144 cmB . 180 cmC . 240 cmD . 360 cm4.在Rt △ABC 中,∠C =90°,BC =1,AC =,则∠A 的度数是( A )A . 30°B . 45°C . 60°D . 70°5.如图,有两个全等的正方形ABCD 和BEFC ,则tan(∠BAF +∠AFB)=( A )A.1B.56 C. 23D. 6.把Rt △ABC 各边的长度都扩大3倍得到Rt △A ′B ′C ′,那么锐角∠A 、∠A ′的余弦值的关系是( B )A .cosA =cosA ′B .cosA =3cosA ′C .3cosA =cosA ′D .不能确定7.如图,小岛在港口P 的北偏西60°方向,距港口56海里的A 处,货船从港口P 出发,沿北偏东45°方向匀速驶离港口,4小时后货船在小岛的正东方向,则货船的航行速度是( A )海里/时 /时 海里/时 海里/时8.如图,在△ABC 中,AB =2,BC =4,∠ABC =30°,以点B 为圆心,AB 长为半径画弧,交BC 于点D ,则图中阴影部分的面积是( A ) A.B.C.D.9.如图,△ABD 和△BDC 都是直角三角形,且∠ABD=∠BDC=90°,∠BAD=30°,∠DBC=45°,则tan ∠DAC 的值为( C )A.B. C. D. 310.如图,一河坝的横断面为等腰梯形ABCD ,坝顶宽10米,坝高12米,斜坡AB 的坡度i =1∶1.5,则坝底AD 的长度为( D )A .26米B .28米 C.30米 D .46米11.如图,△ABC 内接于⊙0,AD 为⊙0的直径,交BC 于点E ,若DE=2,0E=3,则tan ∠ACB ·tan ∠ABC=( C )A.2B.3C.4D.5二、填空题12.在Rt △ABC 中,∠C =90°,AC ∶BC =1∶2,则sinB =________. [答案] 3413.如图,在半径为3的⊙0中,直径AB 与弦CD 相交于点E ,连接AC ,BD ,若AC=2,则tanD=____.[答案]14.已知对任意锐角α,β均有cos(α+β)=cos α·cos β-sin α·sin β,则cos75°=________.【答案】6-2415.如图,在△ABC 中,AB=AC=10,点D 是边上一动点(不与B ,C 重合),∠ADE=∠B=a ,DE 交AC 于点E ,且cosa=45,则线段CE 的最大值为____.【答案】6.416.一个人由山脚爬到山顶,须先爬倾斜角为30度的山坡300米到达D ,再爬倾斜角为60度的山坡200米,这座山的高度为______________(结果保留根号)【答案】(150+100)米17.如图所示,小明在家里楼顶上的点A处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A处看电梯楼顶部点B处的仰角为60°,在点A处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为20 m,则电梯楼的高BC为____________米(精确到0.1).(参考数据:≈1.414≈1.732)【答案】54.618.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为_____米.【答案】5三、解答题19.在Rt△ABC中,∠C=90°,sin B=,求cos A的值.【答案】解在△ABC中,∵∠C=90°,∴∠A+∠B=90°,∴cos A=sin B=.20.被誉为“中原第一高楼”的郑州会展宾馆(俗称“玉米楼”)坐落在风景如画的如意湖畔,是来郑州观光的游客留影的最佳景点.学完了三角函数知识后,刘明和王华决定用自己学到的知识测量“玉米楼”的高度.如图,刘明在点C处测得楼顶B的仰角为45°,王华在高台上的D处测得楼顶的仰角为40°.若高台DE的高为5米,点D到点C的水平距离EC为47.4米,A,C,E三点共线,求“玉米楼”AB的高度.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,结果保留整数)【解析】如图,过点D 作DM ⊥AB 于点M ,交BC 于点F ,过点C 作CG ⊥DM 于点G ,设BM=x 米,由题意,得DG=47.4米,CG=5米,∠BFM=45°,∠BDM=40°,则FM=BM=x 米,GF=CG=5米,∴DF=DG +GF=52.4米,∴DM=BM tan BDM ∠=x tan 40︒≈x0.84(米),∵DM -FM=DF ,∴x0.84-x=52.4,解得x≈275.1,∴AB=BM +AM=BM +DE ≈280米. 答:“玉米楼”AB 的高约为280米.21.计算:sin 45°+cos 230°+2sin 60°. 【答案】解 原式=×+2+2×=++=1+. 22.如图,AB 是⊙O 的直径,延长AB 至P ,使BP=OB ,BD 垂直于弦BC ,垂足为点B ,点D 在PC 上,设∠PCB=α,∠P0C=β,求证tan α·tan β=13【解析】如图,连接AC ,则∠A=12∠POC=2β. ∵AB 是⊙O 的直径,∴∠ACB=90°,∴tan 2β=BCAC.∵BD ⊥BC ,tan α=BD BC ,BD ∥AC ,∴△PBD ∽△PAC ,∴BD AC =PBPA.∵PB=OB=OA ,∴PB PA =13.∴BD AC =13.∴tan α·tan 2β=BD BC ·BC AC =BDAC人教版九年级数学下册 第二十八章锐角三角函数检测卷一、选择题(每小题3分,共30分)1.已知在Rt △ABC 中,∠C =90°,AB =8,BC =5,那么下列式子中正确的是( A )A.sin A =58B.cos A =58C.tan A =58 D.以上都不对 2.若cos A =32,则∠A 的大小是( A ) A.30° B.45° C.60° D.90°3.已知在Rt △ABC 中,∠C =90°,sin A =37,BC =4,则AB 的长度为( D ) A.43 B.74 C.8103 D.2834.如图,在△ABC 中,AC ⊥BC ,∠ABC =30°,点D 是CB 延长线上的一点,且BD =BA ,则tan ∠DAC 的值为( A )A.2+ 3B.2 3C.3+ 3D.3 35.△ABC 在网格中的位置如图所示(每个小正方形边长为1),AD ⊥BC 于D ,下列四个选项中,错误的是( C )A.sin α=cos αB.tan C =2C.sin β=cos βD.tan α=16.如图,一艘海轮位于灯塔P 的北偏东55°方向,距离灯塔为2 海里的点A处.如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB长是( C )A.2 海里B.2sin55°海里C.2cos55°海里D.2tan55°海里7.Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边,那么c 等于( B )A.a cos A+b sin BB.a sin A+b sin BC.asin A+bsin B D.acos A+bsin B8.一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA与CA的夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要( D )A.4sinθ米2 B.4cosθ米2 C.(4+tanθ4)米2 D.(4+4tanθ)米29.如图,要在宽为22米的九洲大道AB两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD 垂直.当灯罩的轴线DO通过公路路面的中心时照明效果最佳.此时,路灯的灯柱BC高度应该设计为( D )A.(11-22)米B.(113-22)米C.(11-23)米D.(113-4)米10.如图,小明爬山,在山脚下B处看山顶A的仰角为30°,小明在坡度为i=512的山坡BD上去走1300米到达D处,此时小明看山顶A的仰角为60°,则山高AC为( B )A.600-250 3B.6003-250C.350+350 3D.500 3二、填空题(每小题4分,共24分)11.计算:2sin60°12.如图,▱ABCD中,AE⊥BD于E,∠EAC=30°,AE=3,则AC的长等于13.传送带和地面所成斜坡的坡度为1∶0.75,它把物体从地面送到离地面高8米的地方,物体在传送带上所经过的路程为10米.14.如图所示,小芳在中心广场放风筝,已知风筝拉线长100米(假设拉线是直的),且拉线与水平地面的夹角为60°,若小芳的身高忽略不计,则风筝离水平(结果保留根号).15.如图,直线MN与⊙O相切于点M,ME=EF且EF∥MN,则cos∠E=12 .16.△ABC 中,AB =12,AC =39,∠B =30°,则△ABC 的面积是三、解答题(共66分)17.(6分)计算:2cos 245°-(tan60°-2)2-(sin60°-1)0+(12)-2 解:原式=2×(22)2-|3-2|-1+4=1-(2-3)-1+4=3+2.18.(6分)如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC =14,AD =12,tan ∠BAD =34,求sin C 的值.解:∵在直角△ABD 中,tan ∠BAD =BD AD =34,∴BD =AD ·tan ∠BAD =12×34=9,∴CD =BC -BD =14-9=5,∴AC =AD 2+CD 2=122+52=13,∴sin C =AD AC =1213.19.(6分)如图,某商店营业大厅自动扶梯AB 的倾斜角为31°,AB 的长为12米,求大厅两层之间的距离BC 的长.(结果精确到0.1米)(参考数据:sin31°=0.515,cos31°=0.857,tan31°=0.60)解:过B作地平面的垂线段BC,垂足为C.在Rt△ABC中,∵∠ACB=90°,∴BC=AB·sin∠BAC=12×0.515≈6.2(米).即大厅两层之间的距离BC的长约为6.2米.20.(8分)如图是某小区的一个健身器材,已知BC=0.15 m,AB=2.70 m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1 m).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)解:作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,∵OD⊥CD,∠BOD=70°,∴AE∥OD,∴∠A=∠BOD=70°,在Rt△AFB中,∵AB=2.7,∴AF=2.7×cos70°≈2.7×0.34=0.918,∴AE=AF+BC≈0.918+0.15=1.068≈1.1 m,答:端点A到地面CD的距离是1.1 m.21.(8分)王浩同学用木板制作一个带有卡槽的三角形手机架,如图所示.已知AC=20 cm,BC=18 cm,∠ACB=50°,王浩的手机长度为17 cm,宽为8 cm,王浩同学能否将手机放入卡槽AB内?请说明你的理由.(提示:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2)解:王浩同学能将手机放入卡槽AB内.理由:作AD⊥BC于点D,∵∠C=50°,AC=20 cm,∴AD=AC·sin50°=20×0.8=16 cm,CD=AC·cos50°=20×0.6=12 cm,∵BC=18 cm,∴DB=BC-CD=18-12=6 cm,∴AB=AD2+BD2=162+62=292,∵17=289<292,∴王浩同学能将手机放入卡槽AB内.22.(10分)如图,某数学兴趣小组要测量一栋五层居民楼CD的高度.该楼底层为车库,高2.5米;上面五层居住,每层高度相等.测角仪支架离地1.5米,在A处测得五楼顶部点D的仰角为60°,在B处测得四楼顶部点E的仰角为30°,AB=14米.求居民楼的高度(精确到0.1米,参考数据:3≈1.73)人教新版九年级下学期单元测试卷:《锐角三角函数》一.选择题1.如图,延长RT△ABC斜边AB到点D,使BD=AB,连接CD,若tan∠BCD=,则tan A =()A.B.1C.D.2.若0°<∠A<45°,那么sin A﹣cos A的值()A.大于0B.小于0C.等于0D.不能确定3.α为锐角,若sinα+cosα=,则sinα﹣cosα的值为()A.B.±C.D.04.关于三角函数有如下公式:sin(α+β)=sinαcosβ+cosαsinβ,sin(α﹣β)=sinαcosβ﹣cosαsinβcos(α+β)=cosαcosβ﹣sinαsinβ,cos(α﹣β)=cosαcosβ+sinαsinβtan(α+β)=(1﹣tanαtanβ≠0),合理利用这些公式可以将一些角的三角函数值转化为特殊角的三角函数来求值,如sin90°=sin(30°+60°)=sin30°cos60°+cos30°sin60°==1利用上述公式计算下列三角函数①s in105°=,②tan105°=﹣2﹣,③sin15°=,④cos90°=0其中正确的个数有()A.1个B.2个C.3个D.4个5.已知sinα=,求α,若用计算器计算且结果为“30”,最后按键()A.AC10N B.SHIET C.MODE D.SHIFT6.如图,在Rt△ABC中,∠ABC=90°,tan∠BAC=2,A(0,a),B(b,0),点C在第二象限,BC与y轴交于点D(0,c),若y轴平分∠BAC,则点C的坐标不能表示为()A.(b+2a,2b)B.(﹣b﹣2c,2b)C.(﹣b﹣c,﹣2a﹣2c)D.(a﹣c,﹣2a﹣2c)7.如图1是一种雪球夹,通过一个固定夹体和一个活动夹体的配合巧妙完成夹雪、投雪的操作,不需人手直接接触雪,使用方便,深受小朋友的喜爱.图2是其简化结构图,当雪球夹闭合时,测得∠AOB=60°,OA=OB=14cm,则此款雪球夹从O到直径AB的距离为()A.14cm B.14cm C.7cm D.7cm8.如图,一辆小车沿坡度为的斜坡向上行驶13米,则小车上升的高度是()A.5米B.6米C.6.5米D.12米9.如图,数学实践活动小组要测量学校附近楼房CD的高度,在水平底面A处安置侧倾器测得楼房CD顶部点D的仰角为30°,向前走20米到达E处,测得点D的仰角为60°已知侧倾器AB的高度为1.6米,则楼房CD的高度约为(结果精确到0.1米)()A.30米B.18.9米C.32.6米D.30.6米10.如图,禁止捕鱼期间,某海上稽查队在某海域巡逻,上午某一时刻在A处接到指挥部通知,在他们东北方向距离12海里的B处有一艘捕鱼船,正在沿南偏东75°方向以每小时10海里的速度航行,稽查队员立即乘坐巡逻船以每小时14海里的速度沿北偏东某一方向出发,在C处成功拦截捕鱼船,则巡逻船从出发到成功拦截捕鱼船所用的时间是()A.1小时B.2小时C.3小时D.4小时二.填空题11.已知Rt△ABC中,∠C=90°,AC=3,∠B=37°,则BC的长为(注:tan ∠B=0.75,sin∠B=0.6,c os∠B=0.8)12.用不等号“>”或“<”连接:sin50°cos50°.13.若tanα=1(0°<α<90°),则sinα=.14.已知,在Rt△ABC中,∠C=90°,tan B=,则cos A=.15.在△ABC中,若|sin A﹣|+(cos B﹣)2=0,则∠C的度数是.16.请从下列两个小题中任选一个作答,若多选,则按第一题计分.A:一个正多边形的一个外角为36°,则这个多边形的对角线有条.B:在△ABC中AB=AC,若AB=3,BC=4,则∠A的度数约为.(用科学计算器计算,结果精确到0.1°.)17.如图,点A(t,2)在第一象限,OA与x轴所夹的锐角为α,sinα=,则t=18.如图,小明想测量学校教学楼的高度,教学楼AB的后面有一建筑物CD,他测得当光线与地面成22°的夹角时,教学楼在建筑物的墙上留下高2米高的影子CE;而当光线与地面成45°的夹角时,教学楼顶A在地面上的影子F与墙角C有13米的距离(点B,F,C在同一条直线上),则AE之间的长为米.(结果精确到lm,参考数据:sin22°≈0.375,cos22°≈0.9375,tan22°≈0.4)三.解答题19.如图,在正方形ABCD中,M是AD的中点,BE=3AE,试求sin∠ECM的值.20.我们知道:sin30°=,tan30°=,sin45°=,tan45°=1,sin60°=,tan60°=,由此我们可以看到tan30°>sin30°,tan45°>sin45°,tan60°>sin60°,那么对于任意锐角α,是否可以得到tanα>sinα呢?请结合锐角三角函数的定义加以说明.21.在Rt△ABC中,∠C=90°,若sin A=.求cos A,sin B,tan B的值.22.计算:3tan30°+cos245°﹣2sin60°.23.(1)验证下列两组数值的关系:2sin30°•cos30°与sin60°;2sin22.5°•cos22.5°与sin45°.(2)用一句话概括上面的关系.(3)试一试:你自己任选一个锐角,用计算器验证上述结论是否成立.(4)如果结论成立,试用α表示一个锐角,写出这个关系式.24.如图,在平面直角坐标系中,P是第一象限的点,其坐标为(6,y),且OP与x轴正半轴的夹角α的正切值为.求:(1)y的值;(2)角α的正弦值.25.某建筑物的金属支架如图所示,根据要求AB长为4m,C为AB的中点,点B到D的距离比立柱CD的长小0.5m,∠BCD=60°,求立柱CD长.26.如图,一段河坝的断面为梯形ABCD,试根据图中数据,求出坡角α和坝底宽AD(结果果保留根号).参考答案一.选择题1.【解答】解:过B作BE∥AC交CD于E.∵AC⊥BC,∴BE⊥BC,∠CBE=90°.∴BE∥AC.∵AB=BD,∴AC=2BE.又∵tan∠BCD=,设BE=x,则AC=2x,∴tan A===,故选:A.2.【解答】解:∵cos A=sin(90°﹣A),余弦函数随角增大而减小,∴当0°<∠A<45°时,sin A<cos A,即sin A﹣cos A<0.故选:B.3.【解答】解:∵sinα+cosα=,∴(sinα+cosα)2=2,即sin2α+cos2α+2sinαcosα=2.又∵sin2α+cos2α=1,∴2sinαcosα=1.∴(sinα﹣cosα)2=sin2α+cos2α﹣2sinαcosα=1﹣2sinαcosα=1﹣1=0.∴sinα﹣cosα=0.故选:D.4.【解答】解:①sin105°=sin(45°+60°)=sin60°cos45°+cos60°sin45°=×+×=,故此选项正确;②tan105°=tan(60°+45°)====﹣2﹣,故此选项正确;③sin15°=sin(60°﹣45°)=sin60°cos45°﹣cos60°sin45°=×﹣×=,故此选项正确;④cos90°=cos(45°+45°)=cos45°cos45°﹣sin45°sin45°=×﹣×=0,故此选项正确;故正确的有4个.故选:D.5.【解答】解:“SHIET”表示使用该键上方的对应的功能.故选:D.6.【解答】解:作CH⊥x轴于H,AC交OH于F.∵tan∠BAC==2,∵∠CBH+∠ABH=90°,∠ABH+∠OAB=90°,∴∠CBH=∠BAO,∵∠CHB=∠AOB=90°,∴△CBH∽△BAO,∴===2,∴BH=﹣2a,CH=2b,∴C(b+2a,2b),由题意可证△CHF∽△BOD,∴=,∴=,∴FH=2c,∴C(﹣b﹣2c,2b),∵2c+2b=﹣2a,∴2b=﹣2a﹣2c,b=﹣a﹣c,∴C(a﹣c,﹣2a﹣2c),故选:C.7.【解答】解:作OG⊥AB于点G,∵OA=OB=14厘米,∠AOB=60°,∴∠AOG=∠BOG=30°,AG=BG,∴OG=OA•cos30°=7厘米,故选:D.8.【解答】解:作BC⊥AC.在Rt△ABC中,∵AB=13m,BC:AC=5:12,∴可以假设:BC=5k,AC=12k,∵AB2=BC2+AC2,∴132=(5k)2+(12k)2,∴k=1,∴BC=5m,故选:A.9.【解答】解:过B作BF⊥CD,作FG⊥BD,∵∠BDF=∠FDC=30°,∴EF=FH,∵∠BGF=90°,∴EF=FH=10,∴DF=20,∴DC=DH+HC=10+1.6≈18.9.故选:B.10.【解答】解:设巡逻船从出发到成功拦截所用时间为x小时;如图所示,由题意得:∠ABC=45°+75°=120°,AB=12,BC=10x,AC=14x,过点A作AD⊥CB的延长线于点D,在Rt△ABD中,AB=12,∠ABD=45°+(90°﹣75°)=60°,∴BD=AB•cos60°=AB=6,AD=AB•sin60°=6,∴CD=10x+6.在Rt△ACD中,由勾股定理得:,解得:(不合题意舍去).答:巡逻船从出发到成功拦截所用时间为2小时.故选:B.二.填空题(共8小题)11.【解答】解:∵∠C=90°,∴tan B=,∴BC===4.故答案为4.12.【解答】解:∵cos50°=sin40°,sin50°>sin40°,∴sin50°>cos50°.故答案为>.13.【解答】解:∵tanα=1(0°<α<90°),∴∠α=45°,则sinα=,故答案为.14.【解答】解:如图,由tan B=,得AC=4k,BC=3k,由勾股定理,得AB=5k,cos A===,故答案为:.15.【解答】解:∵在△ABC中,|sin A﹣|+(cos B﹣)2=0,∴sin A=,cos B=,∴∠A=30°,∠B=60°,∴∠C=180°﹣30°﹣60°=90°.故答案为:90°.16.【解答】解:A、由一个正多边形的一个外角为36°,得360÷36=10,则这个多边形的对角线有=35,B、由AB=AC,若AB=3,BC=4,得cos A=≈0.667,A=42.5故答案为:35,42.5°.17.【解答】解:过A作AB⊥x轴于B.∴sinα=,∵sinα=,∴=,∵A(t,2),∴AB=2,∴OA=,∴t=,故答案为:.18.【解答】解:过点E作EM⊥AB,垂足为M.设AB为xm,在Rt△ABF中,∠AFB=45°,∴BF=AB=xm,∴BC=BF+FC=(x+13)m,在Rt△AEM中,AM=AB﹣BM=AB﹣CE=(x﹣2)m,又tan∠AEM=,∠AEM=22°,∴=0.4,解得x≈12,则ME=BC=BF+13≈12+13=25(m).在Rt△AEM中,cos∠AEM=,∴AE=≈≈27(m),故AE的长约为27m.故答案为:27.三.解答题(共8小题)19.【解答】解:设AE=x,则BE=3x,BC=4x,AM=2x,CD=4x,∴EC==5x,EM==x,CM==2x,∴EM2+CM2=CE2,∴△CEM是直角三角形,∴sin∠ECM==.20.【解答】解:对于任意锐角α,都有tanα>sinα,理由如下:如图,△ABC中,∠C=90°,∠A、∠B、∠C的对边分别是a、b、c,设∠A=α.则tanα=,sinα=,∵b<c,∴>,∴tanα>sinα.21.【解答】解:∵sin A==,∴设AB=13x,BC=12x,由勾股定理得:AC===5x,∴cos A==,sin B=cos A=,tan B==.22.【解答】解:3tan30°+cos245°﹣2sin60°===.23.【解答】解:(1)∵2sin30°•cos30°=2××=,sin60°=.2sin22.5°•cos22.5≈2×0.38×0.92≈0.7,sin45°=≈0.7,∴2sin30°•cos30°=sin60°,2sin22.5°•cos22.5=sin45°;(2)由(1)可知,一个角正弦与余弦积的2倍,等于该角2倍的正弦值;(3)2sin15°•cos15°≈2×0.26×0.97≈,sin30°=;故结论成立;(4)2sinα•cosα=sin2α.24.【解答】解:(1)作PC⊥x轴于C.∵t anα=,OC=6,∴PC=8,即y=8.(2)∵OP==10.则sinα===.25.【解答】解:连接BD,作OB⊥CD于点O,∵在直角三角形BCO中,∠BCD=60°,AB长为4m,C为AB的中点,∴OC=m,OB=OC=m,在直角三角形BOD中,设CD为x,OD=DC﹣OC=x﹣1,BD=CD﹣0.5=x﹣0.5,OB=,可得:,解得:x=3.75,答:CD的长为3.75m.26.【解答】解:过B作BF⊥AD于F.在Rt △ABF 中,AB =5,BF =CE =4.∴AF =3.在Rt △CDE 中,tan α==i =. ∴∠α=30°且DE ==4,∴AD =AF +FE +ED =3+4.5+4=7.5+4.答:坡角α等于30°,坝底宽AD 为7.5+4.人教版九年级下学期第28章锐角三角函数 单元过关测试卷 含参考答案一、选择题(每小题3分,共18分)1、在Rt △ABC 中,∠C =90º,b=53c ,则sinB 的值是( ) A 、53 B 、54 C 、43 D 、34 2、在△ABC中,若1sin 02A B -=,则△ABC 是( ) A 、等腰三角形 B 、等腰直角三角形 C 、直角三角形 D 、等边三角形3、如图,在菱形ABCD 中,DE ⊥AB ,cosA=53,BE=2,则tan ∠DBE 的值是( ) A 、21 B 、2 C 、25 D 、554、如图,长4m 的楼梯AB 的倾斜角∠ABD 为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD 为45°,则调整后的楼梯AC 的长为( )A .32 m B.62 m C .(32﹣2)m D .(62﹣2)m5、一人乘雪橇沿坡度为i=1:3的斜坡滑下,滑下距离S(米)与时间t (秒)之间的关(第3题) (第4题) (第6题) E D C B A D B C A B D C E A系为S=2210t t +,若滑动时间为4秒,则他下降的垂直高度为( )A 、72米B 、36米C 、336米D 、318米6、某数学兴趣小组同学进行测量大树CD 高度的综合实践活动,如图,在点A 处测得直立 于地面的大树顶端C 的仰角为36°,然后沿在同一剖面的斜坡AB 行走13米至坡顶B 处, 然后再沿水平方向行走6米至大树脚底点D 处,斜面AB 的坡度(或坡比)i=1:2.4,那么 大树CD 的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)( )A .8.1米B .17.2米C .19.7米D .25.5米二、填空题(每小题3分,共21分)7、在△ABC 中,∠C =90°,若sinB =31,则sinA 的值为 8、如图,P 是∠α 的边OA 上一点,且点P 的坐标为(3,4), 则sin α=9、升国旗时,某同学站在离旗杆24m 处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为30°,若两眼距离地面1.2m ,则旗杆高度约为 . (取3=1.732,结果精确到0.1m )10、如图,线段AB 、DC 分别表示甲、乙两座楼房的高,AB ⊥BC , DC ⊥BC ,两建筑物间距离BC=30米,若甲建筑物高AB=28米,在点A 测得D 点的仰角α=45°,则乙建筑物高DC= 米.11、如图所示,河堤横断面迎水坡AB 的坡比是1:3,堤高BC=5m ,则坡面AB 的长度是 米.12、某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为13、四边形的对角线的长分别为,可以证明当时(如图1),四边形的面积,那么当所夹的锐角为θ时(如图2),四边形的面积 .(用含的式子表示) 三、解答题(共61分)14、计算:(8分)(145sin 60)︒-︒(2)3sin60°﹣2cos30°﹣tan60°•tan45°.(第10题) (第11题) (第13题) D 图1 C 图215、(8分)如图,防洪大堤的横断面是梯形,背水坡AB的坡比i (指坡面的铅直高度与水平宽度的比).且AB=20 m .身高为1.7 m 的小明站在大堤A 点,测得高压电线杆端点D 的仰角为30°.已知地面CB 宽30 m ,求高压电线杆CD 的高度(结果保留0.1m,1.732).16、(8分)如图,在四边形ABCD 中,∠BCD 是钝角,AB=AD ,BD 平分∠ABC ,若CD=3,BD=62,sin ∠DBC=33,求对角线AC 的长.17、(8分)某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)18、(8分)如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾角由45º降为30º,已知原滑滑板AB的长为5米,点D、B、C 在同一水平地面上.(1)改善后滑滑板会加长多少?(精确到0.01)(2)若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?说明理由 (≈1.411.73≈2.45, )AB19、(10分)通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化。

