立体几何题型归类总结

合集下载

立体几何15种归类

立体几何15种归类

立体几何大题的15种归类可能包括以下几种:
1. 垂直问题:证明两条直线或平面垂直,或求线面角、二面角的大小。

2. 平行问题:证明两条直线或平面平行,或求线面角、二面角的大小。

3. 距离问题:求两条直线或两个平面之间的距离。

4. 面积问题:求一个平面或一个几何体的面积。

5. 体积问题:求一个几何体的体积或表面积。

6. 角度问题:求两个平面或两个几何体之间的角度大小。

7. 截面问题:用一个平面去截一个几何体,求截面的形状和大小。

8. 轨迹问题:求一个动点的轨迹方程。

9. 翻折问题:将一个平面或一个几何体翻折后,求翻折后的形状和大小。

10. 旋转问题:将一个几何体旋转一定角度后,求旋转后的形状和大小。

11. 对称问题:求一个平面或一个几何体的对称图形。

12. 最值问题:求一个平面或一个几何体中的最值问题,如最短距离、最大角度等。

13. 体积求法问题:给定一个几何体,如何计算其体积。

14. 表面积求法问题:给定一个几何体,如何计算其表面积。

15. 空间向量问题:利用空间向量解决立体几何中的角度、距离等问题。

以上分类仅供参考,具体的题目可能涉及多种类型的问题。

在解决立体几何问题时,需要灵活运用相关的定理和公式,并结合实际情况进行分析和计算。

立体几何题型归类总结

立体几何题型归类总结

立体几何专题复习1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱底面为正方形2. 棱锥棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

★正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。

3.球球的性质:①球心与截面圆心的连线垂直于截面;★②r =d 、球的半径为R 、截面的半径为r )★球与多面体的组合体:球与正四面体,球与长方体,球与正方体等的内接与外切.注:球的有关问题转化为圆的问题解决. 球面积、体积公式:2344,3S R V R ππ==球球(其中R 为球的半径)俯视图11_________________.第1题2.若某空间几何体的三视图如图2所示,则该几何体的体积是________________.第2题 第3题3.一个几何体的三视图如图3所示,则这个几何体的体积为 .侧(左)视图 正(主)视图4.若某几何体的三视图(单位:cm )如图4所示,则此几何体的体积是 .第4题 第5题5.如图5是一个几何体的三视图,若它的体积是 a .6.已知某个几何体的三视图如图6,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 .7.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm 8.设某几何体的三视图如图8(尺寸的长度单位为m ),则该几何体的体积为_________m 3。

3俯视图正视图侧视图俯视图俯视图正(主)视图侧(左)视图第7题 第8题9.一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为_________________.图910.一个三棱柱的底面是正三角形,侧棱垂直于底面,它的三视图及其尺寸如图10所示(单位cm ),则该三棱柱的表面积为_____________.图1011.如图11所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的全面积为_____________.图图11 图12 图1312. 如图12,一个空间几何体的主视图和左视图都是边长为1的正三角形,俯视图是一个圆,那么几何体的侧面积为_____________.13.已知某几何体的俯视图是如图13所示的边长为2的正方形,主视图与左视图是边长为2的正三角形,则其表面积是_____________.14.如果一个几何体的三视图如图14所示(单位长度: cm ), 则此几何体的表面积是_____________.图14正视图俯视图15.一个棱锥的三视图如图,则该棱锥的全面积(单位:2cm )_____________.正视图 左视图 俯视图1. 正方体1111ABCD-A B C D ,1AA =2,E 为棱1CC 的中点. (Ⅰ) 求证:11B D AE ⊥; (Ⅱ) 求证://AC 平面1B DE ; (Ⅲ)求三棱锥A-BDE 的体积.2. 已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点.求证:(1) C 1O ∥面11AB D ;(2)1AC ⊥面11AB D .3.如图,PA ⊥矩形ABCD 所在平面,M 、N 分别是AB 和PC 的中点.AD 11A E CD 1ODBA C 1B 1A 1C(Ⅰ)求证:MN ∥平面PAD ; (Ⅱ)求证:MN CD ⊥;(Ⅲ)若45PDA ∠=,求证:MN ⊥平面PCD .4. 如图(1),ABCD 为非直角梯形,点E ,F 分别为上下底AB ,CD 上的动点,且EF CD ⊥。

高三高考数学总复习《立体几何》题型归纳与汇总

高三高考数学总复习《立体几何》题型归纳与汇总

(3)当 PA// 平面 BDE 时, PA 平面 PAC ,且平面 PAC 平面 BDE DE ,可得 PA//DE .由 D 是 AC 边的中 点知, E 为 PC 边的中点.故而 ED 1 PA 1, ED∥PA ,因为 PA 平面 ABC ,所以 ED 平面 BDC .
2
由 AB BC 2 ,AB BC ,D 为 AC 边中点知,BD CD 2. 又 BD AC ,有 BD DC ,即 BDC 90.
3 【解析】(1)∵ PA PD, N 为 AD 的中点,∴ PN AD, ∵底面 ABCD为菱形, BAD 60 ,∴ BN AD, ∵ PN BN N ,∴ AD 平面 PNB . (2)∵ PN PD AD 2 , ∴ PN NB 3 , ∵平面 PAD 平面 ABCD,平面 PAD 平面 ABCD AD , PN AD, ∴ PN 平面 ABCD, ∴ PN NB ,
【易错点】 外接球球心位置不好找 【思维点拨】 应用补形法找外接球球心的位置
题型四 立体几何的计算
例 1 如图,已知三棱锥的底面是直角三角形,直角 边边长分别为 3 和 4 ,过直角顶点的侧棱长为 4 ,且 垂直于底面,该三棱锥的主视图是 ( )
【答案】 B 【解析】显然由空间直角坐标系可知,该几何体在 xoy 面内的点保持不动,在 y 轴上的点在 xoy 面内的射影为坐标原 点,所以该几何体的主视图就是其在面 xoy 面的表面图形,即主视图应为高为 4 ,底面边长为 3 的直角三角形.故选 B.
以 PA BD . (2)因为 AB BC , AB BC , D 为线段 AC 的中点,所以在等腰 Rt△ABC 中, BD AC .又 由(1)可知, PA BD,PA AC A,所以 BD 平面 PAC .由 E 为线段 PC 上一点,则 DE 平面 PAC ,

高中必修二数学 立体几何题型总结

高中必修二数学 立体几何题型总结

高中必修二数学立体几何题型总结
高中数学必修二中的立体几何部分是高考的重要考点之一,下面是一些常见的立体几何题型及其解题方法:
1. 空间几何体的表面积和体积
解题方法:熟练掌握各种空间几何体的表面积和体积的公式,根据题目要求进行计算。

2. 空间几何体的直观图和三视图
解题方法:通过观察和分析空间几何体的直观图和三视图,掌握几何体的形状和大小,进而解决相关问题。

3. 空间点、线、面的位置关系
解题方法:理解空间点、线、面的位置关系,掌握各种位置关系的判定定理和性质定理,能够灵活运用解决相关问题。

4. 空间几何体的旋转体问题
解题方法:掌握旋转体的形成过程和性质,通过分析旋转体的轴和母线,利用旋转体的性质进行计算和证明。

5. 空间几何体的平行和垂直问题
解题方法:掌握空间几何体的平行和垂直的判定定理和性质定理,能够灵活运用解决相关问题。

6. 空间几何体的最值问题
解题方法:通过分析几何体的结构特征,利用几何体的性质和不等式等数学知识,求得空间几何体的最值。

7. 空间几何体的实际应用问题
解题方法:通过建立空间几何模型,将实际问题转化为数学问题,利用几何体的性质和数学知识解决实际问题。

以上是高中数学必修二中立体几何部分的一些常见题型及解题方法,掌握这些题型和方法对于提高立体几何部分的解题能力非常有帮助。

立体几何7大题型汇编

立体几何7大题型汇编

立体几何立体几何是高考数学的必考内容,在大题中一般分两问,第一问考查空间直线与平面的位置关系证明;第二问考查空间角、空间距离等的求解。

考题难度中等,常结合空间向量知识进行考查。

2024年高考有很大可能延续往年的出题方式。

题型一:空间异面直线夹角的求解1(2023·上海长宁·统考一模)如图,在三棱锥A-BCD中,平面ABD⊥平面BCD,AB=AD,O为BD的中点.(1)求证:AO⊥CD;(2)若BD⊥DC,BD=DC,AO=BO,求异面直线BC与AD所成的角的大小.【思路分析】(1)利用面面垂直的性质、线面垂直的性质推理即得.(2)分别取AB,AC的中点M,N,利用几何法求出异面直线BC与AD所成的角.【规范解答】(1)在三棱锥A-BCD中,由AB=AD,O为BD的中点,得AO⊥BD,而平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AO⊂平面ABD,因此AO⊥平面BCD,又CD⊂平面BCD,所以AO⊥CD.(2)分别取AB,AC的中点M,N,连接OM,ON,MN,于是MN⎳BC,OM⎳AD,则∠OMN是异面直线BC与AD所成的角或其补角,由(1)知,AO ⊥BD ,又AO =BO ,AB =AD ,则∠ADB =∠ABD =π4,于是∠BAD =π2,令AB =AD =2,则DC =BD =22,又BD ⊥DC ,则有BC =BD 2+DC 2=4,OC =DC 2+OD 2=10,又AO ⊥平面BCD ,OC ⊂平面BCD ,则AO ⊥OC ,AO =2,AC =AO 2+OC 2=23,由M ,N 分别为AB ,AC 的中点,得MN =12BC =2,OM =12AD =1,ON =12AC =3,显然MN 2=4=OM 2+ON 2,即有∠MON =π2,cos ∠OMN =OM MN =12,则∠OMN =π3,所以异面直线BC 与AD 所成的角的大小π3.1、求异面直线所成角一般步骤:(1)平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线.(2)证明:证明所作的角是异面直线所成的角.(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之.(4)取舍:因为异面直线所成角θ的取值范围是0,π2,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2、可通过多种方法平移产生,主要有三种方法:(1)直接平移法(可利用图中已有的平行线);(2)中位线平移法;(3)补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).3、异面直线所成角:若n 1 ,n 2分别为直线l 1,l 2的方向向量,θ为直线l 1,l 2的夹角,则cos θ=cos <n 1 ,n 2 > =n 1 ⋅n 2n 1 n 2.1(2023·江西萍乡·高三统考期中)如图,在正四棱台ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点.(1)证明:EF ⎳平面AB1C 1D ;(2)若AB =2A 1B 1,且正四棱台的侧面积为9,其内切球半径为22,O 为ABCD 的中心,求异面直线OB 1与CC 1所成角的余弦值.【答案】(1)证明见解析;(2)45【分析】(1)根据中位线定理,结合线面平行判定定理以及面面平行判定定理,利用面面平行的性质,可得答案;(2)根据题意,结合正四棱台的几何性质,求得各棱长,利用线线角的定义,可得答案.【解析】(1)取CC 1中点G ,连接GE ,GF ,如下图:在梯形BB 1C 1C 中,E ,G 分别为BB 1,CC 1的中点,则EG ⎳B 1C 1,同理可得FG ⎳C 1D ,因为EG ⊄平面AB 1C 1D ,B 1C 1⊂平面AB 1C 1D ,所以EG ⎳平面AB 1C 1D ,同理可得GF ⎳平面AB 1C 1D ,因为EG ∩FG =G ,EG ,FG ⊆平面EFG ,所以平面EFG ⎳平面AB 1C 1D ,又因为EF ⊆平面EFG ,所以EF ⎳平面AB 1C 1D ;(2)连接AC ,BD ,则AC ∩BD =O ,连接A 1O ,A 1C 1,B 1O ,在平面BB 1C 1C 中,作B 1N ⊥BC 交BC 于N ,在平面BB 1D 1D 中,作B 1M ⊥BD 交BD 于M ,连接MN ,如下图:因为AB =2A 1B 1,则OC =A 1C 1,且OC ⎳A 1C 1,所以A 1C 1CO 为平行四边形,则A 1O ⎳CC 1,且A 1O =CC 1,所以∠A 1OB 1为异面直线OB 1与CC 1所成角或其补角,同理可得:B 1D 1DO 为平行四边形,则B 1O =D 1D ,在正四棱台ABCD -A 1B 1C 1D 1中,易知对角面BB 1D 1D ⊥底面ABCD ,因为平面ABCD ∩平面BB 1D 1D =BD ,且B 1M ⊥BD ,B 1M ⊂平面BB 1D 1D ,所以B 1M ⊥平面ABCD ,由内切球的半径为22,则B 1M =2,在等腰梯形BB 1C 1C 中,BC =2B 1C 1且B 1N ⊥BC ,易知BN =14BC ,同理可得BM =14BD ,在△BCD 中,BN BC=BM BD =14,则MN =14CD ,设正方形ABCD 的边长为4x x >0 ,则正方形A 1B 1C 1D 1的边长为2x ,MN =x ,由正四棱台的侧面积为9,则等腰梯形BB 1C 1C 的面积S =94,因为B 1M ⊥平面ABCD ,MN ⊂平面ABCD ,所以B 1M ⊥MN ,在Rt △B 1MN ,B 1N =B 1M 2+MN 2=2+x 2,可得S =12⋅B 1N ⋅B 1C 1+BC ,则94=12×2+x 2×4x +2x ,解得x =12,所以BC =2,B 1C 1=1,BN =14BC =12,B 1N =32,则A 1B 1=1,在Rt △BB 1N 中,BB 1=B 1N 2+BN 2=102,则CC 1=DD 1=102,所以在△A 1OB 1中,则cos ∠A 1OB 1=A 1O 2+B 1O 2-A 1B 212⋅A 1O ⋅B 1O=1022+102 2-12×102×102=45,所以异面直线OB 1与CC 1所成角的余弦值为45.2(2023·辽宁丹东·统考二模)如图,平行六面体ABCD -A 1B 1C 1D 1的所有棱长都相等,平面CDD 1C 1⊥平面ABCD ,AD ⊥DC ,二面角D 1-AD -C 的大小为120°,E 为棱C 1D 1的中点.(1)证明:CD ⊥AE ;(2)点F 在棱CC 1上,AE ⎳平面BDF ,求直线AE 与DF 所成角的余弦值.【答案】(1)证明见解析;(2)37【分析】(1)根据面面垂直可得线面垂直进而得线线垂直,由二面角定义可得∠D 1DC =120°,进而根据中点得线线垂直即可求;(2)由线面平行的性质可得线线平行,由线线角的几何法可利用三角形的边角关系求解,或者建立空间直角坐标系,利用向量的夹角即可求解.【解析】(1)因为平面CDD 1C 1⊥平面ABCD ,且两平面交线为DC ,AD ⊥DC ,AD ⊂平面ABCD , 所以AD ⊥平面CDD 1C 1,所以AD ⊥D 1D ,AD ⊥DC ,∠D 1DC 是二面角D 1-AD -C 的平面角,故∠D 1DC =120°.连接DE ,E 为棱C 1D 1的中点,则DE ⊥C 1D 1,C 1D 1⎳CD ,从而DE ⊥CD .又AD ⊥CD ,DE ∩AD =D ,DE ,AD ⊂平面AED ,所以CD ⊥平面AED ,ED ⊂平面AED ,因此CD ⊥AE .(2)解法1:设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.连AC 交BD 于点O ,连接CE 交DF 于点G ,连OG .因为AE ⎳平面BDF ,AE ⊂平面AEC ,平面AEC ∩平面BDF =OG ,所以AE ∥OG ,因为O 为AC 中点,所以G 为CE 中点,故OG =12AE =72.且直线OG 与DF 所成角等于直线AE 与DF 所成角.在Rt △EDC 中,DG =12CE =72,因为OD =2,所以cos ∠OGD =722+72 2-(2)22×72×72=37.因此直线AE 与DF 所成角的余弦值为37.解法2;设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.取DC 中点为G ,连接EG 交DF 于点H ,则EG =DD 1=2.连接AG 交BD 于点I ,连HI ,因为AE ⎳平面BDF ,AE ⊂平面AGE ,平面AGE ∩平面BDF =IH ,所以AE ∥IH .HI 与DH 所成角等于直线AE 与DF 所成角.正方形ABCD 中,GI =13AG ,DI =13DB =223,所以GH =13EG ,故HI =13AE =73.在△DHG 中,GH =13EG =23,GD =1,∠EGD =60°,由余弦定理DH =1+49-1×23=73.在△DHI 中,cos ∠DHI =732+73 2-223 22×73×73=37.因此直线AE 与DF 所成角的余弦值为37.解法3:由(1)知DE ⊥平面ABCD ,以D 为坐标原点,DA为x 轴正方向,DA为2个单位长,建立如图所示的空间直角坐标系D -xyz .由(1)知DE =3,得A 2,0,0 ,B 2,2,0 ,C 0,2,0 ,E (0,0,3),C 1(0,1,3).则CC 1=(0,-1,3),DC =(0,2,0),AE =(-2,0,3),DB =(2,2,0).由CF =tCC 1 0≤t ≤1 ,得DF =DC +CF =(0,2-t ,3t ).因为AE ⎳平面BDF ,所以存在唯一的λ,μ∈R ,使得AE =λDB +μDF=λ2,2,0 +μ(0,2-t ,3t )=2λ,2λ+2μ-tμ,3μt ,故2λ=-2,2λ+2μ-tμ=0,3μt =3,解得t =23,从而DF =0,43,233 .所以直线AE 与DF 所成角的余弦值为cos AE ,DF =AE ⋅DF|AE ||DF |=37.题型二:空间直线与平面夹角的求解2(2024·安徽合肥·统考一模)如图,三棱柱ABC -A 1B 1C 1中,四边形ACC 1A 1,BCC 1B 1均为正方形,D ,E 分别是棱AB ,A 1B 1的中点,N 为C 1E 上一点.(1)证明:BN ⎳平面A 1DC ;(2)若AB =AC ,C 1E =3C 1N,求直线DN 与平面A 1DC 所成角的正弦值.【思路分析】(1)连接BE ,BC 1,DE ,则有平面BEC 1⎳平面A 1DC ,可得BN ⎳平面A 1DC ;(2)建立空间直角坐标系,利用空间向量进行计算即可.【规范解答】(1)连接BE ,BC 1,DE .因为AB ⎳A 1B 1,且AB =A 1B 1,又D ,E 分别是棱AB ,A 1B 1的中点,所以BD ⎳A 1E ,且BD =A 1E ,所以四边形BDA 1E 为平行四边形,所以A 1D ⎳EB ,又A 1D ⊂平面A 1DC ,EB ⊄平面A 1DC ,所以EB ⎳平面A 1DC ,因为DE ⎳BB 1⎳CC 1,且DE =BB 1=CC 1,所以四边形DCC 1E 为平行四边形,所以C 1E ⎳CD ,又CD ⊂平面A 1DC ,C 1E ⊄平面A 1DC ,所以C 1E ⎳平面A 1DC ,因为C 1E ∩EB =E ,C 1E ,EB ⊂平面BEC 1,所以平面BEC 1⎳平面A 1DC ,因为BN ⊂平面BEC 1,所以BN ⎳平面A 1DC .(2)四边形ACC 1A 1,BCC 1B 1均为正方形,所以CC 1⊥AC ,CC 1⊥BC ,所以CC 1⊥平面ABC .因为DE ⎳CC 1,所以DE ⊥平面ABC ,从而DE ⊥DB ,DE ⊥DC .又AB =AC ,所以△ABC 为等边三角形.因为D 是棱AB 的中点,所以CD ⊥DB ,即DB ,DC ,DE 两两垂直.以D 为原点,DB ,DC ,DE 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系D -xyz .设AB =23,则D 0,0,0 ,E 0,0,23 ,C 0,3,0 ,C 10,3,23 ,A 1-3,0,23 ,所以DC =0,3,0 ,DA 1=-3,0,23 .设n=x ,y ,z 为平面A 1DC 的法向量,则n ⋅DC=0n ⋅DA 1 =0,即3y =0-3x +23z =0 ,可取n=2,0,1 .因为C 1E =3C 1N ,所以N 0,2,23 ,DN =0,2,23 .设直线DN 与平面A 1DC 所成角为θ,则sin θ=|cos ‹n ,DN ›|=|n ⋅DN ||n |⋅|DN |=235×4=1510,即直线DN 与平面A 1DC 所成角正弦值为1510.1、垂线法求线面角(也称直接法):(1)先确定斜线与平面,找到线面的交点B 为斜足;找线在面外的一点A ,过点A 向平面α做垂线,确定垂足O ;(2)连结斜足与垂足为斜线AB 在面α上的投影;投影BO 与斜线AB 之间的夹角为线面角;(3)把投影BO 与斜线AB 归到一个三角形中进行求解(可能利用余弦定理或者直角三角形)。

