数学人教版八年级上册三角形全等判定sss.2全等三角形的判定sss(1)
人教版数学八年级上册 12.2三角形全等的判定 第一课时 “边边边”(sss)判定(共31张ppt)(智能版推荐)
学完本节课你应该知道
定理:三条边都相等的三角形全等
全等三角形 “边边边”
判定
数学语言表示和证明
尺规画定三角形 尺规作图
尺规画等角
动笔练一练
• 满足下列条件的两个三角形不一定全等的
是( C )
A. 有一边相等的两个等边三角形 B. 有一腰和底边对应相等的两个等腰三角形 C. 周长相等的两个三角形 D. 三条边都相等的三角形
动笔练一练
• 在四边形ABCD中, 已知:AB=CD, AD=CB。试证明: ∠A=∠C。
动笔练一练
证明: 在△ABC和△FDE中:
AB=CD(已知) AD=CB(已知) BD=DB(公共边) ∴△ABD ≌△ ACD(SSS) ∴∠A=∠C(全等三角形的对 应角相等)
课后练一练
请同学们独立完成配套课后练习题。
下课!
谢谢同学们!
在我的印象里,他一直努力而自知,每天从食堂吃饭后,他总是习惯性地回到办公室看厚厚的专业书不断提升和充实自己,他的身上有九零后少见的沉稳。同事们恭喜他,大多看 到了他的前程似锦,却很少有人懂得他曾经付出过什么。就像说的:“如果这世上真有奇迹,那只是努力的另一个名字,生命中最难的阶段,不是没有人懂你,而是你不懂自已。” 而他的奇迹,是努力给了挑选的机会。伊索寓言中,饥饿的狐狸想找一些可口的食物,但只找到了一个酸柠檬,它说,这只柠檬是甜的,正是我想吃的。这种只能得到柠檬,就说 柠檬是甜的自我安慰现象被称为:“甜柠檬效应”。一如很多人不甘平庸,却又大多安于现状,大多原因是不知该如何改变。看时,每个人都能从角色中看到自已。高冷孤独的安 迪,独立纠结的樊胜美,乐观自强的邱莹莹,文静内敛的关睢尔,古怪精灵的曲筱绡。她们努力地在城市里打拼,拥有幸或不幸。但她依然保持学习的习惯,这样无论什么事她都 有最准确的判断和认知;樊胜美虽然虚荣自私,但她努力做一个好HR,换了新工作后也是拼命争取业绩;小蚯蚓虽没有高学历,却为了多卖几包咖啡绞尽脑汁;关睢尔每一次出镜 几乎都是在房间里戴着耳机听课,处理文件;就连那个嬉皮的曲筱潇也会在新年之际为了一单生意飞到境外……其实她们有很多路可以走:嫁人,啃老,安于现状。但每个人都像 个负重的蜗牛一样缓缓前行,为了心中那丁点儿理想拼命努力。今天的努力或许不能决定明天的未来,但至少可以为明天积累,否则哪来那么多的厚积薄发和大器晚成?身边经常 有人抱怨生活不幸福,上司太刁,同事太蛮,公司格局又不大,但却不想改变。还说:“改变干嘛?这个年龄了谁还能再看书考试,混一天是一天吧。”一个“混”字就解释了他 的生活态度。前几天我联系一位朋友,质问为什么好久不联系我?她说自已每天累的像一条狗,我问她为什么那么拼?她笑:“如果不努力我就活得像一条狗了。”恩,新换的上 司,海归,虽然她有了磨合几任领导的经验,但这个给她带来了压力。她的英语不好,有时批阅文件全是大段大段的英文,她心里很怄火,埋怨好好的中国人,出了几天国门弄得 自己像个洋鬼子似的。上司也不舒服,流露出了嫌弃她的意思,甚至在一次交待完工作后建议她是否要调一个合适的部门?她的脸红到了脖子,想着自己怎么也算是老员工,由她 羞辱?两个人很不愉快。但她有一股子倔劲,不服输,将近40岁的人了,开始拿出发狠的学习态度,报了个英语培训班。回家后捧着英文书死啃,每天要求上中学的女儿和自己英 语对话,连看电影也是英文版的。功夫不负有心人,当听力渐渐能跟得上上司的语速,并流利回复,又拿出漂亮的英文版方案,新上司看她的眼光也从挑剔变柔和,某天悄悄放了 几本英文书在她桌上,心里突然发现上司并没那么讨厌。心态好了,她才发现新上司的优秀,自从她来了后,部门业绩翻了又翻,奖金也拿到手软,自己也感觉痛快。她说:这个 社会很功利,但也很公平。别人的傲慢一定有理由,如果想和平共处,需要同等的段位,而这个段位,自己可能需要更多精力,但唯有不断付出,才有可能和优秀的人比肩而立。 人为什么要努力?一位长者告诉我:“适者生存。”这个社会讲究适者生存,优胜劣汰。虽然也有潜规则,有套路和看不见的沟沟坎坎,但一直努力的人总会守得云开见月明。有 些人明明很成功了,但还是很拼。比如剧中的安迪,她光环笼罩,商场大鳄是她的男闺蜜,不离左右,富二代待她小心呵护,视若明珠,加上她走路带风,职场攻势凌历,优秀得 让身边人仰视。这样优秀的人,不管多忙,每天都要抽出两个小时来学习。她的学习不是目的,而是能量,能让未来的自己比过去更好一些。现实生活中,努力真的重要,它能改 变一个人的成长轨迹,甚至决定人生成败。有一句鸡汤:不着急,你想要的,岁月都会给你。其实,岁月只能给你风尘满面,而希望,唯有努力才能得到!9、懂得如何避开问题的 人,胜过知道怎样解决问题的人。在这个世界上,不知道怎么办的时候,就选择学习,也许是最佳选择。胜出者往往不是能力而是观念!在家里看到的永远是家,走出去看到的才 是世界。把钱放在眼前,看到的永远是钱,把钱放在有用的地方,看到的是金钱的世界。给人金钱是下策,给人能力是中策,给人观念是上策。财富买不来好观念,好观念能换来 亿万财富。世界上最大的市场,是在人的脑海里!要用行动控制情绪,不要让情绪控制行动;要让心灵启迪智慧,不能让耳朵支配心灵。人与人之间的差别,主要差在两耳之间的 那块地方!人无远虑,必有近忧。人好的时候要找一条备胎,人不好的时候要找一条退路;人得意的时候要找一条退路,人失意的时候要找一条出路!孩子贫穷是与父母的有一定 的关系,因为他小的时候,父母没给他足够正确的人生观。家长的观念是孩子人生的起跑线!有什么信念,就选择什么态度;有什么态度,就会有什么行为;有什么行为,就产生 什么结果。要想结果变得好,必须选择好的信念。播下一个行动,收获一种习惯;播下一种习惯,收获一种性格;播下一种性格,收获一种命运。思想会变成语言,语言会变成行
《三角形全等的判定(SSS)》优质课教学设计
《三角形全等的判定(SSS)》优质课教学设计风筝是一项集休闲、娱乐、健身于一体的民俗体育项目。
2400多年前,世界上第一只木鸢风筝在潍坊鲁山由鲁班放飞,风筝在潍坊大地扎根发芽。
现在潍坊的风筝五花八门,但是主要的类型也是只有两种,即十字风筝和三角风筝。