北师大版九年级下册数学单元测试题全套及答案

北师大版九年级下册数学单元测试题全套及答案

北师大版九年级下册数学单元测试题全套及答案(含期中期末试题)第一章检测题(BSD)(考试时间:120分钟 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.如图,在Rt △ABC 中,CD 是斜边AB 上的高线,∠ACD 的正弦值是23,则ACAB 的值是( B )A.255B.23C.355D.522.在Rt △ABC 中,∠C =90°,sin A =45,AC =6 cm ,则BC 的长度为( C )A .6 cmB .7 cmC .8 cmD .9 cm3.在△ABC 中,sin B =cos(90°-∠C )=12,那么△ABC 是( A )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形4.如图,过点C (-2,5)的直线AB 分别交坐标轴于A (0,2),B 两点,则tan ∠OAB =( B ) A.25B.23C.52D.325.为了测量被池塘隔开的A ,B 两点之间的距离,根据实际情况,作出如图所示的图形,其中AB ⊥BE ,EF ⊥BE ,AF 交BE 于点D ,点C 在BD 上,有四位同学分别测量出以下四组数据:①BC ,∠ACB ;②CD ,∠ACB ,∠ADB ;③EF ,DE ,BD ;④DE ,DC ,BC .能根据所测数据,求出A ,B 间距离的有( C )A .1组B .2组C .3组D .4组6.如图,在Rt △ABC 中,∠C =90°,∠A =30°,E 为线段AB 上一点,且AE ∶EB =4∶1,EF ⊥AC 于F ,连接FB ,则tan ∠CFB 的值等于( C )A.33B.233C.533D .53二、填空题(本大题共6小题,每小题3分,共18分) 7.在Rt △ABC 中 ,∠C =90°,BC =5,AB =12,则tan A =512. 8.(2019·赤峰)如图,一根竖直的木杆在离地面3.1 m 处折断,木杆顶端落在地面上,且与地面成38°角,则木杆折断之前高度约为__8.1__m __.(参考数据:sin 38°≈0.62,cos 38°≈0.79,tan 38°≈0.78)9.(2019·咸宁) 如图,某校九(1)班数学课外活动小组在河边测量河宽AB (这段河流的两岸平行),他们在点C 测得∠ACB =30°,点D 处测得∠ADB =60°,CD =80 m ,则河宽AB 约为 __69__ m .(结果保留整数,3≈1.73)10.(2019·柳州)在△ABC 中,sin B =13,tan C =22,AB =3,则AC 的长为 3 .11.如图,小明将一张矩形纸片ABCD 沿CE 折叠,B 点恰好落在AD 边上,设此点为F ,若AB ∶BC =4∶5,则sin ∠DCF 的值为 35.12.如图,在边长为1的小正方形网格中,点A ,B ,C ,D 都在这些小正方形的顶点上,AB ,CD 相交于点O ,则tan ∠AOD = 2 .三、(本大题共5小题,每小题6分,共30分)13.计算:sin 30°-(cos 45°-1)0+32tan 2 30°.解:原式=12-1+32×⎝⎛⎭⎫332=12-1+12=0.14.已知Rt △ABC 中,∠C =90°,∠B =60°,a =4,解这个直角三角形.解:∠A =90°-∠B =90°-60°=30°.由tan B =ba,得b =a tan B =4tan 60°=4 3.由cos B=a c ,得c =a cos B =4cos 60°=8.所以∠A =30°,b =43,c =8. 15.已知α为锐角,且tan α是方程x 2+2x -3=0的一个根,求2sin 2α+cos 2α- 3 tan (α+15°)的值.解:解方程x 2+2x -3=0, 得x 1=1,x 2=-3.∵tan α>0,∴tan α=1,∴α=45°,∴2sin 2α+cos 2α-3tan (α+15°)=2sin 245°+cos 245°-3tan 60°=2×⎝⎛⎭⎫222+⎝⎛⎭⎫222-3×3=1+12-3=-32.16.数学拓展课程《玩转学具》课堂中,小陆同学发现:一副三角板中,含45°角的三角板的斜边与含30°角的三角板的长直角边相等.于是,小路同学提出一个问题:如图,将一副三角板直角顶点重合后拼放在一起,点B ,C ,E 在同一直线上.若BC =2,求AF 的长.(请你运用所学的数学知识解决这个问题)解:在Rt △ABC 中,BC =2,∠A =30°, ∴AC =BC tan A =2tan 30°=2 3. 由题意,得EF =AC =2 3. 在Rt △EFC 中,∠E =45°, ∴CF =EF·sin 45°=23×22=6, ∴AF =AC -CF =23- 6.17.(2019·通辽)两栋居民楼之间的距离CD =30 m ,楼AC 和BD 均为10层,每层楼高为3 m .上午某时刻,太阳光线GB 与水平面的夹角为30°,此刻楼BD 的影子会遮挡到AC 的第几层?(参考数据:3≈1.7,2≈1.4)解:设太阳光线GB 交AC 于点F ,过F 作FH ⊥BD 于H ,AC =BD =3×10=30 m ,FH =CD =30 m ,∠BFH =∠α=30°,在RtBFH 中,tan ∠BFH =BH FH =BH 30=33,∴BH =30×33=103≈10×1.7=17,∴FC =HD =BD -BH ≈30-17=13,∵133≈4.3,所以在四层的上面,即第五层.答:此刻楼BD 的影子会遮挡到楼AC 的5层.四、(本大题共3小题,每小题8分,共24分)18.(2019·深圳)如图所示,某施工队要测量隧道长度BC ,AD =600米,AD ⊥BC ,施工队站在点D 处看向B ,测得仰角为45°,再由D 走到E 处测量,DE ∥AC ,ED =500米,测得仰角为53°,求隧道BC 的长.(sin 53°≈45,cos 53°≈ 35,tan 53°≈43)解:在RtABD 中,AB =AD =600(米),作EM ⊥AC 于M ,则AM =DE =500(米),∴BM =100米,在Rt △CEM 中,tan 53°=CM EM =CM 600=43,∴CM =800(米),∴BC =CM -BM =800-100=700(米).答:隧道BC 长为700米.19.(2019·广元)如图,某海监船以60海里/小时的速度从A 处出发沿正西方向巡逻,一可疑船只在A 的西北方向的C 处,海监船航行1.5小时到达B 处时接到报警,需巡查此可疑船只,此时可疑船只仍在B 的北偏西30°方向的C 处,然后,可疑船只以一定速度向正西方向逃离,海监船立刻加速以90海里/小时的速度追击,在D 处海监船追到可疑船只,D 在B 的北偏西60°方向.(以下结果保留根号)(1)求B ,C 两处之间的距离;(2)求海监船追到可疑船只所用的时间.解:(1)过点C 作CE ⊥AB 于点E ,在Rt △BCE 中,∵∠BCE =30°,∴BE =BC ×sin ∠BCE =12BC ,CE =BC ×cos ∠BCE =32BC ,在Rt △ACE 中, ∵∠A =45°.∴AE =CE =32BC ,∵AB =60×1.5=90,∴AE -BE =32BC -12BC =90,解得BC =90(3+1).故B ,C 相距(903+90)海里.(2)过点D 作DF ⊥AB 于F ,由(1),得DF =CE =32BC ,∴DF =135+453,在Rt △BDF 中,∠DBF =30°,∴BD =2DF =270+903,∴海监船追到可疑船只所用的时间为(270+903)÷90=(3+3)h.20.已知:如图,在四边形ABCD 中,∠ABC =∠ADC =90°,DE ⊥BC 于E ,连接BD.若tan C =2,BE =3,CE =2,求点B 到CD 的距离.解:过点B 作BF ⊥CD ,垂足为F ,则∠BFC =90°.∵DE ⊥BC ,∴∠DEC =∠DEB =90°,在Rt △DEC 中,∵tan C =2,EC =2,∴DE =4.在Rt △BFC 中,∵tan C =2,∴BF =2FC ,设BF =x ,则FC =12x ,∵BF 2+FC 2=BC 2,∴x 2+(12x)2=(3+2)2,解得x =25,即BF =2 5.答:点B 到CD 的距离是2 5.五、(本大题共2小题,每小题9分,共18分)21.如图,点E 是矩形ABCD 中CD 边上一点,△BCE 沿BE 折叠为△BFE ,点F 落在AD 上. (1)求证:△ABF ∽△DFE ;(2)若sin ∠DFE =13,求tan ∠EBC 的值.(1)证明:∵∠A =∠D =90°,∠ABF 与∠DFE 都与∠AFB 互余,∴∠ABF =∠DFE ,∴△ABF ∽△DFE ;(2)解:∵sin ∠DFE =DE EF =13,∴设DE =k .则EF =CE =3k ,AB =CD =4k ,∴DF =EF 2-DE 2=22k ,由△ABF ∽△DFE ,得AF DE =AB DF ,即AF k =4k22k ,∴AF =2k ,∴BC =AD =2k +22k =32k ,∴tan ∠EBC =CE BC =3k 32k =22. 22.小明坐于堤边垂钓,如图,河堤AC 的坡角为30°,AC 长332米,钓竿AO 的倾斜角是60°,其长为3米,若AO 与钓鱼线OB 的夹角为60°,求浮漂B 与河堤下端C 之间的距离.解:如图,延长OA 交直线BC 于点D ,∵AO 的倾斜角是60°,∴∠ODB =60°.∵∠ACD =30°,∴∠CAD =180°-∠ODB -∠ACD =90°.在Rt △ACD 中,AD =AC·tan ∠ACD =332·33=32(米).∴CD =2AD =3(米). 又∵∠O =60°,∴△BOD 为等边三角形.∴BD=OD=OA+AD=3+32=4.5(米).∴BC=BD-CD=4.5-3=1.5米.答:浮漂B与河堤下端C之间的距离为1.5米.六、(本大题共12分)23.在一次科技活动中,小明进行了模拟雷达扫描实验.表盘是△ABC,其中AB=AC,∠BAC =120°,在点A处有一束红外光线AP,从AB开始,绕点A逆时针匀速旋转,每秒钟旋转15°,到达AC后立即以相同旋转速度返回AB,到达后立即重复上述旋转过程.小明通过实验发现,光线从AB 处旋转开始计时,旋转1秒,此时光线AP交BC边于点M,BM的长为(203-20) cm.(1)求AB的长;(2)从AB处旋转开始计时,若旋转6秒,此时光线AP与BC边的交点在什么位置?若旋转2 030秒,交点又在什么位置?请说明理由.解:(1)如图①,过A点作AD⊥BC,垂足为D.∵∠BAC=120°,AB=AC,∴∠ABC=∠C=30°.令AB=2t cm.在Rt△ABD中,AD=12AB=t,BD=32AB=3t.在Rt AMD中,∵∠AMD=∠ABC+∠BAM=45°,∴MD=AD=t.∵BM=BD-MD.即3t-t=203-20.解得t=20.∴AB=2×20=40 cm.答:AB的长为40 cm.(2)如图②,当光线旋转6秒,设AP交BC于点N,此时∠BAN=15°×6=90°.在Rt△ABN中,BN=ABcos 30°=4032=8033cm.∴光线AP旋转6秒,与BC的交点N距点B8033cm处.如图③,设光线AP旋转2 030秒后光线与BC的交点为Q.由题意可知,光线从边AB开始到第一次回到AB处需8×2=16秒,而2 030=126×16+14,即AP旋转2 030秒与旋转14秒时和BC的交点是同一个点Q.旋转14s的过程是B→C:8s,C→Q:6s,因此CQ=BN=8033cm,∵AB=AC,∠BAC=120°,∴BC=2ABcos 30°=2×40×32=40 3 cm,∴BQ=BC-CQ=403-8033=4033cm.答:光线AP旋转2 030秒后,与BC的交点Q在距点B的4033cm处.第二章检测题(BSD)(考试时间:120分钟满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.已知抛物线y=x2+ax+b与x轴的交点坐标为(-1,0)和(-3,0),则方程x2+ax+b=0的解是( B )A.x1=1,x2=-3 B.x1=-1,x2=-3C.x=-3 D.x=32.如图,在Rt△ABC中,∠C=90°,AC=4 cm,BC=6 cm,动点P从点C开始沿CA以1 cm/s 的速度向A点运动,同时动点Q从点C开始沿CB以2 cm/s的速度向B点运动,其中一个动点到达终点时,另一个动点也停止运动,则运动过程中所构成的△CPQ的面积y(cm2)与运动时间x(s)之间的函数图象大致是( C )3.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=-t2+24t +1.则下列说法中正确的是( D )A.点火后9 s和点火后13 s的升空高度相同B.点火后24 s火箭落于地面C.点火后10 s的升空高度为139 mD.火箭升空的最大高度为145 m4.若二次函数y=ax2+bx+c(a≠0)经过原点和第一、二、三象限,则(A)A.a>0,b>0,c=0 B.a>0,b<0,c=0C.a<0,b>0,c=0 D.a<0,b<0,c=05.(2019·烟台)已知二次函数y=ax2+bx+c(a≠0)的y与x的部分对应值如下表,下列结论:①抛物线的开口向上;②抛物线的对称轴为直线x=2; ③当0<x<4时,y>0;④抛物线与x轴的两个交点间的距离是4;⑤若A(x1,2),B(B)A.2 B.36.(2019·巴中)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论①b2>4ac,②abc<0,③2a+b -c >0,④a +b +c <0.其中正确的是( A )A .①④B .②④C .②③D .①②③④二、填空题(本大题共6小题,每小题3分,共18分)7.已知一条抛物线的开口大小与y =x 2相同但方向相反,且顶点坐标是(2,3),则该抛物线的表达式是 y =-x 2+4x -1 .8.飞机着陆后滑行的距离y (单位:m)关于滑行时间t (单位:s)的函数表达式是y =60t -32t 2,在飞机着陆滑行中,最后4 s 滑行的距离是 24 m.9.若二次函数y =2x 2-4x -1的图象与x 轴交于A (x 1,0),B (x 2,0)两点,则1x 1+1x 2的值为 -4 .10.如图,已知△OBC 是等腰直角三角形,∠OCB =90°,若点B 的坐标为(4,0),点C 在第一象限,则经过O ,B ,C 三点的抛物线的表达式是 y =-12x 2+2x .11.已知二次函数y =ax 2+2ax +3a 2+3(a ≠0)(其中x 是自变量),当x ≥2时,y 随x 的增大而增大,且-2≤x ≤1时,y 的最大值为9,则a 的值是__1__.12.如图,在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx(a>0)的顶点为C ,与x 轴的正半轴交于点A ,它的对称轴与抛物线y =ax 2(a>0)交于点B.若四边形ABOC 是正方形,则b 的值是 -2 .三、(本大题共5小题,每小题6分,共30分)13.已知当x =2时,抛物线y =a(x -h)2有最大值,此抛物线过点(1,-3),求抛物线的表达式,并指出当x 为何值时,y 随x 的增大而减小.解:当x =2时,有最大值,所以h =2.此抛物线过(1,-3),所以-3=a(1-2)2,解得a =-3.此抛物线的表达式为y =-3(x -2)2.当x >2时,y 随x 的增大而减小.14.已知抛物线y =-3x 2经过平移经过点(0,0)和(1,9),求出平移后抛物线的表达式,并写出它的对称轴和顶点坐标.解:设平移后抛物线的表达式为y =-3x 2+bx +c ,将点(0,0)和(1,9)的坐标代入,得⎩⎨⎧c =0,-3+b +c =9,解得⎩⎪⎨⎪⎧b =12,c =0.∴平移后抛物线的表达式为y =-3x 2+12x.∵y =-3x 2+12x =-3(x -2)2+12,∴对称轴为直线x=2,顶点坐标为(2,12).15.已知抛物线y =-a(x -2)2+3经过点(1,2).(1)求a 的值;(2)若点A(m ,y 1),B(n ,y 2)(m >n >2)都在该抛物线上,试比较y 1与y 2的大小. 解:(1)把(1,2)代入y =-a(x -2)2+3,得2=-a(1-2)2+3,解得a =1;(2)由(1)知原抛物线的表达式为y =-(x -2)2+3,其开口向下,对称轴为直线x =2, ∴当x >2时,y 随x 的增大而减小. ∵m >n >2,∴y 1<y 2.16.如图,在平面直角坐标系xOy 中,边长为2的正方形OABC 的顶点A ,C 分别在x 轴、y 轴的正半轴上,二次函数y =-23x 2+bx +c 的图象经过B ,C 两点.(1)求该二次函数的表达式;(2)结合函数的图象探索,当y >0时,x 的取值范围.解:(1)由题意可得B(2,2),C(0,2),将B ,C 坐标代入y =-23x 2+bx +c ,解得c =2,b =43,所以二次函数的表达式是y =-23x 2+43x +2.(2)令y =0,解-23x 2+43x +2=0,得x 1=3,x 2=-1,由图象可知:y >0时,x 的取值范围是-1<x <3.17.如图,抛物线y =ax 2+bx -5(a ≠0)与x 轴交于点A(-5,0)和点B(3,0),与y 轴交于点C.(1)求该抛物线的表达式;(2)若点E 为x 轴下方抛物线上的一动点,当S △ABE =S △ABC 时,求点E 的坐标.解:(1)∵抛物线经过A ,B 两点,∴把A(-5,0),B(3,0)代入y =ax 2+bx -5,得⎩⎨⎧25a -5b -5=0,9a +3b -5=0,解得⎩⎨⎧a =13,b =23,∴该抛物线的表达式为y =13x 2+23x -5.(2)∵y =13x 2+23x -5,∴令x =0,则y =-5.∴C 点的坐标为(0,-5),∵S △ABE =S △ABC ,∴点E的纵坐标与点C 的纵坐标相等,即点E 的纵坐标为-5,令13x 2+23x -5=-5,解得x 1=-2,x 2=0(舍去),∴点E 的坐标为(-2,-5).四、(本大题共3小题,每小题8分,共24分) 18.已知二次函数y =x 2-(2m -1)x +m 2-m.(1)求证:此二次函数图象与x 轴必有两个不同的交点;(2)若此二次函数图象与直线y =x -3m +4的一个交点在y 轴上,求m 的值.(1)证明:令y =0,有x 2-(2m -1)x +m 2-m =0,Δ=b 2-4ac =(2m -1)2-4(m 2-m)=1>0,∴结论成立;(2)解:令x =0,代入y =x 2-(2m -1)x +m 2-m 与y =x -3m +4,得m 2-m =-3m +4,∴m =-1+5或-1- 5.19.杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看作一点)的路线是抛物线y =-35x 2+3x +1的一部分,如图.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC =3.4 m ,在一次表演中人梯到起点A 的水平距离为4 m ,问这次表演是否成功?请说明理由.解:(1)∵y =-35x 2+3x +1=-35⎝⎛⎭⎫x -522+194,∴该演员弹跳高度的最大值为194m ; (2)当x =4时,y =-35×42+3×4+1=3.4,∴这次表演是成功的.20.如图,已知抛物线y =ax 2-4x +c 经过点A(0,-6)和B(3,-9).(1)求出抛物线的表达式;(2)写出抛物线的对称轴及顶点坐标;(3)点P(m ,m)(其中m >0)与点Q 均在抛物线上,且这两点关于抛物线的对称轴对称,求m 的值及点Q 的坐标.解:(1)依题意有⎩⎨⎧a ×02-4×0+c =-6,a ×32-4×3+c =-9,即⎩⎨⎧c =-6,9a -12+c =-3,∴⎩⎪⎨⎪⎧a =1,c =-6.∴抛物线的表达式为y =x 2-4x -6.(2)把y =x 2-4x -6配方得y =(x -2)2-10,∴对称轴为直线x =2,顶点坐标(2,-10).(3)由点P(m ,m)在抛物线上,有m =m 2-4m -6,即m 2-5m -6=0.∴m 1=6或m 2=-1(舍去),∴m =6,∴P 点的坐标为(6,6).∵点P ,Q 均在抛物线上,且关于对称轴x =2对称,∴Q 点的坐标为(-2,6). 五、(本大题共2小题,每小题9分,共18分)21.把抛物线y =12x 2平移得到抛物线m ,抛物线m 经过点A(-6,0)和原点O(0,0),它的顶点为P ,它的对称轴与抛物线y =12x 2交于点Q.(1)求顶点P 的坐标; (2)写出平移过程;(3)求图中阴影部分的面积.解:(1)设抛物线m 的表达式为y =12x 2+bx +c ,把点A(-6,0),原点O(0,0)代入,得b =3,c=0,∴抛物线m 的表达式为y =12x 2+3x =12(x +3)2-92,所以顶点P 的坐标为⎝⎛⎭⎫-3,-92. (2)把抛物线y =12x 2先向左平移3个单位长度,再向下平移92个单位长度即可得到抛物线y =12(x +3)2-92.(3)Q 点横坐标为-3,代入y =12x 2,可得Q ⎝⎛⎭⎫-3,92,图中阴影部分的面积=S △OPQ =12×3×9=272. 22.(2019·南充)在“我为祖国点赞”征文活动中,学校计划对获得一、二等奖的学生分别奖励一支钢笔、一本笔记本.已知购买2支钢笔和3个笔记本共38元,购买4支钢笔和5个笔记本共70元. (1)钢笔、笔记本的单价分别为多少元?(2)经与商家协商,购买钢笔超过30支时,每增加1支,单价降低0.1元;超过50支,均按购买50支的单价售,笔记本一律按原价销售.学校计划奖励一、二等奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一等奖学生多少人时,购买奖品总金额最少,最少为多少元?解:(1)设钢笔、笔记本的单价分别为x ,y 元,根据题意得,⎩⎨⎧2x +3y =38,4x +5y =70,解得:⎩⎪⎨⎪⎧x =10,y =6.答:钢笔、笔记本的单价分别为10元,6元;(2)设钢笔的单价为a 元,购买数量为b 支,支付钢笔和笔记本的总金额为w 元, ①当30≤b ≤50时,a =10-0.1(b -30)=-0.1b +13,w =b(-0.1b +13)+6(100-b)=-0.1b 2+7b +600=-0.1(b -35)2+722.5,∵当b =30时,w =720,当b =50时,w =700, ∴当30≤b ≤50时,700≤w ≤722.5;②当50<b ≤60时,a =8,w =8b +6(100-b)=2b +600,700<w ≤720,∴当30≤b ≤60时,w 的最小值为700元.答:这次奖励一等奖学生50人时,购买的奖品总金额最少,最少为700元.六、(本大题共12分)23.(2019·新疆)如图,抛物线y =ax 2+bx +c 经过A (-1,0),B (4,0),C (0,4)三点. (1)求抛物线的表达式及顶点D 的坐标; (2)将(1)中的抛物线向下平移154个单位长度,再向左平移h (h >0)个单位长度,得到新抛物线.若新抛物线的顶点D ′在△ABC 内,求h 的取值范围;(3)点P 为线段BC 上一动点(点P 不与点B ,C 重合),过点P 作x 轴的垂线交(1)中的抛物线于点Q ,当△PQC 与△ABC 相似时,求△PQC 的面积.题图 答图解:(1)函数表达式为y =a(x +1)(x -4)=a(x 2-3x -4),即-4a =4,解得a =-1,故抛物线的表达式为y =-x 2+3x +4,顶点D(32,254);(2)抛物线向下平移154个单位长度,再向左平移h(h>0)个单位长度,得到新抛物线的顶点D' (32-h ,52),将点A ,C 的坐标代入一次函数表达式并解得直线AC 的表达式为y =4x +4,将点D' 坐标代入直线AC 的表达式得:52=4(32-h)+4,解得h =158,故0<h<158;(3)过点P 作y 轴的平行线交抛物线和x 轴于点Q ,H ,∵OB =OC =4,∴∠PBA =∠OCB =45°=∠QPC ,直线BC 的表达式为y =-x +4,则AB =5,BC =42,AC =17,S ABC =12×5×4=10,设点Q(m ,-m 2+3m +4),点P(m ,-m +4),CP =2m ,PQ =-m 2+3m +4+m -4=-m 2+4m ,①当△CPQ ∽△CBA ,PC BC =PQ AB ,即2m42=-m 2+4m 5,解得m =114,相似比为PC BC =1116,②当△CPQ ∽△ACB ,同理可得相似比为PC AB =12225,利用面积比等于相似比的平方可得S PQC=10×(1116)2=605128或SPQC =10×(12225)2=576125. 第三章检测题(BSD)(考试时间:120分钟 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.已知⊙P 的半径为4,圆心P 的坐标为(1,2),点Q 的坐标为(0,5),则点Q 与⊙P 位置关系是( C )A .点Q 在⊙P 外B .点Q 在⊙P 上C .点Q 在⊙P 内D .不能确定2.如图,在⊙O 中,弦AB ∥CD ,若∠ABC =40°,则∠BOD 等于( D ) A .20° B .40° C .50° D.80°3.如图,⊙O 的半径为3,四边形ABCD 内接于⊙O ,连接OB ,OD ,若∠BOD =∠BCD ,则BD ︵的长为( C )A .πB.32πC .2πD .3π4.同一个圆的内接正六边形和外切正六边形的周长之比为( B )A .3∶4B .3∶2C .2∶ 3D .1∶25.如图,AC 是⊙O 的直径,弦BD ⊥AO 于点E ,连接BC ,过点O 作OF ⊥BC 于点F ,若BD =8 cm ,AE =2 cm ,则OF 的长度是( D )A .3 cmB . 6 cmC .2.5 cmD . 5 cm 6.如图,将正方形ABCD 绕点A 按逆时针方向旋转30°,得正方形AB 1C 1D 1,B 1C 1交CD 于点E ,AB =3,则四边形AB 1ED 的内切圆半径为( B )A .3+12B .3-32C .3+13D .3-33二、填空题(本大题共6小题,每小题3分,共18分)7.如图,四边形ABCD 内接于⊙O ,若∠BOD =138°,则它的一个外角∠DCE 等于69° . 8.如图,量角器的0度刻度线为AB ,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C ,直尺另一边交量角器于点A ,D ,量得AD =10 cm ,点D 在量角器上的读数为60°,则该直尺的宽度为533 cm . 9.如图,AB 是⊙O 的直径,点C 在⊙O 上,过点C 的切线与BA 的延长线交于点D ,点E 在BC ︵上(不与点B ,C 重合),连接BE ,CE.若∠D =40°,则∠BEC =115度.10.(2019·内江)如图,在平行四边形ABCD 中,AB<AD ,∠A =150°,CD =4,以CD 为直径的⊙O 交AD 于点E ,则图中阴影部分的面积为2π3+ 3 . 11.如图,P 是反比例函数y =4x (x >0)的图象上一点,以点P 为圆心、1个单位长度为半径作⊙P ,当⊙P 与直线y =3相切时,点P 的坐标为 (1,4)或(2,2) .12.(2019·包头)如图,BD 是⊙O 的直径,A 是⊙O 外一点,点C 在⊙O 上,AC 与⊙O 相切于点C ,∠CAB =90°,若BD =6,AB =4,∠ABC =∠CBD ,则弦BC 的长为.三、(本大题共5小题,每小题6分,共30分)13.如图,⊙O 是△ABC 的外接圆,∠A =45°,BD 是直径,BD =2,连接CD ,求BC 的长.解:在⊙O 中,∵∠A =45°,∴∠D =45°. ∵BD 为⊙O 的直径, ∴∠BCD =90°, ∴BC =BD·sin 45°=2×22= 2. 14.如图,已知CD 平分∠ACB ,DE ∥AC.求证:DE =BC.证明:∵CD 平分∠ACB ,∴∠ACD =∠BCD ,∴BD ︵=AD ︵,∵DE ∥AC ,∴∠ACD =∠CDE ,∴AD ︵=CE ︵,∴BD ︵=CE ︵,∴DE ︵=BC ︵,∴DE =BC.15.如图,两个同心圆中,大圆的弦AB ,AC 分别切小圆于点D ,E ,△ABC 的周长为12 cm ,求△ADE 的周长.解:连接OD ,OE.∵AB ,AC 分别切小圆于点D ,E , ∴OD ⊥AB ,OE ⊥AC , ∴AD =DB ,AE =EC , ∴DE 是△ABC 的中位线,∴DE =12BC ,∴C △ADE =12C △ABC =12×12=6 cm .16.如图所示,⊙O 的直径AB 长为6,弦AC 的长为2,∠ACB 的平分线交⊙O 于点D ,求四边形ADBC 的面积.解:∵AB 是⊙O 的直径, ∴∠ACB =∠ADB =90°.在Rt △ABC 中,由勾股定理,得 BC =AB 2-AC 2=62-22=4 2. 又∵CD 平分∠ACB , ∴AD ︵=BD ︵,∴AD =BD.在Rt △ABD 中,由勾股定理,得AD =BD =22AB =22×6=3 2. ∴S 四边形ADBC =S △ABC +S △ABD =42+9,∴四边形ADBC 的面积为42+9.17.如图,点I 是△ABC 的内心,AI 的延长线交BC 于点D ,交△ABC 的外接圆于点E.求证:IE 2=AE·DE.证明:连接BE ,BI.∵I 为△ABC 的内心,∴∠1=∠2,∠3=∠4. 又∵∠6=∠1+∠3,∠IBE =∠4+∠5, ∠5=∠2=∠1,∴∠IBE =∠6,∴IE =BE. ∵∠5=∠1,∠E =∠E ,∴△BED∽△AEB,∴BEDE=AEBE,∴BE2=AE·DE,∴IE2=AE·DE.四、(本大题共3小题,每小题8分,共24分)18.如图,在直角坐标系中,点O′的坐标为(-2,0),⊙O′与x轴相交于原点O和点A,B,C 两点的坐标分别为(0,b),(1,0).(1)当b=3时,求经过B,C两点的直线的表达式;(2)当B点在y轴上运动时,直线BC与⊙O′有哪几种位置关系?并求出每种位置关系时b的取值范围.解:(1)直线BC表达式为y=-3x+3.(2)当BC切⊙O′于第二象限时,记切点为点D.易得DC= 5.∵BO=BD=b,∴BC=5-b.12+b2=(5-b)2,得b=25 5.同理当BC切⊙O′于第三象限D1点时,可求得b=-25 5.故当b>255或b<-255时,直线BC与⊙O′相离;当b=255或-255时,直线BC与⊙O′相切;当-255<b<255时,直线BC与⊙O′相交.19.(2018·南充)如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为3,PB=2,PC=4.(1)求证:PC是⊙O的切线.(2)求tan∠CAB的值.(1)证明:连接OC,BC,∵⊙O的半径为3,PB=2,∴OC=OB=3,OP=OB+PB=5.∵PC=4,∴OC2+PC2=OP2,∴△OCP是直角三角形,∴OC⊥PC,∴PC是⊙O的切线.(2)解:∵AB是直径,∴∠ACB=90° ,∴∠ACO+∠OCB=90°,∵OC⊥PC,∴∠BCP+∠OCB =90°,∴∠BCP=∠ACO.∵OA=OC,∴∠A=∠ACO,∴∠A=∠BCP,在△PBC和△PCA中,∠BCP=∠A,∠P=∠P,∴△PBC∽△PCA,∴BCAC=PBPC=24=12,∴tan∠CAB=BC AC=12.20.(齐齐哈尔中考)如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.又∵∠A=∠DEB,∠DEB=∠DBC,∴∠A=∠DBC,∴∠DBC+∠ABD=90°,即∠ABC=90°∴BC是⊙O的切线.(2)解:∵BF=BC=2且∠ADB=90°,∴∠CBD=∠FBD,又∵OE∥BD,∴∠FBD=∠OEB.∵OE=OB,∴∠OEB=∠OBE,∴∠CBD=∠DBE=∠OBE=13∠ABC=13×90°=30°,∴∠C=60°,∴AB=3BC=23,∴⊙O的半径为3,连接OD,∴阴影部分面积为S扇形OBD-S△OBD=16π×3-34×3=π2-334.五、(本大题共2小题,每小题9分,共18分)21.(2019·安顺)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E 两点,过点D作DH⊥AC于点H.(1)判断DH与⊙O的位置关系,并说明理由;(2)求证:点H为CE的中点;(3)若BC=10,cos C=55,求AE的长.(1)解:DH与⊙O相切.理由:连接OD,AD,∵AB为直径,∴∠ADB=90°,∵AB=AC,∴BD=CD,∵OA=OB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH为⊙O的切线.(2)证明:连接DE,∵A,B,D,E四点共圆,∴∠DEC=∠B,∵AB=AC,∴∠B=∠C,∴∠DEC=∠C,∴CD=ED,∵DH⊥CE,∴点H为CE的中点.(3)解:CD=12BC=5,∵cos C=CDAC=55,∴AC=55,∵cos C=CHCD=55,∴CH=5,∴CE=2CH =25,∴AE =AC -CE =3 5.22.如图,在Rt △ABC 与Rt △OCD 中,∠ACB =∠DCO =90°,点O 为AB 的中点.(1)求证:∠B =∠ACD ;(2)已知点E 在AB 上,且BC 2=AB ·BE . ①若tan ∠ACD =34,BC =10,求CE 的长;②试判断CD 与以A 为圆心,AE 为半径的⊙A 的位置关系,并请说明理由.(1)证明:∵∠ACB =∠DCO =90°,∴∠ACB -∠ACO =∠DCO -∠ACO ,即∠ACD =∠OCB ; 又∵点O 是AB 的中点,∴OC =OB , ∴∠OCB =∠B , ∴∠B =∠ACD .(2)解:①∵BC 2=AB ·BE ,∴BC AB =BEBC.∵∠B =∠B ,∴△ABC ∽△CBE ,∴∠ACB =∠CEB =90°. ∵∠ACD =∠B ,∴tan ∠ACD =tan B =34,设BE =4x ,则CE =3x .由勾股定理,可知BE 2+CE 2=BC 2, ∴(4x )2+(3x )2=100,∴解得x =2,∴CE =6.②CD 与⊙A 相切.理由如下: 过点A 作AF ⊥CD 于点F .∵∠CEB =90°,∴∠B +∠ECB =90°. ∵∠ACE +∠ECB =90°,∴∠B =∠ACE .∵∠ACD =∠B ,∴∠ACD =∠ACE ,∴CA 平分∠DCE .∵AF ⊥CD ,AE ⊥CE ,∴AF =AE ,∴直线CD 与⊙A 相切.六、(本大题共12分)23.(2019·荆州)如图AB 是⊙O 的直径,点C 为⊙O 上一点,点P 是半径OB 上一动点(不与O ,B 重合),过点P 作射线l ⊥AB ,分别交弦BC ,BC ︵于D ,E 两点,在射线l 上取点F ,使FC =FD .(1)求证:FC 是⊙O 的切线; (2)当点E 是BC ︵的中点时,①若∠BAC =60°,判断O ,B ,E ,C 为顶点的四边形是什么特殊四边形,并说明理由; ②若tan ∠ABC =34,且AB =20,求DE 的长.(1)证明:连接OC ,∵OB =OC ,∴∠OBC =∠OCB ,∵PF ⊥AB ,∴∠BPD =90°,∴∠OBC +∠BDP =90°,∵FC =FD, ∴∠FCD =∠FDC ,∵∠FDC =∠BDP ,∴∠FCD =∠BDP ,∴∠OCB +∠FCD =90°,∴OC ⊥FC ,FC 是⊙O 的切线.(2)解:连接OC ,OE ,BE ,CE ,OE 与BC 交于H. ①以O ,B ,E ,C 为顶点的四边形是菱形.理由:∵AB 是直径,∴∠ACB =90°,∵∠BAC =60°,∴∠BOC =120°,∵点E 是BC ︵的中点,∴∠BOE =∠COE =60°,∵OB =OE =OC ,∴△BOE ,△COE 均为等边三角形,∴OB =BE =CE =OC ,∴四边形BOCE 是菱形.②∵AC BC =tan ∠ABC =34,设AC =3k ,BC =4k ,k>0.由AC 2+BC 2=AB 2,即(3k)2+(4k)2=202,解得k =4,∴AC =12,BC =16,∵点E 是BC ︵的中心,∴OE ⊥BC ,BH =CH =8,∵S △BOE =12OE·BH =12OB·PE ,即12×10×8=12×10×PE ,∴PE =8,又OP =OE 2-PE 2=6,∴BP =OB -OP =4,∵DP BP =tan ∠ABC =34,∴DP =34BP =3,∴DE =PE -DP =8-3=5.期中检测题(BSD)(考试时间:120分钟 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.对于函数y =-2(x -m)2的图象,下列说法不正确的是( D ) A .开口向下 B .对称轴是x =m C .最大值为0 D .与y 轴不相交 2.在Rt △ABC 中,∠C =90°,AB =6,tan B =33,则Rt △ABC 的面积为( B ) A .9 3B .923C .9D .183.如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A 处时,测得岛屿P 恰好在其正北方向,继续向东航行1小时到达B 处,测得岛屿P 在其北偏西30°方向,保持航向不变又航行2小时到达C 处,此时海监船与岛屿P 之间的距离(即PC 的长)为( D )A .40海里B .60海里C .203海里D .403海里4.若抛物线y =x 2+ax +b 与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x =1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点 ( B )A .(-3,-6)B .(-3,0)C .(-3,-5)D .(-3,-1)5.如图,在Rt △ABC 中,∠ACB =90°,∠A <∠B ,沿△ABC 的中线CM 将△CMA 折叠,使点A 落在点D 处,若CD 恰好与MB 垂直,则tan A 的值为( A )A .33B . 3C .12D .136.已知抛物线y =ax 2+bx +c 的图象如图所示,则|a -b +c|+|2a +b|等于( D ) A .a +b B .a -2b C .a -b D .3a 二、填空题(本大题共6小题,每小题3分,共18分)7.某种型号的迫击炮发射炮弹时的飞行高度h(m )与飞行时间t(s )的关系满足h =-13t 2+10t ,则经过 30 s ,发射的炮弹落地爆炸.8.在△ABC 中,∠A ,∠B 都是锐角,若⎪⎪⎪⎪sin A -12+⎝⎛⎭⎫cos B -122=0,则∠C = 90° . 9.若函数y =mx 2+(m +2)x +12m +1的图象与x 轴只有一个交点,那么m 的值为 0,2或-2 .10.(2019·盐城)在△ABC 中,BC =6+2,∠C =45°,AB =2AC ,则AC 的长为__2__. 11.(2019·宿迁)若∠MAN =60°,△ABC 的顶点B 在射线AM 上,且AB =2,点C 在射线AN 上运动,当△ABC 是锐角三角形时,BC12.已知抛物线y =23x 2+43x -2与x 轴交于A ,B 两点,与y 轴交于点C .点P 在对称轴上,当△PBC的周长最小时,点P 的坐标是⎝⎛⎭⎫-1,-43. 三、(本大题共5小题,每小题6分,共30分)13.计算:cos 60°-sin 45°+14tan 230°+cos 30°-sin 30°.解:原式=12-22+14×⎝⎛⎭⎫332+32-12=32-22+112. 14.由于保管不慎,小明把一道数学题染上了污渍,变成了“如图,在△ABC 中,∠A =30°,tan B =,AC =43,求AB 的长”.这时小明去翻看了标准答案,显示AB =10.你能否帮助小明通过计算说明污渍部分的内容是什么?解:过点C 作CH ⊥AB 于点H ,在Rt △ACH 中,CH =AC ·sin A =43×sin 30°=23,AH =AC ·cos A =43×cos 30°=6, ∴BH =AB -AH =4, ∴tan B =CH BH =32,∴污渍部分的内容是32. 15.(2019·凉山州)已知二次函数y =x 2+x +a 的图象与x 轴交于A (x 1,0),B (x 2,0)两点,且1x 21+1x 22=1,求a 的值.解:函数y =x 2+x +a 的图象与x 轴交于A(x 1,0),B(x 2,0)两点,∴x 1+x 2=-1,x 1·x 2 =a ,∵1x 21+1x 22=x 21+x 22x 21x 22=(x 1+x 2)2-2x 1x 2(x 1x 2)2=1-2a a 2=1,∴a =-1+ 2 或a =-1- 2. 16.在同一平面直角坐标系中,一次函数y =x -4与二次函数y =-x 2+2x +c 图象交于点A (-1,m ).(1)求m ,c 的值;(2)求二次函数图象的对称轴和顶点坐标. 解:(1)∵A 点在一次函数的图象上,∴m =-1-4=-5.∴点A 的坐标为(-1,-5),∵A 点在二次函数图象上,∴-5=-1-2+c ,解得c =-2. (2)由①可知二次函数表达式为y =-x 2+2x -2=-(x -1)2-1,∴二次函数的图象的对称轴为直线x =1,顶点坐标为(1,-1).17.如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B 处的求救者后,又发现点B 正上方点C 处还有一名求救者,在消防车上点A 处测得点B 和点C 的仰角分别为45°和65°,点A 距地面2.5米,点B 距地面10.5米,为救出点C 处的求救者,云梯需要继续上升的高度BC 约为多少米?(结果保留整数,参考数据:tan 65°≈2.1,sin 65°≈0.9,cos 65°≈0.4,2≈1.4)解:作AH ⊥CN 于点H .在Rt △ABH 中,∵∠BAH =45°,BH =10.5-2.5=8(m), ∴AH =BH =8(m), 在Rt △AHC 中,tan 65°=CH AH, ∴CH =8×2.1≈17(m),∴BC =CH -BH =17-8=9(m).四、(本大题共3小题,每小题8分,共24分)18.如图,直线y =x +2与x 轴交于点A ,与y 轴交于点B ,AB ⊥BC ,且点C 在x 轴上,若抛物线y =ax 2+bx +c 以C 为顶点,且经过点B ,求这条抛物线对应的函数表达式.解:∵直线y =x +2与x 轴交于点A ,与y 轴交于点B , ∴A (-2,0),B (0,2),∴△ABO 为等腰直角三角形.又∵AB ⊥BC ,∴△BCO 也为等腰直角三角形, ∴OC =OB =OA .∴C (2,0),设抛物线对应的函数表达式为y =a (x -2)2, 将点B (0,2)的坐标代入得2=a (0-2)2,解得a =12,∴此抛物线对应的函数表达式为y =12(x -2)2,即y =12x 2-2x +2.19.如图,一座钢结构桥梁的框架是△ABC ,水平横梁BC 长18米,中柱AD 高6米,其中D 是BC 的中点,且AD ⊥BC.(1)求sin B 的值;(2)现需要加装支架DE ,EF ,其中点E 在AB 上,BE =2AE ,且EF ⊥BC ,垂足为点F ,求支架DE 的长.解:(1)∵BD =DC =9,AD =6, ∴AB =92+62=313.∴sin B =AD AB =6313=21313.(2)∵EF ∥AD ,BE =2AE ,∴△BEF ∽△BAD. ∴EF AD =BF BD =BE BA =23,∴EF 6=BF 9=23, ∴EF =4,BF =6,∴DF =3,∴在Rt △DEF 中,DE =42+32=5米.20.为美化校园,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28 m 长的篱笆围成一个矩形花园ABCD(只围AB ,BC 两边),设AB =x m .(1)若花园的面积为192 m 2,求x 的值;(2)若在P 处有一棵树与墙CD ,AD 的距离分别是15 m 和6 m ,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S 的最大值.解:(1)∵AB =x m ,则BC =(28-x)m ,∴x(28-x)=192,解得x 1=12,x 2=16,∴当花园的面积为192 m 2时,x 的值为12 m 或16 m .(2)由题意可得S=x(28-x)=-x2+28x=-(x-14)2+196,∵在P处有一棵树与墙CD,AD的距离分别是15 m和6 m,28-15=13,∴6≤x≤13,∴当x=13时,S最大=-(13-14)2+196=195,∴花园面积S的最大值为195 m2.五、(本大题共2小题,每小题9分,共18分)21.如图,小河上有一拱桥,拱桥及河道的截面轮廓由抛物线的一部分ACB和矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.(1)求抛物线的表达式;(2)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h=-1128(t-19)2+8(0≤t≤40),且当水面到顶点C的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?解:(1)抛物线的表达式为y=-364x2+11(-8≤x≤8).(2)令-1128(t-19)2+8=11-5.解得t1=35,t2=3.∴当3≤t≤35时,水面到顶点C的距离不大于5米,需禁止船只通行,禁止船只通行时间为35-3=32小时.答:禁止船只通行时间为32小时.22.(2019·岳阳)慈氏塔位于岳阳市城西洞庭湖边,是湖南省保存最好的古塔建筑之一.如图,小亮的目高CD为1.7米,他站在D处测得塔顶的仰角∠ACG为45°,小琴的目高EF为1.5米,她站在距离塔底中心B点a米远的F处,测得塔顶的仰角∠AEH为62.3°.(点D,B,F在同一水平线上,参考数据:sin 62.3°≈0.89,cos 62.3°≈0.46,tan 62.3°≈1.9)(1)求小亮与塔底中心的距离BD;(用含a的式子表示)(2)若小亮与小琴相距52米,求慈氏塔的高度AB.解:(1)四边形CDBG,HBFE为矩形,∴GB=CD=1.7,HB=EF=1.5,∴GH=0.2,在Rt AHE中,tan∠AEH=AHHE,则AH=HE·tan∠AEH≈1.9a,∴AG=AH-GH=1.9a-0.2,在Rt ACG中,∠ACG=45°,∴CG=AG=1.9a-0.2,∴BD=1.9a-0.2,答:小亮与塔底中心。