立体几何解答题最全归纳总结(解析版)

立体几何解答题最全归纳总结(解析版)

立体几何解答题最全归纳总结【题型归纳目录】题型一:非常规空间几何体为载体题型二:立体几何存在性问题题型三:立体几何折叠问题题型四:立体几何作图问题题型五:立体几何建系繁琐问题题型六:两角相等(构造全等)的立体几何问题题型七:利用传统方法找几何关系建系题型八:空间中的点不好求题型九:创新定义【典例例题】题型一:非常规空间几何体为载体例1.如图,P 为圆锥的顶点,O 为圆锥底面的圆心,圆锥的底面直径AB =4,母线PH =22,M 是PB 的中点,四边形OBCH 为正方形.(1)设平面POH ∩平面PBC =l ,证明:l ∥BC ;(2)设D 为OH 的中点,N 是线段CD 上的一个点,当MN 与平面PAB所成角最大时,求MN 的长.【解析】(1)因为四边形OBCH 为正方形,∴BC ∥OH ,∵BC ⊄平面POH ,OH ⊂平面POH ,∴BC ∥平面POH .∵BC ⊂平面PBC ,平面POH ∩平面PBC =l ,∴l ∥BC .(2)∵圆锥的母线长为22,AB =4,∴OB =2,OP =2,以O 为原点,OP 所在的直线为z 轴,建立如图所示的空间直角坐标系,则P 0,0,2 ,B 0,2,0 ,D 1,0,0 C 2,2,0 ,M 0,1,1 ,设DN =λDC =λ,2λ,0 0≤λ≤1 ,ON =OD +DN =1+λ,2λ,0 ,MN =ON -OM =1+λ,2λ-1,-1 ,OD =1,0,0 为平面PAB 的一个法向量,设MN 与平面PAB 所成的角为θ,则sin θ=1+λ,2λ-1,-1 ⋅1,0,0 1+λ 2+2λ-1 2+1 =1+λ5λ2-2λ+3,令1+λ=t ∈1,2 ,则sin θ=t 5t 2-12t +10=15-12t +101t 2=1101t -35 2+75所以当1t =35时,即λ=23时,sin θ最大,亦θ最大,此时MN =53,13,-1 ,所以MN =MN =53 2+13 2+-1 2=353.例2.如图所示,圆锥的底面半径为4,侧面积为162π,线段AB 为圆锥底面⊙O 的直径,C 在线段AB 上,且BC =3CA ,点D 是以BC 为直径的圆上一动点;(1)当CD =CO 时,证明:平面PAD ⊥平面POD(2)当三棱锥P -BCD 的体积最大时,求二面角B -PD -A 的余弦值.【解析】(1)∵PO 垂直于圆锥的底面,∴PO ⊥AD ,当CD =CO 时,CD =OC =AC ,∴AD ⊥OD ,又OD ∩PO =O ,∴AD ⊥平面POD ,又AD ⊂平面PAD ,∴平面PAD ⊥平面POD ;(2)由题可知OA =OB =4,4π⋅PB =162π,∴PB =42,∴PO =4,当三棱锥P -BCD 的体积最大时,△DBC 的面积最大,此时D 为BC的中点,如图,建立空间直角坐标系O -xyz ,则A (0,-4,0),B (0,4,0),P (0,0,4),D 3,1,0 ,∴BP =0,-4,4 ,PD =3,1,-4 ,AP =(0,4,4),设平面PAD 的法向量为n 1 =(a ,b ,c ),则n 1 ⋅AP =0n 1 ⋅PD =0 ,即4b +4c =03a +b -4c =0,令a =5,则b =-3,c =3,∴n 1 =(5,-3,3),设平面PBD 的法向量n 2 =x ,y ,z ,则n 2 ⋅BP =0n 2 ⋅PD =0 ,即-4y +4z =03x +y -4z =0,令x =1,则y =1,z =1,∴n 2 =1,1,1 ,则cos n 1 ,n 2 =n 1 ⋅n 2 n 1 n 2 =5-3+33×52+-3 2+32=5129129,∴二面角B -PD -A 的余弦值为-5129129.例3.如图,圆锥PO 的母线长为6,△ABC 是⊙O 的内接三角形,平面PAC ⊥平面PBC .BC =23,∠ABC =60°.(1)证明:PA ⊥PC ;(2)设点Q 满足OQ =λOP ,其中λ∈0,1 ,且二面角O -QB -C 的大小为60°,求λ的值.【解析】(1)∵PA =PB =PC =6,BC =23,PB 2+PC 2=BC 2,∴PB ⊥PC∵平面PAC ⊥平面PBC 且平面PAC ∩平面PBC =PC ,PB ⊂平面PBC ,PB ⊥PC ,∴PB ⊥平面PAC ,又PA ⊂平面PAC ,∴PB ⊥PA ,∴AB =PA 2+PB 2=23,∴∠ABC =60°,∴△ABC 是正三角形,AC =23,∵PA 2+PC 2=AC 2∴PA ⊥PC ;(2)在平面ABC 内作OM ⊥OB 交BC 于M ,以O 为坐标原点,OM ,OB ,OP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系O -xyz 如图所示:易知OB =OC =2,OP =PB 2-OB 2=2,所以B 2,0,0 ,P 0,0,2 ,C -1,3,0 ,Q 0,0,2λ ,QB =2,0,-2λ ,BC =-3,3,0 ,设平面OBC 的法向量n 1 =x ,y ,z ,依题意n 1 ⋅QB =0n 1 ⋅CB =0 ,即2x -2λz =0-3x +3y =0 ,不妨令y =3λ,得n 1 =λ,3λ,2 ,易知平面OQB 的法向量n 2 =0,1,0 ,由λ∈0,1 可知cos n 1 ,n 2 =n 1 ⋅n 2 n 1 ⋅n 2=cos60°,即3λλ2+(3λ)2+2 2=12,解得λ=12例4.如图,D 为圆锥的顶点,O 为圆锥底面的圆心,AB 为底面直径,C 为底面圆周上一点,DA =AC =BC =2,四边形DOAE 为矩形,点F 在BC 上,且DF ⎳平面EAC .(1)请判断点F 的位置并说明理由;(2)平面DFO 将多面体DBCAE 分成两部分,求体积较大部分几何体的体积.【解析】(1)点F 是BC 的中点,取BC 的中点F ,连接OF ,DF ,因为O 为AB 的中点,所以OF ⎳AC ,又AC ⊂平面AEC ,OF ⊄平面AEC ,所以OF ⎳平面AEC ,由四边形DOAE 为矩形,所以DO ⎳AE ,又AE ⊂平面AEC ,OD ⊄平面AEC ,所以OD ⎳平面AEC ,因为DO ∩OF =O ,DO ,OF ⊂平面DOF ,所以平面DOF ⎳平面AEC ,因为DF ⊂平面DOF ,所以DF ⎳平面AEC ,(2)由(1)知点F 是BC 的中点,因为DA =AC =BC =2,所以AB =AC 2+BC 2=22,所以OA =OC =OB =2,且OC ⊥AB ,所以OD =AD 2-OA 2=2,所以三棱锥D -BOF 的体积V D -BOF =13S △BOF ⋅DO =13×12×2×22×2=26;又三棱锥D -BOC 的体积V D -BOC =13S △BOC ⋅DO =13×12×2×2×2=23,所以四棱锥C -DOAE 的体积V C -DOAE =13S DOAE ×2=13×2 2×2=223,所以几何体DBCAE 的体积V DBCAE =V D -BCO +V C -DOAE =2,所以体积较大部分几何体的体积为V DBCAE -V D -BOF =2-26=526;例5.如图,在直角△POA 中,PO ⊥OA ,PO =2OA ,将△POA 绕边PO 旋转到△POB 的位置,使∠AOB =90°,得到圆锥的一部分,点C 为AB 的中点.(1)求证:PC ⊥AB ;(2)设直线PC 与平面PAB 所成的角为φ,求sin φ.【解析】(1)证明:由题意知:PO ⊥OA ,PO ⊥OB ,OA ∩OC =0∴PO ⊥平面AOB ,又∵AB ⊂平面AOB ,所以PO ⊥AB .又点C 为AB 的中点,所以OC ⊥AB ,PO ∩OC =0,所以AB ⊥平面POC ,又∵PC ⊂平面POC ,所以PC ⊥AB .(2)以O 为原点,OA ,OB ,OP 的方向分别作为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系,设OA =2,则A 2,0,0 ,B 0,2,0 ,P 0,0,4 ,C 2,2,0 ,所以AB =-2,2,0 ,AP =-2,0,4 ,PC =2,2,-4 .设平面PAB 的法向量为n =a ,b ,c ,则n ⋅AB =-2a +2b =0,n ⋅AP =-2a +4c =0, 取c =1,则a =b =2可得平面PAB 的一个法向量为n =2,2,1 ,所以sin φ=cos n ,PC =n ⋅PC n PC =42-465=210-5 15.例6.如图,四边形ABCD 为圆柱O 1O 2的轴截面,EF 是该圆柱的一条母线,EF =2EA ,G 是AD 的中点.(1)证明:AF ⊥平面EBG ;(2)若BE =3EA ,求二面角E -BG -A 的正弦值.【解析】(1)由已知EF ⊥平面ABE ,BE ⊂平面ABE ,所以EF ⊥BE ,因为AB 是圆O 1的直径,所以AE ⊥BE ,因为AE ∩FE =E ,所以BE ⊥平面AFE ,AF ⊂平面AFE ,故BE ⊥AF ,因为EF =2EA =2AG ,所以EA =2AG ,易知:Rt △AEG ∼Rt △EFA ,所以∠GEA +∠EAF =90°,从而AF ⊥EG ,又BE ∩EG =E ,所以AF ⊥平面EBG .(2)以E 为坐标原点,EA 为x 轴正方向,EA 为单位向量,建立如图所示的空间直角坐标系E -xyz ,则AB =2,BE =3,EF =2,从而A 1,0,0 ,B 0,3,0 ,D 1,0,2 ,F 0,0,2 ,AB =-1,3,0 ,AD =0,0,2 ,设n =x ,y ,z 位平面BGA 的法向量,则{n ⋅AB =0n ⋅AD =0⇒{-x +3y =02z =0⇒{x =3y =1z =0,所以n =3,1,0 ,由(1)知:平面BEG 的法向量为AF =-1,0,2 ,因为cos n ,AF =n ⋅AF n ⋅AF=-12,所以二面角E -BG -A 的正弦值为32.例7.例7.如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120°得到的,G 是DF的中点.(1)设P 是CE 上的一点,且AP ⊥BE ,求证BP ⊥BE ;(2)当AB =3,AD =2时,求二面角E -AG -C 的大小.【解析】(1)因为AP ⊥BE ,AB ⊥BE ,AB ,AP ⊂平面ABP ,AB ∩AP =A ,所以BE ⊥平面ABP ,又BP ⊂平面ABP ,所以BP ⊥BE .(2)以B 为坐标原点,分别以BE ,BP ,BA 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系.由题意得A (0,0,3),E (2,0,0),G (1,3,3),C (-1,3,0),故AE =(2,0,-3),AG =(1,3,0),CG =(2,0,3).设m =x 1,y 1,z 1 是平面AEG 的一个法向量,由m ·AE =0m ·AG =0 可得2x 1-3z 1=0,x 1+3y 1=0.取z 1=2,可得平面AEG 的一个法向量m =(3,-3,2).设n =x 2,y 2,z 2 是平面ACG 的一个法向量,由n ·AG =0n ·CG =0,可得x 2+3y 2=0,2x 2+3z 2=0. 取z 2=-2,可得平面ACG 的一个法向量n =(3,-3,-2).所以cos ‹m ,n ›=m ⋅n |m |⋅|n |=12, 因为<m ,n >∈[0,π],故所求的角为60°.例8.如图,四边形ABCD 是一个半圆柱的轴截面,E ,F 分别是弧DC ,AB 上的一点,EF ∥AD ,点H 为线段AD 的中点,且AB =AD =4,∠FAB =30°,点G 为线段CE 上一动点.(1)试确定点G 的位置,使DG ⎳平面CFH ,并给予证明;(2)求二面角C -HF -E 的大小.【解析】(1)当点G 为CE 的中点时,DG ∥平面CFH .证明:取CF 得中点M ,连接HM ,MG .∵G ,M 分别为CE 与CF 的中点,∴GM ∥EF ,且GM =12EF =12AD ,又H 为AD 的中点,且AD ∥EF ,AD =EF ,∴GM ∥DH ,GM =DH .四边形GMHD 是平行四边形,∴HM ∥DG又HM ⊂平面CFH ,DG ⊄平面CFH∴DG ∥平面CFH(2)由题意知,AB 是半圆柱底面圆的一条直径,∴AF ⊥BF .∴AF =AB cos30°=23,BF =AB sin30°=2.由EF ∥AD ,AD ⊥底面ABF ,得EF ⊥底面ABF .∴EF ⊥AF ,EF ⊥BF .以点F 为原点建立如图所示的空间直角坐标系,则F (0,0,0),B (0,2,0),C (0,2,4),H (23,0,2)FH =(23,0,2),FC =(0,2,4)设平面CFH 的一个法向量为n =(x ,y ,z )所以n ⋅FH =23x +2z =0n ⋅FC =2y +4z =0则令z =1则y =-2,x =-33即n =-33,-2,1由BF ⊥AF ,BF ⊥FE ,AF ∩FE =F .得BF ⊥平面EFH ∴平面EFH 的一个法向量为FB =(0,2,0)设二面角C -HF -E 所成的角为θ∈0,π2则cos θ=∣cos ‹n ,FB ›=|n ⋅FB ||n ||FB |=0×-33 +(-2)×2+1×02×13+4+1=32 ∴二面角C -HF -E 所成的角为π6.例9.坐落于武汉市江汉区的汉口东正教堂是中国南方唯一的拜占庭式建筑,象征着中西文化的有机融合.拜占庭建筑创造了将穹顶支承于独立方柱上的结构方法和与之相呼应的集中式建筑形制,其主体部分由一圆柱与其上方一半球所构成,如图所示.其中O 是下底面圆心,A ,B ,C 是⊙O 上三点,A 1,B 1,C 1是上底面对应的三点.且A ,O ,C 共线,AC ⊥OB ,C 1E =EC ,B 1F =13FB ,AE 与OF 所成角的余弦值为36565.(1)若E 到平面A 1BC 的距离为233,求⊙O 的半径.(2)在(1)的条件下,已知P 为半球面上的动点,且AP =210,求P 点轨迹在球面上围成的面积.【解析】(1)如图,取BB 1,CE 上的点N ,M .连接OM ,OF ,FM .