那为什么风筝靠什么在天空平稳飞行呢?其实是采用相对对称的结构来维持风筝的稳定,也就是保证风筝的左右一样。
那么我们要怎么证明一个十字风筝和三角风筝左右都一样呢?那就一起来学习今天的课程三角形全等的判定(SSS)。
一起探究一下风筝是不是左右相等的吧。
一、复习回顾:全等三角形的性质。
提问1:还记得什么是全等三角形吗?提问2:全等三角形具有什么样的性质呢?提问3:若已知△ABC≌△DEF,会有什么结论?提示1:能够重合的两个三角形叫全等三角形.提示2:全等三角形的对应边相等,对应角相等。
提示3:∵△ABC≌△DEF∴ AB=DE ∠A=∠DAC=DF ∠B=∠EBC=EF ∠C=∠F二、探究新知:因此,判定两个三角形全等,除了定义外,还可以利用这六组条件,但这两种方法都较为复杂,我们能否减少条件,用尽量少的条件进行判定呢?如果只满足这些条件中的一部分,那么能保证两个三角形全等吗?我们先从最少的条件开始探究。
探究一:(同桌讨论)①只给1条边。
所以,只确定一条边,可以画出无数个三角形,它的形状不定,所以只满足一条边对应相等,是不足以证明两个三角形全等的。
这种方式叫做举反例,即满足条件,但却发现结论不成立。
②只给1个角类比一个边的方法,让学生用画图举反例证明。
综上所述,只满足一个条件,不足以证明两个三角形全等。
探究二:(分成小组探究)如果给出两个条件,有哪几种情况?●有2条边对应相等的两个三角形●有1个角和1条边对应相等的两个三角形●有2个角对应相等的两个三角形分成三个小组,每个小组探究一个情况。
教师引导学生利用提前准备好的道具——纸棒、尺子、量角器,用纸棒围成三角形,此条件下的三角形是否只有一个。
八年级数学上册12.2三角形全等的判定第1课时用“SSS”判定三角形全等说课稿(新版)新人教版
八年级数学上册 12.2 三角形全等的判定第1课时用“SSS”判定三角形全等说课稿(新版)新人教版一. 教材分析《新人教版八年级数学上册》第12.2节讲述了三角形全等的判定,这是初中的一个重要知识点。
在这一节中,学生将学习到用“SSS”(Side-Side-Side,即边-边-边)方法判定三角形全等。
通过这一节的学习,学生能够理解三角形全等的概念,掌握用“SSS”方法判定三角形全等的方法和技巧。
二. 学情分析在进入这一节的学习之前,学生已经学习了三角形的基本概念,如三角形的边、角等,并掌握了用“ASA”(Angle-Side-Angle,即角-边-角)和“AAS”(Angle-Angle-Side,即角-角-边)方法判定三角形全等。
因此,学生在理解和掌握用“SSS”方法判定三角形全等时,已经有了相关的基础知识。
三. 说教学目标1.知识与技能:学生能够理解三角形全等的概念,掌握用“SSS”方法判定三角形全等的方法和技巧。
2.过程与方法:通过观察、操作、思考、交流等活动,学生能够自主探索用“SSS”方法判定三角形全等的过程,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:学生能够积极参与课堂活动,培养合作意识和团队精神,增强对数学学科的兴趣和自信心。
四. 说教学重难点1.教学重点:学生能够理解三角形全等的概念,掌握用“SSS”方法判定三角形全等的方法和技巧。
2.教学难点:学生能够灵活运用“SSS”方法判定三角形全等,解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、探究学习法等,引导学生主动参与课堂活动,培养学生的自主学习能力。
2.教学手段:利用多媒体课件、学具、黑板等,辅助学生直观地理解三角形全等的概念和“SSS”方法。
六. 说教学过程1.导入:通过复习三角形的基本概念和已学的判定方法(ASA和AAS),引导学生进入新的学习内容。
2.自主探究:学生分组合作,利用学具和多媒体课件,观察和操作三角形,自主探索用“SSS”方法判定三角形全等的过程。
人教版数学八年级上册12.2.1用SSS判定三角形全等教学设计
2.引导学生通过实际操作和探究,发现并理解SSS判定方法,提高他们的几何推理能力。
3.针对不同学生的学习特点,设计有针对性的教学活动,使他们在轻松愉快的氛围中掌握知识。
4.关注学生的学习情感,激发他们的学习兴趣,培养他们的自主学习能力。
在教学过程中,教师要关注学生的个体差异,充分调动他们的积极性,使他们在合作、交流、探索中不断提高,为后续几何知识的学习打下坚实基础。
-运用多媒体辅助教学,展示动态的几何图形,帮助学生形象地理解全等三角形的性质和判定方法。
-设计实际案例,让学生在解决问题的过程中,将理论知识与实际应用相结合。
2.教学步骤:
(1)导入新课:通过复习全等三角形的定义和已知判定方法,为新课的学习做好铺垫。
(2)自主探究:学生分组讨论,尝试运用SSS判定方法判断给定三角形是否全等,并总结规律。
4.鼓励学生运用所学知识,解决实际问题,培养他们的创新意识和应用能力。
(三)情感态度与价值观
在本节课的学习过程中,学生将形成以下情感态度与价值观:
1.培养学生对数学学习的兴趣,激发他们探索数学问题的热情。
2.培养学生的自信心,让他们在解决问题的过程中体验成功的喜悦。
3.培养学生严谨的学术态度,让他们明白在数学推理中,每一步都需要严谨的逻辑支撑。
人教版数学八年级上册12.2.1用SSS判定三角形全等教学设计
一、教学目标
(一)知识与技能
1.了解全等三角形的定义,知道全等三角形在形状和大小上完全相同。
2.熟练掌握用SSS(Side-Side-Side,即边-边-边)判定两个三角形全等的方法。
3.能够运用SSS判定方法,解决实际问题和几何证明题。
2 三角形全等的判定 一等奖创新教案 人教版八年级上册
2 三角形全等的判定一等奖创新教案人教版八年级上册《三角形全等的判定》的教案教材分析1、教材地位本节教材是九年义务教育课程标准实验教科书,人教版八年级上册第十二章第二节三角形全等的判定。
在我们的周围,经常可以看到形状、大小完全相同的图形,这样的图形叫全等形。
研究两个图形全等的方法,是几何学的一个重要内容。
2、教学目标分析(1)知识与技能目标:理解并掌握三角形全等的判定的边边边定理,能够灵活运用边边边定理来证明三角形全等。
通过观察几何图形,发展学生识图能力,提高学生多方位审视问题的创造技巧和逻辑思维能力。