人教版九年级下册数学各单元知识大全+测试卷(附答案)

人教版九年级下册数学各单元知识大全+测试卷(附答案)

一、二次函数1、一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数。

x 是自变量。

其中,a 是二次项系数;b 一次项系数;c 是常数项。

2、二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2。

3、二次函数的图象:c b a c bx ax y ,,(2++=是常数,)0≠a ,的图像是抛物线。

抛物线与它的对称轴的交点叫抛物线的顶点。

顶点是抛物线的最高点或最低点。

4、求抛物线顶点(最大或最小值)和对称轴的方法(1)配方法:运用配方的方法,将抛物线c bx ax y ++=2的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =。

(2)公式:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2-=。

5、二次函数的图象的特点:(1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴;(2)抛物线()k h x a y +-=2的顶点是(h,k),对称轴是x=h ; (3)抛物线c bx ax y ++=2的顶点是(a b ac a b 4422--,),对称轴是ab x 2-=;①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点。

|a |越大,开口越小。

|a |越小,开口越大。

(4)几种特殊的二次函数的图像特征如下表:二、二次函数与二元一次方程的关系第二十七章 相似三角形一、图形的相似1.图形的相似:如果两个图形形状相同,但大小不一定相等,那么这两个图形相似。

(相似的符号:∽)性质:相似多边形的对应角相等,对应边的比相等。

九年级数学下册 各单元综合测试题含答案4套

九年级数学下册 各单元综合测试题含答案4套

所以撤离的最长时间为 7 5 2 (h). 所以撤离的最小速度为 3 2 1.5 (km/h). (3)当 y 4 时,由 y 322 得, x 80.5, 80.57 73.5 (h).
x 所以矿工至少在爆炸后 73.5h 才能下井. 19.【答案】(1)因为 OA OB OD 1,
18.(9 分)近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是 CO .在一次矿 难事件的调查中发现:从零时起,井内空气中 CO 的浓度达到 4 mg/L ,此后浓度呈直线型增加,在第 7 小 时达到最高值 46 mg/L ,发生爆炸;爆炸后,空气中的 CO 浓度成反比例下降.如图所示,根据题中相关信 息回答下列问题: (1)求爆炸前后空气中 CO 浓度 y 与时间 x 的函数解析式,并写出相应的自变量的取值范围. (2)当空气中的 CO 浓度达到 34 mg/L 时,井下 3km 的矿工接到自动报警信号,这时他们至少要以多少千 米每小时的速度撤离才能在爆炸前逃生? (3)矿工只有在空气中的 CO 浓度降到 4 mg/L 及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸 后多少小时才能下井?
,由反比例函数
y

k x
k<0
的性质可得 y1<y2 ,所以 y1 y2<0 ,即 y1 y 2 的值是负数.
所以 y1 y 2 的值不确定.
4.【答案】B
【解析】因为二次函数 y ax2 bxc a 0 的图象开口向下,所以 a<0.
因为对称轴经过 x 轴的负半轴,所以 a , b同号,所以 b<0 .
交于 2,0 点即可;若是反比例函数 y k ,需 k>0,且 x>0 .另外,还可以写其他函数解析式,只要满足 x

最新人教版九年级数学下册单元测试题全套及答案

最新人教版九年级数学下册单元测试题全套及答案

九年级数学下册单元测试题全套及答案检测内容:第二十六章得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.下列函数中,图象经过点(1,-1)的反比例函数解析式是( B ) A .y =1x B .y =-1x C .y =2x D .y =-2x2.当三角形的面积S 为常数时,底边a 与底边上的高h 的函数关系的图象大致是( B )3.在反比例函数y =k -3x 图象的任一支曲线上,y 都随x 的增大而减小,则k 的取值范围是( A )A .k >3B .k >0C .k <3D .k <04.点A 为双曲线y =kx (k ≠0)上一点,B 为x 轴上一点,且△AOB 为等边三角形,△AOB 的边长为2,则k的值为( D )A .2 3B .±2 3 C. 3 D .± 35.在同一直角坐标系中,一次函数y =kx -k 与反比例函数y =kx(k ≠0)的图象大致是( A )6.某汽车行驶时的速度v (米/秒)与它所受的牵引力F (牛)之间的函数关系如图所示.当它所受牵引力为1 200牛时,汽车的速度为( A )A .180千米/时B .144千米/时C .50千米/时D .40千米/时7.如图,函数y 1=x -1和函数y 2=2x 的图象相交于点M (2,m ),N (-1,n ),若y 1>y 2,则x 的取值范围是( D )A .x <-1或0<x <2B .x <-1或x >2C .-1<x <0或0<x <2D .-1<x <0或x >28.已知反比例函数y =kx (k <0)图象上有两点A (x 1,y 1),B (x 2,y 2),且x 1<x 2,则y 1-y 2的值是( D )A .正数B .负数C .非负数D .不能确定9.如图,函数y =-x 与函数y =-4x 的图象相交于A ,B 两点,过A ,B 两点分别作y 轴的垂线,垂足分别为点C ,D .则四边形ACBD 的面积为( D ) A .2 B .4 C .6 D .8第6题图) ,第7题图) ,第9题图),第10题图)10.如图,正方形ABCD 的顶点B ,C 在x 轴的正半轴上,反比例函数y =kx (k ≠0)在第一象限的图象经过顶点A (m ,2)和CD 边上的点E (n ,23),过点E 的直线l 交x 轴于点F ,交y 轴于点G (0,-2),则点F 的坐标是( C )A .(54,0)B .(74,0)C .(94,0)D .(114,0)点拨:由题意可知AB =2,n =m +2,所以2m =(m +2)×23=k ,解得m =1,所以E (3,23),设EG 的解析式为y =kx +b ,把E (3,23),G (0,-2)代入y =kx +b ,解得⎩⎪⎨⎪⎧k =89b =-2,∴y =89x -2,令y =0,解得x=94,∴F (94,0) 二、填空题(每小题3分,共24分)11.写出一个图象在第二、四象限的反比例函数解析式:__y =-1x(答案不唯一)__.12.已知反比例函数y =kx 的图象在第二、第四象限内,函数图象上有两点A (2,y 1),B (5,y 2),则y 1与y 2的大小关系为y 1__<__y 2.13.双曲线y =kx 和一次函数y =ax +b 的图象的两个交点分别为A (-1,-4),B (2,m ),则a +2b =__-2__.14.若点A (m ,2)在反比例函数y =4x 的图象上,则当函数值y ≥-2时,自变量x 的取值范围是__x ≤-2或x >0__.15.直线y =ax (a >0)与双曲线y =3x交于A (x 1,y 1),B (x 2,y 2)两点.则4x 1y 2-3x 2y 1=__-3__.16.点A 在函数y =6x (x >0)的图象上,如果AH ⊥x 轴于点H ,且AH ∶OH =1∶2,那么点A 的坐标为__(23,3)__.17.在平面直角坐标系xOy 中,直线y =x 向上平移1个单位长度得到直线l ,直线l 与反比例函数y =kx的图象的一个交点为A (a ,2),则k 的值等于__2__.18.如图,OABC 是平行四边形,对角线OB 在y 轴正半轴上,位于第一象限的点A 和第二象限的点C 分别在双曲线y =k 1x 和y =k 2x 的一支上,分别过点A ,C 作x 轴的垂线,垂足分别为M 和N ,则有以下的结论:①AM CN =|k 1||k 2|;②阴影部分面积是12(k 1+k 2);③当∠AOC =90°时,|k 1|=|k 2|;④若OABC 是菱形,则两双曲线既关于x 轴对称,也关于y 轴对称.其中正确的结论是__①④__.(把所有正确的结论的序号都填上) 三、解答题(共66分)19.(6分)已知y =y 1+y 2,其中y 1与3x 成反比例,y 2与-x 2成正比例,且当x =1时,y =5;当x =-1时,y =-2.求当x =3时,y 的值.解:设y =k 13x +k 2(-x 2),求得y =72x +32x 2,当x =3时,y =44320.(8分)已知点P (2,2)在反比例函数y =kx (k ≠0)的图象上.(1)当x =-3时,求y 的值;(2)当1<x <3时,求y 的取值范围. 解:(1)-43 (2)43<y <421.(10分)超超家利用银行贷款购买了某山庄的一套100万元的住房,在交了首期付款后,每年需向银行付款y 万元.预计x 年后结清余款,y 与x 之间的函数关系如图,试根据图象所提供的信息回答下列问题: (1)确定y 与x 之间的函数表达式,并说明超超家交了多少万元首付款; (2)超超家若计划用10年时间结清余款,每年应向银行交付多少万元? (3)若打算每年付款不超过2万元,超超家至少要多少年才能结清余款?解:(1)12×5=60(万元),100-60=40(万元),∴y =60x ,超超家交了40万元的首付款 (2)把x =10代入y =60x 得y =6,∴每年应向银行交付6万元 (3)∵y ≤2,∴60x ≤2,∴2x ≥60,∴x ≥30,∴至少要30年才能结清余款22.(10分)如图是反比例函数y =kx的图象,当-4≤x ≤-1时,-4≤y ≤-1.(1)求该反比例函数的表达式;(2)若点M ,N 分别在该反比例函数的两支图象上,请指出什么情况下线段MN 最短(不需要证明),并注出线段MN 长度的取值范围.解:(1)反比例函数图象的两支曲线分别位于第一、三象限,∴当-4≤x ≤-1时,y 随着x 的增大而减小,又∵当-4≤x ≤-1时,-4≤y ≤-1,∴当x =-4时,y =-1,由y =kx 得k =4,∴该反比例函数的表达式为y =4x (2)当点M ,N 都在直线y =x 上时,线段MN 的长度最短,当MN 的长度最短时,点M ,N的坐标分别为(2,2),(-2,-2),利用勾股定理可得MN 的最短长度为42,故线段MN 长度的取值范围为MN ≥4223.(10分)(2015·东营)如图是函数y =3x 与函数y =6x 在第一象限内的图象,点P 是y =6x 的图象上一动点,PA ⊥x 轴于点A ,交y =3x 的图象于点C ,PB ⊥y 轴于点B ,交y =3x的图象于点D.(1)求证:D 是BP 的中点;(2)求四边形ODPC 的面积.解:(1)∵点P 在函数y =6x 上,∴设P 点坐标为(6m ,m ),∵点D 在函数y =3x 上,BP ∥x 轴,∴设点D 坐标为(3m ,m ),由题意,得BD =3m ,BP =6m =2BD ,∴D 是BP 的中点 (2)S 四边形OAPB =6m ·m =6,设C 坐标为(x ,3x ),D 点坐标为(3y ,y ),S △OBD =12·y ·3y =32,S △OAC =12·x·3x =32,S四边形OCPD=S四边形PBOA-S △OBD-S △OAC =6-32-32=324.(10分)如图,已知反比例函数y =k 1x 的图象与一次函数y =k 2x +b 的图象交于A ,B 两点,A 点横坐标为1,B (-12,-2).(1)求反比例函数和一次函数的解析式;(2)在x 轴上是否存在点P ,使△AOP 为等腰直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.解:(1)反比例函数为y =1x,一次函数为y =2x -1 (2)存在,点P 的坐标是(1,0)或(2,0)25.(12分)如图,已知正方形OABC 的面积为9,点O 为坐标原点,点A 在x 轴上,点C 在y 轴上,点B 在函数y =k x (k >0,x >0)的图象上,点P (m ,n )是函数y =kx (k >0,x >0)的图象上任一点,过点P 分别作x轴、y 轴的垂线,垂足分别为E ,F ,并设矩形OEPF 和正方形OABC 不重合部分的面积为S .(1)求点B 的坐标和k 的值; (2)当S =92时,求点P 的坐标;(3)写出S 关于m 的函数表达式.解:(1)依题意,设B 点的坐标为(x B ,y B ),∴S正方形OABC=x B ·y B =9.∴x B =y B =3,即点B 的坐标为(3,3).又∵x B y B =k ,∴k =9 (2)①∵P (m ,n )在y =9x 上,当P 点位于B 点下方时,如图(1),∴S 矩形OEPF =mn =9,S矩形OAGF=3n.由已知,得S =9-3n =92,∴n =32,m =6,即此时P 点的坐标为P 1(6,32). ②当P 点位于B 点上方时,如图(2),同理可求得P 2(32,6)(3)①如图(1),当m ≥3时,S 矩形OAGF =3n ,∵mn =9,∴n =9m ,∴S =S 矩形OEP 1F -S 矩形OAGF =9-3n=9-27m . ②如图(2),当0<m <3时,S 矩形OEGC =3m ,∴S =S 矩形OEP 2F -S 矩形OEGC =9-3m检测内容:第二十七章得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.下面不是相似图形的是( A )2.如图,点P 在△ABC 的边AC 上,要判断△ABP ∽△ACB ,添加一个条件,不正确的是( D ) A .∠ABP =∠C B .∠APB =∠ABC C.AP AB =AB AC D.AB BP =ACCB3.如图,身高为1.6米的某学生想测量学校旗杆的高度,当她在C 处时,她头顶端的影子正好与旗杆顶端的影子重合,并测得AC =2米,BC =8米,则旗杆的高度是( C ) A .6.4米 B .7米 C .8米 D .9米,第2题图) ,第3题图) ,第4题图),第5题图)4.如图,E (-4,2),F (-1,-1),以O 为位似中心,按比例尺1∶2,把△EFO 缩小,则点E 的对应点E ′的坐标为( A )A .(2,-1)或(-2,1)B .(8,-4)或(-8,4)C .(2,-1)D .(8,-4)5.如图,E 是平行四边形ABCD 的边BC 的延长线上的一点,连接AE 交CD 于点F ,则图中共有相似三角形( C )A .1对B .2对C .3对D .4对6.如图,在△ABC 中,DE ∥BC ,AD AB =35,则S △ADE S 梯形DBCE 的值是( B )A.35B.916C.53D.16257.如图,在Rt △ABC 中,∠ACB =90°,AC =4,BC =6,以斜边AB 上的一点O 为圆心所作的半圆分别与AC ,BC 相切于点D ,E ,则AD 为( B ) A .2.5 B .1.6 C .1.5 D .1点拨:连接OD ,OE ,易知四边形CDOE 为正方形,设OD =OE =r ,则BE =6-r.∵OE ∥AC ,∴OEAC =EB BC ,即r 4=6-r 6,解得r =2.4,∴AD =1.6. 8.如图,AB =4,射线BM 和AB 互相垂直,点D 是AB 上的一个动点,点E 在射线BM 上,BE =12DB ,作EF ⊥DE 并截取EF =DE ,连接AF 并延长交射线BM 于点C .设BE =x ,BC =y ,则y 关于x 的函数解析式为( A )A .-12x x -4B .-2x x -1C .-3x x -1D .-8x x -4点拨:过F 点作FH ⊥BC 于H ,易证△DBE ≌△EHF ,则BE =FH =x ,EH =2x ,又∵FH ∥AD ,∴FH AB =CH BC ,即x 4=y -3x y ,∴y =-12x x -4,第6题图) ,第7题图) ,第8题图),第9题图)9.如图,在已建立直角坐标系的4×4的正方形方格中,△ABC 是格点三角形(三角形的三个顶点是小正方形的顶点),若以格点P ,A ,B 为顶点的三角形与△ABC 相似(全等除外),则格点P 的坐标是( D ) A .(1,4) B .(3,4) C .(3,1) D .(1,4)或(3,4)10.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CF =14CD ,下列结论:①∠BAE =30°;②△ABE ∽△AEF ;③AE ⊥EF ;④△ADF ∽△ECF ,其中正确的个数为( B ) A .1个 B .2个 C .3个 D .4个点拨:设CF =a ,则DF =3a ,BE =EC =2a ,AB =AD =DC =4a ,∴AB BE =FC BC =12,∴△ABE ∽△ECF ,易知∠AEF =90°,勾股定理知AE =25a ,EF =5a ,∴AB BE =AE EF =12,∴△ABE ∽△AEF ,而AD DF ≠ECFC ,∴△ADF ∽△ECF 不成立,AE ≠2BE ,∴∠BAE ≠30° 二、填空题(每小题3分,共24分)11.如果x 2=y 3=z4≠0,那么x +2y +3z 3x +2y -2z的值是__5__.12.在△ABC 中,AB =8,AC =6,在△DEF 中,DE =4,DF =3,要使△ABC 与△DEF 相似,则需要添加一个条件是__∠A =∠D (或BC ∶EF =2∶1)__.(写出一种情况即可)13.如图,AB ∥CD ,AD 与BC 相交于点O ,OA =4,OD =6,则△AOB 与△DOC 的周长比是__2∶3__.,第10题图) ,第13题图) ,第14题图),第15题图)14.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条直角边DE =40 cm ,EF =20 cm ,测得边DF 离地面的高度AC =1.5 m ,CD =8 m ,则树高AB =__5.5__m.15.如图,点D ,E 分别在△ABC 的边AB ,AC 上,且∠AED =∠ABC ,若DE =3,BC =6,AB =8,则AE 的长为__4__.16.如图,在平行四边形ABCD 中,E ,F 分别是边AD ,BC 的中点,AC 分别交BE ,DF 于点M ,N ,给出下列结论:①△ABM ≌△CDN ;②AM =13AC ;③DN =2NF ;④S △AMB =12S △ABC .其中正确的结论是__①②③__.(填序号),第16题图) ,第17题图) ,第18题图)17.如图,点M 是Rt △ABC 的斜边BC 上异于B ,C 的一点,过M 点作直线截△ABC ,使截得的三角形与△ABC 相似,这样的直线共有__3__条.18.如图,矩形AOCB 的两边OC ,OA 分别位于x 轴、y 轴上,点B 的坐标为B (-203,5),D 是AB 边上的一点,将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图象上,那么该函数的解析式是y =-12x____.点拨:过点E 作EF ⊥CO 于点F ,由折叠知EO =AO =5,BC =5,CO =203,由勾股定理知BO =253,∵EF ∥BC ,∴EF 5=5253=FO 203,解得EF =3,FO =4,∴E (-4,3),∴反比例函数解析式为y =-12x三、解答题(共66分)19.(8分)如图所示,已知AB ∥CD ,AD ,BC 相交于点E ,F 为BC 上一点,且∠EAF =∠C . 求证:(1)∠EAF =∠B ;(2)AF 2=FE ·FB .解:(1)∵AB ∥CD ,∴∠B =∠C ,又∠C =∠EAF ,∴∠EAF =∠B (2)∵∠EAF =∠B ,∠AFE =∠BFA ,∴△AFE ∽△BFA ,则AF BF =FEFA,∴AF 2=FE ·FB20.(8分)如图所示,已知正方形ABCD 中,BE 平分∠DBC 且交CD 边于点E ,将△BCE 绕点C 顺时针旋转到△DCF 的位置,并延长BE 交DF 于点G .(1)求证:△BDG ∽△DEG ; (2)若EG ·BG =4,求BE 的长.解:(1)证明:∵BE 平分∠DBC ,∴∠CBE =∠DBG ,∵∠CBE =∠CDF ,∴∠DBG =∠CDF ,∵∠BGD =∠DGE ,∴△BDG ∽△DEG . (2)∵△BDG ∽△DEG ,DG BG =EGDG,∴DG 2=BG·EG =4,∴DG =2,∵∠EBC +∠BEC =90°,∠BEC =∠DEG ,∠EBC =∠EDG ,∴∠BGD =90°,∵∠DBG =∠FBG ,BG =BG ,∴△BDG ≌△BFG ,∴FG =DG =2,∴DF =4,∵BE =DF ,∴BE =DF =4.21.(8分)如图,图中的小方格都是边长为1的正方形,△ABC 与△A ′B ′C ′是关于点O 为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O ;(2)求出△ABC 与△A ′B ′C ′的位似比;(3)以点O 为位似中心,再画一个△A 1B 1C 1,使它与△ABC 的位似比等于1.5.解:(1)连接A′A ,C ′C ,并分别延长相交于点O ,即为位似中心 (2)相似比为1∶2 (3)略22.(10分)王亮同学利用课余时间对学校旗杆的高度进行测量,他是这样测量的:把长为3 m 的标杆垂直放置于旗杆一侧的地面上,测得标杆底端距旗杆底端的距离为15 m ,然后往后退,直到视线通过标杆顶端正好看不到旗杆顶端时为止,测得此时人与标杆的水平距离为2 m ,已知王亮的身高为1.6 m ,请帮他计算旗杆的高度(王亮眼睛距地面的高度视为他的身高).解:根据题意知,AB ⊥BF ,CD ⊥BF ,EF ⊥BF ,EF =1.6 m ,CD =3 m ,FD =2 m ,BD =15 m ,过E 点作EH ⊥AB ,交AB 于点H ,交CD 于点G ,则EG ⊥CD ,EH ∥FB ,EF =DG =BH ,EG =FD ,CG =CD -EF.因为△ECG ∽△EAH ,所以EG EH =CG AH ,即22+15=3-1.6AH ,所以AH =11.9(m ),所以AB =AH +HB =AH +EF =11.9+1.6=13.5(m ),即旗杆的高度为13.5 m23.(10分)如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B .(1)求证:∠DF A =∠ECD ;(2)△ADF 与△DEC 相似吗?为什么?(3)若AB =4,AD =33,AE =3,求AF 的长.解:(1)证明:∵∠AFE =∠DAF +∠FDA ,又∵四边形ABCD 为平行四边形,∴∠B =∠ADC =∠ADF +∠CDE ,又∵∠B =∠AFE ,∴∠DAF =∠CDE (2)证明:△ADF ∽△DEC ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD ,∴∠ADF =∠CED ,∠B +∠C =180°,∵∠AFE +∠AFD =180°,∠AFE =∠B ,∴∠AFD =∠C ,∴△ADF ∽△DEC (3)∵四边形ABCD 是平行四边形,∴AD ∥BC ,CD =AB =4,又∵AE ⊥BC ,∴AE ⊥AD ,在Rt △ADE 中,DE =AD 2+AE 2=(33)2+32=6,∵△ADF ∽△DEC ,∴AD DE =AF CD ,∴336=AF4,AF =2324.(10分)如图,已知在⊙O 中,直径AB =4,点E 是OA 上任意一点,过E 作弦CD ⊥AB ,点F 是BC ︵上一点,连接AF 交CE 于点H ,连接AC ,CF ,BD ,OD .(1)求证:△ACH ∽△AFC ; (2)猜想:AH ·AF 与AE ·AB 的数量关系,并证明你的猜想;(3)探究:当点E 位于何处时,S △AEC ∶S △BOD =1∶4?并加以说明.解:(1)证明:∵直径AB ⊥CD ,∴AC ︵=AD ︵,∴∠F =∠ACH ,又∵∠CAF =∠HAC ,∴△ACH ∽△AFC (2)AH·AF =AE·AB ,连接FB ,∵AB 是直径,∴∠AFB =∠AEH =90°,又∠EAH =∠FAB ,∴Rt △AEH ∽Rt △AFB ,∴AE AF =AH AB ,∴AH ·AF =AE·AB (3)当OE =32(或AE =12)时,S △AEC ∶S △BOD =1∶4,∵直线AB ⊥CD ,∴CE =ED ,又∵S △AEC =12AE·CE ,S △BOD =12OB·ED ,∴S △AEC S △BOD =AE OB =14,∵⊙O 的半径为2,∴2-OE 2=14,∴OE =3225.(12分)如图,直角梯形ABCD 中,AB ∥DC ,∠DAB =90°,AD =2DC =4,AB =6.动点M 以每秒1个单位长的速度,从点A 沿线段AB 向点B 运动;同时点P 以相同的速度,从点C 沿折线C —D —A 向点A 运动.当点M 到达点B 时,两点同时停止运动.过点M 作直线l ∥AD ,与线段CD 的交点为E ,与折线A —C —B 的交点为Q .点M 运动的时间为t (秒).(1)当t =0.5时,求线段QM 的长;(2)当0<t <2时,如果以C ,P ,Q 为顶点的三角形为直角三角形,求t 的值;(3)当t >2时,连接PQ 交线段AC 于点R .请探究CQRQ 是否为定值,若是,试求出这个定值;若不是,请说明理由. 解:(1)如图(1),过点C 作CF ⊥AB 于F ,则四边形AFCD 为矩形,∴CF =4,AF =2,此时,Rt △AQM ∽Rt △ACF ,∴QM AM =CF AF ,即QM 0.5=42,∴QM =1 (2)∵∠DCA 为锐角,故有两种情况:①当∠CPQ =90°时,点P 与点E 重合,此时DE +CP =CD ,即t +t =2,∴t =1. ②当∠PQC =90°时,如图(2),此时Rt △PEQ ∽Rt △QMA ,∴EQ PE =MAQM ,由题知,EQ =EM -QM =4-2t ,而PE =PC -CE =PC -(DC -DE )=t -(2-t )=2t -2.∴4-2t 2t -2=12,∴t =53,综上所述,t =1或53(3)CQRQ 为定值,当t >2时,如图(3),过C 作CF ⊥AB 于F ,PA =DA -DP =4-(t -2)=6-t ,由题得BF =AB -AF =4,∴CF =BF ,∴∠CBF =45°,∴QM =MB =6-t ,∴QM =PA ,∴四边形AMQP 为矩形,∴PQ ∥AB ,∴△CRQ ∽△CAB ,∴CQ RQ =BCAB =CF 2+BF 2AB =426=223检测内容:期中检测得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.若反比例函数y =kx 的图象经过点(2,-1),则该反比例函数的图象在( D )A .第一、二象限B .第一、三象限C .第二、三象限D .第二、四象限2.已知函数y =mx的图象如图,以下结论:①m <0;②在每个分支上y 随x 的增大而增大;③若点A (-1,a )、点B (2,b )在图象上,则a <b ;④若点P (x ,y )在图象上,则点P 1(-x ,-y )也在图象上.其中正确的个数是( B ) A .4个 B .3个 C .2个 D .1个 3.如图所示,在△ABC 中,AB =3AD ,DE ∥BC ,EF ∥AB ,若AB =9,DE =2,则线段FC 的长度是( C ) A .6 B .5 C .4 D .34.函数的自变量x 满足12≤x ≤2时,函数值y 满足14≤y ≤1,则这个函数可以是( A )A .y =12xB .y =2xC .y =18xD .y =8x5.下列条件中,不能判定△ABC 和△A ′B ′C ′相似的是( D ) A.AB B ′C ′=BC A ′C ′=ACA ′B ′B .∠A =∠A ′,∠B =∠C ′ C.AB A ′B ′=BC A ′C ′,且∠B =∠A ′ D.AB A ′B ′=AC A ′C ′,且∠B =∠C ′ 6.反比例函数y =kx与一次函数y =kx -k +2在同一直角坐标系中的图象可能是( D )7.△ABC 的三边之比为3∶4∶5,若△ABC ∽△A ′B ′C ′,且△A ′B ′C ′的最短边长为6,则△A ′B ′C ′的周长为( B )A .36B .24C .17D .128.如图, 已知四边形ABCD 是⊙O 的内接四边形,且AB =CD =5,AC =7,BE =3,下列命题错误的是( D )A .△AED ∽△BECB .∠AEB =90°C .∠BDA =45°D .图中全等的三角形共2对9.如图,过点O 作直线与双曲线y =kx (k ≠0)交于A ,B 两点,过点B 作BC ⊥x 轴于点C ,作BD ⊥y 轴于点D .在x 轴、y 轴上分别取点E ,F ,使点A ,E ,F 在同一条直线上,且AE =AF .设图中矩形ODBC 的面积为S 1,△EOF 的面积为S 2,则S 1,S 2的数量关系是( B ) A .S 1=S 2 B .2S 1=S 2 C .3S 1=S 2 D .4S 1=S 2,第3题图) ,第8题图) ,第9题图),第10题图)10.如图,边长为2的正方形中,P 是CD 的中点,连接AP 并延长,交BC 的延长线于点F ,作△CPF 的外接圆⊙O ,连接BP 并延长交⊙O 于点E ,连接EF ,则EF 的长为( D ) A.32 B.53 C.355 D.455 二、填空题(每小题3分,共24分)11.若点P 1(-1,m ),P 2(-2,n )在反比例函数y =k x (k >0)的图象上,则m __<__n (填“>”“<”或“=”号).12.如图,锐角三角形ABC 的边AB ,AC 上的高线CE 和BF 相交于点D ,请写出图中的两对相似三角形:__△BDE ∽△CDF ,△ABF ∽△ACE __(用相似符号连接).13.已知一次函数y =ax +b 与反比例函数y =kx 的图象相交于A (4,2),B (-2,m )两点,则一次函数的表达式为__y =x -2__.14.如图,直立在点B 处的标杆AB =2.5 m ,立在点F 处的观测者从点E 看到标杆顶A ,树顶C 在同一直线上(点F ,B ,D 也在同一直线上).已知BD =10 m ,FB =3 m ,人高EF =1.7 m ,则树高DC 是__5.2_m __.(精确到0.1 m)15.如图,已知A (3,0),B (2,3),将△OAB 以点O 为位似中心,相似比为2∶1,放大得到△OA ′B ′,则顶点B 的对应点B ′的坐标为__(4,6)或(-4,-6)__.,第12题图) ,第14题图) ,第15题图),第17题图)16.已知P 1(x 1,y 1),P 2(x 2,y 2)是同一个反比例函数图象上的两点,若x 2=x 1+2,且1y 2=1y 1+12,则这个反比例函数的表达式为__y =4x__.17.如图,在矩形ABCD 中,E ,F 分别是边AD ,BC 的中点,点G ,H 在DC 边上,且GH =12DC ,若AB =10,BC =12,则图中阴影部分的面积为__35__.18.如图,点E ,F 在函数y =kx(x >0)的图象上,直线EF 分别与x 轴、y 轴交于点A ,B ,且BE ∶BF =1∶m .过点E 作EP ⊥y 轴于点P ,已知△OEP 的面积为1,则k 的值是__2__,△OEF 的面积是__m 2-1m __.(用含m 的式子表示) 三、解答题(共66分)19.(8分)如图,在一个3×5的正方形网格中,△ABC 的顶点A ,B ,C 在单位正方形顶点上,请你在图中画一个△A 1B 1C 1,使点A 1,B 1,C 1都在单位正方形的顶点上,且使△A 1B 1C 1∽△ABC .解:由图可知∠ABC =135°,不妨设单位正方形的边长为1个单位,则AB ∶BC =1∶2,由此推断,所画三角形必有一角为135°,且该夹角的两边之比为1∶2,也可以把这一比值看作2∶2,2∶22等,以此为突破口,在图中连出2和2,2和22等线段,即得△EDF ∽△GDH ∽△FMN ∽△ABC ,如图所示,即图中的△EDF ,△GDH ,△FMN 均可视为△A 1B 1C 1,且使△A 1B 1C 1∽△ABC. 20.(8分)在平面直角坐标系中,已知反比例函数y =kx的图象经过点A (1,3).(1)试确定此反比例函数的解析式;(2)点O 是坐标原点,将线OA 绕O 点顺时针旋转30°得到线段OB ,判断点B 是否在此反比例函数的图象上,并说明理由.解:(1)把A (1,3)代入y =k x ,得k =1×3=3,∴反比例函数的解析式为y =3x(2)过点A 作x 轴的垂线交x 轴于点C.在Rt △AOC 中,OC =1,AC = 3.由勾股定理,得OA =OC 2+AC 2=2,∠AOC =60°.过点B 作x 轴的垂线交x 轴于点D.由题意,∠AOB =30°,OB =OA =2,∴∠BOD =30°,在Rt △BOD 中,得BD =1,OD =3,∴B 点坐标为(3,1).将x =3代入y =3x中,得y =1,∴点B (3,1)在反比例函数y=3x的图象上 21.(8分)如图,正比例函数y 1=x 的图象与反比例函数y 2=kx (k ≠0)的图象相交于A ,B 两点,点A 的纵坐标为2.(1)求反比例函数的解析式;(2)求出点B 的坐标,并根据函数图象,写出当y 1>y 2时,自变量x 的取值范围.解:(1)设A 点的坐标为(m ,2),代入y 1=x 得:m =2,所以点A 的坐标为(2,2),∴k =2×2=4,∴反比例函数的解析式为:y 2=4x (2)当y 1=y 2时,x =4x .解得x =±2,∴点B 的坐标为(-2,-2).或者由反比例函数、正比例函数图象的对称性得点B 的坐标为(-2,-2).由图象可知,当y 1>y 2时,自变量x 的取值范围是:-2<x <0或x >222.(10分)如图,在四边形ABCD 中,AC 平分∠DAB ,∠ADC =∠ACB =90°,E 为AB 的中点.(1)求证:AC 2=AB ·AD ; (2)求证:CE ∥AD ;(3)若AD =4,AB =6,求ACAF的值.解:(1)∵AC 平分∠DAB ,∴∠DAC =∠CAB.又∵∠ADC =∠ACB =90°,∴△ADC ∽△ACB.∴ADAC =AC AB ,即AC 2=AB·AD (2)∵∠ACB =90°,E 为AB 的中点,∴CE =12AB =AE.∴∠EAC =∠ECA.又∵∠CAD =∠CAB ,∴∠DAC =∠ECA ,∴CE ∥AD (3)∵CE ∥AD ,∴△AFD ∽△CFE ,∴AD CE =AF CF ,∵CE =12AB =12×6=3,AD =4,∴43=AF CF ,∴AF AC =47,即AC AF =7423.(10分)心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知, 学生的注意力指标数y 随时间x (分钟)的变化规律如下图所示(其中AB ,BC 分别为线段,CD 为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?解:(1)设线段AB 所在的直线的解析式为y 1=k 1x +20,把B (10,40)代入得,k 1=2,∴y 1=2x +20.设C ,D 所在双曲线的解析式为y 2=k 2x ,把C (25,40)代入得,k 2=1 000,∴y 2=1 000x ,当x 1=5时,y 1=2×5+20=30,当x 1=30时,y 2=1 00030=1003,∴y 1<y 2,∴第30分钟注意力更集中 (2)令y 1=36,∴36=2x +20,∴x 1=8,令y 2=36,∴36=1 000x ,∴x 2=1 00036≈27.8,∵27.8-8=19.8>19,∴老师能在学生注意力达到所需的状态下完成这道题目24.(10分)如图,双曲线y =kx (x >0)经过△OAB 的顶点A 和OB 的中点C ,AB ∥x 轴,点A 的坐标为(2,3).(1)确定k 的值;(2)若点D (3,m )在双曲线上,求直线AD 的解析式; (3)计算△OAB 的面积.解:(1)将点A (2,3)代入解析式y =k x ,得:k =6 (2)将D (3,m )代入反比例解析式y =6x ,得:m =63=2,∴点D 坐标为(3,2),设直线AD 解析式为y =kx +b ,将A (2,3)与D (3,2)代入得:⎩⎨⎧2k +b =33k +b =2,解得:k =-1,b =5,则直线AD 解析式为y =-x +5 (3)过点C 作CN ⊥y 轴,垂足为N ,延长BA ,交y 轴于点M ,∵AB ∥x 轴,∴BM ⊥y 轴,∴MB ∥CN ,∴△OCN ∽△OBM ,∵C 为OB 的中点,即OC OB =12,∴S △OCN S △OBM =(12)2,∵A ,C 都在双曲线y =6x 上,∴S △OCN =S △AOM =3,由33+S △AOB =14,得到S △AOB =9,则△AOB 面积为925.(12分)如图,抛物线经过A (4,0),B (1,0),C (0,-2)三点.(1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM ⊥x 轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.解:(1)∵该抛物线过点C (0,-2),∴可设该抛物线的解析式为y =ax 2+bx -2.将A (4,0),B (1,0)代入,得⎩⎨⎧16a +4b -2=0a +b -2=0,解得⎩⎨⎧a =-12b =52,∴此抛物线的解析式为y =-12x 2+52x -2 (2)存在,设P 点的横坐标为m ,则P 点的纵坐标为-12m 2+52m -2,当1<m <4时,AM =4-m ,PM =-12m 2+52m -2.又∵∠COA=∠PMA =90°,∴①当AM PM =AO OC =21时,△APM ∽△ACO ,即4-m =2(-12m 2+52m -2).解得m 1=2,m 2=4(舍去),∴P (2,1). ②当AM PM =OC OA =12时,△APM ∽△CAO ,即2(4-m )=-12m 2+52m -2.解得m 1=4,m 2=5(均不合题意,舍去),∴当1<m <4时,P (2,1).类似地可求出当m >4时,P (5,-2).当m <1时,P (-3,-14)或P (0,-2),综上所述,符合条件的点P 为(2,1)或(5,-2)或(-3,-14)或(0,-2)检测内容:第二十八章得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分) 1.将Rt △ABC 各边的长度都扩大3倍得到Rt △A ′B ′C ′,那么锐角∠A ,∠A ′的余弦值的关系为( A ) A .cos A =cos A ′ B .cos A =3cos A ′ C .3cos A =cos A ′ D .不能确定 2.在Rt △ABC 中,∠C =90°,cos A =15,则tan A 等于( A )A .2 6 B.62 C.265D .24 3.在平面直角坐标系xOy 中,已知点A (2,1)和点B (3,0),则sin ∠AOB 的值等于( A ) A.55 B.52 C.32 D.124.如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC 的三个顶点在图中相应的格点上,则tan ∠ACB 的值为( A ) A.13 B.12 C.22D .35.如图,在▱ABCD 中,点E 是AD 的中点,延长BC 到点F ,使CF ∶BC =1∶2,连接DF ,EC .若AB =5,AD =8,sin B =45,则DF 的长等于( C )A.10B.15C.17 D .2 56.等腰三角形底边与底边上的高的比是2∶3,则顶角为( A ) A .60° B .90° C .120° D .150°7.在Rt △ABC 中,∠C =90°,把∠A 的邻边与对边的比叫做∠A 的余切,记作cot A =ba .则下列关系式中不成立的是( D )A .tan A ·cot A =1B .sin A =tan A ·cos AC .cos A =cot A ·sin AD .tan 2A +cot 2A =18.已知α为锐角,且3tan 2α-(1+3)tan α+1=0,则α的度数为( C ) A .30° B .45° C .30°或45° D .45°或60°9.在△ABC 中,AB =AC =5,sin B =45,⊙O 过点B ,C 两点,且⊙O 半径r =10,则OA 的长为( A )A .3或5B .5C .4或5D .410.如图,四边形ABCD 是梯形,AD ∥BC ,CA 是∠BCD 的平分线,且AB ⊥AC ,AB =4,AD =6,则tan B =( B )A .2 3B .2 2 C.114 D.554二、填空题(每小题3分,共24分)11.计算:20160+(12)-1-2sin60°-|3-2|=__1__.,第12题图) ,第13题图) ,第14题图),第15题图)12.如图,直径为10的⊙A 经过点C (0,6)和点O (0,0),与x 轴的正半轴交于点D ,B 是y 轴右侧圆弧上一点,则cos ∠OBC 的值为__45__.13.如图,一束光线照在坡度1∶3的斜坡上,被斜坡上的平面镜反射成与地面平行的光线,则这束光线与坡面的夹角α是__30__度.14.如图所示,在菱形ABCD 中,AE ⊥BC 于点E ,EC =1,cos B =513,则这个菱形的面积是__3916__.15.如图,在△ABC 中,AD 是BC 边上的高,∠C =30°,BC =2+3,tan B =12,那么AD 等于__1__.16.如图,在Rt △ABC 中,∠ACB =90°,D 是AB 的中点,过D 点作AB 的垂线交AC 于点E ,BC =6,sin A =35,则DE =__154__.17.如图,一船以每小时20海里的速度沿正东方向航行,上午八时位于A 处,这时灯塔S 位于船的北偏东45°的方向,上午九时三十分位于B 处,这时灯塔S 位于船的北偏东30°处,若继续航行,则灯塔和船之间的最短距离为__15(3+3)__海里.,第16题图),第17题图) ,第18题图)18.如图,四边形ABCD 的对角线AC ,BD 相交于点O ,且BD 平分AC .若BD =8,AC =6,∠BOC =120°,则四边形ABCD 的面积为__123__.(结果保留根号) 三、解答题(共66分)19.(6分)如图,在△ABC 中,∠C =90°,sin A =25,D 为AC 上的一点,∠BDC =45°,DC =6,求AB的长.解:∵∠BCA =90°,∠BDC =45°,∴∠DBC =45°,∴CD =CB =6,又∵sin α=25,∴BC AB =25,∴AB =1520.(8分)如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾斜度由45°降为30°,已知原滑滑板AB 的长为5米,点D ,B ,C 在同一水平地面上.求:改善后滑滑板会加长多少?(精确到0.01米)(参考数据:2≈1.414,3≈1.732,6≈2.449)解:在Rt △ABC 中,∵AB =5,∠ABC =45°,∴AC =ABsin45°=5×22=522.在Rt △ADC 中,∠ADC =30°,∴AD =ACsin30°=52≈5×1.414=7.07,AD -AB =7.07-5=2.07(米).答:改善后滑滑板会加长2.07米21.(8分)如图,某水库大坝横断面是等腰梯形,坝高10米,坝顶宽6米,斜坡AB 的坡度为1∶2,现要加高2米,在坝顶宽和斜坡坡度不变的情况下,加固一条长为50米的大坝,需要多少土方?解:i =1∶2,过A 作AH ⊥BC 于H 点,∴12=10BH,∴BH =20,∴BC =20×2+6=46,∵S梯形ABCD=(6+46)×102=260,过E 作EM ⊥PC 于M 点,则有:12=12PM ,∴PM =24,∴PC =24×2+6=54,∴S 梯形PEFC =(54+6)×122=360,∴所需土方数为(360-260)×50=5 000米3.22.(10分)北京时间2015年04月25日14时11分,尼泊尔发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作.如图,某探测队在地面A ,B 两处均探测出建筑物下方C 处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB =4米,求该生命迹象所在位置C 的深度.(结果精确到1米.参考数据:sin 25°≈0.4,cos 25°≈0.9,tan 25°≈0.5,3≈1.7)解:作CD ⊥AB 交BA 延长线于D ,设CD =x 米,Rt △ADC 中,∠DAC =25°,所以tan25°=CDAD =0.5,所以AD =CD 0.5=2x ,Rt △BDC 中,∠DBC =60°,由tan60°=x2x -4=3,解得x ≈3米.所以生命迹象所在位置C 的深度约为3米23.(10分)某海域有A ,B ,C 三艘船正在捕鱼作业,C 船突然出现故障,向A ,B 两船发出紧急求救信号,此时B 船位于A 船的北偏西72°方向,距A 船24海里的海域,C 船位于A 船的北偏东33°方向,同时又位于B 船的北偏东78°方向. (1)求∠ABC 的度数;(2)A 船以每小时30海里的速度前去救援,问多长时间能到出事地点.(结果精确到0.01小时).(参考数据:2≈1.414,3≈1.732)解:(1)由题意可知DB ∥AE ,∠DBA +∠BAE =180°,∴∠DBA =108°,∠CBA =108°-78°=30°,∠C =180°-30°-72°-33°=45° (2)过点A 作AF ⊥BC 于点F ,AF AB =sin ∠CBA =12,∴AF =12AB=12,在Rt △CFA 中,FA CA =sin ∠C =22,∴CA =2AF ,∴AC =122,设A 船经过t 小时到出事地点,则30t =122,t =12230≈0.57(小时),所以A 船经过0.57小时能到出事地点24.(12分)如图,已知等边△ABC ,AB =12,以AB 为直径的半圆与BC 边交于点D ,过点D 作DF ⊥AC ,垂足为F ,过点F 作FG ⊥AB ,垂足为G ,连接GD.(1)求证:DF 是⊙O 的切线; (2)求FG 的长;(3)求tan ∠FGD 的值.解:(1)证明:连接OD ,∵△ABC 为等边三角形,∴∠C =∠A =∠B =60°,而OD =OB ,∴△ODB 是等边三角形,∠ODB =60°,∴∠ODB =∠C ,∴OD ∥AC ,∵DF ⊥AC ,∴OD ⊥DF ,∴DF 是⊙O 的切线 (2)∵OD ∥AC ,点O 为AB 的中点,∴OD 为△ABC 的中位线,∴BD =CD =6,在Rt △CDF 中,∠C =60°,∴∠CDF =30°,∴CF =12CD =3,∴AF =AC -CF =12-3=9,在Rt △AFG 中,∵∠A =60°,∴FG =AF ×sinA =9×32=932(3)过D 作DH ⊥AB 于H ,∵FG ⊥AB ,DH ⊥AB ,∴FG ∥DH ,∴∠FGD =∠GDH.在Rt △BDH 中,∠B =60°,∴∠BDH =30°,∴BH =12BD =3,DH =3BH =33,在Rt △AFG 中,∵∠AFG =30°,∴AG =12AF =92,∵GH =AB -AG -BH =12-92-3=92,∴tan ∠GDH=GH DH =9233=32,∴tan ∠FGD =tan ∠GDH =3225.(12分)如图所示(图①为实景侧视图,图②为安装示意图),在屋顶的斜坡面上安装太阳能热水器:先安装支架AB 和CD (均与水平面垂直),再将集热板安装在AD 上.为使集热板吸热率更高,公司规定:AD 与水平面夹角为θ1,且在水平面上的射影AF 为1.4 m ,现已测量出屋顶斜坡面与水平面夹角为θ2,并已知tan θ1=1.082,tan θ2=0.412.如果安装工人已确定安装支架AB 高为25 cm ,求支架CD 的高.(结果精确到1 cm)解:过A 作AE ∥BC ,交DC 于点E ,则∠EAF =∠CBG =θ2,且EC =AB =25 cm ,在Rt △DAF 中,∠DAF =θ1,∴DF =AFtan θ1.在Rt △EAF 中,∠EAF =θ2,∴EF =AFtan θ2,∴DE =DF -EF =AF (tan θ1-tan θ2).又∵AF =140 cm ,tan θ1=1.082,tan θ2=0.412,∴DE =140×(1.082-0.412)=93.8(cm ),∴DC =DE +EC =93.8+25=118.8≈119(cm ).答:支架DC 的高为119 cm检测内容:第二十九章得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.将一个圆形纸板放在太阳光下,它在地面上所形成的影子的形状不可能是(B)A.圆B.三角形C.线段D.椭圆2.如图,几何体上半部为正三棱柱,下半部为圆柱,其俯视图是(C)3.下列几何体中,主视图和左视图都为矩形的是(B)4.由若干个相同的小正方体搭成的一个几何体的俯视图如图,小正方形中的数字表示该位置的小正方体的个数,则这个几何体的主视图是(A)5.如图是某物体的三视图,则这个物体的形状是(B)A.四面体B.直三棱柱C.直四棱柱D.直五棱柱,第5题图),第6题图),第8题图)6.如图是一个几何体的三视图,则这个几何体的侧面积是(A)A.18 cm2B.20 cm2C.(18+23) cm2D.(18+43) cm27.如果一个圆锥的主视图是正三角形,则其侧面展开图的圆心角为(C)A.120°B.约156°C.180°D.约208°8.如图(1),(2),(3),(4)是一天中四个不同时刻的木杆在地面上的影子,将它们按时间先后顺序排列正确的一项是(A)A.(4),(3),(1),(2) B.(1),(2),(3),(4)C.(2),(3),(1),(4) D.(3),(1),(4),(2)9.如图是一束平行的光线从教室窗户射入教室的平面示意图,测得光线与地面所成的角∠AMC=30°,窗户的高在教室地面上的影长MN=23米,窗户的下檐到教室地面的距离BC=1米(点M,N,C在同一直线上),则窗户的高AB为(C)A.3米B.3米C.2米D.1.5米。