过N 作NH ⊥A 1B 于H ,则OM ∥AE ,由题意知cos ∠FOM =36565,设⊙O 的半径为r ,AA 1=h ,由勾股定理知OF =r 2+916h 2,OM =r 2+116h 2,FM =2r 2+14h 2,由余弦定理知cos ∠FOM =OF 2+OM 2-FM 22×OF ×OM.代入解得h =2r ,因为EN ∥BC ,EN ⊄面A 1BC ,所以EN ∥面A 1BC ,故N 到面A 1BC 的距离是233,因为BC ⊥AB ,BC ⊥AA 1,AA 1∩AB =A ,所以BC ⊥面A 1AB ,BC ⊥NH ,因为NH ⊥BC ,NH ⊥A 1B ,A 1B ∩BC =B ,所以NH ⊥面A 1BC ,NH =233,而sin ∠A 1BB 1=NH BN =A 1B 1A 1B ,即233×h 2=2r 2r 2+h 2,解得r =2,h =4,即⊙O 的半径为2.(2)设上底面圆心为O 1,则O 1P =2,O 1O 2与O 1P 的夹角为θ,所以|AP |=|AO 1 +O 1P |=20+4+85cos θ=210,解得cos θ=255,过P 作PO 2⊥AO 1于O 2,则O 2P =O 1P ⋅sin θ=255,所以点P 的轨迹是以O 2为圆心,以255为半径的圆,因此可作出几何体被面AOA 1所截得到的截面,如图所示.设弧A 1C 1旋转一周所得到的曲面面积为S 1,弧PP 得到的为S 2,则S 2S 1=1-cos θS 1=12×4πr2 ,因此S 2=2πr 2(1-cos θ)=8π1-255 .因此P 点轨迹在球面上围成的面积为8π1-255.例10.如图,ABCD 为圆柱OO 的轴截面,EF 是圆柱上异于AD ,BC 的母线.(1)证明:BE ⊥平面DEF ;(2)若AB =BC =6,当三棱锥B -DEF 的体积最大时,求二面角B -DF -E 的正弦值.【解析】(1)证明:如图,连接AE ,由题意知AB 为⊙O 的直径,所以AE ⊥BE .因为AD ,EF 是圆柱的母线,所以AD ∥EF 且AD =EF ,所以四边形AEFD 是平行四边形.所以AE ⎳DF ,所以BE ⊥DF .因为EF 是圆柱的母线,所以EF ⊥平面ABE ,又因为BE ⊂平面ABE ,所以EF ⊥BE .又因为DF ∩EF =F ,DF 、EF ⊂平面DEF ,所以BE ⊥平面DEF .(2)由(1)知BE 是三棱锥B -DEF 底面DEF 上的高,由(1)知EF ⊥AE ,AE ∥DF ,所以EF ⊥DF ,即底面三角形DEF 是直角三角形.设DF =AE =x ,BE =y ,则在Rt △ABE 中有:x 2+y 2=6,所以V B -DEF =13S △DEF ⋅BE =13⋅12x ⋅6⋅y =66xy ≤66⋅x 2+y 22=62,当且仅当x =y =3时等号成立,即点E ,F 分别是AB ,CD的中点时,三棱锥B -DEF 的体积最大,(另等积转化法:V B -DEF =V D -BEF =V D -BCF =V B -CDF =13S △CDF⋅BC 易得当F 与CD 距离最远时取到最大值,此时E 、F 分别为AB 、CD 中点)下面求二面角B -DF -E 的正弦值:法一:由(1)得BE ⊥平面DEF ,因为DF ⊂平面DEF ,所以BE ⊥DF .又因为EF ⊥DF ,EF ∩BE =E ,所以DF ⊥平面BEF .因为BF ⊂平面BEF ,所以BF ⊥DF ,所以∠BFE 是二面角B -DF -E 的平面角,由(1)知△BEF 为直角三角形,则BF =(3)2+(6)2=3.故sin ∠BFE =BE BF=33,所以二面角B -DF -E 的正弦值为33.法二:由(1)知EA ,EB ,EF 两两相互垂直,如图,以点E 为原点,EA ,EB ,EF 所在直线为x ,y ,z 轴建立空间直角坐标系E -xyz ,则B (0,3,0),D (3,0,6),E (0,0,0),F (0,0,6).由(1)知BE ⊥平面DEF ,故平面DEF 的法向量可取为EB =(0,3,0).设平面BDF 的法向量为n =(x ,y ,z ),由DF =(-3,0,0),BF =(0,-3,6),得n ⋅DF =0n ⋅BF =0 ,即-3x =0-3y +6z =0,即x =0y =2z ,取z =1,得n =(0,2,1).设二面角B -DF -E 的平面角为θ,|cos θ|=∣cos n ,EB =|n ⋅EB ||n |⋅|EB |=2×33×3=63,所以二面角B -DF -E 的正弦值为33例11.如图,O 1,O 分别是圆台上、下底的圆心,AB 为圆O 的直径,以OB 为直径在底面内作圆E ,C 为圆O 的直径AB 所对弧的中点,连接BC 交圆E 于点D ,AA 1,BB 1,CC 1为圆台的母线,AB =2A 1B 1=8.(1)证明;C 1D ⎳平面OBB 1O 1;(2)若二面角C 1-BC -O 为π3,求O 1D 与平面AC 1D 所成角的正弦值.【解析】(1)连接DE ,O1E ,C 为圆O 的直径AB 所对弧的中点,所以△BOC 为等腰直角三角形,即∠OBD =45°,又D 在圆E 上,故△BED 为等腰直角三角形,所以DE ⎳OC 且DE =12OC ,又CC 1是母线且O 1C 1=12OC ,则O 1C 1⎳OC ,故DE ⎳O 1C 1且DE =O 1C 1,则DEO 1C 1为平行四边形,所以EO 1⎳DC 1,而EO 1⊂面OBB 1O 1,DC 1⊄面OBB 1O 1,故C 1D ⎳平面OBB 1O 1.(2)由题设及(1)知:O 1O 、OB 、OC 两两垂直,构建如下图示的空间直角坐标系,过C 1作C 1F ⎳O 1O ,则F 为OC 的中点,再过F 作FG ⎳OD ,连接C 1G ,由O 1O ⊥圆O ,即C 1F ⊥圆O ,BC ⊂圆O ,则C 1F ⊥BC ,又OD⊥BC ,则FG ⊥BC ,故二面角C 1-BC -O 的平面角为∠FGC 1=π3,而FG =12OD =24OB =2,所以O 1O =C 1F =FG tan π3=6.则A (0,-4,0),D (2,2,0),C 1(2,0,6),O 1(0,0,6),所以AD =(2,6,0),C 1D =(0,2,-6),O 1D =(2,2,-6),若m =(x ,y ,z )为面AC 1D 的一个法向量,则m ⋅AD =2x +6y =0m ⋅C 1D =2y -6z =0,令y =6,则m =(-36,6,2),|cos <m ,O 1D >|=6614×8=32128,故O 1D 与平面AC 1D 所成角的正弦值32128.例12.某市在滨海文化中心有滨海科技馆,其建筑有鲜明的后工业风格,如图所示,截取其中一部分抽象出长方体和圆台组合,如图所示,长方体ABCD -A 1B 1C 1D 1中,AB =4,AD =AA 1=2,圆台下底圆心O 为AB 的中点,直径为2,圆与直线AB 交于E ,F ,圆台上底的圆心O 1在A 1B 1上,直径为1.(1)求A 1C 与平面A 1ED 所成角的正弦值;(2)圆台上底圆周上是否存在一点P 使得FP ⊥AC 1,若存在,求点P 到直线A 1B 1的距离,若不存在则说明理由.【解析】(1)(1)由长方体ABCD -A 1B 1C 1D 1可知,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系如图所示,则A 12,0,2 ,C 0,4,0 ,E 2,1,0 ,D 0,0,0 .所以A 1C =(-2,4,-2),DA 1 =(2,0,2),DE =(2,1,0).设平面A 1ED 的一个法向量为n=(x ,y ,z ),则有n .DA=0n .DE =0 ,即2x +2z =02x +y =0 ,令x =1,则y =-2,z =-1,故n=(1,-2,-1),所以|cos <A 1C ,n >|=|AC ⋅n||AC ||n |=|-2-8+2|4+16+4⋅1+4+1=23,故A 1C 与平面A 1ED 所成角的正弦值为23;(2)由(1)可知,A 2,0,0 ,C 10,4,2 ,所以AC 1=(-2,4,2),假设存在这样的点P ,设P x ,y ,2 ,由题意可知(x -2)2+(y -2)2=14,所以FP =(x -2,y -3,2),因为FP ⊥AC 1,则有FP ⋅AC 1 =-2(x -2)+4(y-3)+4=0,所以x =2y -2,又(x -2)2+(y -2)2=14,所以5y 2-20y +794=0,解得x =2-55y =2-510(舍),x =2+55y =2+510,所以当P 2+55,2+510,2 时,FP ⊥AC 1,此时点P 到直线A 1B 1的距离为55.题型二:立体几何存在性问题例13.如图,三棱锥P -ABC 中,PA ⊥平面ABC ,PA =1,AB =1,AC =2,∠BAC =60°.(1)求三棱锥A -PBC 的体积;(2)在线段PC 上是否存在一点M ,使得BM ⊥AC ?若存在,求MCPM的值,若不存在,请说明理由.【解析】(1)因为AB =1,AC =2,∠BAC =60°,所以S △ABC =12⋅AB ⋅AC ⋅sin60°=32.由PA ⊥平面ABC 知:PA 是三棱锥P -ABC 的高,又PA =1,所以三棱锥A -PBC 的体积V A -PBC =V P -ABC =13⋅S △ABC ⋅PA =36.(2)在线段PC 上存在一点M ,使得BM ⊥AC ,此时MCPM =3.如图,在平面PAC 内,过M 作MN ⎳PA 交AC 于N,连接BN ,BM .由PA ⊥平面ABC ,AC ⊂平面ABC ,故PA ⊥AC ,所以MN ⊥AC .由MN ⎳PA 知:AN NC =PM MC=13,则AN =12,在△ABN 中,BN 2=AB 2+AN 2-2AB ⋅AN cos ∠BAC =12+12 2-2×1×12×12=34,所以AN 2+BN 2=AB 2,即AC ⊥BN .由于BN ∩MN =N 且BN ,MN ⊂面MB N ,故AC ⊥平面MB N .又BM ⊂平面MB N ,所以AC ⊥BM .例14.已知四棱锥P -ABCD 中,底面ABCD 是矩形,且AD =2AB ,△PAD 是正三角形,CD ⊥平面PAD ,E 、F 、G 、O 分别是PC 、PD 、BC 、AD 的中点.(1)求平面EFG 与平面ABCD 所成的锐二面角的大小;(2)线段PA 上是否存在点M ,使得直线GM 与平面EFG 所成角的大小为π6,若存在,求出PMPA的值;若不存在,说明理由.【解析】(1)因为△PAD 是正三角形,O 为AD 的中点,所以,PO ⊥AD ,因为CD ⊥平面PAD ,PO ⊂平面PAD ,∴PO ⊥CD ,∵AD ∩CD =D ,∴PO ⊥平面ABCD ,因为AD ⎳BC 且AD =BC ,O 、G 分别为AD 、BC 的中点,所以,AO ⎳BG 且AO =BG ,所以,四边形ABGO 为平行四边形,所以,OG ⎳AB ,∵AB ⊥AD ,则OG ⊥AD ,以点O 为坐标原点,OA 、OG 、OP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,设AB =2,则AD =4,A 2,0,0 、G 0,2,0 、D -2,0,0 、C -2,2,0 、P 0,0,23 、E -1,1,3 、F -1,0,3 ,EF=0,-1,0 ,EG =1,1,-3 ,设平面EFG 的法向量为n=x ,y ,z ,则n ⋅EF=-y =0n ⋅EG=x +y -3z =0 ,取x =3,可得n =3,0,1 ,易知平面ABCD 的一个法向量为m=0,0,1 ,所以,cos <m ,n >=m ⋅nm ⋅n=12,因此,平面EFG 与平面ABCD 所成的锐二面角为π3.(2)假设线段PA 上是否存在点M ,使得直线GM 与平面EFG 所成角的大小为π6,设PM=λPA =λ2,0,-23 =2λ,0,-23λ ,其中0≤λ≤1,GM =GP +PM=0,-2,23 +2λ,0,-23λ =2λ,-2,23-23λ ,由题意可得cos <n ,GM > =n ⋅GM n ⋅GM =2324λ2+4+121-λ 2=12,整理可得4λ2-6λ+1=0,因为0≤λ≤1,解得λ=3-54.因此,在线段PA 上是否存在点M ,使得直线GM 与平面EFG 所成角的大小为π6,且PM PA=3-54.例15.已知三棱柱ABC -A 1B 1C 1中,∠ACB =90°,A 1B ⊥AC 1,AC =AA 1=4,BC =2.(1)求证:平面A 1ACC 1⊥平面ABC ;(2)若∠A 1AC =60°,在线段AC 上是否存在一点P ,使二面角B -A 1P -C 的平面角的余弦值为34若存在,确定点P 的位置;若不存在,说明理由.【解析】(1)由AC =AA 1知:四边形AA 1C 1C 为菱形.连接A 1C ,则A 1C ⊥AC 1,又A 1B ⊥AC 1且A 1C ∩A 1B =A 1,∴AC 1⊥平面A 1CB ,BC ⊂平面A 1CB ,则AC 1⊥BC ;又∠ACB =90°,即BC ⊥AC ,而AC ∩AC 1=A ,∴BC ⊥平面A 1ACC 1,而BC ⊂平面ABC ,∴平面A 1ACC 1⊥平面ABC .(2)以C 为坐标原点,射线CA 、CB 为x 、y 轴的正向,平面A 1ACC 1上过C 且垂直于AC 的直线为z 轴,建立如图所示的空间直角坐标系.∵AC =AA 1=4,BC =2,∠A 1AC =60°,∴C 0,0,0 ,B 0,2,0 ,A 4,0,0 ,A 12,0,23 .设在线段AC 上存在一点P ,满足AP =λAC0≤λ≤1 ,使二面角B -A 1P -C 的余弦值为34,则AP =-4λ,0,0 ,所以BP =BA +AP=4,-2,0 +-4λ,0,0 =4-4λ,-2,0 ,A 1P =A 1A +AP=2-4λ,0,-23 .设平面BA 1P 的一个法向量为m=x 1,y 1,z 1 ,由m ⋅BP=4-4λ x 1-2y 1=0m ⋅A 1P =2-4λ x 1-23z 1=0,取x 1=1,得m=1,2-2λ,1-2λ3;平面A 1PC 的一个法向量为n=0,1,0 .由cos m ,n =m ⋅n m ⋅n =2-2λ 1+2-2λ 2+1-2λ23×1=34,解得λ=43或λ=34.因为0≤λ≤1,则λ=34.