(2)过程与方法:在探索三角形全等的过程中,让学生经历“观察—画图—应用”的数学过程。
(3)情感态度价值观:在探究三角形全等的过程中,培养学生的合作交流意识和探索精神,增进学习数学的信心。
培养学生对数学的兴趣和对科学的热爱,能够在生活中感受到数学的乐趣,能灵活运用数学知识解决生活中实际问题。
3、教学重难点(1)重点:理解并掌握三角形全等判定的边边边定理。
(2)难点:三角形全等边边边定理的灵活运用。
(3)突破:通过折、剪和画等活动激发学生的兴趣,变抽象为形象,通过自学引导学生主动思考,从而使课堂更高效。
4、教学用具:直尺、卡纸教法分析教学方式的改变是新课标改革的目标,新课标要求教师从知识的传授者转变为学生学习的引导者和学习发展的促进者,也就是把过去单纯的老师讲学生接受的教学方式,转变为师生互动式教学。
1、讲授法通过提问、评价、解答问题等手段引导学生像当初数学家发现定律那样去发现三角形全等的判定方法,以发展他们进行研究、探讨和创新能力。
创设问题情境,激发学生学习的积极性和主动性。
完善问题解答,总结学生思路方法。
进行知识综合,充实和改善学生的知识结构。
2、演示法与学生一起动手剪纸剪或画出三角形用于教学演示。
3、讨论法在我的启发下,学生积极思考,对照材料,回忆有关知识和方法,进行分析,综合开展不同观点的思考,然后进行小组讨论,直到发现结论,探索到解决问题的途径和方法。
全等三角形判定定理一:SSS.2.等三角形的判定定(sss)
想一想:从这个结果反映了什么规律?
三边分别相等的两个三角形全等
( 可以简写为“边边边”或“SSS”)。
三角形全等判定的方法1:
三边分别相等的两个三角形全等 ( 可以简写为“边边边”或 “SSS”)。
三边分别相等的两个三角形全等( 可以简写为“边 边边”或“SSS”)。 几何语言表述:
验证
(1)给一个条件时 ②一个角相等(∠B= ∠ B') A
A'
400
B
C
400
B'
C'
结论:只有一个角对应相等的两个三角 形不一定全等.
验证
(2)给两个条件时
①一个边、一条角相等(BC=B'C' , ∠B= ∠B')
A
A'
B
300
300
9cm
C
B'
9cm
C'
结论:一条边、一个角对应相等的两
个三角形不一定全等.
练习(第37页第2题) 工人师傅常用角尺平分一个任 意角, 做法如下:如图,∠AOB是一个任意角,在 边OA,OB上分别取OM=ON,移动角尺,使角尺两 边相同的刻度分别与M、N重合,过角尺顶点C的射 线OC便是∠AOB的平分线。为什么?
(课本第37页第1题)如图,C是AB的中点,AD=CE, CD=BE。求证: △ ACD≌ △ CBE。
证明: ∵C是AB的中点,
∴AC=CB. 在△ACD和△CBE中, AC=CB, AD=CE,
CD=BE. ∴ △ABD ≌△ ACD(SSS).
应用提高
已知:AC=AD,BC=BD, 求证:AB是∠DAC的平分线. 证明:在△ABC和△ABD中 AC=AD( 已知 )
数学人教版八年级上册12.2三角形全等的判定定理2(SAS).2 三角形全等的判定
A
A
B 图一 在图一中, ∠A 是AB和AC的夹角, 符合图一的条件,它可称为 “两边夹角”。
C
B
图二
C
符合图二的条件, 通常 说成“两边和其中一边的对角”
探索边角边
已知△ABC,画一个△A′B′C′使A B =A′B′,A C =A′ C ′, ∠A =∠A′。
画法: 1.画 ∠DA′ E= ∠A; ′ 2.在射线A D上截取A′ B′ =AB,在射线A′ E上截 取A ′C ′=AC; C C′ 3. 连接B ′C′.
补充题:
例1 如图AC与BD相交于点O, 已知OA=OC,OB=OD,说明 △AOB≌△COD的理由。 A B
O
D C C D
例2 如图,AC=BD, ∠CAB= ∠DBA,你能判断 BC=AD吗?说明理由。
A B 归纳:判定两条线段相等或二个角相等可以通 过从它们所在的两个三角形全等而得到。
课堂小结:
A B A′ B′ D
思考: ① △A′ B′ C′ 与 △ABC 全等吗?如何验正? 思考: ②这两个三角形全等是满足哪三个条件? 结论:两边及夹角对应相等的两个三角形全等
三角形全等判定方法2
两边和它们的夹角对应相等的两个三角形全
等。(可以简写成“边角边”或“ SAS ” )
用符号语言表达为:
A D
B
1
那么量出ED的长,就是A、B的 距离.为什么?【要求学生写出 理由即证明过程】
C
2
E
D
例2:点E、F在AC上,AD//BC,AD=CB,AE=CF
求证(1)△AFD≌△CEB
A 分析:证三角形全等的三个条件 边 AD = CB (已知) 角 ∠A=∠ 边 C AF = CE E F C D
全等三角形的判定(SSS、SAS)
谢谢观赏
E A
D
B
例2、如图,有一池塘,要测池塘两端A,B的距离,可先在 平地上取一个可以直接到达A和B的点C,连接AC并延长到D, 使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么 量出DE的长就是A,B的距离,为什么? 证明:在△ABC和△DEC中,有
CA CD 1 2 (对顶角) CB CE ∴△ABC≌△DEC(SSS)
〈=〉三边对应相等
例1、如图所示, ABC是一个钢架,AB=AC,AD是连接 点A与BC中点D的支架,求证 : ABD A S ACD。
证明:∵ D是BC的中点
∴BD=CD
在 B D 注意: 列出三个条件 解题经验:找三边
C
ABD和 ACD中
AB AC BD CD AD AD (公共边) ∴ ABD ACD(SSS)
∴ ∠AED=∠BCD=∠C 又∵ ∠C=90°
B E A
C
D
∴ ∠AED=90°,即DE⊥AB
2、如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C, 求证∠A=∠D.
A
D
证明: ∵ EF是公共边,BE=CF ∴ BF=CE 在△ABF和△DCE中,有
BF CE B C AB DC
B
E
F
C
∴△ABF≌△DCE(SAS) ∴ ∠A=∠D
*这节课你学了什么? *你有什么收获呢?