人教版九年级数学下册全册单元测试题及答案

人教版九年级数学下册全册单元测试题及答案

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】第二十六章 反比例函数全章测试一、填空题 1.反比例函数xm y 1+=的图象经过点(2,1),则m 的值是______. 2.若反比例函数xk y 1+=与正比例函数y =2x 的图象没有交点,则k 的取值范围是____ __;若反比例函数xky =与一次函数y =kx +2的图象有交点,则k 的取值范围是______. 3.如图,过原点的直线l 与反比例函数xy 1-=的图象交于M ,N 两点,根据图象猜想线段MN 的长的最小值是____________.4.一个函数具有下列性质:①它的图象经过点(-1,1); ②它的图象在第二、四象限内; ③在每个象限内,函数值y 随自变量x 的增大而增大. 则这个函数的解析式可以为____________.5.如图,已知点A 在反比例函数的图象上,AB ⊥x 轴于点B ,点C (0,1),若△ABC 的面积是3,则反比例函数的解析式为____________.6.已知反比例函数xky =(k 为常数,k ≠0)的图象经过P (3,3),过点P 作PM ⊥x 轴于M ,若点Q 在反比例函数图象上,并且S △QOM =6,则Q 点坐标为______. 二、选择题7.下列函数中,是反比例函数的是( ).(A)32x y =(B 32x y =(C)xy 32=(D)x y -=32 8.如图,在直角坐标中,点A 是x 轴正半轴上的一个定点,点B 是双曲线xy 3=(x >0)上的一个动点,当点B 的横坐标逐渐增大时,△OAB 的面积将会( ).(A)逐渐增大 (B)不变(C)逐渐减小(D)先增大后减小9.如图,直线y =mx 与双曲线xky =交于A ,B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM ,若S △ABM =2,则k 的值是( ).(A)2(B)m -2(C)m(D)410.若反比例函数xky =(k <0)的图象经过点(-2,a ),(-1,b ),(3,c ),则a ,b ,c 的大小关系为( ). (A)c >a >b (B)c >b >a (C)a >b >c(D)b >a >c11.已知k 1<0<k 2,则函数y =k 1x 和x ky 2=的图象大致是( ).12.当x <0时,函数y =(k -1)x 与xky 32-=的y 都随x 的增大而增大,则k 满足( ). (A)k >1 (B)1<k <2 (C)k >2 (D)k <113.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p (kPa)是气体体积V (m 3)的反比例函数,其图象如图所示.当气球内的气压大于140kPa 时,气球将爆炸.为了安全起见,气体体积应( ).(A)不大于3m 3524(B)不小于3m 3524(C)不大于3m 3724 (D)不小于3m 3724 14.一次函数y =kx +b 和反比例函数axky =的图象如图所示,则有( ).(A)k >0,b >0,a >0 (B)k <0,b >0,a <0 (C)k <0,b >0,a >0 (D)k <0,b <0,a >015.如图,双曲线xky =(k >0)经过矩形OABC 的边BC 的中点E ,交AB 于点D 。

最新青岛版九年级数学下册单元测试题全套(含答案)

最新青岛版九年级数学下册单元测试题全套(含答案)