故在线段AC 上存在一点P ,满足AP =34AC ,使二面角B -A 1P -C 的平面角的余弦值为34.例16.如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AD ⎳BC ,AD ⊥CD ,且AD =CD ,BC =2CD ,PA =2AD .(1)证明:AB ⊥PC ;(2)在线段PD 上是否存在一点M ,使得二面角M -AC -D 的余弦值为1717,若存在,求BM 与PC 所成角的余弦值;若不存在,请说明理由.【解析】(1)证明:连接AC ,设AD =CD =1,因为AD ⊥CD ,则AC =AD 2+CD 2=2,且△ACD 为等腰直角三角形,因为AD ⎳BC ,则∠ACB =∠CAD =45∘,因为BC =2CD =2,由余弦定理可得AB 2=AC 2+BC 2-2AC ⋅BC cos45∘=2,所以,AC 2+AB 2=BC 2,则AB ⊥AC ,∵PA ⊥平面ABCD ,AB ⊂平面ABCD ,∴AB ⊥PA ,∵PA ∩AC =A ,∴AB ⊥平面PAC ,∵PC ⊂平面PAC ,∴AB ⊥PC .(2)因为PA ⊥平面ABCD ,AB ⊥AC ,以点A 为坐标原点,AB 、AC 、AP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,设AD =CD =1,则A 0,0,0 、B 2,0,0 、C 0,2,0 、D -22,22,0 、P 0,0,2 ,设PM =λPD =-22λ,22λ,-2λ ,其中0≤λ≤1,则AM =AP +PM=-22λ,22λ,2-2λ ,AC =0,2,0 ,设平面ACM 的法向量为m=x ,y ,z ,则m ⋅AC=2y =0m ⋅AM =-22λx +22y +2-2λ z =0,取x =2-2λ,可得m =2-2λ,0,λ ,易知平面ACD 的一个法向量为n=0,0,1 ,由题意可得cos <m ,n > =m ⋅n m ⋅n =λ41-λ 2+λ2=1717,因为0≤λ≤1,解得λ=13,此时,AM =-26,26,223 ,BM =BA +AM =-726,26,223 ,PC =0,2,-2 ,所以,cos <BM ,PC >=BM ⋅PCBM ⋅PC =-1333×2=-3322,因此,在线段PD 上是否存在一点M ,使得二面角M -AC -D 的余弦值为1717,且BM 与PC 所成角的余弦值为3322.例17.如图,△ABC 是边长为6的正三角形,点E ,F ,N 分别在边AB ,AC ,BC 上,且AE =AF =BN =4,M 为BC 边的中点,AM 交EF 于点O ,沿EF 将三角形AEF 折到DEF 的位置,使DM =15.(1)证明:平面DEF ⊥平面BEFC ;(2)试探究在线段DM 上是否存在点P ,使二面角P -EN -B 的大小为60°?若存在,求出DPPM的值;若不存在,请说明理由.【解析】(1)在△DOM 中,易得DO =23,OM =3,DM =15,由DM 2=DO 2+OM 2,得DO ⊥OM ,又∵AE =AF =4,AB =AC =6,∴EF ⎳BC ,又M 为BC 中点,∴AM ⊥BC ,∴DO ⊥EF ,因为EF ∩OM =O ,EF ,OM ⊂平面EBCF ,∴DO ⊥平面EBCF ,又DO ⊂平面DEF ,所以平面DEF ⊥平面BEFC ;(2)由(1)DO ⊥平面EBCF ,以O 为原点,以OE ,OM ,OD为x ,y ,z 的正方向建立空间直角坐标系O -xyz ,D (0,0,23),M (0,3,0),E (2,0,0),N (-1,3,0)∴DM =(0,3,-23),ED =(-2,0,23),由(1)得平面ENB 的法向量为n=(0,0,1),设平面ENP 的法向量为m=(x ,y ,z ),DP =λDM (0≤λ≤1),所以DP =(0,3λ,-23λ),所以EP =ED +DP =(-2,3λ,23-23λ).由题得,所以EN =(-3,3,0),所以m ⋅EN=-3x +3y =0m ⋅EP =-2x +3λy +(23-23λ)z =0,所以m =1,3,2-3λ23-23λ,因为二面角P -EN -B 的大小为60°,所以12=2-3λ23-23λ1+3+2-3λ23-23λ2,解之得λ=2(舍去)或λ=67.此时DP =67DM ,所以DP PM=6.例18.图1是直角梯形ABCD ,AB ⎳CD ,∠D =90∘,AB =2,DC =3,AD =3,CE =2ED,以BE 为折痕将△BCE 折起,使点C 到达C 1的位置,且AC 1=6,如图2.(1)求证:平面BC 1E ⊥平面ABED ;(2)在棱DC 1上是否存在点P ,使得C 1到平面PBE 的距离为62?若存在,求出二面角P -BE -A 的大小;若不存在,说明理由.【解析】(1)在图1中取CE 中点F ,连接BF ,AE ,∵CE =2ED ,CD =3,AB =2,∴CF =1,EF =1,∵DF =AB =2,DF ⎳AB ,∠D =90∘,∴四边形ABFD 为矩形,∴BF ⊥CD ,∴BE =BC =3+1=2,又CE =2,∴△BCE 为等边三角形;又AE =3+1=2,∴△ABE 为等边三角形;在图2中,取BE 中点G ,连接AG ,C 1G ,∵△C 1BE ,△ABE 为等边三角形,∴C 1G ⊥BE ,AG ⊥BE ,∴C 1G =AG =3,又AC 1=6,∴AG 2+C 1G 2=AC 21,∴C 1G ⊥AG ,又AG ∩BE =G ,AG ,BE ⊂平面ABED ,∴C 1G ⊥平面ABED ,∵C 1G ⊂平面BC 1E ,∴平面BC 1E ⊥平面ABED .(2)以G 为坐标原点,GA ,GB ,GC 1正方向为x ,y ,z 轴,可建立如图所示空间直角坐标系,则B 0,1,0 ,E 0,-1,0 ,A 3,0,0 ,C 10,0,3 ,D 32,-32,0,∴DC 1 =-32,32,3 ,EB =0,2,0 ,EC 1 =0,1,3 ,设棱DC 1上存在点P x ,y ,z 且DP=λDC 1 0≤λ≤1 满足题意,即x -32=-32λy +32=32λz =3λ,解得:x =32-32λy =32λ-32z =3λ,即P 32-32λ,32λ-32,3λ,则EP =32-32λ,32λ+12,3λ ,设平面PBE 的法向量n=a ,b ,c ,则EP ⋅n =32-32λ a +32λ+12 b +3λc =0EB ⋅n =2b =0,令a =2,则b =0c =1-λλ,∴n =2,0,1-λλ,∴C 1到平面PBE 的距离为d =EC 1 ⋅nn=3-3λλ4+1-λλ2=62,解得:λ=13,∴n=2,0,2 ,又平面ABE 的一个法向量m=0,0,1 ,∴cos <m ,n >=m ⋅nm ⋅n=222=22,又二面角P -BE -A 为锐二面角,∴二面角P -BE -A 的大小为π4.例19.如图所示,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB ⊥AC ,AB =1,AC =AA 1=2,AD =CD =5,E 为棱AA 1上的点,且AE =12.(1)求证:BE ⊥平面ACB 1;(2)求二面角D 1-AC -B 1的余弦值;(3)在棱A 1B 1上是否存在点F ,使得直线DF ∥平面ACB 1?若存在,求A 1F 的长;若不存在,请说明理由.【解析】(1)∵A 1A ⊥底面ABCD ,AC ⊂平面ABCD ∴A 1A ⊥AC又AB ⊥AC ,A 1A ∩AB =A ,AA 1,AB ⊂平面ABB 1A 1,∴AC ⊥平面ABB 1A 1∵BE ⊂平面ABB 1A 1,∴AC ⊥BE ∵AE AB =12=ABBB 1,∠EAB =∠ABB 1=90∘,∴∠ABE =∠AB 1B∵∠BAB 1+∠AB 1B =90∘,∴∠BAB 1+∠ABE =90∘,∴BE ⊥AB 1,又AC ∩AB 1=A ,AC ,AB 1⊂平面ACB 1,∴BE ⊥平面ACB 1(2)如图,以A 为原点建立空间直角坐标系A -xyz ,依题意可得A (0,0,0),B (0,1,0),C (2,0,0),D (1,-2,0),D1(1,-2,2),E 0,0,12,由(1)知,EB =0,1,-12为平面ACB 1的一个法向量.设n=x ,y ,z 为平面ACD 1的一个法向量.因为AD 1 =(1,-2,2),AC =(2,0,0),所以n ⋅AD 1=0n ⋅AC =0 ,即:x -2y +2z =02x =0 ,不妨设z =1,可得n=(0,1,1).因此cos n ,EB =n ⋅EB n ⋅EB =1010由图可知二面角D 1-AC -B 1为锐角,所以二面角D 1-AC -B 1的余弦值为1010.(3)假设存在满足题意的点F ,设A 1F =a (a >0),则由(2)得F (0,a ,2),DF=(-1,a +2,2).由题意可知DF ⋅EB=a +2-1=0,解得a =-1(舍去),即直线DF 的方向向量与平面ACB 1的法向量不可能垂直.所以,在棱A 1B 1上不存在点F ,使得直线DF ∥平面ACB 1.例20.如图,在五面体ABCDE 中,已知AC ⊥BD ,AC ⊥BC ,ED ⎳AC ,且AC =BC =2ED =2,DC =DB =3.(1)求证:平面ABE ⊥与平面ABC ;(2)线段BC 上是否存在一点F ,使得平面AEF 与平面ABE 夹角余弦值的绝对值等于54343,若存在,求BFBC的值;若不存在,说明理由.【解析】(1)证明:∵AC ⊥BD ,AC ⊥BC ,BC ∩BD =B ,∴AC ⊥平面BCD ,∵AC ⊂平面ABC ,∴平面ABC ⊥平面BCD ,取BC 的中点O ,AB 的中点H ,连接OD 、OH 、EH ,∵BD =CD ,∴DO ⊥BC ,又DO ⊂平面BCD ,平面ABC ⊥平面BCD ,平面BCD ∩平面ABC =BC ,∴DO ⊥平面ABC ,又OH ⎳AC ,OH =12AC ,DE ⎳AC ,DE =12AC ,所以,OH ⎳DE 且OH =DE ,∴四边形OHED 为平行四边形,∴EH ⎳OD ,∵DO ⊥面ABC ,则EH ⊥平面ABC ,又∵EH ⊂面ABE ,所以,平面ABE ⊥平面ABC .(2)因为AC ⊥BC ,OH ⎳AC ,则OH ⊥BC ,因为OD ⊥平面ABC ,以点O 为坐标原点,OH 、OB 、OD 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则A 2,-1,0 、B 0,1,0 、C 0,-1,0 、E 1,0,2 、H 1,0,0 ,HE=0,0,2 ,AB =-2,2,0 ,设平面ABE 的法向量为m=x 1,y 1,z 1 ,则m ⋅HE=2z 1=0m ⋅AB=-2x 1+2y 1=0 ,取x 1=1,可得m=1,1,0 ,设在线段BC 上存在点F 0,t ,0 -1≤t ≤1 ,使得平面AEF 与平面ABE 夹角的余弦值等于54343,设平面AEF 的法向量为n=x 2,y 2,z 2 ,AF =-2,t +1,0 ,AE =-1,1,2 ,由n ⋅AF=-2x 2+t +1 y 2=0n ⋅AE =-x 2+y 2+2z 2=0 ,取x 2=2t +1 ,可得n =2t +1 ,22,t -1 ,由题意可得cos <m ,n> =m ⋅n m ⋅n =2t +32⋅3t 2+2t +11=54343,整理可得2t 2-13t -7=0,解得:t =-12或t =7(舍),∴F 0,-12,0 ,则BF =32,∴BF BC =34,综上所述:在线段BC 上存在点F ,满足BF BC=34,使得平面AEF 与平面ABE 夹角的余弦值等于54343.题型三:立体几何折叠问题例21.如图1,在边上为4的菱形ABCD 中,∠DAB =60°,点M ,N 分别是边BC ,CD 的中点,AC ∩BD =O 1,AC ∩MN =G .沿MN 将△CMN 翻折到△PMN 的位置,连接PA ,PB ,PD ,得到如图2所示的五棱锥P -ABMND .(1)在翻折过程中是否总有平面PBD ⊥平面PAG ?证明你的结论;(2)当四棱锥P -MNDB 体积最大时,求直线PB 和平面MNDB 所成角的正弦值;(3)在(2)的条件下,在线段PA 上是否存在一点Q ,使得二面角Q -MN -P 余弦值的绝对值为1010若存在,试确定点Q 的位置;若不存在,请说明理由.【解析】(1)在翻折过程中总有平面PBD ⊥平面PAG ,证明如下:∵点M ,N 分别是边CD ,CB 的中点,又∠DAB =60°,∴BD ∥MN ,且△PMN 是等边三角形,∵G 是MN 的中点,∴MN ⊥PG ,∵菱形ABCD 的对角线互相垂直,∴BD ⊥AC ,∴MN ⊥AC ,∵AC ∩PG =G ,AC ⊂平面PAG ,PG ⊂平面PAG ,∴MN ⊥平面PAG ,∴BD ⊥平面PAG ,∵BD ⊂平面PBD ,∴平面PBD ⊥平面PAG .(2)由题意知,四边形MNDB 为等腰梯形,且DB =4,MN =2,O 1G =3,所以等腰梯形MNDB 的面积S =2+4 ×32=33,要使得四棱锥P -MNDB 体积最大,只要点P 到平面MNDB 的距离最大即可,∴当PG ⊥平面MNDB 时,点P 到平面MNDB 的距离的最大值为3,此时四棱锥P -MNDB 体积的最大值为V =13×33×3=3,直线PB 和平面MNDB 所成角的为∠PBG ,连接BG ,在直角三角形△PBG 中,PG =3,BG =7,由勾股定理得:PB =PG 2+BG 2=10.sin ∠PBG =PGPB=310=3010.(3)假设符合题意的点Q 存在.以G 为坐标原点,GA ,GM ,GP 所在直线分别为x 轴、y 轴、z 轴,建立如图所示空间直角坐标系,则A 33,0,0 ,M 0,1,0 ,N 0,-1,0 ,P 0,0,3 ,由(2)知,AG ⊥PG ,又AG ⊥MN ,且MN ∩PG =G ,MN ⊂平面PMN ,PG ⊂平面PMN ,AG ⊥平面PMN ,故平面PMN 的一个法向量为n 1=1,0,0 ,设AQ =λAP(0≤λ≤1),∵AP=-33,0,3 ,AQ=-33λ,0,3λ ,故331-λ ,0,3λ ,∴NM=0,2,0 ,QM =33λ-1 ,1,-3λ ,平面QMN 的一个法向量为n 2=x 2,y 2,z 2 ,则n 2 ⋅NM =0,n 2 ⋅QM=0,即2y 2=0,33λ-1 x 2+y 2-3λz 2=0,令z 2=1,所以y 2=0,x 2=λ3λ-1n 2 =13λ-1 ,0,1=13λ-1λ,0,3λ-1 ,则平面QMN 的一个法向量n=λ,0,3λ-1 ,设二面角Q -MN -P 的平面角为θ,则cos θ =n ⋅n 1 n n 1 =λλ2+9λ-1 2=1010,解得:λ=12,故符合题意的点Q 存在且Q 为线段PA 的中点.