*三角形全等的判定定理及其应用:
1、(SSS):三边对应相等的三角形全等
技巧:找三边——对应相等——全等;
2、(SAS):两边及夹角对应相等的三角形全等 技巧: 找两边及夹角——对应相等——全等
初中数学人教八年级上册第十二章 全等三角形《三角形全等的判定SSS》教学设计
“三角形全等的判定——SSS”教学设计人教版义务教育教科书数学八年级上册第十二章第二节第1课时王悦(南充安平中学)一、教学内容及内容解析《三角形全等的判定——SSS》是人教版《义务教育教科书·数学》八年级上册第十二章第二节的第1课时的内容.其主要内容为构建三角形全等条件的探索思路,掌握“边边边”的判定方法.本节课的内容是探索三角形全等条件的第一课时,是在学习了全等三角形的概念、全等三角形的性质后展开的.它不仅是下节课探索三角形全等其他条件的基础,还是证明线段相等、角相等的重要依据,同时也为今后探索直角三角形全等的条件以及三角形相似的条件提供了很好的模式和方法.因此本节课的知识具有承前启后的作用,占有相当重要的地位.根据全等三角形的性质:全等三角形的三条边分别相等、三个角分别相等,并类比“平行线的性质”与“平行线的判定”之间的联系,探索能否从“三条边分别相等、三个角分别相等”六个条件中选择部分条件,简捷地判定两个三角形全等.为此建构了三角形全等条件的探索思路,即从“一个条件”“两个条件”“三个条件”分别进行探究,最后通过动手操作,概括出一种判定方法——“边边边”.该探索过程也为其他判定方法的探索提供了思路.二、教学目标和目标解析教学目标1.构建三角形全等条件的探索思路,体会研究几何问题的方法.2.探索并理解“边边边”判定方法,会用“边边边”判定方法证明三角形全等.3.会用尺规作一个角等于已知角,了解作图的道理.三、教学问题诊断分析探索三角形全等的条件是一个复杂且开放的问题,涉及到“类比”、“分类”等数学思想,对于农村学校八年级的学生来说有一定难度,这方面的知识十分欠缺,需要多做引导,使学生逐步理解这一类数学思想;在探究3中,所运用到的尺规作图虽说有一定基础,但运用较少,学生对这方面的知识也有所欠缺,老师在作图时应共同与学生完成作图.因此本节课的教学重难点分别为:◆教学重点:掌握“边边边”判定三角形全等的方法,灵活运用“边边边”判定方法解题.◆教学难点:构建三角形全等条件的探索思路,运用尺规作图的方法进行证明“SSS”,灵活运用“边边边”判定方法解题.四、教学过程(一)创设情境,引出课题情景展示:小明家衣橱上镶有两块全等的三角形玻璃装饰品,光泽又漂亮,可惜有一天有一块打碎了,妈妈让小明到玻璃店里配一块回来,聪明的同学,小明该测量哪些数据呢?才能使得与原来那块三角形全等.【设计意图】通过学生熟悉的生活实例创设情境便于学生快速进入状态思考,也能让同学感受应用数学的魅力. 引言 1 老师这儿判断三角形全等的方法有很多种.我们先从几千年前的数学家欧几里得那儿感受下如何判断三角形全等 (播放“欧几里得利用剪裁的方法验证全等”的视频).【设计意图】让学生从数学史中领略数学的进步以及魅力,并引导学生学习更多新的方法.引言2怎样不剪下来就能证明全等,就是我们本节课所要学习的方法——三角形全等的判定(SSS).【设计意图】引出课题,揭示三角形全等的判定是判断三角形全等的进一步创新,并能够为生活带来更多便利. (二)体验过程,探究新知1.类比“平行线的判定”,构建探索思路问题1 我们先来回顾一下以前的知识,“两直线平行,内错角相等”这个命题是平行线的什么?“内错角相等,两直线平行”这个命题又是平行线的什么?师生活动: 学生独立思考,举手回答问题,老师及时对问题进行评价.【设计意图】通过回顾已学知识,为下一步类比探索铺垫.追问: 观察一下,平行线的性质以及判定有什么联系吗?师生活动: 学生独立思考后,与同桌交流思想,代表进行发言【设计意图】通过交流引导学生发现性质到判定的内在联系,即互换原有题设和结论,便从性质转换成判定.追问:上节课我们学习了全等三角形的性质,你能猜想出全等三角形的判定吗?师生活动:学生独立思考,举手进行回答,老师并带领学生对给出的猜想进行验证. 【设计意图】引导学生类比平行线的性质和判定,得出全等三角形的判定. 问题2 猜想中需要6个条件才能够得出结论,一定需要6个条件吗?师生活动:学生举手进行回答.若学生回答不上来,老师则进一步进行指导,举一个具体的例子:已知两对角分别相等,能不能证明第三对角分别相等呢?【设计意图】引导学生对三角形全等判定方法条件的探索,运用简捷的条件对三角形全等进行判定. 探究1 观察如图1、2所示的图形,观察△ABC 、△BCD 有什么共同点?师生活动:学生小组合作进行讨论,思想交流.教师在交流过程中对学生进行指导与帮助,指派小组代表上台展示思路以及成果,老师并对成果进行有效评价.【设计意图】学生通过交流,认真分析问题,讨论问题,最终得出满足一个条件不能满足三角形全等 探究2 观察如图3、4、5所示的图形,上述图形中得到两个三角形有什么共同点?师生活动:学生独立思考,举手回答问题,老师及时对回答进行解读与评价.【设计意图】学生通过独立思考,并根据认真分析问题,最终得出满足两个条件不能满足三角形全等.图2图3图4 图5图12.尺规作图,探索“边边边”判定方法探究3 先任意画出一个ABC △.在画一个C B A '''△,使CA A C BC C B AB B A =''=''='',,.把画好的C B A '''△剪下来,放到ABC △上,他们全等吗?师生活动:首先带领学生对“满足三条边分别相等的条件证明全等”的正确性进行判断,借助“三角形的稳定性”辅助判断探究3的正确性.然后师生共同用尺规作图,学生剪图比较图.具体过程如下:(1)师生共同回顾如何用尺规作一条线段等于已知线段,然后引导学生先任意画一个△ABC,然后利用尺规作图的方法作出C B '',使,进而确定了点C B '',的位置;(2)共同探索如何确定A '的位置,并用尺规作图确定其位置;(3)画出C B A '''△,并将其剪下来,放到原三角形;(4)老师并选取几个较为成功的作品上台展示,进一步获得三角形全等的“边边边”判定方法.追问:作图的结果说明了什么?你能用文字语言和符号语言概括吗?师生活动:学生回答问题,并互相补充.教师板书:三边分别相等的两个三角形全等.【设计意图】通过作图、剪图、比较图的过程,感悟基本事实的正确性,锻炼学生的动手操作能力以及归纳概括能力.