青岛版九年级数学下册单元测试题全套(含答案)第5章达标测试卷一、选择题(共6小题)1.如图,正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是()A.x<﹣2或x>2 B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>22.已知点A(﹣2,0),B为直线x=﹣1上一个动点,P为直线AB与双曲线y=的交点,且AP=2AB,则满足条件的点P的个数是()A.0个B.1个C.2个D.3个3.反比例函数y1=(x>0)的图象与一次函数y2=﹣x+b的图象交于A,B两点,其中A(1,2),当y2>y1时,x的取值范围是()A.x<1 B.1<x<2 C.x>2 D.x<1或x>24.一次函数y=﹣x+a﹣3(a为常数)与反比例函数y=﹣的图象交于A、B两点,当A、B 两点关于原点对称时a的值是()A.0 B.﹣3 C.3 D.45.如图,双曲线y=与直线y=﹣x交于A、B两点,且A(﹣2,m),则点B的坐标是()A.(2,﹣1)B.(1,﹣2)C.(,﹣1)D.(﹣1,)6.如图,在矩形OABC中,AB=2BC,点A在y轴的正半轴上,点C在x轴的正半轴上,连接OB,反比例函数y=(k≠0,x>0)的图象经过OB的中点D,与BC边交于点E,点E的横坐标是4,则k的值是()A.1 B.2 C.3 D.4二、填空题(共3小题)7.如图,函数y=﹣x的图象是二、四象限的角平分线,将y=﹣x的图象以点O为中心旋转90°与函数y=的图象交于点A,再将y=﹣x的图象向右平移至点A,与x轴交于点B,则点B的坐标为.8.若函数y=﹣kx+2k+2与y=(k≠0)的图象有两个不同的交点,则k的取值范围是.9.如图,在平面直角坐标系中,⊙O的半径为1,∠BOA=45°,则过A点的双曲线解析式是.三、解答题(共21小题)10.如图,在平面直角坐标系xOy中,一次函数y=3x+2的图象与y轴交于点A,与反比例函数y=(k≠0)在第一象限内的图象交于点B,且点B的横坐标为1.过点A作AC⊥y轴交反比例函数y=(k≠0)的图象于点C,连接BC.(1)求反比例函数的表达式.(2)求△ABC的面积.11.如图,已知直线y=ax+b与双曲线y=(x>0)交于A(x1,y1),B(x2,y2)两点(A与B不重合),直线AB与x轴交于P(x,0),与y轴交于点C.(1)若A,B两点坐标分别为(1,3),(3,y2),求点P的坐标.(2)若b=y1+1,点P的坐标为(6,0),且AB=BP,求A,B两点的坐标.(3)结合(1),(2)中的结果,猜想并用等式表示x1,x2,x之间的关系(不要求证明).12.在矩形AOBC中,OB=6,OA=4,分别以OB,OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系.F是边BC上一点(不与B、C两点重合),过点F的反比例函数y=(k>0)图象与AC边交于点E.(1)请用k表示点E,F的坐标;(2)若△OEF的面积为9,求反比例函数的解析式.13.如图,反比例函数y=(k>0)与正比例函数y=ax相交于A(1,k),B(﹣k,﹣1)两点.(1)求反比例函数和正比例函数的解析式;(2)将正比例函数y=ax的图象平移,得到一次函数y=ax+b的图象,与函数y=(k>0)的图象交于C(x1,y1),D(x2,y2),且|x1﹣x2|•|y1﹣y2|=5,求b的值.14.如图,已知点A、P在反比例函数y=(k<0)的图象上,点B、Q在直线y=x﹣3的图象上,点B的纵坐标为﹣1,AB⊥x轴,且S△OAB=4,若P、Q两点关于y轴对称,设点P的坐标为(m,n).(1)求点A的坐标和k的值;(2)求的值.15.在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=的一个交点为P(2,m),与x轴、y轴分别交于点A,B.(1)求m的值;(2)若PA=2AB,求k的值.16.如图,反比例函数y=的图象经过点A(﹣1,4),直线y=﹣x+b(b≠0)与双曲线y=在第二、四象限分别相交于P,Q两点,与x轴、y轴分别相交于C,D两点.(1)求k的值;(2)当b=﹣2时,求△OCD的面积;(3)连接OQ,是否存在实数b,使得S△ODQ =S△OCD?若存在,请求出b的值;若不存在,请说明理由.17.如图是函数y=与函数y=在第一象限内的图象,点P是y=的图象上一动点,PA⊥x 轴于点A,交y=的图象于点C,PB⊥y轴于点B,交y=的图象于点D.(1)求证:D是BP的中点;(2)求四边形ODPC的面积.18.如图,已知直线y=x+k和双曲线y=(k为正整数)交于A,B两点.(1)当k=1时,求A、B两点的坐标;(2)当k=2时,求△AOB的面积;(3)当k=1时,△OAB的面积记为S1,当k=2时,△OAB的面积记为S2,…,依此类推,当k=n时,△OAB的面积记为Sn ,若S1+S2+…+Sn=,求n的值.19.如图,一次函数y=kx+b的图象与反比例函数y=﹣的图象交于A(﹣1,m)、B(n,﹣1)两点(1)求一次函数的解析式;(2)求△AOB的面积.20.如图,已知点A(a,3)是一次函数y1=x+b图象与反比例函数y2=图象的一个交点.(1)求一次函数的解析式;(2)在y轴的右侧,当y1>y2时,直接写出x的取值范围.21.如图,一次函数y=﹣x+5的图象与反比例函数y=(k≠0)在第一象限的图象交于A(1,n)和B两点.(1)求反比例函数的解析式;(2)在第一象限内,当一次函数y=﹣x+5的值大于反比例函数y=(k≠0)的值时,写出自变量x的取值范围.22.如图,直线y=x+b与双曲线y=都经过点A(2,3),直线y=x+b与x轴、y轴分别交于B、C两点.(1)求直线和双曲线的函数关系式;(2)求△AOB的面积.23.如图,已知函数y=(x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC ⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点E(1)若AC=OD,求a、b的值;(2)若BC∥AE,求BC的长.24.如图,一次函数y=kx+b(k<0)的图象经过点C(3,0),且与两坐标轴围成的三角形的面积为3.(1)求该一次函数的解析式;(2)若反比例函数y=的图象与该一次函数的图象交于二、四象限内的A、B两点,且AC=2BC,求m的值.25.如图,一次函数y=﹣x+2的图象与x轴交于点B,与反比例函数y=的图象的交点为A (﹣2,3).(1)求反比例函数的解析式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,求P点的坐标.26.如图,已知一次函数y=x+b与反比例函数y=的图象交于A、B两点,其中点A的坐标为(2,3).(1)求一次函数与反比例函数的解析式;(2)求点B的坐标;(3)请根据图象直接写出不等式x+b>的解集.27.如图,一次函数y=x+b的图象与反比例函数y=的图象交于点A和点B(﹣2,n),与x 轴交于点C(﹣1,0),连接OA.(1)求一次函数和反比例函数的解析式;(2)若点P在坐标轴上,且满足PA=OA,求点P的坐标.28.如图,一次函数y=kx+b与反比例函数y=(x>0)的图象交于A(m,6),B(3,n)两点.(1)求一次函数的解析式;(2)根据图象直接写出使kx+b<成立的x的取值范围;(3)求△AOB的面积.29.如图,四边形ABCD为正方形,点A的坐标为(0,1),点B的坐标为(0,﹣2),反比例函数y=的图象经过点C,一次函数y=ax+b的图象经过A、C两点(1)求反比例函数与一次函数的解析式;(2)求反比例函数与一次函数的另一个交点M的坐标;(3)若点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P 点的坐标.30.如图,矩形OABC,点A,C分别在x轴,y轴正半轴上,直线y=﹣x+6交边BC于点M(m,n)(m<n),并把矩形OABC分成面积相等的两部分,过点M的双曲线y=(x>0)交边AB 于点N.若△OAN的面积是4,求△OMN的面积.参考答案与试题解析1.【分析】先根据反比例函数与正比例函数的性质求出B点坐标,再由函数图象即可得出结论.【解答】解:∵反比例函数与正比例函数的图象均关于原点对称,∴A、B两点关于原点对称,∵点A的横坐标为2,∴点B的横坐标为﹣2,∵由函数图象可知,当﹣2<x<0或x>2时函数y1=k1x的图象在y2=的上方,∴当y1>y2时,x的取值范围是﹣2<x<0或x>2.故选D.【点评】本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y1>y2时x的取值范围是解答此题的关键.2.【分析】如图,设P(m,),B(﹣1,n),直线x=﹣1与x轴交于C,有A(﹣2,0),得到OA=2,OC=1,AC=1,BC∥y轴,推出,于是得到这样的点P不存在,点P4在AB之间,不满足AP=2AB,过P2作P2Q⊥x轴于Q,求得满足条件的点P(﹣4,﹣),于是得到满足条件的点P的个数是1,【解答】解:如图,设P(m,),B(﹣1,n),直线x=﹣1与x轴交于C,∵A(﹣2,0),∴OA=2,OC=1,∴AC=1,BC∥y轴,∴,∴P1,P3在y轴上,这样的点P不存在,点P4在AB之间,不满足AP=2AB,过P2作P2Q⊥x轴于Q,∴P2Q∥B1C,∴=,∴=,∴m=﹣4,∴P(﹣4,﹣),∴满足条件的点P的个数是1,故选B.【点评】本题考查了一次函数与反比例函数的焦点问题,平行线分线段成比例,注意数形结合思想的应用.3.【分析】根据函数解析式画出函数的大致图象,根据图象作出选择.【解答】解:根据双曲线关于直线y=x对称易求B(2,1).依题意得:如图所示,当1<x<2时,y2>y1.故选:B.【点评】本题考查了反比例函数与一次函数的交点问题.此题利用了双曲线的对称性求得点B的坐标是解题的关键.4.【分析】设A(t,﹣),根据关于原点对称的点的坐标特征得B(﹣t,),然后把A(t,﹣),B(﹣t,)分别代入y=﹣x+a﹣3得﹣=﹣t+a﹣3,=t+a﹣3,两式相加消去t得2a﹣6=0,再解关于a的一次方程即可.【解答】解:设A(t,﹣),∵A、B两点关于原点对称,∴B(﹣t,),把A(t,﹣),B(﹣t,)分别代入y=﹣x+a﹣3得﹣=﹣t+a﹣3,=t+a﹣3,两式相加得2a﹣6=0,∴a=3.故选C.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.5.【分析】根据自变量的值,可得相应的函数值,根据待定系数法,可得反比例函数的解析式,根据解方程组,可得答案.【解答】解:当x=﹣2时,y=﹣×(﹣2)=1,即A(﹣2,1).将A点坐标代入y=,得k=﹣2×1=﹣2,反比例函数的解析式为y=,联立双曲线、直线,得,解得,,B(2,﹣1).故选:A.【点评】本题考查了反比例函数与一次函数的交点问题,利用待定系数法求双曲线函数的解析式,又利用解方程组求图象的交点.6.【分析】首先根据E点横坐标得出D点横坐标,再利用AB=2BC,得出D点纵坐标,进而得出k的值.【解答】解:∵在矩形OABC中,AB=2BC,反比例函数y=(k≠0,x>0)的图象经过OB的中点D,与BC边交于点E,点E的横坐标是4,∴D点横坐标为:2,AB=OC=4,BC=AB=2,∴D点纵坐标为:1,∴k=xy=1×2=2.故选:B.【点评】此题主要考查了点的坐标性质以及k与点的坐标性质,得出D点坐标是解题关键.二、填空题(共3小题)7.【分析】根据旋转,可得AO的解析式,根据解方程组,可得A点坐标,根据平移,可得AB的解析式,根据自变量与函数值得对应关系,可得答案.【解答】解:AO的解析式为y=x,联立AO与y=,得,解得.A点坐标为(1,1)AB的解析式为y=﹣x+2,当y=0时,﹣x+2=0.解得x=2,B(2,0).故答案为:(2,0).【点评】本题考查了反比例函数与一次函数的交点问题,利用了直线的旋转,直线的平移,自变量与函数值得对应关系.8.【分析】根据反比例函数与一次函数的交点问题,两函数的交点坐标满足方程组,接着消去y得到关于x的一元二次方程kx2﹣(2k+2)x+k=0,由于有两个不同的交点,则关于x的一元二次方程kx2+2x+1=0有两个不相等的实数解,于是根据根的判别式的意义得到△=(2k+2)2﹣4k2>0,然后解一元一次不等式即可.【解答】解:把方程组消去y得到﹣kx+2k+2=,整理得kx2﹣(2k+2)x+k=0,根据题意得△=(2k+2)2﹣4k2>0,解得k>﹣,即当k时,函数y=﹣kx+2k+2与y=(k≠0)的图象有两个不同的交点,故答案为k且k≠0.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.9.【分析】根据题意可设A(m,m),再根据⊙O的半径为1利用勾股定理可得m2+m2=12,解出m的值,再设出反比例函数解析式为y=(k≠0),再代入A点坐标可得k的值,进而得到解析式.【解答】解:∵∠BOA=45°,∴设A(m,m),∵⊙O的半径为1,∴AO=1,∴m2+m2=12,解得:m=,∴A(,),设反比例函数解析式为y=(k≠0),∵图象经过A点,∴k=×=,∴反比例函数解析式为y=.故答案为:y=.【点评】此题主要考查了待定系数法求反比例函数解析式,以及勾股定理,求出A点坐标是解决此题的关键.三、解答题(共21小题)10.【分析】(1)先由一次函数y=3x+2的图象过点B,且点B的横坐标为1,将x=1代入y=3x+2,求出y的值,得到点B的坐标,再将B点坐标代入y=,利用待定系数法即可求出反比例函数的表达式;(2)先由一次函数y=3x+2的图象与y轴交于点A,求出点A的坐标为(0,2),再将y=2代入y=,求出x的值,那么AC=.过B作BD⊥AC于D,则BD=yB ﹣yC=5﹣2=3,然后根据S△ABC=AC•BD,将数值代入计算即可求解.【解答】解:(1)∵一次函数y=3x+2的图象过点B,且点B的横坐标为1,∴y=3×1+2=5,∴点B的坐标为(1,5).∵点B在反比例函数y=的图象上,∴k=1×5=5,∴反比例函数的表达式为y=;(2)∵一次函数y=3x+2的图象与y轴交于点A,∴当x=0时,y=2,∴点A的坐标为(0,2),∵AC⊥y轴,∴点C的纵坐标与点A的纵坐标相同,是2,∵点C在反比例函数y=的图象上,∴当y=2时,2=,解得x=,∴AC=.过B作BD⊥AC于D,则BD=yB ﹣yC=5﹣2=3,∴S△ABC=AC•BD=××3=.【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征,平行于y轴的直线上点的坐标特征,三角形的面积,难度适中.求出反比例函数的解析式是解题的关键.11.【分析】(1)先把A(1,3)),B(3,y2)代入y=求得反比例函数的解析式,进而求得B的坐标,然后把A、B代入y=ax+b利用待定系数法即可求得直线的解析式,继而即可求得P 的坐标;(2)作AD⊥y轴于D,AE⊥x轴于E,BF⊥x轴于F,BG⊥y轴于G,AE、BG交于H,则AD∥BG∥x轴,AE∥BF∥y轴,得出=,==,根据题意得出=,==,从而求得B(,y1),然后根据k=xy得出x1•y1=•y1,求得x1=2,代入=,解得y1=2,即可求得A、B的坐标;(3)合(1),(2)中的结果,猜想x1+x2=x.【解答】解:(1)∵直线y=ax+b与双曲线y=(x>0)交于A(1,3),∴k=1×3=3,∴y=,∵B(3,y2)在反比例函数的图象上,∴y2==1,∴B(3,1),∵直线y=ax+b经过A、B两点,∴解得,∴直线为y=﹣x+4,令y=0,则x=4,∴P(4,O);(2)如图,作AD⊥y轴于D,AE⊥x轴于E,BF⊥x轴于F,BG⊥y轴于G,AE、BG交于H,则AD∥BG∥x轴,AE∥BF∥y轴,∴=,==,∵b=y1+1,AB=BP,∴=,==,∴B(,y1)∵A,B两点都是反比例函数图象上的点,∴x1•y1=•y1,解得x1=2,代入=,解得y1=2,∴A(2,2),B(4,1).(3)根据(1),(2)中的结果,猜想:x1,x2,x之间的关系为x1+x2=x.【点评】本题考查了待定系数法求解析式以及反比例函数和一次函数的交点问题,数形结合思想的运用是解题的关键.12.【分析】(1)易得E点的纵坐标为4,F点的横坐标为6,把它们分别代入反比例函数y=(k>0)即可得到E点和F点的坐标;(2)分别用矩形面积和能用图中的点表示出的三角形的面积表示出所求的面积,解方程即可求得k的值.【解答】解:(1)E(,4),F(6,);(2)∵E,F两点坐标分别为E(,4),F(6,),∴S△ECF=EC•CF=(6﹣k)(4﹣k),∴S△EOF =S矩形AOBC﹣S△AOE﹣S△BOF﹣S△ECF=24﹣k﹣k﹣S△ECF=24﹣k﹣(6﹣k)(4﹣k),∵△OEF 的面积为9,∴24﹣k ﹣(6﹣k )(4﹣k )=9, 整理得,=6,解得k=12.∴反比例函数的解析式为y=.【点评】本题考查了反比例函数的性质和图形的面积计算;点在反比例函数图象上,则点的横纵坐标满足其解析式;在求坐标系内一般三角形的面积,通常整理为矩形面积减去若干直角三角形的面积的形式.13.【分析】(1)首先根据点A 与点B 关于原点对称,可以求出k 的值,将点A 分别代入反比例函数与正比例函数的解析式,即可得解.(2)分别把点(x 1,y 1)、(x 2,y 2)代入一次函数y=x+b ,再把两式相减,根据|x 1﹣x 2|•|y 1﹣y 2|=5得出|x 1﹣x 2|=|y 1﹣y 2|=,然后通过联立方程求得x 1、x 2的值,代入即可求得b 的值.【解答】解:(1)据题意得:点A (1,k )与点B (﹣k ,﹣1)关于原点对称, ∴k=1,∴A (1,1),B (﹣1,﹣1),∴反比例函数和正比例函数的解析式分别为y=,y=x ;(2)∵一次函数y=x+b 的图象过点(x 1,y 1)、(x 2,y 2), ∴,②﹣①得,y 2﹣y 1=x 2﹣x 1, ∵|x 1﹣x 2|•|y 1﹣y 2|=5, ∴|x 1﹣x 2|=|y 1﹣y 2|=,由得x 2+bx ﹣1=0,解得,x 1=,x 2=,∴|x1﹣x2|=|﹣|=||=,解得b=±1.【点评】本题考查了反比例函数与正比例函数关于原点对称这一知识点,以及用待定系数法求函数解析式以及一次函数图象上点的坐标特点,利用对称性求出点的坐标是解题的关键.14.【分析】(1)先由点B在直线y=x﹣3的图象上,点B的纵坐标为﹣1,将y=﹣1代入y=x ﹣3,求出x=2,即B(2,﹣1).由AB⊥x轴可设点A的坐标为(2,t),利用S△OAB=4列出方程(﹣1﹣t)×2=4,求出t=﹣5,得到点A的坐标为(2,﹣5);将点A的坐标代入y=,即可求出k的值;(2)根据关于y轴对称的点的坐标特征得到Q(﹣m,n),由点P(m,n)在反比例函数y=﹣的图象上,点Q在直线y=x﹣3的图象上,得出mn=﹣10,m+n=﹣3,再将变形为,代入数据计算即可.【解答】解:(1)∵点B在直线y=x﹣3的图象上,点B的纵坐标为﹣1,∴当y=﹣1时,x﹣3=﹣1,解得x=2,∴B(2,﹣1).设点A的坐标为(2,t),则t<﹣1,AB=﹣1﹣t.∵S△OAB=4,∴(﹣1﹣t)×2=4,解得t=﹣5,∴点A的坐标为(2,﹣5).∵点A在反比例函数y=(k<0)的图象上,∴﹣5=,解得k=﹣10;(2)∵P、Q两点关于y轴对称,点P的坐标为(m,n),∴Q(﹣m,n),∵点P在反比例函数y=﹣的图象上,点Q在直线y=x﹣3的图象上,∴n=﹣,n=﹣m﹣3,∴mn=﹣10,m+n=﹣3,∴====﹣.【点评】本题考查了反比例函数与一次函数的交点问题,反比例函数与一次函数图象上点的坐标特征,三角形的面积,关于y轴对称的点的坐标特征,代数式求值,求出点A的坐标是解决第(1)小题的关键,根据条件得到mn=﹣10,m+n=﹣3是解决第(2)小题的关键.15.【分析】(1)将点P的坐标代入反比例函数的解析式即可求得m的值;(2)作PC⊥x轴于点C,设点A的坐标为(a,0),则AO=﹣a,AC=2﹣a,根据PA=2AB得到AB:AP=AO:AC=1:2,求得a值后代入求得k值即可.【解答】解:∵y=经过P(2,m),∴2m=8,解得:m=4;(2)点P(2,4)在y=kx+b上,∴4=2k+b,∴b=4﹣2k,∵直线y=kx+b(k≠0)与x轴、y轴分别交于点A,B,∴A(2﹣,0),B(0,4﹣2k),如图,点A在x轴负半轴,点B在y轴正半轴时,∵PA=2AB,∴AB=PB,则OA=OC,∴﹣2=2,解得k=1;当点A在x轴正半轴,点B在y轴负半轴时,=,解得,k=3.∴k=1或k=3【点评】本题考查了反比例函数与一次函数的交点问题,解题的关键是表示出A的坐标,然后利用线段之间的倍数关系确定k的值,难度不大.16.【分析】(1)根据反比例函数的图象上点的坐标特征易得k=﹣4;(2)当b=﹣2时,直线解析式为y=﹣x﹣2,则利用坐标轴上点的坐标特征可求出C(﹣2,0),D(0,﹣2),然后根据三角形面积公式求解;(3)先表示出C(b,0),根据三角形面积公式,由于S△ODQ =S△OCD,所以点Q和点C到OD的距离相等,则Q的横坐标为(﹣b,0),利用直线解析式可得到Q(﹣b,2b),再根据反比例函数的图象上点的坐标特征得到﹣b•2b=﹣4,然后解方程即可得到满足条件的b的值.【解答】解:(1)∵反比例函数y=的图象经过点A(﹣1,4),∴k=﹣1×4=﹣4;(2)当b=﹣2时,直线解析式为y=﹣x﹣2,∵y=0时,﹣x﹣2=0,解得x=﹣2,∴C(﹣2,0),∵当x=0时,y=﹣x﹣2=﹣2,∴D(0,﹣2),∴S△OCD=×2×2=2;(3)存在.当y=0时,﹣x+b=0,解得x=b,则C(b,0),∵S△ODQ =S△OCD,∴点Q和点C到OD的距离相等,而Q点在第四象限,∴Q的横坐标为﹣b,当x=﹣b时,y=﹣x+b=2b,则Q(﹣b,2b),∵点Q在反比例函数y=﹣的图象上,∴﹣b•2b=﹣4,解得b=﹣或b=(舍去),∴b的值为﹣.【点评】本题考查了反比例函数与一次函数的交点:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了反比例函数图象上点的坐标特征和三角形面积公式.17.【分析】(1)根据函数图象上的点满足函数解析式,可得P、D点坐标,根据线段中点的定义,可得答案;(2)根据图象割补法,可得面积的和差,可得答案.【解答】(1)证明:∵点P在函数y=上,∴设P点坐标为(,m).∵点D在函数y=上,BP∥x轴,∴设点D坐标为(,m),由题意,得BD=,BP==2BD,∴D是BP的中点.(2)解:S四边形OAPB=•m=6,设C点坐标为(x,),D点坐标为(,y),S△OBD=•y•=,S△OAC=•x•=,S四边形OCPD =S四边形PBOA﹣S△OBD﹣S△OAC=6﹣﹣=3.【点评】本题考查了反比例函数与一次函数的交点问题,利用了函数图象上的点满足函数解析式,线段中点的定义,图形割补法是求图形面积的重要方法.18.【分析】(1)由k=1得到直线和双曲线的解析式,组成方程组,求出方程组的解,即可得到A、B两点的坐标;(2)先由k=2得到直线和双曲线的解析式,组成方程组,求出方程组的解,即可得到A、B 两点的坐标;再求出直线AB的解析式,得到直线AB与y轴的交点(0,2),利用三角形的面积公式,即可解答.(3)根据当k=1时,S1=×1×(1+2)=,当k=2时,S2=×2×(1+3)=4,…得到当k=n时,Sn =n(1+n+1)=n2+n,根据若S1+S2+…+Sn=,列出等式,即可解答.【解答】解:(1)当k=1时,直线y=x+k和双曲线y=化为:y=x+1和y=,解得,,∴A(1,2),B(﹣2,﹣1),(2)当k=2时,直线y=x+k和双曲线y=化为:y=x+2和y=,解得,,∴A(1,3),B(﹣3,﹣1)设直线AB的解析式为:y=mx+n,∴∴,∴直线AB的解析式为:y=x+2∴直线AB与y轴的交点(0,2),∴S△AOB=×2×1+×2×3=4;(3)当k=1时,S1=×1×(1+2)=,当k=2时,S2=×2×(1+3)=4,…当k=n时,Sn=n(1+n+1)=n2+n,∵S1+S2+…+Sn=,∴×(…+n2)+(1+2+3+…n)=,整理得:,解得:n=6.【点评】本题考查了一次函数与反比例函数的交点,解决本题的关键是联立函数解析式,组成方程组,求交点坐标.在(3)中注意找到三角形面积的规律是关键.19.【分析】(1)把A与B坐标代入反比例解析式求出m与n的值,确定出A与B坐标,代入一次函数解析式求出k与b的值,即可确定出一次函数解析式;(2)由A与B的坐标求出AB的长,利用点到直线的距离公式求出原点O到直线AB的距离,即可求出三角形AOB面积.【解答】解:(1)把A(﹣1,m),B(n,﹣1)代入反比例函数y=﹣,得:m=7,n=7,即A (﹣1,7),B(7,﹣1),把A与B坐标代入一次函数解析式得:,解得:k=﹣1,b=6,则一次函数解析式为y=﹣x+6;(2)∵A(﹣1,7),B(7,﹣1),∴AB==8,∵点O到直线y=﹣x+6的距离d==3,∴S△AOB=AB•d=24.【点评】此题考查了反比例函数与一次函数的交点问题,涉及的知识有:待定系数法求一次函数解析式,两点间的距离公式,以及点到直线的距离公式,熟练掌握待定系数法是解本题第一问的关键.20.【分析】(1)将点A的坐标代入反比例函数的解析式,求得a值后代入一次函数求得b的值后即可确定一次函数的解析式;(2)y1>y2时y1的图象位于y2的图象的上方,据此求解.【解答】解:(1)将A(a,3)代入y2=得a=2,∴A(2,3),将A(2,3)代入y1=x+b得b=1,∴y1=x+1;(2)∵A(2,3),∴根据图象得在y轴的右侧,当y1>y2时,x>2.【点评】本题考查了反比例函数与一次函数的交点问题,能正确的确定点A的坐标是解答本题的关键,难度不大.21.【分析】(1)首先求出点A的坐标,进而即可求出反比例函数系数k的值;(2)联立反比例函数和一次函数解析式,求出交点B的坐标,结合图形即可求出x的取值范围.【解答】解:(1)∵一次函数y=﹣x+5的图象过点A(1,n),∴n=﹣1+5,∴n=4,∴点A坐标为(1,4),∵反比例函数y=(k≠0)过点A(1,4),∴k=4,∴反比例函数的解析式为y=;(2)联立,解得或,即点B的坐标(4,1),若一次函数y=﹣x+5的值大于反比例函数y=(k≠0)的值,则1<x<4.【点评】本题主要考查了反比例函数与一次函数的交点问题,解答本题的关键是求出A点和B点的坐标,此题难度不大.22.【分析】(1)将点A的坐标分别代入直线y=x+b与双曲线y=的解析式求出b和m的值即可;(2)当y=0时,求出x的值,求出B的坐标,就可以求出OB的值,作AE⊥x轴于点E,由A 的坐标就可以求出AE的值,由三角形的面积公式就可以求出结论.【解答】解:(1)∵线y=x+b与双曲线y=都经过点A(2,3),∴3=2+b,3=,∴b=1,m=6,∴y=x+1,y=,∴直线的解析式为y=x+1,双曲线的函数关系式为y=;(2)当y=0时,0=x+1,x=﹣1,∴B(﹣1,0),∴OB=1.作AE⊥x轴于点E,∵A(2,3),∴AE=3.==.∴S△AOB答:△AOB的面积为.【点评】本题考查了运用待定系数法求一次函数,反比例函数的解析式的运用,三角形的面积公式的运用,解答时求出的解析式是关键.23.【分析】(1)首先利用反比例函数图象上点的坐标性质得出k的值,再得出A、D点坐标,进而求出a,b的值;(2)设A点的坐标为:(m,),则C点的坐标为:(m,0),得出tan∠ADF==,tan ∠AEC==,进而求出m的值,即可得出答案.【解答】解;(1)∵点B(2,2)在函数y=(x>0)的图象上,∴k=4,则y=,∵BD⊥y轴,∴D点的坐标为:(0,2),OD=2,∵AC⊥x轴,AC=OD,∴AC=3,即A点的纵坐标为:3,∵点A在y=的图象上,∴A点的坐标为:(,3),∵一次函数y=ax+b的图象经过点A、D,∴,解得:;(2)设A点的坐标为:(m,),则C点的坐标为:(m,0),∵BD∥CE,且BC∥DE,∴四边形BCED为平行四边形,∴CE=BD=2,∵BD∥CE,∴∠ADF=∠AEC,∴在Rt△AFD中,tan∠ADF==,在Rt△ACE中,tan∠AEC==,∴=,解得:m=1,∴C点的坐标为:(1,0),则BC=.【点评】此题主要考查了反比例函数与一次函数的交点以及锐角三角函数关系等知识,得出A,D点坐标是解题关键.24.【分析】(1)先由一次函数y=kx+b(k<0)的图象经过点C(3,0),得出3k+b=0①,由于一次函数y=kx+b的图象与y轴的交点是(0,b),根据三角形的面积公式可求得b的值,然后利用待定系数法即可求得函数解析式;(2)作AD⊥x轴于点D,BE⊥x轴于点E,则AD∥BE.由△ACD∽△BCE,得出==2,那么AD=2BE.设B点纵坐标为﹣n,则A点纵坐标为2n.由直线AB的解析式为y=﹣x+2,得出A(3﹣3n,2n),B(3+n,﹣n),再根据反比例函数y=的图象经过A、B两点,列出方程(3﹣3n)•2n=(3+n)•(﹣n),解方程求出n的值,那么m=(3﹣3n)•2n,代入计算即可.【解答】解:∵一次函数y=kx+b(k<0)的图象经过点C(3,0),∴3k+b=0①,点C到y轴的距离是3,∵k<0,∴b>0,∵一次函数y=kx+b的图象与y轴的交点是(0,b),∴×3×b=3,解得:b=2.把b=2代入①,解得:k=﹣,则函数的解析式是y=﹣x+2.故这个函数的解析式为y=﹣x+2;(2)如图,作AD⊥x轴于点D,BE⊥x轴于点E,则AD∥BE.∵AD∥BE,∴△ACD∽△BCE,∴==2,∴AD=2BE.设B点纵坐标为﹣n,则A点纵坐标为2n.∵直线AB的解析式为y=﹣x+2,∴A(3﹣3n,2n),B(3+n,﹣n),∵反比例函数y=的图象经过A、B两点,∴(3﹣3n)•2n=(3+n)•(﹣n),解得n1=2,n2=0(不合题意舍去),∴m=(3﹣3n)•2n=﹣3×4=﹣12.【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法求一次函数的解析式,三角形的面积,相似三角形的判定与性质,一次函数、反比例函数图象上点的坐标特征,难度适中.正确求出一次函数的解析式是解题的关键.25.【分析】(1)把点A的坐标代入反比例函数解析式,列出关于系数m的方程,通过解方程来求m的值;(2)由一次函数解析式可以求得点B的坐标,然后根据三角形的面积公式来求点P的坐标.【解答】解:(1)由题意得:A(﹣2,3)在反比例函数y=的图象上,则=3,解得m=﹣6.故该反比例函数的解析式为y=﹣;(2)设点P的坐标是(a,b).∵一次函数y=﹣x+2的图象与x轴交于点B,∴当y=0时,﹣x+2=0,解得x=4.∴点B的坐标是(4,0),即OB=4.∴BC=6.∵△PBC 的面积等于18, ∴×BC ×|b|=18, 解得:|b|=6, ∴b 1=6,b 2=﹣6,∴点P 的坐标是(﹣1,6),(1,﹣6).【点评】本题考查了一次函数与反比例函数的交点问题.利用函数图象上点的坐标特征求得相关点的坐标,然后由坐标与图形的性质得到相关线段的长度是解题的关键.26.【分析】(1)把A 的坐标代入一次函数与反比例函数的解析式即可求出解析式; (2)把一次函数与反比例函数的解析式联立得出方程组,求出方程组的解即可; (3)根据A 、B 的坐标结合图象即可得出答案.【解答】解:(1)把点A 的坐标(2,3)代入一次函数的解析式中,可得:3=2+b ,解得:b=1, 所以一次函数的解析式为:y=x+1;把点A 的坐标(2,3)代入反比例函数的解析式中,可得:k=6, 所以反比例函数的解析式为:y=;(2)把一次函数与反比例函数的解析式联立得出方程组, 可得:,解得:x 1=2,x 2=﹣3,所以点B 的坐标为(﹣3,﹣2); (3)∵A (2,3),B (﹣3,﹣2),∴使一次函数值大于反比例函数值的x 的范围是:﹣3<x <0或x >2.【点评】本题考查了一次函数与反比例函数的解析式,用待定系数法求出一次函数的解析式,函数的图形等知识点的应用,主要考查学生的计算能力和观察图形的能力,用了数形结合思想.27.【分析】(1)把C (﹣1,0)代入y=x+b ,求出b 的值,得到一次函数的解析式;再求出B 点坐标,然后将B 点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;。

人教版数学九年级下册单元测试卷

人教版数学九年级下册单元测试卷

人教版数学九年级下册单元测试卷一、选择题(每小题3分,共30分)1.下列关于圆的描述中,正确的是()A. 圆的切线垂直于半径B. 弦的中点与圆心的连线垂直于弦C. 垂直于弦的直线必过圆心D. 平分弦的直径垂直于弦2.下列二次根式中最简二次根式是()A. √(12)B. √(27)C. √(30)D. √(18)3.下列命题中,是真命题的是()A. 四个角相等的四边形是矩形B. 对角线相等的四边形是矩形C. 对角线互相垂直的四边形是菱形D. 邻边相等的四边形是菱形4.下列函数图像中,与x 轴有两个交点的是()A. y = x^2 + 1B. y = x^2 - 2x + 3C. y = x^2 - 4x + 4D. y = x^2 - 4x5.下列函数中,图像经过坐标原点的是()A. y = 2x + 1B. y = 3/xC. y = x^2 - 1D. y = -2x^2 + 16.下列关于概率的描述中,正确的是()A. 必然事件的概率为0B. 不可能事件的概率为1C. 随机事件的概率介于0 和1 之间D. 某事件的概率可能大于17.下列关于一元二次方程的根的判别式Δ = b^2 - 4ac 的说法中,错误的是()A. 当Δ > 0 时,方程有两个不相等的实数根B. 当Δ = 0 时,方程有两个相等的实数根C. 当Δ < 0 时,方程没有实数根D. Δ 的值越大,方程的根越大8.下列关于反比例函数的描述中,正确的是()A. 反比例函数的图像是一条直线B. 反比例函数的图像分布在第二、四象限C. 反比例函数的图像关于原点对称D. 反比例函数的值随着x 的增大而增大9.下列关于三角函数的说法中,正确的是()A. sinθ = cos(90° - θ)B. tanθ = sinθ/cosθ (θ ≠ 90°)C. cosθ = sin(90° + θ)D. tanθ = cosθ/sinθ (θ ≠ 0°)10.下列关于投影的说法中,正确的是()A. 投影线互相平行时,它们的投影是平行投影B. 投影线互相垂直时,它们的投影是中心投影C. 物体的正投影不改变物体的形状和大小D. 中心投影比平行投影更能真实地反映物体的形状和大小二、填空题(每小题2分,共20分)11.已知圆的半径为r,则圆的周长为_______。

北师大版九年级数学下册第三章圆单元总结复习测试题有包括答案

北师大版九年级数学下册第三章圆单元总结复习测试题有包括答案

一、选择题(本大题共8 小题,每题第三章圆4 分,共 32 分;在每题列出的四个选项中,只有一项切合题意 )1.在以下四个命题中:①直径是最长的弦;②每个三角形都有一个内切圆;③三角形的外心到三角形各边的距离都相等;④假如两条弦相等,那么这两条弦所对的弧也相等.此中正确的有()A .1 个B. 2 个C. 3 个D. 4 个2.如图 3- Z- 1, AB 是⊙ O 的直径,AC 是⊙ O 的切线,连结 OC 交⊙ O 于点 D ,连结 BD ,若∠ C= 40°,则∠ ABD 的度数是 ()A .30°B. 25°C. 20°D. 15°图3- Z -13.如图 3- Z -2,四边形 ABCD 内接于⊙ O,若四边形 ABCO 是平行四边形,则∠ DAO+∠ DCO 的大小为 ()图3- Z -2A .45°B. 50°C. 60°D. 75°4.如图 3- Z- 3, AB 为⊙ O 的直径,弦 DC ⊥ AB 于点 E,∠DCB = 30°, EB= 3,则弦 AC 的长为 ()A .3 3B .4 3 C. 5 3 D .63图3- Z -35.如图 3- Z-4,四边形 ABCD 的边 AB,BC,CD , DA 和⊙ O 分别相切于点 L , M,N, P. 若四边形 ABCD 的周长为 20,则 AB+ CD 等于 ()图 3- Z -4A .5B .8 C. 10D. 126.在圆柱形油槽内装有一些油,截面如图3- Z- 5,油面宽 AB 后,油面 AB 上涨 1 分米,油面宽变成8 分米,则圆柱形油槽的直径为MN6 分米,假如再注入一些油为 ()A .6 分米B . 8 分米C. 10 分米 D . 12 分米图3- Z -57.如图 3- Z- 6,某厂生产横截面直径为7 cm 的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头侧面.为了获取较佳的视觉成效,字样在罐头侧面所形成的弧的度数为 90°,则“蘑菇罐头”字样的长度为 ()图 3- Z -6π7πA. 4cmB. 4cm7πC. 2cm D .7π cm8.如图 3- Z- 7,四边形 ABCD 是菱形,∠ A= 60°, AB= 2,扇形 BEF 的半径为2,圆心角为 60°,则图中暗影部分的面积是()图 3- Z -72π32πA. 3-2B. 3- 3C.π -3D.π - 3 2二、填空题 (本大题共 5 小题,每题 4 分,共 20 分 )9.已知⊙ O 的半径为5,点 A 在⊙ O 外,那么线段 OA 的长度的取值范围是 ________ .10.如图 3-Z - 8,已知经过原点的⊙P 与 x 轴、 y 轴分别交于 A,B 两点, C 是劣弧 OB 上一点,则∠ ACB 的度数为 ________.图3- Z -811.如图 3- Z- 9,在⊙ O 中,弦 DA∥BC ,DA= DC,∠ AOC= 160°,则∠ BCO= ________度.图3- Z -912.如图 3-Z - 10,正方形 ABCD 内接于⊙ O,其边长为 4,则⊙ O 的内接正三角形 EFG 的边长为________.图3- Z -1013.如图 3-Z - 11,在 Rt△ AOB 中, OA=OB= 32,⊙ O 的半径为 1,P 是 AB 边上的动点,过点P 作⊙ O 的一条切线 PQ(Q 为切点 ),则切线 PQ 长的最小值为 ________.图3- Z -11三、解答题 (本大题共 4 小题,共 48 分 )14. (10 分 )如图 3-Z - 12,已知四边形ABCD 内接于⊙ O,连结 BD ,∠ BAD= 105°,∠ DBC=75° .(1)求证: BD = CD ;︵(2) 若⊙ O 的半径为3,求 BC的长.图3- Z -1215. (12 分 )如图 3- Z- 13, BE 是⊙ O 的直径,半径 OA⊥弦 BC, D 为垂足,连结 AE,EC .(1)若∠ AEC= 28°,求∠ AOB 的度数;(2)若∠ BEA=∠ B, BC= 6,求⊙ O 的半径.图3- Z -1316.(12 分 )如图 3- Z- 14,⊙ O 的半径为4,B 是⊙ O 外一点,连结 OB,且 OB= 6,过点 B 作⊙O 的切线 BD ,切点为 D,延伸 BO 交⊙ O 于点 A,过点 A 作切线 BD 的垂线,垂足为 C.(1)连结 AD ,求证: AD 均分∠ BAC;(2)求 AC 的长.图3- Z -1417. (14 分 )如图 3- Z- 15①,⊙ O 的直径 AB= 12, P 是弦 BC 上一动点 (与点 B, C 不重合 ),∠ABC= 30°,过点 P 作 PD ⊥ OP 交⊙ O 于点 D.(1)如图② ,当 PD∥ AB 时,求 PD 的长.︵︵1(2) 如图③ ,当 DC= AC时,延伸 AB 至点 E,使 BE=2AB,连结 DE .①求证: DE 是⊙ O 的切线;②求 PC 的长.图 3- Z -15详解详析1. [ 答案 ] B2.[分析 ] B∵ AC是⊙ O的切线,∴∠ BAC=90° .又∠ C=40° ,∴∠ AOC=90°-40°=50°,∴∠ ABD =12∠ AOC=12×50°= 25° .应选 B.3. [ 分析 ] C连结OD,∵OA= OD ,OD = OC,∴∠ DAO=∠ ODA ,∠ DCO =∠ ODC ,∴∠ DAO+∠ DCO=∠ADC.∵四边形ABCO是平行四边形,∴∠ B=∠ AOC.∵四边形ABCD 是圆内接四边形,∴∠ ADC+∠ B= 180° .∵∠ADC= 1∠ AOC,∴∠2ADC= 1∠B,即23∠ ADC =180°,∴∠ADC= 60°,即∠ DAO+∠ DCO = 60° .应选 C.4. [ 分析 ] D 如图,连结 OC,∵弦 DC ⊥ AB 于点 E,∠ DCB =30°,∴∠ ABC= 60°,∴△BOC 是等边三角形.∵ EB= 3,∴ OB= 6,∴AB=12.∵ AB 为⊙ O 的直径,∴∠ ACB= 90° .在 Rt△3ACB 中, AC= 12×2=6 3.应选 D.5. [ 答案 ] C6. [ 答案 ] C7.[分析 ] B ∵字样在罐头侧面所形成的弧的度数为90°,∴此弧所对的圆心角为90°,由题90π ×7727π意可得 R=2 cm,则“蘑菇罐头”字样的长为180=4 (cm).8. [ 分析 ] B 如图,连结 BD .∵四边形 ABCD 是菱形,∠ A= 60°,∴∠ ADC = 120°,∴∠ 1 =∠ 2= 60°,∴△ DAB 是等边三角形,∴ AB= BD,∠ 3+∠ 5= 60°.∵ AB= 2,∴△ ABD 的高为 3. ∵扇形 BEF 的圆心角为 60°,∴∠ 4+∠ 5= 60°,∴∠ 3=∠ 4.设 AD ,BE 订交于点 G, BF,DC订交于点H,在△ ABG 和△ DBH 中,∠ A=∠ 2, AB= BD,∠ 3=∠ 4,∴△ ABG≌△ DBH (ASA) ,∴ S 四边形GBHD= S△ABD,∴ S 暗影= S 扇形EBF-S△ABD=60π×22-1× 2×3=2π-3.应选 B.360239. [ 答案 ] OA> 5[ 分析 ] ∵⊙ O 的半径为 5,点 A 在⊙ O 外,∴线段 OA 的长度的取值范围是OA> 5.故答案为 OA > 5.10. [答案 ] 90°[ 分析 ] ∵∠ AOB= 90°,∴∠ ACB=∠ AOB= 90° .11.[答案 ] 30[ 分析 ] 连结 AC,1∵∠ B=∠ AOC= 80°,∴∠ D= 180°-∠ B= 100° .∵DA= DC ,OA= OC,∴∠ DAC=∠ ACD = 40°,∠ OCA =∠ OAC=10° .∵DA∥ BC,∴∠ACB=∠ DAC = 40°,∴∠ BCO= 30° .12. [答案 ] 26[ 分析 ] 连结 AC,OE, OF ,过点 O 作 OM ⊥ EF 于点 M .∵四边形ABCD 是正方形,∴ AB= BC= 4,∠ ABC= 90°,∴ AC 是直径, AC= 42,∴OE= OF = 2 2.∵OM ⊥ EF ,∴ EM = MF .∵△ EFG 是等边三角形,∴∠ GEF=60° .在Rt△ OME 中,∵ OE= 2 2,∠ OEM =1∠ GEF= 30°,2∴ OM =2, EM =3OM =6,∴ EF= 2 6.13. [答案 ] 2 22= OP2- OQ 2,∴当 OP⊥[ 分析 ] 如图,连结 OP,OQ.∵PQ 是⊙ O 的切线,∴ OQ⊥PQ ,∴ PQAB 时,OP 最短 ,则此时线段 PQ 最短.∵在 Rt △ AOB 中, OA =OB = 32, ∴AB = 2OA = 6,∴ OP = OA ·OB= 3,AB ∴ PQ = OP 2- OQ 2= 32- 12= 2 2. 14. 解: (1) 证明:∵四边形 ABCD 内接于⊙∵∠ BAD =105° ,O , ∴∠ DCB +∠ BAD = 180° .∴∠ DCB = 180°- 105°= 75° ,∴∠ DCB =∠ DBC , ∴ BD = CD.(2) 由(1) 可知∠ DBC =∠ DCB = 75° ,︵︵60π × 3= π .∴∠ BDC = 30° .由圆周角定理得 BC 的度数为 60°, 故 BC 的长为180︵ ︵(2)依据圆周角定理的推论得15. [分析 ] (1) 依据垂径定理获取 AC = AB ,依据圆周角定理解答;到∠ C = 90° ,从而获取∠ B = 30°, 依据余弦的定义求出BE 的长即可.︵ ︵解: (1)∵ OA ⊥ BC , ∴AC =AB ,∴∠ BEA =∠ AEC = 28° ,由圆周角定理 ,得∠ AOB = 2∠ AEB = 56°.(2) ∵BE 是⊙ O 的直径 ,∴∠ C = 90° , ∴∠ CEB +∠ B =90° .又∵∠ BEA =∠ B ,∠ BEA =∠ AEC ,∴∠ B = 30° ,∴ BE = BC= 4 3,cosB ∴⊙ O 的半径为 23.16. 解: (1) 证明:连结 OD .∵ BD 是⊙ O 的切线 , ∴ OD ⊥ BD . 又∵ AC ⊥ BD ,∴ OD ∥ AC , ∴∠ CAD =∠ ODA .∵ OA = OD ,∴∠ OAD =∠ ODA ,∴∠ OAD =∠ CAD ,即 AD 均分∠ BAC.(2) ∵OD ∥ AC , ∴△ BOD ∽△ BAC ,OD BO 4 6 ∴ AC = BA ,即 AC = 10,解得 AC =20,即 AC 的长为2033 .17. 解: (1) 连结 OD .∵ OP ⊥ PD , PD ∥ AB , ∴∠ POB = 90° . ∵⊙ O 的直径 AB =12, ∴ OB =OD = 6.在 Rt △ POB 中, ∵∠ ABC = 30°, ∴ OP =OB ·tan30°= 6×3= 2 3.3在 Rt △ POD 中,PD = OD 2-OP 2= 62 -( 2 3) 2= 26.(2) ①证明:连结 OD ,交 CB 于点 F ,连结 BD .︵ ︵ ∵ DC = AC , ∴∠ DBC =∠ ABC = 30°, ∴∠ ABD = 60° .又∵ OB=OD ,∴△ OBD 是等边三角形,∴∠ DOB= 60°,则∠ OFB =180°- 60°- 30°= 90°,∴OD⊥ FB ,∴OF = DF .又∵ BE=1AB, OB=1AB,22∴OB= BE,∴ BF∥ DE ,∴∠ ODE=∠ OFB = 90°,∴DE 是⊙ O 的切线.3②由①知OD ⊥ BC,∴CF= BF= OB·cos30°= 6×2=3 3.在Rt △ POD 中,∵ OF = DF ,∴ PF =错误! OD = 3 ,∴ PC = CF - PF = 3 错误!-3.北师大版九年级数学下册第三章圆单元总结复习测试题有包括答案11 / 11。