例22.如图,在等腰直角三角形PAD 中,∠A =90°,AD =8,AB =3,B 、C 分别是PA 、PD 上的点,且AD ⎳BC ,M 、N 分别为BP 、CD 的中点,现将△BCP 沿BC 折起,得到四棱锥P -ABCD ,连接MN .(1)证明:MN ⎳平面PAD ;(2)在翻折的过程中,当PA =4时,求二面角B -PC -D 的余弦值.【解析】(1)在四棱锥P -ABCD 中,取AB 的中点E ,连接EM ,EN .因为M ,N 分别为BP ,CD 的中点,AD ⎳BC ,所以ME ⎳PA ,EN ⎳AD ,又PA ⊂平面PAD ,ME ⊄平面PAD ,所以ME ⎳平面PAD ,同理可得,EN ⎳平面PAD ,又ME ∩EN =E ,ME ,EN ⊂平面MNE ,所以平面MNE ⎳平面PAD ,因为MN ⊂MNC 平面MNE ,所以MN ⎳平面PAD .(2)因为在等腰直角三角形PAD 中,∠A =90°,AD ⎳BC ,所以BC ⊥PA ,在四棱锥P -ABCD 中,BC ⊥PB ,BC ⊥AB ,因为AD ⎳BC ,则AD ⊥PB ,AD ⊥AB ,又PB ∩AB =B ,PB ,AB ⊂平面PAB ,所以AD ⊥平面PAB ,又PA ⊂平面PAB ,所以PA ⊥AD ,因为AD =8,AB =3,PA =4,AD ⎳BC ,则PB =5,BC =5,所以AB 2+PA 2=PB 2,故PA ⊥AB ,所以以点A 为坐标原点,分别以AB ,AD ,AP 所在方向为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系A -xyz ,如图所示,A (0,0,0),B (3,0,0),C (3,5,0),P 0,0,4 ,D 0,8,0 ,所以PB =(3,0,-4),PC =(3,5,-4),PD =(0,8,-4),设m =(x 1,y 1,z 1)为平面PBC 的一个法向量,则m ⋅PB =0m ⋅PC =0,即3x 1-4z 1=03x 1+5y 1-4z 1=0 ,令x 1=4,则y 1=0,z 1=2,m =(4,0,3),设n =(x 2,y 2,z 2)为平面PCD 的一个法向量,则m ⋅PD =0m ⋅PC =0 ,即8y 2-4z 2=03x 2+5y 2-4z 2=0,令y 2=1,则x 2=1,z 2=2,n =(1,1,2),设二面角B -PC -D 所成角为α,则cos α=-cos m ,n =-m ⋅n m ⋅n =-4×1+0×1+2×3 42+02+32×12+12+22=-105×6=-63.因为二面角B -PC -D 的余弦值为-63.例23.如图1,在平面四边形PDCB 中,PD ∥BC ,BA ⊥PD ,PA =AB =BC =2,AD =1.将△PAB 沿BA 翻折到△SAB 的位置,使得平面SAB ⊥平面ABCD ,如图2所示.(1)设平面SDC 与平面SAB 的交线为l ,求证:BC ⊥l ;(2)点Q 在线段SC 上(点Q 不与端点重合),平面QBD 与平面BCD 夹角的余弦值为66,求线段BQ 的长.【解析】(1)依题意,AD ⊥AB ,因为PD ∥BC ,所以BC ⊥AB ,由于平面SAB ⊥平面ABCD ,且交线为AB ,BC ⊂平面ABCD ,所以BC ⊥平面SAB ,因为l 是平面SDC 与平面SAB 的交线,所以l ⊂平面SAB ,故BC ⊥l .(2)由上可知,AD ⊥平面SAB ,所以AD ⊥SA ,由题意可知SA ⊥AB ,AD ⊥AB ,以点A 为坐标原点,分别以AD ,AB ,AS 所在直线为x ,y ,z 轴建立空间直角坐标系,则A 0,0,0 ,B 0,2,0 ,C 2,2,0 ,D 1,0,0 ,S 0,0,2 ,BD =1,-2,0 ,SC =2,2,-2 ,设SQ =λSC 0<λ<1 ,则Q 2λ,2λ,2-2λ ,BQ =2λ,2λ-2,2-2λ ,设n =x ,y ,z 是平面QBD 的一个法向量,则n ⋅BD =x -2y =0n ⋅BQ =2λx +2λ-1 y +21-λ z =0,令x =2,可得n =2,1,1-3λ1-λ由于m =0,0,1 是平面CBD 的一个法向量,依题意,二面角Q -BD -C 的余弦值为66,所以cos m ,n =m ⋅n m ⋅n =1-3λ1-λ 1×4+1+1-3λ1-λ2=66,解得λ=12∈0,1 ,此时BQ =1,-1,1 ,BQ =3,即线段BQ 的长为3.例24.如图,在平面五边形PABCD 中,△PAD 为正三角形,AD ∥BC ,∠DAB =90°且AD =AB =2BC =2.将△PAD 沿AD 翻折成如图所示的四棱锥P -ABCD ,使得PC =7.F ,Q 分别为AB ,CE 的中点.(1)求证:FQ ∥平面PAD ;(2)若DE PE=12,求平面EFC 与平面PAD 夹角的余弦值.【解析】(1)(1)证明:取DC 的中点M ,连接MF ,MQ .则MQPD ,MFDA .因为MQ ⊄面PAD ,ME ⊄面PAD ,所以,MQ ∥面PAD ,MF ∥面PAD ,因为MQ ∩ME =M ,所以,面MQF 面PAD ,因为FQ ⊂面MQF ,所以FQ ∥面PAD .(2)(2)取AD 的中点O ,连接OP ,OC ,因为△PAD 为正三角形,AD =2,所以OP ⊥AD 且OP =3,在直角梯形ABCD 中,AD ∥BC ,∠DAB =90°,AB =2BC =2,所以,OC ⊥AD 且OC =2,又因为PC =7,所以在△POC 中,OP 2+OC 2=PC 2,即OP ⊥OC ,所以,以O 为坐标原点,分别以OD ,OC ,OP 的方向为x ,y ,z 轴的正向,建立如图所示的空间直角坐标系,则D 1,0,0,C 0,2,0 ,F -1,1,0 ,P 0,0,3 ,DP =-1,0,3 .因为DE PE=12,即DE =13DP =-13,0,33 ,λ>0,所以,E 23,0,33,所以EC =-23,2,-33 ,EF =-53,1,-33.设n =x 1,y 1,z 1 为平面EFC 的一个法向量,则n ⋅EC =0n ⋅EF =0 ,即-23x 1+2y 1-33z 1=0-53x 1+y 1-33z 1=0,取n =3,-3,-83 .又平面PAD 的一个法向量m =0,1,0 ,设平面EFC 与平面PAD 夹角为α,cos α=n ⋅m n ⋅m =39+9+192=21070.例25.如图,在平行四边形ABCD 中,AB =3,AD =2,∠A =60°,E ,F 分别为线段AB ,CD 上的点,且BE =2AE ,DF =FC ,现将△ADE 沿DE 翻折至△A 1DE 的位置,连接A 1B ,A 1C .(1)若点G 为线段A 1B 上一点,且A 1G =3GB ,求证:FG ⎳平面A 1DE ;(2)当三棱锥C -A 1DE 的体积达到最大时,求二面角B -A 1C -D 的正弦值.【解析】(1)在A 1E 上取一点M ,使A 1M =3ME ,连接DM ,MG ,因为A 1G =3GB ,EB =2AE ,所以MG ∥EB ,MG =34EB =34×23AB =12AB ,因为平行四边形ABCD 中,AB =CD ,AB ∥CD ,F 为CD 的中点,所以DF =12CD =12AB ,所以DF =MG ,DF ∥MG ,所以四边形DMGF 为平行四边形,所以FG ∥DM ,因为FG ⊄平面A 1DE ,DM ⊂平面A 1DE ,所以FG ∥平面A 1DE ,(2)当平面A 1DE ⊥平面DEC 时,三棱锥C -A 1DE 的体积最大,△ADE 中,∠A =60°,AD =2,AE =1,则DE 2=AD 2+AE 2-2AD ⋅AE cos A =4+1-2×2×1×12=3,所以DE 2+AE 2=AD 2,所以∠AED =90°,所以A 1E ⊥DE ,因为平面A 1DE ⊥平面DEC ,平面A 1DE ∩平面DEC =DE ,所以A 1E ⊥平面DEC ,因为BE ⊂平面DEC ,所以A 1E ⊥BE ,所以A 1E ,BE ,DE 两两垂直,所以以E 为原点,EB ,ED ,EA 1所在的直线分别为x ,y ,z 轴建立空间直角坐标系,如图所示,则D (0,3,0),A 1(0,0,1),B (2,0,0),C (3,3,0),所以DC =(3,0,0),DA 1 =(0,-3,1),BC =(1,3,0),CA 1 =(-3,-3,1),设平面A 1CD 的法向量为n =(x ,y ,z ),则n ⋅DA 1 =-3y +z =0n ⋅CA 1 =-3x -3y +z =0,令y =1,则n =(0,1,3),设平面A 1BC 的法向量为m =(a ,b ,c ),则m ⋅BC =a +3b =0m ⋅CA 1 =-3a -3b +c =0,令b =1,则m =(-3,1,-23),所以cos m ,n =m ⋅n m n=1-62×4=-58,所以二面角B -A 1C -D 的正弦值为1--58 2=398例26.如图1,四边形ABCD 是边长为2的正方形,四边形ABEF 是等腰梯形,AB =BE =12EF ,现将正方形ABCD 沿AB 翻折,使CD 与C D 重合,得到如图2所示的几何体,其中D E =4.(1)证明:AF ⊥平面AD E ;(2)求二面角D -AE -C 的余弦值.【解析】(1)证明:易得AD =AF =2,EF =D E =4,所以AE =23,则AD 2+AE 2=D E 2=EF 2,∴AD ⊥AE ,AE ⊥AF .又AD ⊥AB ,且AB ∩AE =A ,AB ,AE ⊂平面ABEF ,∴AD ⊥平面ABEF .∵AF ⊂平面ABEF ,∴AF ⊥AD .∵AE ∩AD =A ,AE ⊂平面AD E ,AD ⊂平面AD E ,∴AF ⊥平面AD E .(2)由(1)知AD ⊥平面ABEF ,则以A 为坐标原点,AB ,AD 所在直线分别为y ,z 轴,平面ABEF 内过点A 且垂直于AB 的直线为x 轴,建立如图所示的空间直角坐标系,则A 0,0,0 ,E 3,3,0 ,F 3,-1,0 ,C 0,2,2 ,∴AF =3,-1,0 ,AE =3,3,0 ,AC =00,2,2 .设平面AEC 的一个法向量为m =x ,y ,z ,则m ⋅AE =0m ⋅AC =0 ,得3x +3y =0,2y +2z =0,令x =3,则m =3,-1,1 .由(1)知,平面AED 的一个法向量为AF =3,-1,0 .∴cos AF ,m =AF ⋅m AF m=255.易知二面角D -AE -C 为锐二面角,∴二面角D -AE -C 的余弦值为255.例27.如图,在梯形ABCD 中,AD ∥BC ,AB =BC =2,AD =4,现将△ABC 所在平面沿对角线AC 翻折,使点B 翻折至点E ,且成直二面角E -AC -D .(1)证明:平面EDC ⊥平面EAC ;(2)若直线DE 与平面EAC 所成角的余弦值为12,求二面角D -EA -C 的余弦值.【解析】(1)证明:取AD 中点M ,连接CM ,由题意可得AM =2,AM 平行且等于BC ,∴四边形ABCM 为平行四边形,∵AM =MD =CM =2,∴△ACD 为直角三角形,即AC ⊥CD ,∵直二面角E -AC -D ,CD ⊂平面ACD ,∴平面EAC ⊥平面ACD ,平面EAC ∩平面ACD =AC ,∴CD ⊥平面EAC ,CD ⊂平面ECD ,∴平面ECD ⊥平面EAC .(2)由(1)可得DC ⊥平面EAC ,∴∠DEC 为直线DE 与平面EAC 所成角,∴cos ∠DEC =12,∴∠DEC =60°.在Rt △ECD 中,∵CE =2,∴CD =23,ED =4,在Rt △ACD 中,AC =2,∴△ABC 、△AEC 为等边三角形,以AC 中点O 为坐标原点,以OC ,OM ,OE 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,A (-1,0,0),C (1,0,0),E (0,0,3),D (1,23,0),平面EAC 为xOz 平面,则其法向量为v =(0,1,0),在平面AED 内,设其法向量为u =(x ,y ,z ),AD =(2,23,0),AE =(1,0,3),则AD ⋅u =0AE ⋅u =0 ,即2x +23y =0x +3z =0,令x =3,则y =-1,z =-1,∴u =(3,-1,-1),设二面角D -EA -C 的平面角为θ,∴cos ‹u ,v ›=u ⋅v |u ||v |=-55,由图可知二面角D -EA -C 为锐角,∴cos θ=55.例28.如图1,在△ABC 中,∠ACB =90°,DE 是△ABC 的中位线,沿DE 将△ADE 进行翻折,使得△ACE 是等边三角形(如图2),记AB 的中点为F .(1)证明:DF ⊥平面ABC .(2)若AE =2,二面角D -AC -E 为π6,求直线AB 与平面ACD 所成角的正弦值.【解析】(1)如图,取AC 中点G ,连接FG 和EG ,由已知得DE ∥BC ,且DE =12BC .因为F ,G 分别为AB ,AC 的中点,所以FG ∥BC ,且FG =12BC 所以DE ∥FG ,且DE =FG .所以四边形DEGF 是平行四边形.所以EG ∥DF .因为翻折的BC ⊥AC ,易知DE ⊥AC .所以翻折后DE ⊥EA ,DE ⊥EC .又因为EA ∩EC =E ,EA ,EC ⊂平面AEC ,所以DE ⊥平面AEC .因为DE ∥BC ,所以BC ⊥平面AEC .因为EG ⊂平面AEC ,所以EG ⊥BC .因为△ACE 是等边三角形,点G 是AC 中点,所以EG ⊥AC又因为AC ∩BC =C ,AC ,BC ⊂平面ABC .所以EG ⊥平面ABC .。