知识1 三角形全等的判定方法:三边分别相等的两个三角形全等. (1)简称:“边边边”或“SSS ”. (2)判定定理应用格式:(三)应用知识,理解所学例 在如图12,.2-3所示的三角形钢架中,AB=AC ,AD 是连接点A 与BC 中点D 的支架.求证:△ABD ≌△ACD.BCC B ='')(△中和△在△SSS C B A ABC C AAC C B BC B AAB C B AABC '''≅∴''=''=''='''师生活动:教师引导学生运用图形结合进行思考问题,并利用不同的符号对不同的条件进行标识,然后安排学生独立进行证明过程的书写.【设计意图】运用“边边边”判定方法证明简单的几何问题,感悟判定方法的简捷性,并在细节上揭示判定方法运用的技巧,从而达到例题精做的效果(四)课堂小结,素养提升问题1 探索三角形的条件,基本思路是什么?问题2 “SSS”判定方法有什么作用?(五)布置作业,延伸课外1.教科书习题第1,9题.2.练习册《用SSS判定三角形全等》【设计意图】既巩固本节课的内容,又由课内延伸到课外.使每个学生都能得到不同程度的发展.板书设计:板书设计§三角形全等的判定方法——SSS一、相关定义二、例题学生展示:1.判定方法例12.判定定理应用格式。
八年级数学上册三角形全等的判定知识点
八年级数学上册三角形全等的判定知识点01三角形全等的判定1.三组对应边分别相等的两个三角形全等(SSS)。
2.有两边及其夹角对应相等的两个三角形全等(SAS)。
3.有两角及其夹边对应相等的两个三角形全等(ASA)。
4.有两角及一角的对边对应相等的两个三角形全等(AAS)。
5.直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL)。
02全等三角形的性质①全等三角形的对应边相等;全等三角形的对应角相等。
②全等三角形的周长、面积相等。
③全等三角形的对应边上的高对应相等。
④全等三角形的对应角的角平分线相等。
⑤全等三角形的对应边上的中线相等。
03找全等三角形的方法(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。
三角形全等的证明中包含两个要素:边和角。
缺个角的条件:缺条边的条件:04构造辅助线的常用方法1.关于角平分线的辅助线当题目的条件中出现角平分线时,要想到根据角平分线的性质构造辅助线。
角平分线具有两条性质:①角平分线具有对称性;②角平分线上的点到角两边的距离相等。
关于角平分线常用的辅助线方法:(1)截取构全等如下左图所示,OC是∠AOB的角平分线,D为OC上一点,F为OB上一点,若在OA上取一点E,使得OE=OF,并连接DE,则有△OED≌△OFD,从而为我们证明线段、角相等创造了条件。
例:如上右图所示,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。
提示:在BC上取一点F使得BF=BA,连结EF。
(2)角分线上点向角两边作垂线构全等利用角平分线上的点到两边距离相等的性质来证明问题。
如下左图所示,过∠AOB的平分线OC上一点D向角两边OA、OB作垂线,垂足为E、F,连接DE、DF。
人教版八年级数学上册第12章第2课时 三角形全等的判定——SSS
数学
4.如图,用直尺和圆规作一个角等于已知角,能得出 ∠A′O′B′=∠AOB 的依据是 SSS .
返回
数学
5.如图,用直尺和圆规作一个已知角的平分线的示意图,依 据“ SSS ”判定△COM 和△CON 全等,从而说明 OC 是 ∠AOB 的 角平分线 .
返回
数学
精典范例 6.【例 1】如图,AD=BC,要使△ABC≌△BAD,还需添加 的条件是 AC=BD .
SSS .
返回
数学
2.如图,已知点 A,D,C,F 在同一条直线上,AB=DE, BC=EF,要使△ABC≌△DEF,根据 SSS 还需要添加一个条 件是 AD=CF(或AC=DF) .
返回
数学
知识点二:三角形全等判定方法(SSS)的应用 如图,AB=CD,BD=AC,用三角形全等的判定“SSS”可证 明 △ABC ≌ △DCB 或 △ABD ≌ △DCA .
返回
数学
AD=CB 证明:在△ABD 和△CDB 中,AB=CD ,
BD=DB
∴△ABD≌△CDB(SSS),∴∠A=∠C.
小结:根据 SSS 推出△ABD≌△CDB,再根据全等三角形的 性质推出即可.
返回
数学
★13.如图,点 A,D,C,F 在同一直线上,AB=EF,AD= CF,BC=ED.求证:AB∥EF. 证明:∵AD=CF, ∴AD+DC=CF+DC,即 AC=FD, 在△ABC 与△FED 中, AB=FE,AC=FD,BC=ED,
返回
数学
知识要点 知识点一:三角形全等的判定(SSS) 三边分别 相等 的两个三角形全等(简写成“边边边”或 “SSS”). 几何语言:
返回
数学
在△ABC 与△A′B′C′中,
三角形全等的判定(SSS)课件(共22张PPT) 人教版初中数学八年级上册
证明: ∵BB ′=CC ′ ∴BC=B ′C ′ 在△ABC和△A ′B ′C ′中
AB=A ′B ′ AC=A ′C ′
BC=B ′C ′ ∴ △ABC≌△ A ′B ′C ′ (SSS) ∴ ∠A=∠A ′
3. A O
D
C B
E
如图,已知线段AB,CD相交于点O, AD,CB的延长线交于点E,OA=OC, EA=EC,请说明∠A=∠C
分析:根据条件OA=OC,EA=EC。OA,EA和
OC,EC恰好分别是△AOE和△COE的两条
边,故可以构成两个三角形,利用全等
三角形解决
A
O
C
证明:
D
B
E
连接OE,在△AOE和△COE中
AO=CO
OE=OE
EA=EC ∴ △ AOE ≌△ COE (SSS) ∴ ∠A=∠C
第四部分 课程小结
☺ 三边分别相等的两个三角形 全等
探究1 答:不一定全等 • 当满足一个条件时
一条边相等
一个角相等
探究1 • 当满足两个条件时
一个角和一条边相等
3cm 4cm
3cm 4cm
两条边相等
30°
60°
30°
60°
两个角相等
探究2
☺ 先任意画出一个△ABC.再画一个 △A′B′C′,使A′B′=AB, B′C′=BC, C′A′=CA,把画好的 △A′B′C′减下来,放在△ABC 上,它们全等吗?
A
A′
B
B′
C
C′
答: △ABC≌△A′B′C′
思考
探究1
上述六个条件中,有些条件是相关的. 能否在上述六个条件中选择一部分条件, 简捷地判定两个三角形全等呢?