最新北师大版九年级数学下册单元测试题及答案全套

最新北师大版九年级数学下册单元测试题及答案全套

最新北师大版九年级数学下册单元测试题及答案全套含期中期末试题第一章检测题时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.计算:cos 245°+sin 245°=( )A .12B .1C .14D .322.把△ABC 三边的长度都缩小为原来的13,则锐角A 的正弦值( )A .不变B .缩小为原来的13C .扩大为原来的3倍D .不能确定3.在Rt △ABC 中,∠C =90°,若sin A =23,则cos B 的值等于( ) A .12 B .22 C .23D .1 4.在△ABC 中,∠C =90°,BC =2,sin A =23,则边AC 的长度是( )A . 5B .3C .43D .135.如图,将一张矩形纸片ABCD 折叠,使顶点C 落在C′处,测量得AB =4,DE =8,则sin ∠C ′ED 为( )A .2B .12C .22 D .32,第6题图) ,第8题图)6.(2017·益阳)如图,电线杆CD 的高度为h ,两根拉线AC 与BC 相互垂直,∠CAB =α,则拉线BC的长度为(点A ,D ,B 在同一条直线上)( )A .h sin α B .h cos α C .htan αD .h ·cos α 7.在Rt △ABC 中,∠C =90°,∠A ,∠B 的对边分别是a ,b ,且满足a 2-ab -b 2=0,则tan A 等于( )A .1B .1+52 C .1-52 D .1±528.如图,某校数学兴趣小组用测倾器测量某大桥的桥塔高度,在距桥塔AB 底部50米的C 处,测得桥塔顶部A 的仰角为41.5°,已知测倾器CD 的高度为1米,则桥塔AB 的高度为( )(参考数据:sin 41.5°≈0.663,cos 41.5°≈0.749,tan 41.5°≈0.885)A .34米B .38米C .45米D .50米9.如图,在菱形ABCD 中,AB =6,∠DAB =60°,点E 在BC 边上,且CE =2,AE 与BD 交于点F ,连接CF ,则下列结论不正确的是( )A .△ABF ≌△CBFB .△ADF ∽△EBFC .tan ∠EAB =3D .S =6 310.(2017·深圳)如图,学校环保社成员想测量斜坡CD 旁一棵树AB 的高度,他们先在点C 处测得树顶B 的仰角为60°,然后在坡顶D 测得树顶B 的仰角为30°,已知斜坡CD 的长度为20 m ,DE 的长为10 m ,则树AB 的高度是( )m .A .20 3B .30C .30 3D .40,第9题图) ,第10题图),第13题图),第14题图)二、填空题(每小题3分,共24分)11.计算:tan 245°-1=________.12.某坡面的坡度为1∶3,则坡角是________.13.如图,在坡屋顶的设计图中,AB =AC ,屋顶的宽度l 为10米,坡角α为35°,则坡屋顶高度h 为________米.(结果精确到0.1米,参考数据:sin 35°≈0.57,cos 35°≈0.82,tan 35°≈0.70)14.如图,P 是∠α的边OA 上的一点,且点P 的坐标为(1,3),则sin α=________. 15.如图,在正八边形ABCDEFGH 中,AC ,AE 是对角线,则sin ∠CAE 的值为________.,第15题图) ,第16题图) ,第17题图) ,第18题图)16.如图,小明发现在教学楼走廊上有一拖把以15°的倾斜角斜靠在栏杆上,严重影响了同学们的行走安全.他自觉地将拖把挪动位置,使其倾斜角度为75°,如果拖把的总长为1.80 m ,则小明拓宽了行走通道________m .(结果精确到0.01 m ,参考数据:sin 15°≈0.26,cos 15°≈0.97)17.如图,海中有一个小岛A ,它的周围15海里内有暗礁,今有货船由西向东航行,开始在A 岛南偏西60°的B 处,往东航行20海里后到达该岛南偏西30°的C 处后,货船继续向东航行,你认为货船航行途中________触礁的危险.(填“有”或“没有”)18.如图,在四边形ABCD 中,AB =AD =6,AB ⊥BC ,AD ⊥CD ,∠BAD =60°,点M ,N 分别在AB ,AD 边上,若AM∶MB=AN∶ND=1∶2.则cos ∠MCN =________.三、解答题(共66分) 19.(8分)计算:(1)(-1)2-2cos 30°+3+(-2 017)0;(2)3tan 30°-2tan 60°+4sin 60°.20.(8分)已知锐角α使关于x 的一元二次方程x 2-2sin α·x +3sin α-34=0有两个相等的实数根,求α的度数.21.(8分)在△ABC 中,已知AB =6,∠B =45°,∠C =60°,求AC ,BC 的长.22.(9分)如图,某校课外活动小组,在距离湖面7米高的观测台A 处,看湖面上空一热气球P 的仰角为37°,看P 在湖中的倒影P′的俯角为53°(P′为P 关于湖面的对称点).请你计算出这个热气球P 距湖面的高度PC 约为多少米?(参考数据:sin 37°≈35,cos 37°≈45,tan 37°≈34;sin 53°≈45,cos 53°≈35,tan 53°≈43)23.(10分)如图,海中两个灯塔A,B,其中B位于A的正东方向上,渔船跟踪鱼群由西向东航行,在点C处测得灯塔A在西北方向上,灯塔B在北偏东30°方向上,渔船不改变航向继续向东航行30海里到达点D,这时测得灯塔A在北偏西60°方向上,求灯塔A,B间的距离.(结果用根号表示,不取近似值)24.(11分)如图,矩形纸片ABCD,将△AMP和△BPQ分别沿PM和PQ折叠(AP>AM),点A和点B都与点E重合;再将△CQD沿DQ折叠,点C落在线段EQ上点F处.(1)判断△AMP,△BPQ,△CQD和△FDM中有哪几对相似三角形?(不需说明理由)(2)如果AM=1,sin∠DMF=35,求AB的长.25.(12分)小红家的阳台上放置了一个晒衣架,如图所示的是晒衣架的侧面示意图,立杆AB 、CD 相交于点O ,B 、D 两点立于地面,经测量:AB =CD =136 cm ,OA =OC =51 cm ,OE =OF =34 cm ,现将晒衣架完全稳固张开,扣链EF 成一条线段,且EF =32 cm .(1)求扣链EF 与立杆AB 的夹角∠OEF 的度数.(精确到0.1°)(2)小红的连衣裙挂在衣架后的总长度达到122 cm ,垂挂在晒衣架上是否拖落到地面?通过计算说明理由.(结果精确到0.1,参考数据:sin 61.9°≈0.882,cos 61.9°≈0.471,tan 28.1°≈0.534)第一章检测题1.B 2.A 3.C 4.A 5.B 6.B 7.B 8.C 9.C 10.B 11.0 12.30° 13.3.5 14.32 15.2216.1.28 17.没有 18.1314点拨:如图,连接MN ,AC ,∵AB =AD =6,AM ∶MB =AN∶ND =1∶2,∴AM =AN =2,BM =DN =4.在Rt △ABC 与Rt △ADC 中,⎩⎪⎨⎪⎧AB =AD ,AC =AC ,∴Rt △ABC ≌Rt △ADC(HL ),∴∠BAC =∠DAC=12∠BAD=30°,MC =NC ,∴BC =AB·tan 30°=23,在Rt △BMC 中,CM =BM 2+BC 2=27.∵AN=AM ,∠MAN =60°,∴△MAN是等边三角形,∴MN =AM =AN =2,过M 点作ME⊥CN 于点E ,设NE =x ,则CE =27-x ,∴MN 2-NE 2=MC2-EC 2,即4-x 2=(27)2-(27-x)2,解得x =77,∴EC =27-77=1377,∴cos ∠MCN =CE CM =137727=131419.(1)2 (2)0 20.由题意,得(2sin α)2-4(3sin α-34)=0,即4sin 2α-43sin α+3=0,解得sin α=32.∵α为锐角,∴α=60° 21.BC =3+1,AC =2 22.过点A 作AD⊥PP′,垂足为点D ,图略,则有CD =AB =7米.设PC 为x 米,则P′C=x 米,PD =(x -7)米,P ′D =(x +7)米,在Rt △PDA 中,AD =PD tan 37°≈43(x -7),在Rt △P ′DA 中,AD =P′Dtan 53°≈34(x +7),∴43(x -7)=34(x +7),解得x =25,则热气球P 距湖面的高度PC 约为25米 23.过点A 作AF⊥CD,垂足为点F ,图略,由题意,得∠FCA=∠ACN=45°,∠NCB =30°,∠ADE =60°,则∠FAD=60°,∠FAC =∠FCA=45°,∠ADF =30°,∴AF =FC =AN =NC ,设FC =AF =x ,∵tan 30°=AF FD ,∴x x +30=33,解得x =15(3+1),∵tan 30°=BN NC ,∴BN 15(3+1)=33,解得BN =15+53,∴AB =AN +BN =15(3+1)+15+53=30+203,则灯塔A ,B 间的距离为(30+203)海里 24.(1)有三对相似三角形,即△AMP∽△BPQ∽△CQD (2)设AP =x ,∴由折叠知BP =AP =EP =x ,AB =DC =2x.由△AMP∽△BPQ 得AM BP =APBQ ,∴BQ =x 2.由△AMP∽△CQD 得AP CD =AM CQ,∴CQ =2,∴AD =BC =BQ +CQ =x 2+2,MD =AD -AM =x 2+1.∵在Rt △FDM 中,sin ∠DMF =35,DF =DC =2x ,∴2x x 2+1=35,变形,得3x 2-10x +3=0,解得x 1=3,x 2=13(不合题意,舍去),∴AB =2x =625.(1)如图,在△OEF 中,OE =OF =34 cm ,EF =32 cm ,作OM⊥EF 于点M ,则EM =16 cm ,∴cos ∠OEF =EM OE =1634≈0.471,∴∠OEF ≈61.9° (2)小红的连衣裙垂挂在晒衣架上会拖落到地面.理由:∵EF∥BD,∴∠ABD =∠OEF ≈61.9°.如图,过点A 作AH⊥BD 于点H.在Rt △ABH 中,∵sin ∠ABD =AHAB ,∴AH =AB ·sin∠ABD =136×sin 61.9°≈136×0.882≈120.0(cm ).∵小红的连衣裙挂在晒衣架后总长度122 cm >晒衣架高度120.0 cm ,∴会拖落到地面上第二章检测题一、选择题(每小题3分,共30分)1.下列函数中,不是二次函数的是( )A .y =1-2x 2B .y =2(x -1)2+4C .y =12(x -1)(x +4) D .y =(x -2)2-x 22.二次函数y =ax 2+bx +c(a≠0)图象上部分点的坐标(x ,y)对应值列表如下:则该函数图象的对称轴是( )A .直线x =-3B .直线x =-2C .直线x =-1D .直线x =03.已知抛物线y =ax 2+bx +c 过(1,-1),(2,-4)和(0,4)三点,那么a ,b ,c 的值分别是( ) A .a =-1,b =-6,c =4 B .a =1,b =-6,c =-4 C .a =-1,b =-6,c =-4 D .a =1,b =-6,c =44.若二次函数y =x 2+bx 的图象的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程x 2+bx =5的解为( )A .x 1=0,x 2=4B .x 1=1,x 2=5C .x 1=1,x 2=-5D .x 1=-1,x 2=55.将抛物线y =x 2-1向下平移8个单位长度后与x 轴的两个交点之间的距离为( ) A .4 B .6 C .8 D .106.已知函数y =ax 2-2ax -1(a 是常数,a ≠0),下列结论正确的是( )A .当a =1时,函数图象过点(-1,1)B .当a =-2时,函数图象与x 轴没有交点C .若a >0,则当x≥1时,y 随x 的增大而减小D .若a <0,则当x≤1时,y 随x 的增大而增大 7.某海滨浴场有100个遮阳伞,每个每天收费10元时,可全部租出;若每个每天提高2元,则减少10个伞租出,若每个每天收费再提高2元,则再减少10个伞租出……为了投资少而获利大,每个每天应提高( )A .4元或6元B .4元C .6元D .8元8.在同一平面直角坐标系中,一次函数y =ax +b 和二次函数y =ax 2+bx +c 的图象可能为( )9.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x ,两个三角形重叠面积为y ,则y 关于x 的函数图象是( )10.(2017·广安)如图所示,抛物线y =ax 2+bx +c 的顶点为B(-1,3),与x 轴的交点A 在点(-3,0)和(-2,0)之间,以下结论:①b 2-4ac =0;②a+b +c >0;③2a-b =0;④c-a =3. 其中正确的个数是( ) A .1 B .2 C .3 D .4二、填空题(每小题3分,共24分)11.二次函数y =2(x -3)2-4的最小值为________.12.已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,则一元二次不等式ax 2+bx +c >0的解是____________.第12题图第16题图第17题图13.若二次函数y =x 2+2x +m 的图象与x 轴没有公共点,则m 的取值范围是________.14.已知二次函数y =-12x 2-7x +152,若自变量x 分别取x 1,x 2,x 3,且0<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系是________________.15.抛物线y =ax 2+bx +c 经过点A(-3,0),对称轴是直线x =-1,则a +b +c =________. 16.二次函数y =x 2-2x -3的图象如图所示,若线段AB 在x 轴上,且AB 为23个单位长度,以AB 为边作等边△ABC,使点C 落在该函数y 轴右侧的图象上,则点C 的坐标为______________.17.二次函数y =ax 2+bx +c 的图象如图所示,且P =|2a +b|+|3b -2c|,Q =|2a -b|-|3b +2c|,则P ,Q 的大小关系是__________.18.竖直上抛的小球离地高度是它运动时间的二次函数,小军相隔1秒依次竖直向上抛出两个小球,假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度,第一个小球抛出后t 秒时在空中与第二个小球的离地高度相同,则t =________.三、解答题(共66分)19.(6分)已知:二次函数y =-2x 2+(3k +2)x -3k.(1)若二次函数的图象过点A(3,0),求此二次函数图象的对称轴;20.(8分)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点(-1,8)并与x轴交于A,B两点,且点B坐标为(3,0).(1)求抛物线的表达式;(2)若抛物线与y轴交于点C,顶点为点P,求△CPB的面积.21.(8分)如图,二次函数y=(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上的点A(1,0)及点B.(1)求二次函数与一次函数的表达式;(2)根据图象,写出满足kx+b≥(x-2)2+m的x的取值范围.22.(8分)已知P(-3,m)和Q(1,m)是抛物线y=2x2+bx+1上的两点.(1)求b的值;(2)若A(-2,y1),B(5,y2)是抛物线y=2x2+bx+1上的两点,试比较y1与y2的大小关系;(3)将抛物线y=2x2+bx+1的图象向上平移k(k是正整数)个单位长度,使平移后的图象与x轴无交23.(10分)如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的平面直角坐标系,最左边的抛物线可以用y =ax 2+bx(a≠0)表示.已知抛物线上B ,C 两点到地面的距离均为34 m ,到墙边OA 的距离分别为12 m ,32m .(1)求最左边拋物线的函数表达式,并求图案最高点到地面的距离;(2)若该墙的长度为10 m ,则最多可以连续绘制几个这样的拋物线型图案?24.(12分)天水市某企业接到一批粽子生产任务,按要求在19天内完成,约定这批粽子的出厂价为每只4元,为按时完成任务,该企业招收了新工人,设新工人李红第x 天生产的粽子数量为y 只,y 与x满足如下关系:y =⎩⎪⎨⎪⎧32x (0≤x≤5),20x +60(5<x≤19).(1)李红第几天生产的粽子数量为260只?(2)如图,设第x 天生产的每只粽子的成本是p 元,p 与x 之间的关系可用图中的函数图象来刻画,若李红第x 天创造的利润为w 元,求w 与x 之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价-成本)25.(14分)如图,在平面直角坐标系中,点A ,B ,C 分别为坐标轴上的三个点,且OA =1,OB =3,OC =4.(1)求经过A ,B ,C 三点的抛物线的表达式. (2)在平面直角坐标系xOy 中是否存在一点P ,使得以点A ,B ,C ,P 为顶点的四边形为菱形?若存在,请求出点P 的坐标;若不存在,请说明理由.(3)若点M 为该抛物线上一动点,在(2)的条件下,请求出当|PM -AM|的最大值时点M 的坐标,并直接写出|PM -AM|的最大值.第二章检测题1.D 2.B 3.D 4.D 5.B 6.D 7.C 8.A 9.B10.B 11.-4 12.-1<x<3 13.m >1 14.y 1>y 2>y 3 15.0 16.(1+7,3)或(2,-3) 17.P >Q18.1.6 19.(1)将点A(3,0)代入y =-2x 2+(3k +2)x -3k 中,得-2×32+(3k +2)×3-3k =0,解得k=2.∴y=-2x 2+8x -6,对称轴为直线x =2 (2)由题意,得Δ=(3k +2)2-4×(-2)×(-3k)=0,整理,得9k 2-12k +4=0,(3k -2)2=0,∴k =2320.(1)∵抛物线y =x 2+bx +c 经过点(-1,8)与点B(3,0),∴⎩⎪⎨⎪⎧1-b +c =8,9+3b +c =0,解得⎩⎪⎨⎪⎧b =-4,c =3,∴抛物线的表达式为y =x 2-4x +3(2)∵y=x 2-4x +3=(x -2)2-1,∴P(2,-1),C(0,3).过点P 作PH⊥y 轴于点H ,过点B 作BM∥y 轴交直线PH 于点M ,过点C 作CN⊥y 轴交直线BM 于点N ,如图所示,S △CPB =S 矩形CHMN -S △CHP -S △PMB -S △CNB =3×4-12×2×4-12×1×1-12×3×3=3,即△CPB 的面积为3 21.(1)将点A(1,0)代入y =(x -2)2+m 中得(1-2)2+m =0,解得m =-1,所以二次函数的表达式为y =(x -2)2-1.当x =0时,y =4-1=3,所以点C 坐标为(0,3),由于点C 和点B 关于对称轴对称,而抛物线的对称轴为直线x =2,所以点B 坐标为(4,3),将A(1,0),B(4,3)代入y =kx +b 中,得⎩⎪⎨⎪⎧k +b =0,4k +b =3,解得⎩⎪⎨⎪⎧k =1,b =-1.所以一次函数的表达式为y =x -1 (2)当kx +b≥(x-2)2+m 时,1≤x ≤4 22.(1)∵点P ,Q 是二次函数y =2x 2+bx +1图象上的两点,∴此抛物线的对称轴是直线x =-1.∵二次函数的表达式为y =2x 2+bx +1,∴-b 4=-1,解得b =4 (2)y 1<y 2(3)平移后抛物线的表达式为y =2x 2+4x +1+k.要使平移后的图象与x 轴无交点,则有b 2-4ac =16-8(1+k)<0,解得k >1.∵k 是正整数,∴k 的最小值为2 23.(1)根据题意,得B(12,34),C(32,34),把点B ,点C 代入y =ax 2+bx ,得⎩⎪⎨⎪⎧34=14a +12b ,34=94a +32b ,解得⎩⎪⎨⎪⎧a =-1,b =2,∴最左边抛物线的函数表达式为y =-x 2+2x ,∴图案最高点到地面的距离为-224×(-1)=1 (2)令y =0,即-x 2+2x =0,解得x 1=0,x 2=2,10÷2=5,∴最多可以连续绘制5个这样的抛物线型图案 24.(1)设李红第x 天生产的粽子数量为260只,根据题意,得20x +60=260,解得x =10,答:李红第10天生产的粽子数量为260只 (2)根据图象,得当0≤x≤9时,p =2;当9<x≤19时,设表达式为p =kx +b ,把(9,2),(19,3)代入得⎩⎪⎨⎪⎧9k +b =2,19k +b =3,解得⎩⎪⎨⎪⎧k =110,b =1110,所以p =110x +1110.①当0≤x≤5时,w =(4-2)·32x=64x ,x =5时,此时w 有最大值为320元;②当5<x≤9时,w =(4-2)·(20x+60)=40x +120,x =9时,此时w 有最大值为480元;③当9<x ≤19时,w =[4-(110x +1110)]·(20x+60)=-2x 2+52x +174=-2(x -13)2+512,即x =13时,此时w 有最大值为512元.综上所述,第13天的利润最大,最大利润是512元 25.(1)设抛物线的表达式为y =ax 2+bx +c ,∵A(1,0),B(0,3),C(-4,0),∴⎩⎪⎨⎪⎧a +b +c =0,c =3,16a -4b +c =0,解得⎩⎪⎨⎪⎧a =-34,b =-94,c =3,∴经过A ,B ,C 三点的抛物线的表达式为y =-34x 2-94x +3(2)存在.理由如下:如图所示,∵OB =3,OC =4,OA =1,∴BC =AC =5,当BP 平行且等于AC时,四边形ACBP 为菱形,∴BP =AC =5,且点P 到x 轴的距离等于OB ,∴点P 的坐标为(5,3),当点P 在第二、三象限时,以点A ,B ,C ,P 为顶点的四边形只能是平行四边形,不是菱形,则当点P 的坐标为(5,3)时,以点A ,B ,C ,P 为顶点的四边形为菱形 (3)设直线PA 的表达式为y =kx +b (k≠0),∵A(1,0),P(5,3),∴⎩⎪⎨⎪⎧5k +b =3,k +b =0,解得⎩⎪⎨⎪⎧k =34,b =-34,∴直线PA 的表达式为y =34x -34,当点M 与点P ,A 不在同一直线上时,根据三角形的三边关系|PM -AM|<PA ,当点M 与点P ,A 在同一直线上时,|PM -AM|=PA ,∴当点M 与点P ,A 在同一直线上时,|PM -AM|的值最大,即点M 为直线PA 与抛物线的交点,解方程组⎩⎪⎨⎪⎧y =34x -34,y =-34x 2-94x +3,得⎩⎪⎨⎪⎧x 1=1,y 1=0或⎩⎪⎨⎪⎧x 2=-5,y 2=-92,∴点M 的坐标为(1,0)或(-5,-92)时,|PM -AM|的值最大,此时|PM -AM|的最大值为5第三章检测题时间:120分钟 满分:120分一、选择题(每小题3分,共30分) 1.下列判断中正确的是( )A .平分弦的直径垂直于弦B .平分弦的直线也必平分弦所对的两条弧C .弦的垂直平分线必平分弦所对的两条弧D .平分一条弧的直线必平分这条弧所对的弦 2.在⊙O 中,同一条弦AB 所对的圆周角( ) A .相等 B .互补 C .互余 D .相等或互补3.如图,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =58°,则∠BCD 等于( )A .116°B .32°C .58°D .64°,第3题图) ,第4题图) ,第5题图),第6题图)4.如图,石拱桥的桥顶到水面的距离CD 为8 m ,桥拱半径OC 为5 m ,则水面宽AB 为( ) A .4 m B .5 m C .6 m D .8 m5.如图,AB 是⊙O 的直径,C ,D 是⊙O 上的点,∠CDB =25°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E 等于( )A .40°B .50°C .60°D .70°6.如图,⊙O 的半径为2,点O 到直线l 的距离为3,点P 是直线l 上的一个动点,PB 切⊙O 于点B ,则PB 的最小值是( )A .13B .3C . 5D .27.(2017·福建)如图,AB 是⊙O 的直径,C ,D 是⊙O 上位于AB 异侧的两点.下列四个角中,一定与∠ACD 互余的角是( )A .∠ADCB .∠ABDC .∠BACD .∠BAD,第7题图) ,第8题图) ,第10题图)8.如图,四边形ABCD 为⊙O 的内接四边形,延长AB 与DC 相交于点G ,AO ⊥CD ,垂足为点E ,连接BD ,∠GBC =50°,则∠DBC 的度数为( )A .50°B .60°C .80°D .90°9.(2017·南京)过三点A(2,2),B(6,2),C(4,5)的圆的圆心坐标为( )A .(4,176)B .(4,3)C .(5,176) D .(5,3)10.如图,正六边形A 1B 1C 1D 1E 1F 1的边长为2,正六边形A 2B 2C 2D 2E 2F 2的外接圆与正六边形A 1B 1C 1D 1E 1F 1的各边相切,正六边形A 3B 3C 3D 3E 3F 3的外接圆与正六边形A 2B 2C 2D 2E 2F 2的各边相切,……按这样的规律进行下去,正六边形A 10B 10C 10D 10E 10F 10的边长为( )A .24329 B .81329 C .8129 D .81328 二、填空题(每小题3分,共24分)11.若⊙O 的半径为8,点P 在⊙O 内,则线段PO 的长度范围是________. 12.圆内接四边形ABCD 的内角∠A∶∠B∶∠C=2∶3∶4,则∠D=________.13.如图,AB 是⊙O 的直径,点D 在⊙O 上,∠AOD =130°,BC ∥OD 交⊙O 于点C ,则∠A=________.,第13题图) ,第16题图) ,第17题图) ,第18题图)14.若正多边形的边心距与边长的比为1∶2,则这个正多边形的边数是________.15.(2016·宁夏)已知正△ABC的边长为6,那么能够完全覆盖这个正△ABC的最小圆的半径是______.16.如图,AB是⊙O的直径,AB=4,点M是OA的中点,过点M的直线与⊙O交于C,D两点.若∠CMA =45°,则弦CD的长为________.17.如图,⊙O的半径为6 cm,B为⊙O外一点,OB交⊙O于点A,AB=OA,动点P从点A出发,以πcm/s的速度在⊙O上按逆时针方向运动一周回到点A立即停止.当点P运动的时间为________s时,BP与⊙O相切.18.(2017·恩施州)如图,在Rt△ABC中,∠BAC=30°,以直角边AB为直径作半圆交AC于点D,以AD为边作等边△ADE,延长ED交BC于点F,BC=23,则图中阴影部分的面积为________.(结果不取近似值)三、解答题(共66分)19.(8分)如图,两个同心圆中,大圆的弦AB,AC分别切小圆于点D,E,△ABC的周长为12 cm,求△ADE的周长.20.(8分)如图,⊙O的直径AB长为6,弦AC长为2,∠ACB的平分线交⊙O于点D,求四边形ADBC 的面积.21.(9分)如图,AB是⊙O的弦,OA⊥OD,AB,OD交于点C,且CD=BD.(1)判断BD与⊙O的位置关系,并证明你的结论;(2)当OA=3,OC=1时,求线段BD的长.22.(9分)如图,PA ,PB 是⊙O 的切线,A ,B 为切点,∠APB =60°,连接PO 并延长与⊙O 交于C 点,连接AC ,BC.(1)求证:四边形ACBP 是菱形;(2)若⊙O 半径为1,求菱形ACBP 的面积.23.(10分)如图,AB 为半圆O 的直径,AC 是⊙O 的一条弦,D 为BC ︵的中点,作DE⊥AC,交AC 的延长线于点E ,ED ,AB 的延长线交于点F ,连接DA.(1)求证:EF 为半圆O 的切线;(2)若DA =DF =63,求阴影区域的面积.(结果保留根号和π)24.(10分)如图,⊙O 是△ABC 的外接圆,弦BD 交AC 于点E ,连接CD ,且AE =DE ,BC =CE. (1)求∠ACB 的度数;(2)过点O 作OF⊥AC 于点F ,延长FO 交BE 于点G ,DE =3,EG =2,求AB 的长.25.(12分)如图,已知⊙O 上依次有A ,B ,C ,D 四个点,AD ︵=BC ︵,连接AB ,AD ,BD ,弦AB 不经过圆心O ,延长AB 到E ,使BE =AB ,连接EC ,F 是EC 的中点,连接BF.(1)若⊙O 的半径为3,∠DAB =120°,求劣弧BD ︵的长; (2)求证:BF =12BD ;(3)设G 是BD 的中点,探索:在⊙O 上是否存在点P(不同于点B),使得PG =PF ?并说明PB 与AE 的位置关系.第三章检测题1.C 2.D 3.B 4.D 5.A 6.C 7.D 8.C 9.A10.D 11.0≤PO<8 12.90° 13.40° 14.4 15.2 3 16.14 17.2或10 18.33-32π19.连接OD ,OE ,图略.∵AB,AC 分别切小⊙O 于点D ,E ,∴OD ⊥AB ,OE ⊥AC ,∴AD =DB ,AE =EC ,∴DE 是△ABC 的中位线,∴DE =12BC ,∴C △ADE =12C △ABC =12×12=6(cm ) 20.∵AB 是⊙O 的直径,∴∠ACB =∠ADB=90°.在Rt △ABC 中,由勾股定理,得BC =AB 2-AC 2=42.∵CD 平分∠ACB,∴AD ︵=BD ︵,∴AD =BD.在Rt △ABD 中,由勾股定理,得AD =DB =22AB =22×6=32,∴S 四边形ADBC =S △ABC +S △ABD =12AC·BC +12AD·BD=12×2×42+12×32×32=42+9 21.(1)BD 与⊙O 相切.证明:连接OB ,图略.∵OA =OB ,∴∠OAC =∠OBC.∵OA⊥OD,∴∠AOC =90°,∴∠OAC +∠OCA =90°.∵DC =DB ,∴∠DCB =∠DBC.∵∠DCB=∠ACO,∴∠ACO =∠DBC,∴∠DBC +∠OBC=90°,∴∠OBD =90°,即OB⊥BD,∴BD 与⊙O 相切 (2)设BD =x ,则CD =x ,OD =x +1 ,OB =OA =3,由勾股定理,得32+x 2=(x +1)2,解得x =4,∴BD =4 22.(1)证明:连接AO ,BO ,图略.∵PA,PB 是⊙O 的切线,∴∠OAP =∠OBP=90°,PA =PB ,∠APO =∠BPO=12∠APB=30°,∴∠AOP =60°,∵OA =OC ,∴∠CAO =∠ACO,又∠AOP =∠CAO+∠ACO,∴∠ACO =30°,∴∠ACO =∠APO,∴AC =AP ,同理BC =PB ,∴AC =BC =BP =AP ,∴四边形ACBP 是菱形 (2)连接AB 交PC 于D ,图略,则AD⊥PC,∵OA =1,∠AOP =60°,∴AD =32OA =32,∴PD =32,∴PC =3,AB =3,∴菱形ACBP 的面积=12AB·PC=332 23.(1)证明:连接OD ,图略.∵D 为BC ︵的中点,∴∠CAD =∠BAD,∵OA =OD ,∴∠BAD =∠ADO,∴∠CAD =∠ADO,∴OD ∥AE.∵DE ⊥AC ,∴OD ⊥EF ,∴EF 为半圆O 的切线 (2)连接OC 与CD ,图略.∵DA=DF ,∴∠BAD =∠F ,∴∠BAD =∠F=∠CAD,又∵∠BAD +∠CAD +∠F=90°,∴∠F =30°,∠BAC =60°,∵OC =OA ,∴△AOC 为等边三角形,∴∠AOC =60°.∵OD ⊥EF ,∠F =30°,∴∠DOF =60°,在Rt △ODF 中,DF =63,∴OD =DF·tan 30°=6,在Rt △AED 中,DA =63,∠CAD =30°,∴DE =DA·sin 30°=33,EA =DA·cos 30°=9,∵∠COD =180°-∠AOC-∠DOF=60°,易证CD∥AB,故S △ACD =S △COD ,∴S 阴影=S △AED -S 扇形COD =12×9×33-60360π×62=2732-6π 24.(1)在△AEB 和△DEC 中,∠A =∠D,AE =ED ,∠AEB =∠DEC,∴△AEB ≌△DEC(ASA ),∴EB =EC.又∵BC=CE ,∴BE =CE =BC ,∴△EBC 为等边三角形,∴∠ACB =60° (2)作BM⊥AC 于点M ,图略,∵OF ⊥AC,∴AF =CF.∵△EBC 为等边三角形,∴∠GEF =60°,∴∠EGF =30°.∵EG =2,∴EF =1.又∵AE=ED =3,∴CF =AF =4,∴AC =8,EC =5,∴BC =5.∵∠BCM =60°,∴∠MBC =30°,∴CM =52,BM =BC 2-CM 2=523,∴AM =AC -CM =112,∴AB =AM 2+BM 2=7 25.(1)连接OB ,OD ,图略,∵∠DAB =120°,∴BCD ︵所对圆心角的度数为240°,∴∠BOD =120°.∵⊙O 的半径为3,∴劣弧BD ︵的长为120180×π×3=2π (2)证明:连接AC ,图略,∵AB =BE ,∴点B 为AE 的中点.∵F 是EC 的中点,∴BF 为△EAC 的中位线,∴BF =12AC.∵AD ︵=BC ︵,∴AD ︵+AB ︵=BC ︵+AB ︵,∴BD ︵=CA ︵,∴BD =AC ,∴BF =12BD (3)存在.过点B 作AE 的垂线,与⊙O 的交点即为所求的点P ,图略.∵BF为△EAC 的中位线,∴BF ∥AC ,∴∠FBE =∠CAE.∵AD ︵=BC ︵,∴∠DBA =∠CAB,∴∠FBE =∠DBA.由作法可知BP⊥AE,∴∠GBP =∠FBP.∵G 为BD 的中点,∴BG =12BD ,∴BG =BF.在△PBG 和△PBF 中,BG =BF ,∠PBG =∠PBF,BP =BP ,∴△PBG ≌△PBF(SAS ),∴PG =PF.故在⊙O 上存在点P ,使得PG =PF ,此时PB⊥AE期中检测题时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.在△ABC 中,∠A =105°,∠B =45°,cos C 的值是( )A .12B .33 C .32D . 3 2.抛物线y =-35(x +12)2-3的顶点坐标是( )A .(12,-3) B .(-12,-3) C .(12,3) D .(-12,3)3.(2017·日照)在Rt △ABC 中,∠C =90°,AB =13,AC =5,则sin A 的值为( )A .513B .1213C .512D .1254.(2017·怀化)如图,在平面直角坐标系中,点A 的坐标为(3,4),那么sin α的值是( )A .35B .34C .45D .43,第4题图) ,第7题图) ,第9题图) ,第10题图)5.将抛物线y =x 2向右平移2个单位长度,再向上平移1个单位长度,所得抛物线相应的函数表达式是( )A .y =(x +2)2+1B .y =(x +2)2-1C .y =(x -2)2+1D .y =(x -2)2-16.a≠0,函数y =a x与y =-ax 2+a 在同一平面直角坐标系中的大致图象可能是( )7.(2017·滨州)如图,在△ABC 中,AC ⊥BC ,∠ABC =30°,点D 是CB 延长线上的一点,且BD =BA ,则tan ∠DAC 的值为( )A .2+ 3B .2 3C .3+ 3D .3 38..若一次函数y =(a +1)x +a 的图象过第一、三、四象限,则二次函数y =ax 2-ax( )A .有最大值a 4B .有最大值-a 4C .有最小值a 4D .有最小值-a 49.如图,垂直于x 轴的直线AB 分别与抛物线C 1:y =x 2(x≥0)和抛物线C 2:y =x24(x≥0)交于A ,B 两点,过点A 作CD∥x 轴分别与y 轴和抛物线C 2交于点C ,D ,过点B 作EF∥x 轴分别与y 轴和抛物线C 1交于点E ,F ,则S △OFBS △EAD的值为( )A .26 B .24 C .14 D .1610.(2017·安顺)二次函数y =ax 2+bx +c(a≠0)的图象如图,给出下列四个结论:①4ac-b 2<0;②3b+2c <0;③4a+c <2b ;④m(am+b)+b <a(m≠1),其中结论正确的个数是( )A .1B .2C .3D .4二、填空题(每小题3分,共24分)11.在△ABC 中,若|sin A -12|+(32-cos B)2=0,则∠C=________度.12.如图,在建筑平台CD 的顶部C 处,测得大树AB 的顶部A 的仰角为45°,测得大树AB 的底部B的俯角为30°,已知平台CD 的高度为5 m ,则大树的高度为________m .(结果保留根号),第12题图) ,第13题图),第15题图),第17题图)13.如图,直线y =mx +n 与抛物线y =ax 2+bx +c 交于A(-1,p),B(4,q)两点,则关于x 的不等式mx +n >ax 2+bx +c 的解集是____________.14.某产品每件成本10元,试销阶段每件产品的销售单价x(元/件)与日销售量y(件)之间的关系如下表.按照这样的规律可得,日销售利润w(元)与销售单价x(元/件)之间的函数关系式是____________.15.(2017·临沂)如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,若AB =4,BD =10,sin ∠BDC =35,则▱ABCD 的面积是________.162①该抛物线的对称轴是直线x =-2;②该抛物线与y 轴的交点坐标为(0,-2.5);③b 2-4ac =0;④若点A(0.5,y 1)是该抛物线上一点.则y 1<-2.5.所有正确的结论的序号是________.17.(2017·黔东南州)如图所示把多块大小不同的30°直角三角板,摆放在平面直角坐标系中,第一块三角板AOB 的一条直角边与y 轴重合且点A 的坐标为(0,1),∠ABO =30°;第二块三角板的斜边BB 1与第一块三角板的斜边AB 垂直且交y 轴于点B 1;第三块三角板的斜边B 1B 2与第二块三角板的斜边BB 1垂直且交x 轴于点B 2;第四块三角板的斜边B 2B 3与第三块三角板的斜边B 1B 2垂直且交y 轴于点B 3;…按此规律继续下去,则点B 2 017的坐标为________.18.如图,△ABC 是边长为8的等边三角形,F 是边BC 上的动点,且DF⊥AB,EF ⊥AC.则四边形ADFE 面积的最大值是________.三、解答题(共66分)19.(9分)计算:(1)tan 30°×sin 45°+tan 60°×cos 60°;(2)(2017·怀化)|3-1|+(2017-π)0-(14)-1-3tan 30°+38;(3)12-3tan 30°+(π-4)0-(12)-1.20.(8分)已知二次函数的顶点坐标为A(1,9),且其图象经过点(-1,5). (1)求此二次函数的表达式;(2)若该函数图象与x 轴的交点为B ,C ,求△ABC 的面积.21.(8分)密苏里州圣路易斯拱门是座雄伟壮观的抛物线型的建筑物,是美国最高的独自挺立的纪念碑,如图.拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度.22.(8分)(2017·宿迁)如图所示,飞机在一定高度上沿水平直线飞行,先在点A处测得正前方小岛C的俯角为30°,面向小岛方向继续飞行10 km到达B处,发现小岛在其正后方,此时测得小岛的俯角为45°,如果小岛高度忽略不计,求飞机飞行的高度.(结果保留根号)23.(10分)(2017·济宁)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.经市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=-x+60(30≤x≤60).(1)设这种双肩包每天的销售利润为w元.求w与x之间的函数表达式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?24.(10分)(2017·广东)如图,在平面直角坐标系中,抛物线y =-x 2+ax +b 交x 轴于A(1,0),B(3,0)两点,点P 是抛物线上在第一象限内的一点,直线BP 与y 轴相交于点C.(1)求抛物线y =-x 2+ax +b 的表达式;(2)当点P 是线段BC 的中点时,求点P 的坐标; (3)在(2)的条件下,求sin ∠OCB 的值.25.(13分)(2017·菏泽)如图,在平面直角坐标系中,抛物线y =ax 2+bx +1交y 轴于点A ,交x 轴正半轴于点B(4,0),与过A 点的直线相交于另一点D(3,52),过点D 作DC⊥x 轴,垂足为点C.(1)求抛物线的表达式.(2)点P 在线段OC 上(不与点O ,C 重合),过P 作PN⊥x 轴,交直线AD 于点M ,交抛物线于点N ,连接CM ,求△PCM 面积的最大值.(3)若P 是x 轴正半轴上的一动点,设OP 的长为t ,是否存在t ,使以点M ,C ,D ,N 为顶点的四边形是平行四边形?若存在,求出t 的值;若不存在,请说明理由.期中检测题1.C 2.B 3.B 4.C 5.C 6.D 7.A 8.B 9.D 10.C 11.120 12.(5+53) 13.x <-1或x >414.w =-10x 2+500x -4 000 15.24 16.①②④ 17.(0,-(3)2 018) 18.12 3 19.(1)tan 30°×sin 45°+tan 60°×cos 60°=33×22+3×12=66+32 (2)|3-1|+(2017-π)0-(14)-1-3tan 30°+38=3-1+1-4-3×33+2=3-4-3+2=-2 (3)12-3tan 30°+(π-4)0-(12)-1=23-3×33+1-2=3-1 20.(1)设抛物线表达式为y =a(x -1)2+9,把(-1,5)代入得a(-1-1)2+9=5,解得a =-1,所以抛物线表达式为y =-(x -1)2+9 (2)当y =0时,-(x -1)2+9=0,解得x 1=4,x 2=-2,所以B ,C 两点的坐标为(-2,0),(4,0),所以△ABC 的面积为12×9×(4+2)=27 21.如图所示建立平面直角坐标系,此时,抛物线与x 轴的交点为C(-100,0),D(100,0),设这条抛物线的表达式为y =a(x -100)(x +100),∵抛物线经过点B(50,150),可得150=a(50-100)(50+100),解得a =-150,∴y =-150(x -100)(x +100),即抛物线的表达式为y =-150x 2+200,顶点坐标是(0,200),∴拱门的最大高度为200米22.如图,过点C 作CD ⊥AB 于点D ,设CD =x ,∵∠CBD =45°,∴BD =CD =x ,在Rt △ACD 中,∵tan ∠CAD =CD AD ,∴AD=CD tan ∠CAD =x tan 30°=x 33=3x ,由AD +BD =AB 可得3x +x =10,解得x =53-5,答:飞机飞行的高度为(53-5)km 23.(1)w =y·(x-30)=(-x +60)·(x-30)=-x 2+30x +60x -1 800=-x 2+90x -1800,w 与x 之间的函数表达式为w =-x 2+90x -1 800 (2)根据题意,得w =-x 2+90x-1800=-(x -45)2+225,∵-1<0,∴当x =45时,w 有最大值,最大值是225,∴这种双肩包销售单价为45元时,每天的销售利润最大,最大利润是225元 (3)当w =200时,-x 2+90x -1 800=200,解得x 1=40,x 2=50,∵50>48,∴x 2=50不符合题意,舍去,答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元 24.(1)将点A ,B 代入抛物线y =-x 2+ax +b ,可得⎩⎪⎨⎪⎧0=-12+a +b ,0=-32+3a +b ,解得⎩⎪⎨⎪⎧a =4,b =-3,∴抛物线的表达式为y =-x 2+4x -3(2)∵点C在y 轴上,所以C 点横坐标x =0,∵点P 是线段BC 的中点,∴点P 横坐标x P =0+32=32,∵点P 在抛物线y =-x 2+4x -3上,∴y P =-(32)2+4×32-3=34,∴点P 的坐标为(32,34) (3)∵点P 的坐标为(32,34),点P 是线段BC 的中点,∴点C 的纵坐标为2×34-0=32,∴点C 的坐标为(0,32),∴BC =(32)2+32=352,∴sin ∠OCB =OBBC=3352=255 25.(1)把点B(4,0),点D(3,52),代入y =ax 2+bx +1中,得⎩⎪⎨⎪⎧16a +4b +1=0,9a +3b +1=52,解得⎩⎪⎨⎪⎧a =-34,b =114,∴抛物线的表达式为y =-34x 2+114x +1 (2)设直线AD 的表达式为y =kx +b ,∵A(0,1),D(3,52),∴⎩⎪⎨⎪⎧b =1,3k +b =52,∴⎩⎪⎨⎪⎧k =12,b =1,∴直线AD 的表达式为y =12x +1,设P(t ,0),∴M(t ,12t +1),∴PM =12t +1,∵CD ⊥x 轴,∴PC =3-t ,∴S △PCM =12PC ·PM =12×(3-t)(12t +1),∴S △PCM =-14t 2+14t +32=-14(t -12)2+2516,∴△PCM 面积的最大值是2516 (3)存在.求t 值如下:∵OP=t ,∴点M ,N 的横坐标为t ,设M(t ,12t +1),N(t ,-34t 2+114t +1),∴|MN|=|-34t 2+114t +1-12t -1|=|-34t 2+94t|,CD =52,如图1,如果以点M ,C ,D ,N 为顶点的四边形是平行四边形,则MN =CD ,即-34t 2+94t =52,∵Δ=-39,∴方程-34t 2+94t =52无实数根,∴不存在t ;如图2,如果以点M ,C ,D ,N 为顶点的四边形是平行四边形,则MN =CD ,即34t 2-94t=52,∴t =9+2016或t =9-2016(负值舍去),∴当t =9+2016时,以点M ,C ,D ,N 为顶点的四边形是平行四边形期末检测题时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.在△ABC 中,∠C =90°,sin B =12,则tan A 的值为( )A . 3B .1C .33 D .122.如图,△ABC 的三个顶点都在正方形网格的格点上,则cos A 的值为( )A .65 B .56C .56161 D .66161,第2题图) ,第3题图) ,第4题图)3.如图,AB 为⊙O 的直径,点C 在⊙O 上,若∠B=60°,则∠A 等于( ) A .80° B .50° C .40° D .30°4.如图,在Rt △ABC 中,∠A =90°,BC =22,以BC 的中点O 为圆心分别与AB ,AC 相切于D ,E 两点,则DE ︵的长为( )A .π4B .π2C .πD .2π5.抛物线y =-12(x +1)2+3的顶点坐标为( )A .(1,3)B .(1,-3)C .(-1,-3)D .(-1,3)6.抛物线y =3x 2+2x -1向上平移4个单位长度后的函数表达式为( ) A .y =3x 2+2x -5 B .y =3x 2+2x -4 C .y =3x 2+2x +3 D .y =3x 2+2x +47.二次函数y =ax 2+bx +c 与一次函数y =ax +c ,它们在同一直角坐标系中的图象大致是( )8.已知二次函数y =kx 2-7x -7的图象与x 轴有两个交点,则k 的取值范围为( )A .k >-74B .k >-74且k≠0 C .k ≥-74D .k ≥-74且k≠09.如图,某幢建筑物从10米高的窗口A 用水管向外喷水,喷的水流呈抛物线(抛物线所在平面与墙面垂直),如果抛物线的最高点M 离墙1米,离地面403米,则水流下落点B 离墙的距离OB 是( )A .2米B .3米C .4米D .5米。