高中数学立体几何题型归纳

高中数学立体几何题型归纳

高中数学立体几何题型归纳
高中数学立体几何是高考数学的一个重要组成部分,其题型归纳如下:
1. 计算题:主要要求异面直线所成的角、直线与平面所成的角、二面角、点到面的距离、表面积、体积等。

2. 证明题:主要证明线线平行或垂直、线面平行或垂直、面面平行或垂直、多点共线、多点共面、多线共面等。

3. 三视图问题:要求画出简单空间图形 (长方体、球、圆柱、圆锥、棱柱等的简易组合) 的三视图,并能识别上述三视图所表示的立体模型。

4. 空间直线与平面的位置关系问题:要求判断直线与平面的位置关系 (包括平行、垂直、相交等),并求解距离、角度等。

5. 空间向量问题:要求理解空间向量的概念,掌握空间向量的加减法和数量积运算法则,能够运用空间向量求解立体几何问题。

6. 空间点、线、面之间的位置关系问题:要求判断点、线、面之间的位置关系 (包括平行、垂直、相交等),并求解距离、角度等。

7. 立体几何中的证明题:主要证明线线平行或垂直、线面平行或垂直、面面平行或垂直、多点共线、多点共面、多线共面等。

此外,还有一些特殊的立体几何问题,如立方体问题、圆锥问题、球体问题等。

对于这些问题,需要结合实际情况进行具体分析,并注重理解和掌握相关的概念、定理和公式。

立体几何归类总结

立体几何归类总结

立体几何归类总结一、异面直线所成的角:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.二、直线和平面所成的角求直线与平面所成的角的一般步骤:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin hl θ=(l 为斜线段长),进而可求得线面角; (3)通过建系,利用坐标系向量求解:直线与平面所成的角(射影角,也是夹角,[0.]2πϑ∈),m n ,是平面法向量sin |cos a |=b θ=,三、二面角的平面角角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin hlθ=(l 为斜线段长),进而可求得线面角;(3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.【题型一】异面直线所成的角1: 平移直线法(中位线)【例1】如图∶已知A 是BCD △所在平面外一点,AD BC =,E 、F 分别是AB 、CD 的中点,若异面直线AD 与BC 所成角的大小为θ,AD 与EF 所成角的大小为_______________.【例2】如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 为菱形,60ABC ∠=且PA AB E =,为AP 的中点,则异面直线PC 与DE 所成的角的余弦值为( )A B C D 【例3】空间四边形ABCD 的对角线10AC =,6BD =,M ,N 分别为AB ,CD 的中点,7MN =,则异面直线AC 和BD 所成的角等于( )A .30°B .60°C .90°D .120°【例4】在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,在鳖臑 ABCD 中,AB ⊥平面BCD ,且AB =BC =CD ,则异面直线AC 与BD 所成角为( )A .30°B .45°C .60°D .90°【题型二】异面直线所成的角2:平行四边形、梯形等【例1】已知六棱锥P ﹣ABCDEF 的底面是正六边形,PA ⊥平面ABC ,PA =2AB ,则异面直线CD 与PB 所成的角的余弦值为( )A B C D【例2】已知圆柱的母线长为2ABCD 为其轴截面,若点E 为上底面圆弧AB 的中点,则异面直线DE 与AB 所成的角为( )A .4πB .6πC .512πD .3π【例3】如图,在正方体1111ABCD A B C D -中,E ,F ,G ,H 分别为1AA ,AB ,1BB ,11B C 的中点,则异面直线EF 与GH 所成的角等于( )A .45︒B .60︒C .90︒D .120︒【例4】正方体1111ABCD A B C D -中,已知E 为1CC 的中点,那么异面直线1BC 与AE 所成的角等于( ) A .30 B .45︒ C .60︒ D .90︒【题型三】异面直线所成的角3:垂直【例1】如图,在三棱柱111ABC A B C -中,CA CB =,1AB AA =,1π3BAA ∠=,那么异面直线AB 与1A C 所成的角为A .6πB .π4C .π3D .π2【例2】在如图所示的正方体中,M ,N 分别为棱BC 和DD 1的中点,则异面直线AN 和B 1M 所成的角为( )A .30°B .45°C .90°D .60°【例3】菱形ABCD 的对角线AC 、BD 的交点为O ,P 是菱形所在平面外一点,PO ⊥平面ABCD ,则异面直线AC 与PD 所成角大小为______.【例4】若异面直线a ,b 所成的角为3π,且直线c a ⊥,则异面直线b ,c 所成角的范围是______.【题型四】 异面直线所成角的范围与最值(难点)【例1】如图,点M N 、分别是正四面体ABCD 棱AB CD 、上的点,设BM x =,直线MN 与直线BC 所成的角为θ,则( )A .当2ND CN =时,θ随着x 的增大而增大B .当2ND CN =时,θ随着x 的增大而减小C .当2CN ND =时,θ随着x 的增大而减小 D .当2CN ND =时,θ随着x 的增大而增大【例2】已知菱形ABCD ,60DAB ∠=︒,E 为边AB 上的点(不包括A B ,),将ABD △沿对角线BD 翻折,在翻折过程中,记直线BD 与CE 所成角的最小值为α,最大值为β( ) A .αβ,均与E 位置有关B .α与E 位置有关,β与E 位置无关C .α与E 位置无关,β与E 位置有关D .αβ,均与E 位置无关【例3】在正方体1111ABCD A B C D -中,已知,,E F G 分别为111,,CD D D A B 的中点,P 为平面11CDD C 内任一点,设异面直线GF 与PE 所成的角为α,则cos α的最大值为( )A .13BCD .1【例4】已知圆柱12O O 的底面半径和母线长均为1,A ,B 分别为圆2O 、圆1O 上的点,若2AB =,则异面直线1O B ,2O A 所成的角为( )A .6π B .3πC .23π D .56π【题型五】 异面直线所成角:综合【例1】在正方体ABCD ﹣A 1B 1C 1D 1中,过点C 做直线l ,使得直线l 与直线BA 1和B 1D 1所成的角均为70,则这样的直线l ( )A .不存在B .2条C .4条D .无数条【例2】在正方体1111ABCD A B C D -的所有面对角线中,所在直线与直线1A B 互为异面直线且所成角为60︒的面对角线的条数为( ) A .2 B .4 C .6 D .8【例3】1111ABCD A B C D -是棱长为1的正方体,一个质点从A 出发沿正方体的面对角线运动,每走完一条面对角线称“走完一段”,质点的运动规则如下:运动第i 段与第2i +所在直线必须是异面直线(其中i 是正整数).问质点走完的第2021段与第1段所在的直线所成的角是( )A .0°B .30°C .60°D .90°【例4】已知异面直线a 、b 所成角为80︒,P 为空间一定点,则过P 点且与a 、b 所成角都是50︒的直线有且仅有( )条. A .2 B .3 C .4D .6【题型六】 直线和平面所成的角1:垂线法【例1】在空间,若60AOB AOC ∠=∠=︒,90BOC ∠=°,直线OA 与平面OBC 所成的角为θ,则cos θ=( )A B C .12D .13【例2】正四面体ABCD 中,直线AB 与平面BCD 所成的角的正弦值是( )A B .14C D【例3】如图,已知正方体1111ABCD A B C D -,直线1A B 与平面11A B CD 所成的角为( )A .30B .45︒C .60︒D .90︒【例4】已知正四棱柱1111ABCD A B C D -,设直线1AB 与平面11ACC A 所成的角为α,直线1CD 与直线11A C 所成的角为β,则( ) A .2βα= B .2αβ=C .αβ=D .2παβ+=【题型七】直线和平面所成 的角2:垂面法【例1】如图,在三棱锥P ABC -中,平面PAB ⊥平面,2ABC PA PB AB ===,,AB BC BC ⊥=线PC 与平面ABC 所成的角是( )A .30︒B .45︒C .60︒D .90︒【例2】正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为则直线1B A 与平面11BB C C 所成的角为( )A .3πB .6πC .512πD .4π【例3】如图,在正三棱柱111ABC A B C -中,底面边长为2,侧棱长为3,则直线1BB 与平面11AB C 所成的角为________.【例4】已知四棱锥P ABCD -底面是边长为2的正方形,PA ⊥平面ABCD ,且2PA =,则直线PB 与平面PCD 所成的角大小为__________.【题型八】直线和平面所成 的角3:体积法(距离法)【例1】如图,在直三棱柱111ABC A B C -中,1AB BC ==,120ABC ∠=︒.M 为11A C 的中点,则直线BM 与平面11ABB A 所成的角为( )A .15°B .30°C .45°D .60°【例2】在正方体''''ABCD A B C D -中,直线'BC 与平面'A BD 所成的角的余弦值等于A B C D【例3】已知长方体1111ABCD A B C D -中,1112AA AB AD ===,,1AA 与平面1A BD 所成的角为______.【例4】直线l 与平面α所成的角为6π,且AB 是直线l 上两点,线段AB 在平面α内的射影长为3,则AB =___________.【题型九】线面角中的范围与最值【例1】在正方体1111ABCD A B C D -中,点O 为线段BD 的中点,设点P 在直线1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是A .⎤⎥⎣⎦B .⎤⎥⎣⎦C .⎣⎦D .⎣⎦【例2】若直线l 与平面α所成的角为3π,直线a 在平面α内,则直线l 与直线a 所成的角的取值范围是( )A .0,3π⎡⎤⎢⎥⎣⎦B .,62ππ⎡⎤⎢⎥⎣⎦ C .,32ππ⎡⎤⎢⎥⎣⎦ D .,63ππ⎡⎤⎢⎥⎣⎦【例3】在正方体1111ABCD A B C D -中,点P 在线段11C D 上,若直线1B P 与平面11BC D 所成的角为θ,则tan θ的取值范围是( )A .⎣⎦B .⎡⎣C .11,32⎡⎤⎢⎥⎣⎦D .⎤⎥⎣⎦【例4】直线l 与平面α所成的角为π3,则直线l 与平面α内直线所成角的最小值是________.【题型十】线面角:综合【例1】如图所示,在正方体1AC 中,2AB =,1111AC B D E =,直线AC 与直线DE 所成的角为α,直线DE 与平面11BCC B 所成的角为β,则()cos αβ-=__________.【例2】直线l 与平面α所成的角是45°,若直线l 在α内的射影与α内的直线m 所成的角是45°,则l 与m 所成的角是( ) A .30° B .45°C .60°D .90°【例3】若直线l 与平面α所成的角为3π,直线a 在平面α内,且与直线l 异面,则直线l 与直线a 所成角的取值范围是( )A .0,3π⎡⎤⎢⎥⎣⎦B .,62ππ⎡⎤⎢⎥⎣⎦C .,63ππ⎡⎤⎢⎥⎣⎦D .,32ππ⎡⎤⎢⎥⎣⎦【例4】如图,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上,若直线1DD 与平面1D EC 所成的角为4π,则AE =__________.【题型十一】定义法求二面角的平面角【例1】自二面角内任意一点分别向两个面引垂线,则两垂线所成的角与二面角的平面角的关系是( ) A .相等 B .互补 C .互余 D .相等或互补【例2】如图,菱形ABCD 的边长为60BCD ∠=︒,将BCD △沿对角线BD 折起,使得二面角C BD A '--的平面角的余弦值是13,则C B '与平面ABD 所成角的正弦值是( )A B C D【例3】在三棱锥P -ABC 中,P A =PB =AC =CB =AB =2,PC =3,则二面角P -AB -C 的大小为( ) A .30° B .60° C .90° D .120°【例4】在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥底面ABCD ,且PA AB =,AD =,则二面角P CD B --的大小为( ) A .30° B .45° C .60°D .75°【题型十二】二面角内的角度【例1】从空间一点P 向二面角l αβ--的两个面α、β分别作垂线PE 、PF ,E ,F 为垂足,若二面角l αβ--的大小为60°,则⊥EPF 的大小为( )A .60°B .120°C .60°或120°D .不确定【例2】如图,在ABC 中,AB AC =,3A π∠=,P 为底边BC 上的动点,BP BC λ=,102λ<<,沿折痕AP把ABC 折成直二面角B AP C '--,则B AC '∠的余弦值的取值范围为( )A .⎛ ⎝⎭B .12⎛ ⎝⎭C .13,24⎛⎫ ⎪⎝⎭D .10,2⎛⎫⎪⎝⎭【例3】如图,圆锥AO 中,B 、C 是圆O 上的不同两点,若30OAB ∠=,且二面角B AO C --所成平面角为60,动点P 在线段AB 上,则CP 与平面AOB 所成角的正切值的最大值为( )A .2 BC D .1【例4】已知E ,F 分别是矩形ABCD 边AD ,BC 的中点,沿EF 将矩形ABCD 翻折成大小为α的二面角.在动点P 从点E 沿线段EF 运动到点F 的过程中,记二面角B AP C --的大小为θ,则( ) A .当90α<︒时,sin θ先增大后减小 B .当90α<︒时,sin θ先减小后增大 C .当90α>时,sin θ先增大后减小 D .当90α>时,sin θ先减小后增大【题型十三】二面角内的距离【例1】如图,在大小为60︒的二面角A EF D --中,四边形ABFE ,四边形CDEF 都是边长为1的正方形,则B ,D 两点间的距离是( )AB .2C .1 D【例2】在三棱锥A -BCD 中,ABC 和BCD △均为边长为2的等边三角形,若AB CD ⊥,则二面角A -BC -D 的余弦值为( )A B C .13D【例3】120°的二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知2AB =,3AC =,4BD =,则CD 的长为( )A B C D【例4】如下图,面α与面β所成二面角的大小为3π,且A ,B 为其棱上两点.直线AC ,BD 分别在这个二面角的两个半平面中,且都垂直于AB ,已知AB =2AC =,4BD =,则CD =( )AB C D .【题型十四】综合角度:比大小(难点)【例1】在正方体1111ABCD A B C D -中,M 是线段1A C (不含端点)上的点,记直线M B 与直线11A B 成角为α,直线MC 与平面ABC 所成角为β,二面角M BC A --的平面角为γ,则( )A .βγα<<B .αβγ<<C .βαγ<<D .γαβ<<【例2】已知矩形ABCD ,M 是边AD 上一点,沿BM 翻折ABM ,使得平面ABM ⊥平面BCDM ,记二面角A BC D --的大小为α,二面角A DM C --的大小为β,则( )A .αβ<B .αβ>C .2παβ+< D .2παβ+>【例3】四棱锥P ABCD -的各棱长均相等,M 是AB 上的动点(不包括端点),点N 在线段AD 上且满足2AN ND =,分别记二面角P MN C --,P AB C ,P MD C --的平面角为,,αβγ,则( ) A .βαγ>> B .βγα>>C .γβα>>D .γαβ>>【例4】已知等边ABC ,点,E F 分别是边,AB AC 上的动点,且满足EF BC ∥,将AEF 沿着EF 翻折至P 点处,如图所示,记二面角P EF B --的平面角为α,二面角P FC B --的平面角为β,直线PF 与平面EFCB 所成角为γ,则( )A .αβγ≥≥B .αγβ≥≥C .βαγ≥≥D .βγα≥≥1.在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1BB 所成角为( )A .6πB .3πC .4πD .2π2.若二面角l αβ--的平面角为θ,异面直线a ,b 满足a α⊂,b β⊂,且a l ⊥,b l ⊥,则异面直线a ,b 所成的角为( ).A .θB .πθ-C .2θπ-D .θ或πθ-3..已知正三棱锥A BCD -中,BC =,E 是CD 的中点,则异面直线BE 与AD 所成角为( ) A .30° B .45° C .60° D .90°4.在直三棱柱111ABC A B C -中,12AB AA ==,1BC =,AB BC ⊥,点D 是侧棱1BB 的中点,则异面直线1C D 与直线1AB 所成的角大小为( )A .6πB .4πC .3πD .2π5.两条异面直线,a b 所成的角为60,在直线,a b 上分别取点,A E 和点,B F ,使AB a ⊥,且AB b ⊥.已知6,8,14AE BF EF ===,则线段AB 的长为( )A .20或12B .12或C .D .206..已知两条异面直线a ,b 所成角为60°,在直线a 上取点C ,E .在直线b 上取点D ,F ,使CD a ⊥,且CD b ⊥.已知1CE DF CD ===,则线段EF 的长为______.7..在正方体1111ABCD A B C D -中,设直线1BD 与直线AD 所成的角为α,直线1BD 与平面11CDD C 所成的角为β,则αβ+=( )A .4πB .3πC .2πD .23π8.如图,正四棱锥P ABCD -的体积为2,底面积为6,E 为侧棱PC 的中点,则直线BE 与平面PAC 所成的角为_______.9.在正方体1111ABCD A B C D -中,若存在平面α,使每条棱所在的直线与平面α所成的角都相等,则各棱所在的直线与此平面所成角的正切值为_______.10.过正方体1111ABCD A B C D -的顶点A 作平面α,使正方形ABCD 、正方形11ABB A 、正方形11ADD A 所在平面与平面α所成的二面角的平面角相等,则这样的平面α可以作( )A .1个B .2个C .3个D .4个11.如图,已知二面角l αβ--平面角的大小为3π,其棱l 上有A 、B 两点,AC 、BD 分别在这个二面角的两个半平面内,且都与AB 垂直.已知1AB =,2==AC BD ,则CD =( )A .5B .13C D11.已知矩形 ABCD ,1AB =,BC =沿对角线AC 将ABC 折起,若二面角B AC D --的余弦值为13-,则B 与D 之间距离为( )A.1 BC D12.已知在正方体1111ABCD A B C D -中,点E 为棱BC 的中点,直线l 在平面1111D C B A 内.若二面角A l E --的平面角为θ,则cos θ的最小值为( )A B .1121 C D .3513.已知在正四棱锥P ABCD -中,2AB =,3PA =,侧棱与底面所成角为α,侧面与底面所成角为β,二面角A PB C --的平面角为θ,则下列说法正确的是( ) A .βαθ<< B .αθβ<< C .2cos cos 0θβ+= D .2cos cos 0θα+=。