三角形全等的判定(sss)(第1课时)(课件)数学八年级上册同步教学课件 作业(人教版)
证明:在△ ABD和△ ACE中,
AB=AC,
AD=AE,
BD=CE,
∴ △ ABD≌ △ ACE(SSS),
∴∠BAD=∠CAE.
∴∠BAD+∠DAC=∠CAE+∠DAC,
即∠BAC=∠DAE.
2. 已知:如图,AB=AD,BC=DC,
求证:△ABC≌△ADC, AC是∠BAD的角平分线
∴ ∠BAD= ∠CAD.
(全等三角形对应角相等)
A
D
写出结
论
C
证明的书写步骤:
①准备条件:证全等时要用的条件要先证好;
②指明范围:写出在哪两个三角形中;
③摆齐根据:摆出三个条件用大括号括起来;
④写出结论:写出全等结论.
如图, C是BF的中点,AB =DC,AC=DF.
求证:△ABC ≌ △DCF.
依据是
′
D
所画的弧交于点 ;
什么?
(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.
中考链接
1.如图,EF=BC,DF=AC,DA=EB.求证∠F=∠C.
证明:∵DA=BE,∴DE=AB,
在△ABC和△DEF中, AB=DE
AC=DF
BC=EF,
∴△ABC≌△DEF(SSS),∴∠C=∠F.
2. 如图,已知AC=FE,BC=DE,点A,D,B,F在同一条
直线上,要利用“S.S.S.”证明△ABC≌△FDE,还可以添加的
一个条件是( A )
A.AD=FB
B.DE=BD
C.BF=DB
D.以上都不对
3. 如图,AB=AC,AE=AD,BD=CE,
A
求证:△AEB ≌△ ADC。
人教版初二数学上册:全等三角形判定一(SSS,SAS)(基础)知识讲解
全等三角形判定一(SSS ,SAS )(基础)【学习目标】1.理解和掌握全等三角形判定方法1——“边边边”,和判定方法2——“边角边”; 2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等. 【要点梳理】【高清课堂:379109 全等三角形判定一,基本概念梳理回顾】 要点一、全等三角形判定1——“边边边” 全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”).要点诠释:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .要点二、全等三角形判定2——“边角边” 1. 全等三角形判定2——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.【典型例题】类型一、全等三角形的判定1——“边边边”【高清课堂:379109 全等三角形的判定(一)同步练习4】1、已知:如图,△RPQ 中,RP =RQ ,M 为PQ 的中点.求证:RM 平分∠PRQ .【思路点拨】由中点的定义得PM =QM ,RM 为公共边,则可由SSS 定理证明全等. 【答案与解析】证明:∵M 为PQ 的中点(已知), ∴PM =QM在△RPM 和△RQM 中,()(),,RP RQ PM QM RM RM ⎧=⎪=⎨⎪=⎩已知公共边∴△RPM ≌△RQM (SSS ).∴ ∠PRM =∠QRM (全等三角形对应角相等). 即RM 平分∠PRQ.【总结升华】在寻找三角形全等的条件时有的可以从图中直接找到,如:公共边、公共角、对顶角等条件隐含在题目或图形之中. 把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的性质和判定.类型二、全等三角形的判定2——“边角边”2、(2016•泉州)如图,△ABC 、△CDE 均为等腰直角三角形,∠ACB=∠DCE=90°,点E 在AB 上.求证:△CDA ≌△CEB .【思路点拨】根据等腰直角三角形的性质得出CE=CD ,BC=AC ,再利用全等三角形的判定证明即可.【答案与解析】证明:∵△ABC 、△CDE 均为等腰直角三角形,∠ACB=∠DCE=90°, ∴CE=CD ,BC=AC ,∴∠ACB ﹣∠ACE=∠DCE ﹣∠ACE , ∴∠ECB=∠DCA ,在△CDA 与△CEB 中,∴△CDA ≌△CEB .【总结升华】本题考查了全等三角形的判定,熟记等腰直角三角形的性质是解题的关键,同时注意证明角等的方法之一:利用等式的性质,等量加等量,还是等量. 举一反三: 【变式】(2014•房县三模)如图,C 是线段AB 的中点,CD 平分∠ACE ,CE 平分∠BCD ,CD=CE .求证:△ACD ≌△BCE .【答案】证明:∵C 是线段AB 的中点,∴AC=BC ,∵CD 平分∠ACE ,CE 平分∠BCD , ∴∠ACD=∠ECD ,∠BCE=∠ECD , ∴∠ACD=∠BCE , 在△ACD 和△BCE 中,∴△ACD ≌△BCE (SAS ).3、如图,将两个一大、一小的等腰直角三角尺拼接 (A 、B 、D 三点共线,AB =CB ,EB =DB ,∠ABC =∠EBD =90°),连接AE 、CD ,试确定AE 与CD 的位置与数量关系,并证明你的结论.【答案与解析】AE =CD ,并且AE ⊥CD 证明:延长AE 交CD 于F ,∵△ABC 和△DBE 是等腰直角三角形 ∴AB =BC ,BD =BE 在△ABE 和△CBD 中90AB BC ABE CBD BE BD =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE≌△CBD(SAS)∴AE=CD,∠1=∠2又∵∠1+∠3=90°,∠3=∠4(对顶角相等)∴∠2+∠4=90°,即∠AFC=90°∴AE⊥CD【总结升华】通过观察,我们也可以把△CBD看作是由△ABE绕着B点顺时针旋转90°得到的.尝试着从变换的角度看待全等.举一反三:【变式】已知:如图,AP平分∠BAC,且AB=AC,点Q在PA上,求证:QC=QB【答案】证明:∵ AP平分∠BAC∴∠BAP=∠CAP在△ABQ与△ACQ中∵∴△ABQ≌△ACQ(SAS)∴ QC=QB类型三、全等三角形判定的实际应用4、(2014秋•兰州期末)如图,点D为码头,A,B两个灯塔与码头的距离相等,DA,DB为海岸线.一轮船离开码头,计划沿∠ADB的角平分线航行,在航行途中C点处,测得轮船与灯塔A和灯塔B的距离相等.试问:轮船航行是否偏离指定航线?请说明理由.【思路点拨】只要证明轮船与D点的连线平分∠ADB就说明轮船没有偏离航线,也就是证明∠ADC=∠BDC.要证明角相等,常常通过把角放到两个三角形中,利用题目条件证明这两个三角形全等,从而得出对应角相等.【答案与解析】解:此时轮船没有偏离航线.理由:由题意知:DA=DB,AC=BC,在△ADC和△BDC中,,∴△ADC≌△BDC(SSS),∴∠ADC=∠BDC,即DC为∠ADB的角平分线,∴此时轮船没有偏离航线.【总结升华】本题考查了全等三角形的应用,解答本题的关键是:根据条件设计三角形全等,巧妙地借助两个三角形全等,寻找对应角相等.要学会把实际问题转化为数学问题来解决.举一反三:【变式】工人师傅经常利用角尺平分一个任意角,如图所示,∠AOB是一个任意角,在边OA,边OB上分别取OD=OE,移动角尺,使角尺两边相同的刻度分别与D、E重合,这时过角尺顶点P的射线OP就是∠AOB的平分线,你能先说明△OPE与△OPD全等,再说明OP平分∠AOB吗?【答案】证明:在△OPE与△OPD中∵OE OD OP OP PE PD=⎧⎪=⎨⎪=⎩∴△OPE≌△OPD (SSS)∴∠EOP=∠DOP(全等三角形对应角相等)∴ OP平分∠AOB.