初三数学下册单元测试及解析参考

初三数学下册单元测试及解析参考

初三数学下册单元测试及解析参考想要学好数学,一定要多做练习,以下所介绍的2021初三数学下册单元测试,要紧是针对每一单元学过的知识来巩固自己所学过的内容,期望对大伙儿有所关心!一、选择题:(每题4分,共24分)1、在平面直角坐标系中,下列函数的图像通过原点的是( )(A)y=- +3 (B)y= (C)y= (D)y=2、下列函数中,当x0时,y值随x值的增大而减小的是()A.y=xB.y=2x﹣1C.y=D.y=x23、直线y=kx+b不通过第四象限,则( )A.k bB.k bC. k0D. k04、关于反比例函数y= 的图象,下列说法正确的是()A.图象通过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x0时,y随x的增大而减小5、已知二次函数y=ax2+bx+c的x、y的部分对应值如下表:X-10123y51-1-11则该二次函数图象的对称轴为( )A.y轴B.直线x=C.直线x=2D.直线x=6、2021年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华赶忙在电脑上打字录入这篇文稿,录入一段时刻后因事暂停,过了一会儿,小华连续录入并加快了录入速度,直到录入完成.设从录入文稿开始所通过的时刻为x,录入字数为y,下面能反映y与x的函数关系的大致图象是( )A. B. C. D.二、填空题:(每题4分,共24分)7、中,自变量的取值范畴是.8、点,是直线上的两点,则0(填或).9、如图已知函数与函数的图像交于点P,则不等式的解集是.10、抛物线通过点A(-3,0),对称轴是直线,则.11、在平面直角坐标系xoy中,点P到x轴的距离为3个单位长度,到原点O的距离为5个单位长度,则通过点P的反比例函数的解析式为.12、一次函数,当时,,则的值是.三、解答题(共4题,52分)13、(本题12分)已知:如图,反比例函数y= 的图象与一次函数y=x+ b的图象交于点A(1,4)、点B(﹣4,n).(1)求一次函数和反比例函数的解析式;(2)求△OAB的面积;(3)直截了当写出一次函数值大于反比例函数值的自变量x的取值范畴.14、(本题12分)如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,-1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范畴内时,一次函数的值大于二次函数的值.15、(本题14分)如图,在矩形ABCD中,AB=12cm BC=6cm,点P从A动身,沿AB边向点B以1cm/s的速度移动.点Q从B动身,沿BC边向点C以2 cm/s的速度移动,假如PQ两点中任一点到达终点后两点就停止运动,则何时△PBQ的面积最大?并求出解析式。

九年级下人教版数学单元测试题(全套)

九年级下人教版数学单元测试题(全套)