高考数学立体几何题型大全总结

高考数学立体几何题型大全总结

高考数学立体几何题型大全总结1. 三角锥的体积公式
体积公式:V=1/3∗S∗h
其中,S为底面积,h为高。

2. 三棱锥的体积公式
体积公式:V=1/3∗S∗h
其中,S为底面积,h为高。

3. 四棱锥的体积公式
体积公式:V=1/3∗S∗h
其中,S为底面积,h为高。

4. 圆锥的体积公式
体积公式:V=1/3∗π∗r2∗h
其中,r为圆锥的半径,h为圆锥的高。

5. 球的体积公式
体积公式:V=4/3∗π∗r3
其中,r为球的半径。

6. 圆柱的体积公式
体积公式:V=π∗r2∗h
其中,r为圆柱的半径,h为圆柱的高。

7. 圆台的体积公式
体积公式:V=1/3∗π∗h∗(r12+r22+r1r2)
其中,r1,r2为底面半径,h为圆台高。

8. 空间向量的共线与垂直判定公式
共线判定公式:
如果两个向量a,b共线,则有a=kb,其中k为一个实数。

垂直判定公式:
如果两个向量a,b垂直,则有a·b=0,其中“·”表示向量的数量积。

9. 空间向量的平面垂直判定公式
若向量a与平面P垂直,则a在平面P上的投影为零向量。

10. 空间向量的平面共面判定公式
若向量a和向量b在同一平面上,则a和b的向量积c在该平面内。

11. 空间中两直线相交的条件
两直线相交的条件是它们至少有一个公共点,并且既不平行也不重合。

高考数学立体几何题型全归纳

高考数学立体几何题型全归纳

高考数学立体几何题型全归纳一、空间几何体的结构特征1. 一个三棱柱的底面是正三角形,侧棱垂直于底面,它的三视图及其尺寸如下(单位cm),则该三棱柱的表面积为()正视图:是一个矩形,长为2,高为√(3);侧视图:是一个矩形,长为2,高为1;俯视图:是一个正三角形,边长为2。

解析:底面正三角形的边长a = 2,底面积S_{底}=(√(3))/(4)a^2=(√(3))/(4)×2^2=√(3)。

侧棱长h = 1,三个侧面的面积S_{侧}=3×2×1 = 6。

所以表面积S=2S_{底}+S_{侧}=2√(3)+6。

2. 若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是()正视图:是一个梯形,上底为1,下底为2,高为2;侧视图:是一个矩形,长为2,宽为1;俯视图:是一个矩形,长为2,宽为1。

解析:该几何体是一个四棱台。

上底面积S_{1}=1×1 = 1,下底面积S_{2}=2×2=4,高h = 2。

根据四棱台体积公式V=(1)/(3)h(S_{1}+S_{2}+√(S_{1)S_{2}})=(1)/(3)×2×(1 + 4+√(1×4))=(14)/(3)二、空间几何体的表面积与体积3. 已知球的直径SC = 4,A,B是该球球面上的两点,AB=√(3),∠ ASC=∠BSC = 30^∘,则棱锥S - ABC的体积为()解析:设球心为O,因为SC是球的直径,∠ ASC=∠ BSC = 30^∘所以SA=SB = 2√(3),AO = BO=√(3)又AB=√(3),所以 AOB是等边三角形,S_{ AOB}=(√(3))/(4)×(√(3))^2=(3√(3))/(4)V_{S - ABC}=V_{S - AOB}+V_{C - AOB}=(1)/(3)× S_{ AOB}×(SO + CO)=(1)/(3)×(3√(3))/(4)×2=√(3)4. 一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()正视图:是一个正方形,右上角缺了一个等腰直角三角形;侧视图:是一个正方形,右上角缺了一个等腰直角三角形;俯视图:是一个正方形,右上角缺了一个小正方形。

人教版高中数学必修2立体几何题型归类总结资料讲解

人教版高中数学必修2立体几何题型归类总结资料讲解

仅供学习与交流,如有侵权请联系网站删除 谢谢7
精品资料
图 14 15.一个棱锥的三视图如图图 9-3-7,则该棱锥的全面积(单位: cm2 )_____________.
正视图
左视图
俯视图 图 15
16.图 16 是一个几何体的三视图,根据图中数据,可得该几何体的表面积是_____________.
D'
C'
A'
C'
A'
B'
O
O
D
C
A
B
A
c
注:球的有关问题转化为圆的问题解决.
球面积、体积公式:
S球
4
R2 ,V球
4 3
R3 (其中
R
为球的半径)
平行垂直基础知识网络★★★
平行与垂直关系可互相转化
平行关系 平面几何知
1. a ,b a // b 2. a ,a // b b
3. a , a //
仅供学习与交流,如有侵权请联系网站删除 谢谢3
精品资料
另一条与其相交;(2)可将两条一面直线同时平移至某一特殊位置。常用中位线平移法 二 证:证明所找(作)的角就是异面直线所成的角(或其补角)。常需要证明线线平行; 三计算:通过解三角形,求出异面直线所成的角;
2 求直线与平面所成的角 0,90 :关键找“两足”:垂足与斜足
正视图
俯视图
图 10
11. 如图 11 所示,一个空间几何体的主视图和左视图都是边长为 1 的正方形,俯视图是一
个直径为 1 的圆,那么这个几何体的全面积为_____________.

图 11
图 12
图 13

立体几何题型归类总结

立体几何题型归类总结

立体几何题型归类总结立体几何专题复一、知识总结基本图形1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

①斜棱柱:底面是正多边形棱柱,棱垂直于底面。

②正棱柱:底面是正多边形棱柱,侧棱与底面边长相等。

直棱柱和其他棱柱的底面分别为矩形和平行四边形。

2.棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。

3.球——一个点到空间中所有点的距离相等的集合体叫做球,球面是球的表面。

球的性质:①球心与截面圆心的连线垂直于截面;②半径公式:r = √(R² - d²),其中R为球的半径,d为球心到截面的距离。

球与多面体的组合体:球与正四面体、长方体、正方体等的内接与外切。

球面积、体积公式:S球= 4πR²,V球= (4/3)πR³,其中R为球的半径。

二、典型例题考点一:三视图1.一空间几何体的三视图如图1所示,则该几何体的体积为22.2.若某空间几何体的三视图如图2所示,则该几何体的体积是22.3.一个几何体的三视图如图3所示,则这个几何体的体积为3.4.若某几何体的三视图(单位:cm)如图4所示,则此几何体的体积是。

3.如图5所示,是一个几何体的三视图,已知其体积为33,求a的值。

5.如图6所示,给出了一个几何体的三视图及其尺寸(单位:cm),求该几何体的体积。

7.如图所示,给出了一个几何体的三视图(单位:cm),其体积为38.如果某个几何体的三视图尺寸如图8所示(长度单位为m),则该几何体的体积为多少?9.如果一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么该几何体的侧面积为多少?10.如果一个三棱柱的底面是正三角形,侧棱垂直于底面,其三视图及其尺寸如图10所示(单位:cm),则该三棱柱的表面积为多少?11.如图11所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么该几何体的全面积为多少?12.如图12所示,一个空间几何体的主视图和左视图都是边长为1的正三角形,俯视图是一个圆,那么该几何体的侧面积为多少?13.已知某几何体的俯视图是如图13所示的边长为2的正方形,主视图与左视图是边长为2的正三角形,则该几何体的表面积为多少?14.如果一个几何体的三视图如图14所示(单位长度:cm),则该几何体的表面积为多少?15.如图所示,给出了一个棱锥的三视图,求该棱锥的全面积(单位:cm2)。

立体几何总复习题型归纳

立体几何总复习题型归纳

1立体几何总复习题型一、侧面展开图1、一个无盖的正方体盒子的平面展开图如图,A ,B ,C 是展开图上的三点,则在正方体盒子中,∠ABC =______.(改)2、在正三棱锥V-ABC 中,A=B=C=40°,且VA=VB=VC=23过点A 做截面AEF 分别叫VB 、VC 于点E 、F ,求截面△AEF 周长的最小值。