附录资料:《三角形》全章复习与巩固(基础)知识讲解【学习目标】1.认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.2.理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.4.通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的广泛应用.5.了解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和,并能灵活运用公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力. 【知识网络】【要点梳理】要点一、三角形的有关概念和性质 1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围. 2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 3.三角形的重要线段:(1)三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外. (2)三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线.要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.要点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.要点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和:三角形的外角和等于360°.要点四、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有(3)2n n条对角线.要点五、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决;(2)内角和定理的应用:①已知多边形的边数,求其内角和; ②已知多边形内角和,求其边数.2.多边形外角和:n 边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数; ②已知正多边形边数,求外角度数. (2)多边形的边数与内角和、外角和的关系:①n 边形的内角和等于(n -2)·180°(n≥3,n 是正整数),可见多边形内角和与边数n 有关,每增加1条边,内角和增加180°.要点六、镶嵌的概念和特征1、定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同. 要点诠释:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边. (2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用. 【典型例题】类型一、三角形的三边关系1. (2016•丰润区二模)若三角形的两条边长分别为6cm 和10cm ,则它的第三边长不可能为( )A .5cmB .8cmC .10cmD .17cm【思路点拨】直接利用三角形三边关系得出第三边的取值范围,进而得出答案. 【答案与解析】解:∵三角形的两条边长分别为6cm 和10cm , ∴第三边长的取值范围是:4<x <16, ∴它的第三边长不可能为:17cm . 故选:D .【总结升华】此题主要考查了三角形三边关系,正确得出第三边的取值范围是解题关键. 【高清课堂:与三角形有关的线段 例1】举一反三【变式】判断下列三条线段能否构成三角形.(1) 3,4,5; (2) 3,5,9 ; (3) 5,5,8. 【答案】(1)能; (2)不能; (3)能.2.若三角形的两边长分别是2和7,则第三边长c 的取值范围是_______. 【答案】59c <<【解析】三角形的两边长分别是2和7, 则第三边长c 的取值范围是│2-7│<c<2+7,即 5<c<9.【总结升华】三角形的两边a 、b ,那么第三边c 的取值范围是│a -b│<c<a+b. 举一反三【变式】(浙江金华)已知三角形的两边长为4,8,则第三边的长度可以是________(写出一个即可)【答案】5,注:答案不唯一,填写大于4,小于12的数都对.类型二、三角形中重要线段3. (江苏连云港)小华在电话中问小明:“已知一个三角形三边长分别为4,9,12,如何求这个三角形的面积?”小明提示:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是( ) .【答案】C【解析】三角形的高就是从三角形的顶点向它的对边所在直线作垂线,顶点和垂足之间的线段.解答本题首先应找到最长边,再找到最长边所对的顶点.然后过这个顶点作最长边的垂线即得到三角形的高.【总结升华】锐角三角形、直角三角形、钝角三角形都有三条高,并且三条高所在的直线交于一点.这里一定要注意钝角三角形的高中有两条高在三角形的外部.举一反三【变式】如图所示,已知△ABC,试画出△ABC各边上的高.【答案】解:所画三角形的高如图所示.4.如图所示,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长大3cm,BC =8cm,求边AC的长.【思路点拨】根据题意,结合图形,有下列数量关系:①AD=BD,②△BCD的周长比△ACD的周长大3.【答案与解析】解:依题意:△BCD 的周长比△ACD 的周长大3cm , 故有:BC+CD+BD-(AC+CD+AD)=3. 又∵ CD 为△ABC 的AB 边上的中线,∴ AD =BD ,即BC-AC =3. 又∵ BC =8,∴ AC =5. 答:AC 的长为5cm .【总结升华】运用三角形的中线的定义得到线段AD =BD 是解答本题的关键,另外对图形中线段所在位置的观察,找出它们之间的联系,这种数形结合的数学思想是解几何题常用的方法. 举一反三【变式】如图所示,在△ABC 中,D 、E 分别为BC 、AD 的中点,且4ABC S △,则S 阴影为________.【答案】1类型三、与三角形有关的角5、(2014春•新泰市期末)已知:如图,在△ABC 中,AD 是BC 边上的高,AE 是∠BAC 平分线,∠B=50°,∠DAE=10°, (1)求∠BAE 的度数; (2)求∠C 的度数.【思路点拨】(1)根据AD 是BC 边上的高和∠DAE=10°,求得∠AED 的度数;再进一步根据三角形的外角等于和它不相邻的两个内角的和求解;(2)根据(1)的结论和角平分线的定义求得∠BAC 的度数,再根据三角形的内角和定理就可求得∠C 的度数. 【答案与解析】 解:(1)∵AD 是BC 边上的高,∴∠ADE=90°.∵∠ADE+∠AED+∠DAE=180°,∴∠AED=180°﹣∠ADE﹣∠DAE=180°﹣90°﹣10°=80°. ∵∠B+∠BAE=∠AED,∴∠BAE=∠AED﹣∠B=80°﹣50°=30°. (2)∵AE 是∠BAC 平分线,∴∠BAC=2∠BAE=2×30°=60°. ∵∠B+∠BAC+∠C=180°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣60°=70°.