第二十六章检测卷时间:120分钟 满分:150分班级:__________ 姓名:__________ 得分:__________一、选择题(本题共12小题,每小题3分,共36分)1.下列函数中,是y 关于x 的反比例函数的是( ) A .x (y +1)=1 B .y =1x -1 C .y =-1x 2 D .y =12x2.若反比例函数y =kx的图象经过点(2,-1),则该反比例函数的图象在( ) A .第一、二象限 B .第一、三象限C .第二、三象限D .第二、四象限3.已知点A (2,y 1)、B (4,y 2)都在反比例函数y =k x(k <0)的图象上,则y 1、y 2的大小关系为( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .无法确定4.张家口某小区要种植一个面积为3500m 2的矩形草坪,设草坪的长为y m ,宽为x m ,则y 关于x 的函数解析式为( )A .xy =3500B .x =3500yC .y =3500xD .y =1750x5.已知反比例函数y =1x,下列结论中不正确的是( )A .图象经过点(-1,-1)B .图象在第一、三象限C .当x >1时,0<y <1D .当x <0时,y 随着x 的增大而增大6.如果平行四边形的面积为8cm 2,那么它的底边长y cm 与高x cm 之间的函数关系用图象表示大致是( )7.正比例函数y =-2x 与反比例函数y =k x的图象相交于A (m ,2),B 两点,则点B 的坐标是( )A .(-2,1)B .(1,-2)C .(-1,2)D .(2,-1) 8.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(kg/m 3)是体积V (m 3)的反比例函数,它的图象如图所示.当V =10m 3时,气体的密度是( )A .5kg/m 3B .2kg/m 3C .100kg/m 3D .1kg/m 3第8题图第9题图9.如图,正比例函数y 1=k 1x 的图象与反比例函数y 2=k 2x的图象相交于A ,B 两点,其中点A 的横坐标为2,当y 1>y 2时,x 的取值范围是( )A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >210.在同一直角坐标系中,函数y =-a x与y =ax +1(a ≠0)的图象可能是( )11.在平面直角坐标系中,直线y =-x +2与反比例函数y =1x的图象有唯一公共点,若直线y =-x +b 与反比例函数y =1x的图象有2个公共点,则b 的取值范围是( )A .b >2B .-2<b <2C .b >2或b <-2D .b <-212.如图,A 、B 是双曲线y =k x上的两点,过A 点作AC ⊥x 轴,交OB 于D 点,垂足为C .若△ADO 的面积为1,D 为OB 的中点,则k 的值为( )A.43B.83C .3D .4 第12题图二、填空题(本大题共6小题,每小题4分,共24分) 13.双曲线y =m -1x在每个象限内,函数值y 随x 的增大而增大,则m 的取值范围是 .14.点P 在反比例函数y =k x(k ≠0)的图象上,点Q (2,4)与点P 关于y 轴对称,则反比例函数的解析式为 .15.如图,点A 是反比例函数y =k x图象上的一个动点,过点A 作AB ⊥x 轴,AC ⊥y 轴,垂足分别为B 、C ,矩形ABOC 的面积为4,则k = .第15题图第16题图16.在对物体做功一定的情况下,力F (N)与此物体在力的方向上移动的距离s (m)成反比例函数关系,其图象如图所示.点P (4,3)在图象上,则当力达到10N 时,物体在力的方向上移动的距离是 m.17.函数y =1x 与y =x -2的图象的交点的横坐标分别为a 、b ,则1a +1b的值为 .18.如图,点A 在函数y =4x(x >0)的图象上,且OA =4,过点A 作AB ⊥x 轴于点B ,则△ABO 的周长为 .第18题图三、解答题(本题共8小题,共90分,解答时应写出必要的文字说明、证明过程或演算步骤)19.(10分)如果函数y =mxm 2-5是一个经过第二、四象限的反比例函数,求m 的值和反比例函数的解析式.20.(10分)反比例函数y =k x的图象经过点A (2,3). (1)求这个函数的解析式;(2)请判断点B (1,6)是否在这个函数图象上,并说明理由.21.(10分)蓄电池的电压为定值,使用此电源时,电流I (A)是电阻R (Ω)的反比例函数,其图象如图所示.(1)求这个反比例函数的表达式;(2)当R =10Ω时,电流能是4A 吗?为什么?22.(10分)如图,一次函数y 1=kx +b 的图象与反比例函数y 2=6x的图象交于A (m ,3),B (-3,n )两点.(1)求一次函数的解析式;(2)观察函数图象,直接写出关于x 的不等式6x>kx +b 的解集.23.(12分)已知反比例函数y =4x.(1)若该反比例函数的图象与直线y =kx +4(k ≠0)只有一个公共点,求k 的值; (2)如图,反比例函数y =4x(1≤x ≤4)的图象记为曲线C 1,将C 1向左平移2个单位长度,得曲线C 2,请在图中画出C 2,并直接写出C 1平移到C 2处所扫过的面积.24.(12分)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.下图是某天恒温系统从开启到关闭及关闭后,大棚内温度y (℃)随时间x (小时)变化的函数图象,其中BC 段是双曲线y =k x的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度为18℃的时间有多少小时? (2)求k 的值;(3)当x =16时,大棚内的温度约为多少摄氏度?25.(12分)如图,一次函数y =x +b 的图象与反比例函数y =k x的图象相交于A ,B 两点,且点B 的坐标为(-1,-2).(1)求出反比例函数与一次函数的表达式; (2)请写出A 点的坐标;(3)连接OA ,OB ,求△AOB 的面积.26.(14分)如图,反比例函数y =k x的图象经过点A (-1,4),直线y =-x +b (b ≠0)与双曲线y =k x在第二、四象限分别相交于P ,Q 两点,与x 轴、y 轴分别相交于C ,D 两点. (1)求k 的值;(2)当b =-2时,求△OCD 的面积;(3)连接OQ ,是否存在实数b ,使得S △ODQ =S △OCD ?若存在,请求出b 的值;若不存在,请说明理由.答案1.D 2.D 3.B 4.C 5.D 6.C 7.B 8.D 9.D 10.B11.C 解析:解方程组⎩⎪⎨⎪⎧y =-x +b ,y =1x,得x 2-bx +1=0,∵直线y =-x +b 与反比例函数y =1x的图象有2个公共点,∴方程x 2-bx +1=0有两个不相等的实数根,∴Δ=b 2-4>0,∴b >2或b <-2.故选C.12.B 解析:过点B 作BE ⊥x 轴于点E ,∵D 为OB 的中点,∴CD 是△OBE 的中位线,即CD =12BE .设A ⎝ ⎛⎭⎪⎫x ,k x ,则B ⎝ ⎛⎭⎪⎫2x ,k 2x ,CD =k 4x ,AD =k x -k 4x .∵△ADO 的面积为1,∴12AD ·OC =1,即12⎝ ⎛⎭⎪⎫k x -k 4x ·x =1,解得k =83.故选B.13.m <1 14.y =-8x15.-4 16.1.2 17.-2 18.4+2 619.解:∵反比例函数y =mxm 2-5的图象经过第二、四象限,∴m 2-5=-1,且m <0,(5分)解得m =-2.(8分)∴反比例函数的解析式为y =-2x.(10分)20.解:(1)∵反比例函数y =k x的图象经过点A (2,3),∴k =2×3=6,∴y =6x;(5分)(2)点B (1,6)在这个函数图象上.(7分)理由如下:在反比例函数y =6x中,当x =1时,y =6,∴点B (1,6)在这个函数图象上.(10分)21.解:(1)依题意设I =U R (U ≠0).(2分)把M (4,9)代入,得U =4×9=36,∴I =36R(R >0);(5分)(2)不能.(7分)理由如下:当R =10Ω时,I =3610=3.6(A),∴当R =10Ω时,电流不可能是4A.(10分)22.解:(1)∵A (m ,3),B (-3,n )两点在反比例函数y 2=6x的图象上,∴m =2,n =-2.∴点A 的坐标为(2,3),点B 的坐标为(-3,-2).(3分)将点A ,B 的坐标代入y 1=kx+b 中,得⎩⎪⎨⎪⎧2k +b =3,-3k +b =-2,解得⎩⎪⎨⎪⎧k =1,b =1,∴一次函数的解析式是y 1=x +1;(7分)(2)根据图象得0<x <2或x <-3.(10分)23.解:(1)联立方程组⎩⎪⎨⎪⎧y =4x ,y =kx +4,得kx 2+4x -4=0.(2分)∵反比例函数的图象与直线y =kx +4(k ≠0)只有一个公共点,∴Δ=16+16k =0,∴k =-1;(5分)(2)如图所示,C 1平移至C 2所扫过的面积为2×3=6.(12分)24.解:(1)12-2=10(小时),故恒温系统在这天保持大棚内温度为18℃的时间有10小时;(4分)(2)∵点B (12,18)在双曲线y =k x 上,∴18=k12,∴k =216;(8分)(3)当x =16时,y =21616=13.5.∴当x =16时,大棚内的温度约为13.5℃.(12分)25.解:(1)将B (-1,-2)代入y =x +b 中,得b =-1.故一次函数的表达式为y =x-1.(2分)将B (-1,-2)代入y =k x中,得k =2.故反比例函数的表达式为y =2x;(4分)(2)联立方程组⎩⎪⎨⎪⎧y =x -1,y =2x,解得⎩⎪⎨⎪⎧x 1=-1,y 1=-2,⎩⎪⎨⎪⎧x 2=2,y 2=1.故点A 的坐标为(2,1).(8分)(3)设y =x -1与x 轴的交点为C ,则C (1,0).(10分)故S △AOB =12×1×(1+2)=32.(12分)26.解:(1)∵反比例函数y =k x的图象经过点A (-1,4),∴k =-1×4=-4;(3分) (2)当b =-2时,直线解析式为y =-x -2.当y =0时,-x -2=0,解得x =-2,∴C点的坐标为(-2,0).当x =0时,y =-x -2=-2,∴D 点的坐标为(0,-2).(6分)∴S △OCD =12×2×2=2;(8分) (3)存在.(9分)理由如下:在y =-x +b 中,当y =0时,-x +b =0,解得x =b ,则C 点的坐标为(b ,0).当b >0时,易知S △ODQ =S △ODC +S △OCQ ,即S △ODQ >S △ODC ,不合题意,故b <0.∵S △ODQ =S △OCD ,∴点Q 和点C 到OD 的距离相等,∵Q 点在第四象限,∴Q 点的横坐标为-b .当x =-b 时,y =-x +b =2b ,则Q 点的坐标为(-b ,2b ).(12分)∵点Q 在反比例函数y =-4x的图象上,∴-b ·2b =-4,解得b =-2或b =2(舍去),∴存在实数b ,使得S △ODQ =S △OCD ,b 的值为- 2.(14分)第二十七章检测卷时间:120分钟 满分:150分班级:__________ 姓名:__________ 得分:__________一、选择题(本题共12小题,每小题3分,共36分) 1.观察下列每组图形,相似图形是( )2.如果两个相似三角形对应边中线之比是1∶4,那么它们的对应高之比是( ) A .1∶2 B.1∶4 C.1∶8 D.1∶16 3.已知△ABC ∽△DEF ,且AB ∶DE =1∶2,则△ABC 的面积与△DEF 的面积之比为( ) A .1∶2 B.1∶4 C.2∶1 D.4∶14.如图,l 1∥l 2∥l 3,直线a 、b 与l 1、l 2、l 3分别交于点A 、B 、C 和点D 、E 、F .若ABBC=23,DE =4,则EF 的长是( ) A.83 B.203C .6D .10 第4题图第5题图第6题图5.如图,在直角坐标系中,有两点A (6,3),B (6,0),以原点O 为位似中心,相似比为13,在第一象限内把线段AB 缩小后得到CD ,则C 的坐标为( ) A .(2,1) B .(2,0) C .(3,3) D .(3,1)6.如图,点P 在△ABC 的边AC 上,要判断△ABP ∽△ACB ,添加一个条件,不正确的是( )A .∠ABP =∠CB .∠APB =∠ABCC.AP AB =AB AC D.AB BP =AC CB7.如图,在6×6的正方形网格中,连接两格点A ,B ,线段AB 与网格线的交点为M ,N ,则AM ∶MN ∶NB 为( )A .3∶5∶4 B.1∶3∶2 C.1∶4∶2 D.3∶6∶5第7题图第8题图8.如图,为测量河的宽度,在河对岸选定一个目标点A ,在近岸取点B 、C 、D ,使得AB ⊥BC ,点E 在BC 上,并且点A 、E 、D 在同一直线上.若测得BE =15m ,EC =9m ,CD =16m ,则河的宽度AB 等于( )A .35m B.653m C.803m D.503m9.如图,四边形ABCD 是平行四边形,点E 在BA 的延长线上,点F 在BC 的延长线上,连接EF ,分别交AD ,CD 于点G ,H ,则下列结论错误的是( )A.EA BE =EG EF B.EG GH =AG GD C.AB AE =BC CF D.FH EH =CF AD第9题图第10题图10.如图,若∠1=∠2=∠3,则图中的相似三角形有( ) A .1对 B .2对 C .3对 D .4对11.如图,把△ABC 沿AB 边平移到△A ′B ′C ′的位置,它们重叠部分(即图中阴影部分)的面积是△ABC 面积的一半.若AB =2,则此三角形移动的距离AA ′是( )A.2-1B.22 C .1 D.12第11题图第12题图12.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC 于点F ,连接DF ,分析下列四个结论:①△AEF ∽△CAB ;②CF =2AF ;③DF =DC ;④S 四边形CDEF =52S △ABF .其中正确的结论有( )A .4个B .3个C .2个D .1个二、填空题(本大题共6小题,每小题4分,共24分) 13.在比例尺为1∶4000 000的地图上,两城市间的图上距离为3cm ,则这两城市间的实际距离为 km.14.若实数a 、b 、c 满足b +c a =a +c b =a +bc=k ,则k = . 15.如图,身高为1.7m 的小明AB 站在河的一岸,利用树的倒影去测量河对岸一棵树CD 的高度,CD 在水中的倒影为C ′D ,A 、E 、C ′在一条线上.已知河BD 的宽度为12m ,BE =3m ,则树CD 的高为 .第15题图16.如图,正方形OABC 与正方形ODEF 是位似图形,点O 为位似中心,相似比为1∶3,点E 的坐标为(3,3),则点A 的坐标是 .第16题图第17题图第18题图17.如图,在Rt△ABC 中,AB =BC ,∠B =90°,AC =10 2.四边形BDEF 是△ABC 的内接正方形(点D 、E 、F 在三角形的边上),则此正方形的面积是 .18.如图,菱形ABCD 的边长为1,直线l 过点C ,交AB 的延长线于M ,交AD 的延长线于N ,则1AM +1AN= .三、解答题(本题共8小题,共90分,解答时应写出必要的文字说明、证明过程或演算步骤)19.(10分)如图,在△ABC 中,DE ∥BC ,DE =2,BC =3.求AE AC的值.20.(10分)如图,已知在四边形ABCD中,∠ADB=∠ACB,延长AD,BC相交于点E.求证:AC·DE=BD·CE.21.(10分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC向上平移3个单位得到△A1B1C1,请画出△A1B1C1;(2)请画一个格点△A2B2C2,使△A2B2C2∽△ABC,且相似比不为1.22.(10分)如图,在△ABC中,D是AB上一点,且∠ACD=∠B,已知AD=8cm,BD=4cm,求AC的长.23.(12分)如图,已知在梯形ABCD中,AD∥BC,AB⊥BC,∠AEB=∠ADC.(1)求证:△ADE∽△DBC;(2)连接EC,若CD2=AD·BC,求证:∠DCE=∠ADB.24.(12分)一天晚上,李明和张龙利用灯光下的影子来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立身高AM与其影子长AE正好相等,接着李明沿AC 方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m.已知李明直立时的身高为1.75m,求路灯CD的高.25.(12分)如图,△ABC 中,∠ACB =90°,D 为AB 上一点,以CD 为直径的⊙O 交BC 于点E ,连接AE 交CD 于点P ,交⊙O 于点F ,连接DF ,∠CAE =∠ADF .(1)判断AB 与⊙O 的位置关系,并说明理由; (2)若PF ∶PC =1∶2,AF =5,求CP 的长.26.(14分)如图,矩形OABC 的顶点A 、C 分别在x 轴和y 轴上,点B 的坐标为(2,3),双曲线y =k x(x >0)的图象经过BC 上的点D ,与AB 交于点E ,连接DE ,若E 是AB 的中点.(1)求点D 的坐标;(2)点F 是OC 边上一点,若△FBC 和△DEB 相似,求点F 的坐标.答案1.D 2.B 3.B 4.C 5.A 6.D 7.B 8.C 9.C 10.D 11.A 12.A 解析:过D 作DM ∥BE 交AC 于点N ,交BC 于点M .∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABC =90°,AD =BC ,∴∠EAC =∠ACB .∵BE ⊥AC 于点F ,∴∠AFE =∠ABC =90°,∴△AEF ∽△CAB ,故①正确;∵AD ∥BC ,∴△AEF ∽△CBF ,∴AE BC =AF CF .∵AE =12AD =12BC ,∴AFCF=12,∴CF =2AF ,故②正确;∵DE ∥BM ,BE ∥DM ,∴四边形BMDE 是平行四边形,∴BM =DE =12BC ,∴BM =CM ,∴CN =NF .∵BE ⊥AC 于点F ,DM ∥BE ,∴DN ⊥CF ,∴DN 垂直平分CF ,∴DF =DC ,故③正确;∵△AEF ∽△CBF ,EF BF =AE BC =12,∴S △AEF =12S △ABF ,∴S △AEF =13S △ABE =112S 矩形ABCD .又∵S四边形CDEF=S △ACD -S △AEF =12S矩形ABCD-112S 矩形ABCD=512S 矩形ABCD=5S △AEF =52S △ABF ,故④正确.故选A.13.120 14.-1或2 15.5.1m 16.(0,1) 17.25 18.119.解:∵DE ∥BC ,∴△ADE ∽△ABC ,(5分)∴AE AC =DE BC =23.(10分)20.证明:∵∠ADB =∠ACB ,∴∠EDB =∠ECA .(3分)又∵∠E =∠E ,∴△ECA ∽△EDB ,(7分)∴AC BD =CEDE,即AC ·DE =BD ·CE .(10分)21.解:(1)作出△A 1B 1C 1,如图所示;(5分)(2)作出△A 2B 2C 2,如图所示(本题是开放题,答案不唯一,只要作出的△A 2B 2C 2满足条件即可)(10分).22.解:∵在△ACD 和△ABC 中,⎩⎪⎨⎪⎧∠A =∠A ,∠ACD =∠B ,∴△ACD ∽△ABC ,∴AD AC =ACAB .(5分)∵AD=8cm ,BD =4cm ,∴AB =12cm ,∴8AC =AC12,(8分)∴AC =46cm.(10分)23.证明:(1)∵AD ∥BC ,∴∠ADE =∠DBC ,∠ADC +∠BCD =180°.(2分)∵∠AEB =∠ADC ,∠AEB +∠AED =180°,∴∠AED =∠BCD ,(5分)∴△ADE ∽△DBC ;(6分)(2)由(1)可知△ADE ∽△DBC ,∴AD DB =DE BC,∴DB ·DE =AD ·BC .(7分)∵CD 2=AD ·BC ,∴CD 2=DB ·DE ,∴CD DB =DECD.(8分)又∵∠CDE =∠BDC ,∴△CDE ∽△BDC ,∴∠DCE =∠DBC .(10分)又∵∠ADB =∠DBC ,∴∠DCE =∠ADB .(12分)24.解:设CD =x m.∵AE =AM ,AM ⊥EC ,∴∠E =45°,∴EC =CD =x m ,AC =(x -1.75)m.(2分)∵CD ⊥EC ,BN ⊥EC ,BN ∥CD ,∴△ABN ∽△ACD ,(7分)∴BN CD =AB AC ,即1.75x = 1.25x -1.75,解得x =6.125.(11分)答:路灯CD 的高为6.125m.(12分)25.解:(1)AB 是⊙O 的切线.(1分)理由如下:∵∠ACB =90°,∴∠CAE +∠CEA =90°.(3分)又∵∠CEA =∠CDF ,∠CAE =∠ADF ,∴∠ADF +∠CDF =90°,∴∠ADC =90°,∴CD ⊥AD ,∴AB 是⊙O 的切线;(6分)(2)∵∠CPF =∠APC ,连接DE 、CF ,如图.∵CD 是直径,∴∠DEC =90°.∵∠ACB =90°,∴∠DEC +∠ACE =180°,∴DE ∥AC ,∴∠DEA =∠CAE ,又∵∠PCF =∠DEA ,∴∠PCF =∠PAC .∴△PCF ∽△PAC ,∴PC PA =PF PC,∴PC 2=PF ·PA .(9分)设PF =a ,∵PF ∶PC =1∶2,则PC =2a ,PA =a +5,∴4a 2=a (a +5),∴a =53或a =0(舍去),∴PC =2a =103.(12分)26.解:(1)∵四边形OABC 为矩形,∴AB ⊥x 轴.∵E 为AB 的中点,点B 的坐标为(2,3),∴点E 的坐标为⎝ ⎛⎭⎪⎫2,32.∵点E 在反比例函数y =k x 的图象上,∴k =3,∴反比例函数的解析式为y =3x.(4分)∵四边形OABC 为矩形,∴点D 与点B 的纵坐标相同,将y =3代入y=3x可得x =1,∴点D 的坐标为(1,3);(6分)(2)由(1)可得BC =2,CD =1,∴BD =BC -CD =1.∵E 为AB 的中点,∴BE =32.(8分)若△FBC ∽△DEB ,则CB BE =CF BD ,即232=CF 1,∴CF =43,∴OF =CO -CF =3-43=53,∴点F 的坐标为⎝ ⎛⎭⎪⎫0,53;(11分)若△FBC ∽△EDB ,则BC DB =CF BE ,即21=CF 32,∴CF =3,此时点F 和点O 重合.(13分)综上所述,点F 的坐标为⎝ ⎛⎭⎪⎫0,53或(0,0).(14分)第二十八章检测卷时间:120分钟 满分:150分班级:__________ 姓名:__________ 得分:__________一、选择题(本题共12小题,每小题3分,共36分) 1.cos60°的值等于( ) A.12 B.22 C.32 D.322.如图,已知Rt△ABC 中,∠C =90°,AC =8,BC =15,则tan A 的值为( ) A.817 B.1517 C.815 D.1583.如图,在地面上的点A 处测得树顶B 的仰角为α度,AC =7,则树高BC 为(用含α的代数式表示)( )A .7sin αB .7cos αC .7tan α D.7tan α第2题图第3题图4.已知在Rt△ABC 中,∠C =90°,sin A =35,则tan B 的值为( )A.43B.45C.54D.345.已知α为锐角,且2cos(α-10°)=1,则α等于( ) A .50° B.60° C.70° D.80°6.将如图所示三角板的直角顶点放置在直线AB 上的点O 处,使斜边CD ∥AB ,则∠α的正弦值为( )A.12B.32C.22D .1 第6题图7.在等腰△ABC 中,AB =AC =10cm ,BC =12cm ,则cos A2的值是( )A.35B.45C.34D.548.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则sin∠ABC 的值为( )A.35B.34C.105D .1 9.已知∠A 是锐角,且sin A =35,那么锐角A 的取值范围是( )A .0°<∠A <30° B.30°<∠A <45° C .45°<∠A <60° D.60°<∠A <90°10.如图,小岛在港口P 的北偏西60°方向,距港口56海里的A 处,货船从港口P 出发,沿北偏东45°方向匀速驶离港口P ,4小时后货船在小岛的正东方向,则货船的航行速度是( )A .72海里/时B .73海里/时C .76海里/时D .282海里/时第10题图第11题图第12题图11.如图,已知∠α的一边在x 轴上,另一边经过点A (2,4),顶点为B (-1,0),则sin α的值是( )A.25B.55C.35D.4512.如图,在▱ABCD 中,AE ⊥BC ,垂足为E ,如果AB =5,BC =8,sin B =45,那么tan∠CDE的值为( )A.12B.33C.22D.2-1 二、填空题(本大题共6小题,每小题4分,共24分) 13.tan60°= .14.在△ABC 中,∠C =90°,AB =13,BC =5,则tan B = .15.在△ABC 中,∠A 、∠B 都是锐角,若sin A =32,cos B =12,则∠C = . 16.菱形的两条对角线长分别为16和12,较长的对角线与菱形的一边的夹角为θ,则cos θ= .17.如图,在半径为5的⊙O 中,弦AB =6,点C 是优弧AB ︵上的一点(不与A 、B 重合),则sin C 的值为 .第17题图第18题图18.如图,△ABC 中,∠ACB =90°,∠B =30°,AC =1,过点C 作CD 1⊥AB 于D 1,过点D 1作D 1D 2⊥BC 于D 2,过点D 2作D 2D 3⊥AB 于D 3,则D 2D 3= ,这样继续作下去,线段D n D n +1= .三、解答题(本题共8小题,共90分,解答时应写出必要的文字说明、证明过程或演算步骤)19.(10分)计算:(1)3tan30°+cos 245°-2sin60°;(2)tan 260°-2sin45°+cos60°.20.(10分)如图,在△ABC 中,∠ACB =90°,BC =3,AC =4,CD ⊥AB ,垂足为D ,求sin∠ACD 和tan∠BCD 的值.21.(10分)根据下列条件解直角三角形:(1)在Rt△ABC 中,∠C =90°,c =83,∠A =60°; (2)在Rt△ABC 中,∠C =90°,a =36,b =9 2. 22.(10分)测量计算是日常生活中常见的问题,如图,建筑物BC 的屋顶有一根旗杆AB ,从地面上D 点处观测旗杆顶点A 的仰角为50°,观测旗杆底部B 点的仰角为45°(参考数据:sin50°≈0.8,tan50°≈1.2).(1)若已知CD =20米,求建筑物BC 的高度;(2)若已知旗杆的高度AB =5米,求建筑物BC 的高度.23.(12分)已知△ABC 中的∠A 与∠B 满足(1-tan A )2+⎪⎪⎪⎪⎪⎪sin B -32=0. (1)试判断△ABC 的形状;(2)求(1+sin A)2-2cos B-(3+tan C)0的值.24.(12分)某国发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作,如图,某探测队在地面A,B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度(结果精确到1米,参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,3≈1.7).25.(12分)如图,在四边形ABCD中,∠BCD是钝角,AB=AD,BD平分∠ABC.若CD=3,BD=26,sin∠DBC=33,求对角线AC的长.26.(14分)如图,在南北方向的海岸线MN 上,有A 、B 两艘巡逻船,现均收到故障船C 的求救信号.已知A 、B 两船相距100(3+1)海里,船C 在船A 的北偏东60°方向上,船C 在船B 的东南方向上,MN 上有一观测点D ,测得船C 正好在观测点D 的南偏东75°方向上.(1)分别求出船A 与船C 、观测点D 之间的距离AC 和AD (如果运算结果有根号,请保留根号);(2)已知距观测点D 处100海里范围内有暗礁,若巡逻船A 沿直线AC 航行去营救船C ,在去营救的途中有无触暗礁危险(参考数据:2≈1.41,3≈1.73)?答案1.A 2.D 3.C 4.A 5.C 6.B 7.B 8.A 9.B 10.A 11.D 12.A13. 3 14.125 15.60° 16.45 17.3518.338 ⎝ ⎛⎭⎪⎫32n +1 解析:在△ABC 中,∠ACB =90°,∠B =30°,则CD 1=32;进而在△CD 1D 2中,有D 1D 2=32CD 1=⎝ ⎛⎭⎪⎫322,同理可得D 2D 3=⎝ ⎛⎭⎪⎫323=338,…,则线段D n D n +1=⎝ ⎛⎭⎪⎫32n +1. 19.解:(1)原式=3×33+⎝ ⎛⎭⎪⎫222-2×32=3+12-3=12;(5分)(2)原式=(3)2-2×22+12=3-2+12=72- 2.(10分) 20.解:∵∠ACB =90°,BC =3,AC =4,∴AB =5.(2分)∵CD ⊥AB ,∴∠ADC =∠BDC=90°,∴∠B +∠BCD =90°,∠A +∠ACD =90°.又∵∠BCD +∠ACD =90°,∴∠ACD =∠B ,∠BCD =∠A ,(6分)∴sin∠ACD =sin B =AC AB =45,tan∠BCD =tan A =BC AC =34.(10分)21.解:(1)∠B =30°,a =12,b =43;(5分)(2)∠A =30°,∠B =60°,c =6 6.(10分)22.解:(1)在Rt△BCD 中,∵∠BDC =45°,∴BC =CD =20米.(3分)答:建筑物BC 的高度为20米;(4分)(2)设CD =BC =x 米,∴AC =(x +5)米.(5分)在Rt△ACD 中,tan∠ADC =AC CD=5+xx≈1.2,解得x ≈25,经检验x ≈25符合题意.(9分) 答:建筑物BC 的高度约为25米.(10分)23.解:(1)∵(1-tan A )2+⎪⎪⎪⎪⎪⎪sin B -32=0,∴tan A =1,sin B =32,(2分)∴∠A =45°,∠B =60°,∴∠C =180°-45°-60°=75°,(5分)∴△ABC 是锐角三角形;(6分)(2)∵∠A =45°,∠B =60°,∠C =75°,∴原式=⎝⎛⎭⎪⎫1+222-212-1=12.(12分)24.解:如图,过点C 作CD ⊥AB 交AB 的延长线于点D .设CD =x 米.(2分)在Rt△ADC 中,∠DAC =25°,tan∠DAC =CD AD ,所以AD =CD tan25°≈x0.5=2x (米).(5分)在Rt△BDC 中,∠DBC =60°,tan∠DBC =CD BD ,即tan60°=x 2x -4=3,解得x =4323-1≈3.(11分)答:该生命迹象所在位置C 的深度约为3米.(12分)25.解:如图,过点D 作DE ⊥BC 交BC 的延长线于点E ,则∠E =90°.(1分)∵sin∠DBC=33,BD=26,∴DE=BD·sin∠DBC=22,∴BE=BD2-DE2=4.∵CD=3,∴CE=CD2-DE2=1,∴BC=BE-CE=3,∴BC=CD,∴∠CBD=∠CDB.(6分)∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠CDB,∴AB∥CD.同理AD∥BC,∴四边形ABCD是平行四边形.又∵AB=AD,∴四边形ABCD是菱形.(9分)连接AC交BD于O,则AC⊥BD,AO=CO,BO=DO =6,(10分)∴OC=BC2-BO2=3,∴AC=2 3.(12分)26.解:(1)如图,过点C作CE⊥AB与点E,设AE=x海里.(1分)在Rt△AEC中,∠CAE=60°,∴CE=AE·tan60°=3x海里,AC=AEcos60°=2x海里.(2分)在Rt△BCE中,∠CBE=45°,∴BE=CE=3x海里.∵AB=AE+BE=100(3+1)海里,∴x+3x=100(3+1),解得x=100.∴AC=200海里.(5分)在△ACD中,∠DAC=60°,∠ADC=75°,则∠ACD=45°.过点D作DF⊥AC于点F.设AF=y海里,则AD=AFcos60°=2y海里,CF=DF=AF·tan60°=3y海里.(7分)∵AC=AF+CF=200海里,∴y+3y=200,解得y=100(3-1),∴AD=2y=200(3-1)海里.(9分)答:A与C之间的距离AC为200海里,A与D之间的距离AD为200(3-1)海里;(10分)(2)由(1)可知DF=3AF=3×100(3-1)≈126(海里).(12分)∵126海里>100海里,∴巡逻船A沿直线AC航行去营救船C,在去营救的途中没有触暗礁危险.(14分)第二十九章检测卷时间:120分钟满分:150分班级:__________ 姓名:__________ 得分:__________一、选择题(本题共12小题,每小题3分,共36分)1.在操场上练习双杠的过程中发现双杠的两横杠在地上的影子()A.相交 B.互相垂直 C.互相平行 D.无法确定2.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()3.下面几何体中,其主视图与俯视图相同的是()4.如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是()5.如图所示的几何体,它的左视图与俯视图都正确的是()6.王丽同学在某天下午的不同时刻拍了三张同一景物的风景照A,B,C,冲洗后不知道拍照的顺序,已知投影l A>l C>l B,则A,B,C的先后顺序是()A.A,B,C B.A,C,BC.B,C,A D.B,A,C7.由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体个数是()A.3个 B.4个 C.5个 D.6个第7题图第8题图8.如图,甲、乙、丙三个图形都是由大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数.其中主视图相同的是()A.仅有甲和乙相同 B.仅有甲和丙相同C.仅有乙和丙相同 D.甲、乙、丙都相同9.如图所示,一条线段AB在平面Q内的正投影为A′B′,AB=4,A′B′=23,则AB与A′B′的夹角为()A.45° B.30° C.60° D.以上都不对第9题图第10题图10.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影子长DE=1.8m,窗户下沿到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()A.1.5m B.1.6mC.1.86m D.2.16m11.如图是几何体的俯视图,小正方形中的数字为该位置小正方体的个数,则该几何体的主视图是()第11题图第12题图12.如图,是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数可能是()A.5或6 B.5或7C.4或5或6 D.5或6或7二、填空题(本大题共6小题,每小题4分,共24分)13.工人师傅制造某工件,想知道工件的高,则他需要看到三视图中的或.14.上小学五年级的小丽看见上初中的哥哥小勇用测树的影长和自己的影长的方法来测树高,她也学着哥哥的样子在同一时刻测得树的影长为5米,自己的影长为1米.要求得树高,还应测得.15.如图是测得的两根木杆在同一时间的影子,那么它们是由形成的投影(填“太阳光”或“灯光”).第15题图第16题图第17题图16.如图,当太阳光与地面上的树影成45°角时,树影投射在墙上的影高CD为2米,若树底部到墙的距离BC为8米,则树高AB为米.17.如图是一个长方体的主视图和俯视图,由图示数据(单位:cm)可以得出该长方体的体积是 cm3.18.三棱柱的三视图如图所示,△EFG中,EF=8cm,EG=12cm,∠EGF=30°,则AB 的长为 cm.三、解答题(本题共8小题,共90分,解答时应写出必要的文字说明、证明过程或演算步骤)19.(10分)如图所示画出的两个图形都是一个圆柱体的正投影,试判断正误,并说明原因.20.(10分)下列几何体的三视图有没有错误?如果有,请改正.21.(10分)画出如图所示几何体的三视图.22.(10分)如图,AB和DE是直立在地面上的两根立柱,已知AB=5m,某一时刻AB在太阳光下的影长BC=3m.(1)在图中画出此时DE在太阳光下的影子EF;(2)在测量AB的影长时,同时测量出EF=6m,计算DE的长.23.(12分)根据下列视图(单位:mm),求该物体的体积.24.(12分)一圆柱形器皿在点光源P下的投影如图所示,已知AD为该器皿底面圆的直径,且AD=3,CD为该器皿的高,CD=4,CP′=1,点D在点P下的投影刚好位于器皿底与器皿壁的交界处,即点B处,点A在点P下的投影为A′,求点A′到CD的距离.25.(12分)如图,是由一些大小相同的小正方体组成的几何体的主视图和俯视图.(1)当组成这个几何体的小正方体的个数为8个时,几何体有多种形状.请画出其中两种几何体的左视图;(2)若组成这个几何体的小正方体的个数为n,请写出n的最小值和最大值;(3)主视图和俯视图为下面两图的几何体有若干个,请你画出其中一个几何体.26.(14分)如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)根据所给数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体中的点B出发,沿表面爬到AC的中点D,请你求出这个线路的最短路程.答案1.C 2.D 3.C 4.C 5.D 6.C7.C 8.B 9.B 10.A 11.B12.D 解析:由俯视图易得最底层有4个小立方体,由左视图易得第二层最多有3个小立方体和最少有1个小立方体,那么小立方体的个数可能是5个或6个或7个.故选D.13.主视图左视图14.她自己的身高15.太阳光16.10 17.75 18.619.解:图①是错误的,图②是正确的.(4分)因为圆柱体的正投影是平行光线的投影,投影线与投影面是垂直的,所以投影后不可能是圆柱,而是一个平面图形——矩形或正方形.(10分)20.解:左视图、俯视图错误.(4分)改正后的图形如图所示.(10分)21.解:如图所示.(10分)22.解:(1)如图所示,EF 即为所求;(4分)(2)由题意可得AB BC =DE EF ,即53=DE6,解得DE =10m.(9分)答:DE 的长为10m.(10分)23.解:这是上下两个圆柱的组合图形.(4分)V =16×π×⎝ ⎛⎭⎪⎫1622+4×π×⎝ ⎛⎭⎪⎫822=1088π(mm 3).(11分)答:该物体的体积是1088mm 3.(12分)24.解:由中心投影的性质得△PDE ∽△PBP ′,(2分)∴PD PB =DE BP ′=13+1=14.(5分)又∵△PAD ∽△PA ′B ,∴AD A ′B =PD PB =14,∴3A ′B =14,(8分)∴A ′B =12,∴A ′C =12+3=15.(11分)答:点A ′到CD 的距离为15.(12分)25.解:(1)如图所示;(4分)(2)这个几何体的小正方体的个数最少为8个,最多为11个.即n 最小为8,最大为11;(8分)(3)如图所示.(12分) 26.解:(1)圆锥;(4分)(2)S 表=S 侧+S 底=π×6×2+π×⎝ ⎛⎭⎪⎫422=12π+4π=16π(cm 2);(8分)(3)如图将圆锥侧面展开,得到扇形ABB ′,连接BC ,BD ,则线段BD 为所求的最短路程.(9分)设∠BAB ′=n °.∵n π·6180=4π,∴n =120,即∠BAB ′=120°.∵C 为弧BB ′的中点,∴∠BAD =60°.∵AB =AC ,∴△ABC 为等边三角形,∴BD ⊥AC ,∴∠ADB =90°,(12分)∴BD =AB ·sin∠BAD =6×32=33(cm).即最短路程为33cm.(14分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学(下册)试题:单元练习测试题_题型归纳
今天小编为大家精心准备了一篇有关初三数学(下册)试题:单元练习测试题的相关内容,以供大家阅读!
一、选择题(本题有10小题,每小题3分,共30分)
1.已知反比例函数的图象经过点(1,-2),则这个函数的图象一定经过点()A.(2,1)B.(2,-1)C.(2,4)D.(-1,-2)
2.抛物线y=3(x-1)2 2的顶点坐标是()
A.(-1,-2)
B.(-1,2)
C.(1,2)
D.(1,-2)
3.点A、B、C在⊙O上,若C=35,则的度数为()
A.70
B.55
C.60
D.35
4.在直角⊙ABC中,C=90,若AB=5,AC=4,则tanB=()
(A)35(B)45(C)34(D)43
5.在⊙O中,AB是弦,OCAB于C,若AB=16,OC=6,则⊙O的半径OA等于()
A.16
B.12
C.10
D.8
6.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒。

当你抬头看信号灯时,看到黄灯的概率是()
A、B、C、D、
7.在⊙ABC中,C=900,D是AC上一点,DEAB于点E,
若AC=8,BC=6,DE=3,则AD的长为()
A.3
B.4
C.5
D.6
8.小正方形的边长为1,三角形(阴影部分)与⊙ABC相似的是()
9.四个阴影三角形中,面积相等的是()
10.函数y1=x(x0),y2=4x(x0)的图象所示,下列四个结论:
①两个函数图象的交点坐标为A(2,2);②当x2时,y1③当0﹤x﹤2时,y1④直线x=1分别与两函数图象交于B、C两点,则线段BC的长为3;
则其中正确的结论是()
A.①②④
B.①③④
C.②③④
D.③④
二、填空题(本题有6小题,每小题4分,共24分)
11.扇形半径为30,圆心角为120,用它做成一个圆锥的侧面,则圆锥底面半径为。

12.D是⊙ABC中边AB上一点;请添加一个条件:,使⊙ACD⊙⊙ABC。

13.⊙ABC的顶点都是正方形网格中的格点,则sinABC等于。

14.若点在反比例函数的图象上,轴于点,的面积为3,则。

15.点P的坐标为(3,0),⊙P的半径为5,且⊙P与x轴交于点A,B,与y轴交于点C、D,则D 的坐标是。

16.直线l1x轴于点(1,0),直线l2x轴于点(2,0),直线l3x轴于点(3,0)…直线lnx轴于点(n,0);函数y=x的图象与直线l1,l2,l3,…ln分别交于点A1,A2,A3,…An,函数y=2x的图象与直线l1,l2,l3,…ln分别交于点B1,B2,B3,…Bn.如果⊙OA1B1的面积记为S1,四边形A1A2B2B1的面积记作S2,四边形A2A3B3B2的面积记作S 3,…四边形An﹣1AnBnBn﹣1的面积记作Sn,那么S2012=。

三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)
17.(本题6分)求下列各式的值:
(1)-
(2)已知,求的值.
18.(本题6分),AB和CD是同一地面上的两座相距36米的楼房,
在楼AB的楼顶A点测得楼CD的楼顶C的仰角为45,楼底D的俯角
为30求楼CD的高。

(结果保留根号)
19.(本题6分)李明和张强两位同学为得到一张星期六观看足球比赛的入场券,设计了一种游戏方案:将三个完全相同的小球分别标上数字1、2、3后,放入一个不透明的袋子中.从中随机取出一个小球,记下数字后放回袋子;混合均匀后,再随机取出一个小球.若两次取出的小球上的数字之和为奇数,张强得到入场券;否则,李明得到入场券.
(1)请你用树状图(或列表法)分析这个游戏方案所有可能出现的结果;
(2)这个方案对双方是否公平?为什么?
20.(本本题8分),AB是⊙O的直径,BC是⊙O的弦,半径ODBC,垂足为E,若BC=,OE=3;求:
(1)⊙O的半径;
(2)阴影部分的面积。

21.(本题8分),E是正方形ABCD的边AB上的动点,EFDE交BC于点F.
(1)求证:⊙ADE⊙⊙BEF;
(2)若正方形的边长为4,设AE=x,BF=y,求y与x
的函数关系式;并求当x取何值时,BF的长为1.
22.(本题10分),在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。

(1)求S与x的函数关系式及自变量的取值范围;
(2)当x取何值时所围成的花圃面积最大,最大值是多少?
(3)若墙的最大可用长度为8米,求围成花圃的最大面积。

23.(本题10分)已知,⊙ABC为等边三角形,点D为直线BC上一动点(点D不与B、C重合).以AD为边作菱形ADEF,使DAF=60,连接CF.
⊙1,当点D在边BC上时,
①求证:ADB=②请直接判断结论AFC=ACBDAC是否成立;
⊙2,当点D在边BC的延长线上时,其他条件不变,请写出AFC、ACB、DAC之间存在的数量关系,并说明理由;
⊙3,当点D在边CB的延长线上时,且点A、F分别在直线BC的异侧,其他条件不变,请直接写出AFC、ACB、DAC之间存在的等量关系.
24.(本题12分),抛物线与x轴交A、B两点(A点在B点左侧),直线与抛物线交于A、C两点,其中C点的横坐标为2;
(1)求A、B两点的坐标及直线AC的函数表达式;
(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;
(3)点G是抛物线上的动点,在x轴上是否存在点F,使以A、C、F、G四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.
18.(本题6分)(36﹢12)米;
19.(本题6分)(1)略;(2)⊙P(奇数)=4∕9,P(偶数)=5∕9;
这个方案对双方不公平;(注:每小题3分)
20.(本题8分)(1)半径为6;(2)S阴影=6(注:每小题4分)
21.(本题8分)(1)略;(2)y=-x2 x;当x=2时,BF=1;
(注:第①小题3分,第②小题关系式3分,X值2分)
22.(本题1 0分)(1)y﹦-4x2 24x(0
(3)⊙24-4x8,x又⊙当x3时,S随x增大而减小;
当x﹦4时,S最大值﹦32(平方米);
(注:第①小题4分,第②小题3分,第③小题3分)
23.(本题10分)(1)①由⊙ADB⊙⊙AFC可得;②结论AFC=ACBDAC成立;
(2)⊙同理可证⊙ADB⊙⊙AFC,AFC=ACB-
(3)AFCACBDAC=180(或AFC=2ACB-DAC等);
(注:第①小题4分,第②小题3分,第③小题3分) 24.(本题10分)(1)A(-1,0)、B(3,0);直线AC解析式为y﹦-X-1;
(2)设P点坐标(m,-m-1),则E点坐标(m,m2-2m-3);
PE=-m2 m 2,当m﹦时,PE最大值=;
(3)F1(-3,0)、F2(1,0)、F3(4,0)、F4(4-,0);
(注:每小题4分)
今天的内容就介绍这里了。

相关文档
最新文档