【总结升华】本题主要考查了三角形的内角和定理、角平分线的定义以及三角形的外角性质.【高清课堂:与三角形有关的角例1、】举一反三:【变式】已知,如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.【答案】解:已知△ABC中,∠C=∠ABC=2∠A设∠A=x则∠C=∠ABC=2xx+2x+2x=180°解得:x=36°∴∠C=2x=72°在△BDC中, BD是AC边上的高,∴∠BDC=90°∴∠DBC=180°-90°-72°=18°类型四、三角形的稳定性6. 如图所示,木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即AB、CD),这样做的数学道理是什么?【答案与解析】解:三角形的稳定性.【总结升华】本题是三角形的稳定性在生活中的具体应用.实际生活中,将多边形转化为三角形都是为了利用三角形的稳定性.类型五、多边形内角和及外角和公式7.一个多边形的内角和等于它的外角和的5倍,它是几边形?【思路点拨】本题实际告诉了这个多边形的内角和是.【答案与解析】设这个多边形是边形,则它的内角和是,∴,解得.∴这个多边形是十二边形.【总结升华】本题是多边形的内角和定理和外角和定理的综合运用. 只要设出边数,根据条件列出关于的方程,求出的值即可,这是一种常用的解题思路.举一反三【变式】(2015•徐州)若正多边形的一个内角等于140°,则这个正多边形的边数是.【答案】9.解:∵正多边形的一个内角是140°,∴它的外角是:180°﹣140°=40°,边数:360°÷40°=9.类型六、多边形对角线公式的运用8.一个十二边形有几条对角线.【思路点拨】根据多边形对角线条数公式,把边数代入计算即可.【答案与解析】解:∵过十二边形的任意一个顶点可以画9条对角线,∴十二个顶点可以画12×9条对角线,但每条对角线在每个顶点都数了一次,∴实际对角线的条数应该为12×9÷2=54(条)∴十二边形的对角线共有54条.【总结升华】对于一个n边形的对角线的条数,我们可以总结出规律条,牢记这个公式,以后只要用相应的n的值代入即可求出对角线的条数,要记住这个公式只有在理解的基础之上才能记得牢.举一反三【变式】一个多边形共有20条对角线,则多边形的边数是().A.6 B.7 C.8 D.9【答案】C;类型七、镶嵌问题9.分别用形状、大小完全相同的①三角形木板;②四边形木板;③正五边形木板;④正六边形木板作平面镶嵌,其中不能镶嵌成地板的是( )A、①B、②C、③D、④【答案】C【总结升华】用多边形组合成平面图形,实质上是相关多边形“交接处各角之和能否拼成一个周角”的问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
理性提升
• 全等三角形的判定定理1: 三边对应相等的两个三角形全等, 简写为“边边边”或“SSS”。A
在△ABC和△ DEF中
AB=DE BC=EF
B
C
D
CA=FD
∴ △ABC ≌△ DEF(SSS)
E
F
判断两个三角形全等的推理过程,叫做证明三角形 全等。
理性提升
例1. 如下图,△ABC是一个刚架,AB=AC,
You Know, The More Powerful You Will Be
谢谢你的到来
学习并没有结束,希望大家继续努力
Learning Is Not Over. I Hope You Will Continue To Work Hard
演讲人:XXXXXX 时 间:XX年XX月XX日
径画弧,交O′A′于点C′;
3、以点C′为圆心,CD长为半径画弧,与第2步中所
画的弧交于点D′;
4、过点D′画射线O′B′,则∠A′O′B′=∠AOB
小结归纳 1
全等三角形证明的基本步骤:
①分析已有条件,准备所缺条件: 证全等时要用的间接条件要先证好; ②三角形全等书写三步骤:
• 写出在哪两个三角形中
• 摆出三个条件用大括号括起来
• 写出全等结论
随堂练习
2、如图,AB=CD,AC=BD, △ABC和△DCB是否全等?试
1、已知:如图,AB=AD,BC=C说D明,理由。
求证:△ABC≌ △ADC
解:△ABC与△DCB全等,
理由如下:
证明:在△ABC与△ADC中
在△ABC与△DCB中
A提升 1.只给一个条件(一组对应边相等或一组对应角相等)。 ①只给一条边:
②只给一个角:
60°
60°
可以发现按这 些条件画的三 角形都不能保 证一定全等。
60°
2.给出两个条件:
①一边一内角:
30° ②两内角:
30°50° ③两边:
2cm 4cm
30°
30°
可以发现按这 些条件画的三 30° 50° 角形都不能保 证一定全等。
12.2全等三角形的判定sss
知识回顾:
1、 什么叫全等三角形? 能够重合的两个三角形叫 全等三角形。 2、 全等三角形有什么性质?
A
D
B
C
E
F
①AB=DE ② BC=EF ③ CA=FD ④ ∠A= ∠D ⑤ ∠B=∠E ⑥ ∠C= ∠F
创设情境
小明家的衣橱上镶有两块全等的三角 形玻璃装饰物,其中一块被打碎了,妈妈让 小明到玻璃店配一块回来,请你说说小明 该怎么办?
求证:①△ADE≌△CBF,②∠A=∠C
证明:∵点E,F分别是AB,CD的中点
1
1
∴AE= AB, CF = CD
2
2
∵AB=CD ∴AE=CF
DF C A EB
在△ADE与△CBF中 AE=CF AD=CB
∴△ADE≌△CBF ∴∠A=∠C
DE=BF
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
AD是连接A与BC中点D的支架。 求证:△ ABD≌ △ ACD
方法构想
理性提升
例1. 如下图,△ABC是一个刚架,AB=AC,
AD是连接A与BC中点D的支架。 求证:△ ABD≌ △ ACD
证明:∵D是BC的中点 ∴BD=CD
在△ABD与△ACD中 AB=AC(已知) BD=CD(已证) AD=AD(公共边)
∴△ABD≌△ACD(SSS)
例2:如图,AB=AC,AE=AD,BD=CE,
求证:△AEB ≌ △ ADC。
A
方法构想
B ED C
例2:如图,AB=AC,AE=AD,BD=CE,
A
求证:△AEB ≌ △ ADC。
证明:∵BD=CE
B
∴ BD-ED=CE-ED,
ED C
即BE=CD。
在△AEB和△ADC中,
AB=AC
AE=AD
BE=CD
∴ △AEB ≌ △ ADC (sss)
我们利用前面的结论,还可以得到作一个角等于已知 角的方法。
例3:已知∠AOB
求作:∠A′O′B′=∠AOB
DB
D′ B′
O
A O′
A′
C
C′
作法:1、以点O为圆心,任意长为半径画弧,分别交
OA,OB于点C、D;
2、画一条射线O′A′,以点O′为圆心,OC长为半
BC=DC B AC=AC
D
BC=CB
AC=BD
∴ △ABC≌ △ADC
∴ △ABC≌ △DCB
A
D
C
B
C
中考链接 1
已知如图:AC=FE,BC=DE,点A,D,B,F 在一条直线上,AD=FB 求证:△ABC ≌△ FDE,
当堂测试
如图,已知AB=CD,AD=CB,E、F分别是AB,CD 的中点,且DE=BF.
2cm 4cm
先任意画出一个△ABC,再画一个 △A/B/C/,使A/B/=AB, BC=B C, AC=A C。 把画好的△A/B/C/剪下,放到△ABC上,它们 全等吗?
理性提升
已知三角形三条边分别是 4cm,5cm,7cm, 画出这个三角形,把所画的三角形分别剪下来, 并与同伴比一比,发现什么?