3、已知圆锥SO 中,底面半径r =1,母线长l =4,M 为母线SA 上的一点,且SM=x ,从点M 拉一根绳子围绕圆锥侧面转到A 点,求绳子最短长度。

二、直观图+三视图4、已知正△ABC 的边长为2,按照斜二测画法作出它的直观图A 'B 'C ',则直观图A 'B 'C '的面积为( )5、四棱锥P ﹣ABCD 的三视图如图所示,则异面直线PB 与CD 所成的角的余弦值为( )A .B .C .D .6、某几何体的主视图和左视图如图,它的俯视图的直观图是矩形ABCD ,其中AB=6,AD=2,求该几何体的侧面积。

7、如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6 cm ,O ′C ′=2 cm ,C ′D ′=2 cm ,则原图形是A.正方形B.矩形C.菱形D.一般的平行四边形三、截面问题8、正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为BC 的中点,Q 为线段CC 1上的动点,过点A ,P ,Q 的平面截该正方体所得截面记为S ,则下列命题正确的是 .(写出所以正确命题的编号).①当102CQ <<时,S 为四边形;②当12CQ =时,S 为等腰梯形;③当34CQ =时,S 与C 1D 1的交点R 满足113C R =; ④当314CQ <<时,S 为六边形;⑤当1CQ =时,S 69、棱长为2的正方体ABCD ﹣A 1B 1C 1D 1内有一个内切球O ,过正方体中两条异面直线AB ,A 1D 1的中点P ,Q 作直线线,则该直线被球面截在球内的线段的长为( )10、在棱长为2的正方体1111ABCD A BC D -中,P ,Q ,R 分别是AB ,AD ,11B C 的中点,设过P ,Q ,R 的截面与面11ADD A ,以及面11ABB A 的交线分别为l ,m ,则l ,m 所成的角为( )四、线线角11、在长方体1111-ABCD A BC D 中,1==AB BC ,13=AA 则异面直线1AD 与1DB 所成角的余弦值为( ) 12、如图,三棱锥A BCD -中,3AB AC BD CD ====,2AD BC ==,点,M N 分别是,AD BC 的中点,则异面直线,AN CM 所成的角的余弦值是 .五、线面角(等体积法、距离)2 12AD 13、如图,在正方体1111ABCD A BC D -中,E 为1BB 的中点,求直线1AA 与平面1AD E 所成角的正弦值.14、如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值. 15、如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABC D .设平面P AD与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.六、二面角(等体积法、距离)16、如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC是底面的内接正三角形,P 为DO 上一点,6PO =. (1)证明:PA ⊥平面PBC ;(2)求二面角B PC E --的余弦值.17、如图,在长方体1111ABCD A BC D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A--的正弦值. 18、图1是由矩形ADEB 、R t △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的二面角B-CG-A 的大小.七、开放性问题19、在三棱柱ABC -A 1B 1C 1中,平面ABC ∥平面A 1B 1C 1.若D 是棱CC 1的中点,在棱AB 上是否存在一点E ,使DE ∥平面AB 1C 1?并证明你的结论.20、三棱柱ABC-A 1B 1C 1的底面是正三角形,侧棱AA 1⊥底面ABC,点E 、F 是棱CC1,BB1上的点,且EC=2FB ,点M 是线段AC 上的动点,当点M 在何位置时,BM ∥平面AEF ?21、在四棱锥P-ABCD 中,PA ⊥平面ABCD ,AB=BC=2,73∠ABC=120°,G 为线段PC 上的点。

立体几何截面、外接球、动点归类(解析版)

立体几何截面、外接球、动点归类(解析版)

立体几何截面、外接球、动点归类目录题型一:动点:恒平行题型二:动点:恒垂直题型三:动点:球截面题型四:动点;定角题型五:外接球:线面垂直型题型六:外接球:垂面型题型七:外接球:两线定心法题型八:外接球:二面角型题型九:外接球:最值范围型题型十:外接球:动点与翻折题型十一:动点型最短距离和题型十二:动点:内切球题型十三:多选题综合应用:二面角型几何体题型十四:多选题综合应用:翻折型题型十五:多选题综合应用:正方体表面动点型题型十六:多选题综合应用:两部分体积比型题型一:动点:恒平行线面恒平行,过线做面,需要找它们和第三个面的交线互相平行,借助好“第三个面的交线平行“这个性质,可以解决线面恒平行题型的截面问题1在四棱锥P-ABCD中,PA⊥平面ABCD,且PA=AC=2AB=2AD=4,CD⊥AD,CB⊥AB,G为PC的中点,过AG的平面α与棱PB、PD分别交于点E、F.若EF∥平面ABCD,则截面AEGF的面积为.【答案】865【分析】由题知AC =2AB +2AD ,则PA =23PB +23PD -13PC ①,再根据E 、F 、G 三点共面得PA=xPE +yPF +zPG ,其中x +y +z =1.设PE =λPB 0<λ<1 ,PF =λPD ,从而可求PA =λxPB +λyPD +z 2PC ,与①对比即可求出λ,从而可求EF 的长度;再证明BD 垂直平面PAC ,EF ∥BD ,从而得AG ⊥EF ,根据S 截面AEGF =12AG ⋅EF 即可得答案.【详解】∵AC =2AB =2AD ,CD ⊥AD ,CB ⊥AB ,∴∠DAC =∠BAC =60°,则根据向量加法法则易知,AC =2AB +2AD ,即PC -PA =2PB -PA +2PD -PA ,则PA =23PB +23PD -13PC .根据共面向量定理的推论知,PA =xPE +yPF +zPG,其中x +y +z =1.连接BD ,∵EF ∥平面ABCD ,EF ⊂平面PBD ,平面PBD ∩平面ABCD =BD ,∴EF ∥BD ,设PE =λPB 0<λ<1 ,则PF =λPD ,又G 为PC 的中点,∴PA =xPE +yPF +zPG =λxPB +λyPD+z 2PC ,则λx =λy =23,z 2=-13,解得λ=45,AB =2,BD =2×AB sin60°=23,则EF =45BD =835.连接AG ,∵PA =AC =4,G 为PC 的中点,故AG =12PC =22.易知BD ⊥AC ,BD ⊥PA ,AC ∩PA =A ,故BD ⊥平面PAC ,又AG ⊂平面PAC ,∴BD ⊥AG ,∴AG ⊥EF ,因此S 截面AEGF =12AG ⋅EF=12×22×835=865.故答案为:865.解法二:连接BD ,设AC 与BD 交于点K ,连接AG 、PK ,设AG 与PK 交于点L ,由题易得BD ∥EF ,则PL PK =PE PB =EFBD ,作KN ∥AG 交PC 于N ,易知CK =3AK ,则CN =3GN ,从而PG =4GN ,故EF BD =PL PK =PG PN=45,即EF =45BD =835.以下解法同上故答案为:865.2在三棱锥ABCD 中,对棱AB =CD =5,AD =BC =13,AC =BD =10,当平面α与三棱锥ABCD 的某组对棱均平行时,则三棱锥ABCD 被平面α所截得的截面面积最大值为.【答案】3【分析】每组对棱棱长相等,所以可以把三棱锥ABCD 放入长方体中,设长宽高分别为x ,y ,z ,求出x ,y ,z ,由线面平行得线线平行,证明当E ,F ,G ,H 是所在棱中点时面积最大,按截面与哪对棱平行分类讨论求得截面面积的最大值.【详解】因为每组对棱棱长相等,所以可以把三棱锥ABCD 放入长方体中,设长宽高分别为x ,y ,z ,则x 2+y 2=5,x 2+z 2=10,y 2+z 2=13,则x =1,y =2,z =3.当平面α与三棱锥ABCD 的对棱AB ,CD 均平行时,截而为四边形EFGH ,AB ⎳FG ⎳EH ,CD ⎳EF ⎳HG ,设AE AC =t (0<t <1),则EF CD =AE AC=t ,EF =tCD ,同理EH =(1-t )AB ,∠HEF (或其补角)是异面直线AB ,CD 所成的角,S EFGH =EF ⋅EH sin ∠HEF =t (1-t )AB ⋅CD sin ∠HEF ,其中AB ⋅CD sin ∠HEF 为定值,t (1-t )=-t 2+t =-t -12 2+14,t =12时,t (1-t )取得最大值,即截面EFGH 面积最大,此时E ,F ,G ,H是所在棱中点,由长方体性知最大面积为长方体上下底面面积的一半12xy =1,同样地,当平面a 与三棱锥ABCD 的对棱AC ,BD 均平行时,截面最大面积为12xz =32;当平面α与三棱锥ABCD 的对棱AD ,BC 均平行时,截面最大面积为12yz =3.故答案为:3.3(山西省怀仁市2022届高三下学期一模数学试)在四棱锥P -ABCD 中,底面ABCD 是边长为22的正方形,P 在底面的射影为正方形的中心O ,PO =4,Q 点为AO 中点.点T 为该四棱锥表面上一个动点,满足PA ,BD 都平行于过QT 的四棱锥的截面,则动点T 的轨迹围成的多边形的面积为()A.55B.554C.354D.552【答案】D【分析】首先取AD 的中点E ,PD 的中点F ,PO 的中点R ,PB 的中点N ,连接QR 延长交PC 与点M ,连接EFMNG ,证明平面EFMNG 即为所求的截面,再证明四边形EFNG 是矩形,RM ⊥FN ,矩形面积加三角形面积之和即为所求.【详解】取AD 的中点E ,PD 的中点F ,PO 的中点R ,PB 的中点N ,连接QR 延长交PC 与点M ,连接EFMNG ,因为底面ABCD 是边长为22的正方形,所以对角线AC =BD =4,AO =2,因为在底面的射影为正方形的中心,可得PO ⊥面ABCD ,因为AO ⊂面ABCD ,所以PO ⊥AO ,因为PO =4,AO =2,所以PA =22+42=25,因为E 、F 为AD 、PD 的中点,所以EF =12PA =5,且EF ⎳PA ,因为PA ⊄平面EFMG ,EF ⊂平面EFMG ,所以PA ⎳平面EFMG ,同理BD ⎳平面EFMG ,所以平面EFMG 即为所求截面.又因为平面APC ∩平面EFMG =QM ,PA ⊂平面APC ,所以QM ⎳AP ,因为Q 为AO 的中点,可得QC =34AC ,所以QM =34AP ,QR =12AP ,RM =QM -QR =14AP =52,因为N 、F 为PB 、PD 的中点,所以FN ⎳BD ,FN =12BD ,所以FN ⎳EG ,FN =EG ,所以四边形EFNG 是平行四边形,因为EG ⊥PO ,EG ⊥AC ,PO ∩AC =O ,所以EG ⊥平面APC ,因为QM ⊂平面APC ,可得EG ⊥QM ,所以EG ⊥GN ,所以四边形EFNG 是矩形,所以动点T 的轨迹围成的多边形的面积为5×2+12×2×52=552.故选:D题型二:动点:恒垂直恒垂直型截面,可以借助投影解决,投影型,需要利用”三垂线定理及其逆定理“这个性质转化寻找。

立体几何大题题型归纳总结

立体几何大题题型归纳总结

立体几何大题题型归纳总结立体几何是数学中的一个重要分支,涉及到图形的三维空间形态及其性质。

在学习立体几何时,我们经常会遇到各种不同类型的题目。

为了更好地理解和掌握这些题型,本文将对常见的立体几何大题题型进行归纳总结。

一、平面与立体体积计算平面与立体体积计算是立体几何中最基础的题型之一。

在此类题目中,我们需要计算平面和立体的面积或体积。

1. 长方体和正方体的体积计算以边长分别为a、b、c的长方体和正方体为例,它们的体积计算公式分别为V = a * b * c和V = a³。

2. 圆柱、圆锥和球的体积计算以底面半径为r、高度为h的圆柱、圆锥和球为例,它们的体积计算公式分别为V = πr²h、V = 1/3πr²h和V = 4/3πr³。

3. 平面图形的面积计算在立体几何题目中,有时需要计算平面图形的面积。

例如,计算正方形、长方形、圆形和三角形的面积时,可以使用相应的公式进行计算。

二、棱柱与棱锥的性质和计算棱柱和棱锥是立体几何中常见的两种立体图形。

在解答与棱柱和棱锥相关的题目时,我们需要了解它们的性质和计算方法。

1. 棱柱的性质和计算棱柱由一个多边形的底面和与底面相平行的侧面组成。

在求解棱柱的体积和表面积时,我们需要考虑底面的形状和侧面的高度。

2. 棱锥的性质和计算棱锥由一个多边形的底面和以底面为顶点的侧面组成。

在求解棱锥的体积和表面积时,我们需要考虑底面的形状、侧面的高度以及侧面形成的角度。

三、多面体的性质与计算多面体是指由多个面组成的立体图形,其中最常见的包括五面体、六面体、八面体等。

在解答与多面体相关的题目时,我们需要了解多面体的性质和计算方法。

1. 正多面体的性质和计算正多面体是指所有的面都是相等的正多边形,并且所有的顶点和棱都相等。

在解答正多面体的题目时,我们需要了解其面的个数、形状以及各种性质,如角度和棱长等。

2. 斜面体的性质和计算斜面体是指各个面不都是平行于某个坐标面的情况下的多面体。

高考数学立体几何题型总结

高考数学立体几何题型总结

高考数学立体几何题型总结
高考数学中的立体几何是一个重要的题型,它涉及到空间中各种图形的计算、分析和推导。

本文将对高考数学中常见的立体几何题型进行总结和分析。

一、空间几何体的计算
这种题型主要涉及到空间几何体的计算,包括立方体、长方体、正方体、圆锥、圆柱、球等。

通常需要求出它们的表面积、体积、侧面积等。

二、空间几何体的推导
这种题型主要根据给定的条件,推导出空间几何体的性质和关系。

如:
1.根据两个底面和高的长度,求出一个棱锥的体积。

2.已知一个球的体积,求出它的半径。

3.已知一个棱柱的高和底面形状,求出它的体积。

三、空间几何体的立体图形分析
这种题型主要涉及到空间几何体的立体图形分析,通常需要进行裁剪、拼接、变形等操作。

如:
1.已知一个长方体的长、宽、高,将它分成两个体积相等的部分。

2.将一个棱锥剖成两个部分,使得它们的体积相等。

四、空间几何体的立体坐标
这种题型主要涉及到空间几何体的立体坐标,通常需要根据坐标系中给定的点、直线、平面等条件,求出几何体的坐标、面积、体积
等。

如:
1.已知一个立方体的坐标,求出它的体积和表面积。

2.已知一个球的坐标和半径,求出它的体积和表面积。

以上就是高考数学中常见的立体几何题型总结。

想要在考试中得高分,需要对这些题型进行深入的理解和掌握。

立体几何解答题最全归纳总结

立体几何解答题最全归纳总结

立体几何解答题最全归纳总结【题型归纳目录】题型一:非常规空间几何体为载体题型二:立体几何存在性问题题型三:立体几何折叠问题题型四:立体几何作图问题题型五:立体几何建系繁琐问题题型六:两角相等(构造全等)的立体几何问题题型七:利用传统方法找几何关系建系题型八:空间中的点不好求题型九:创新定义【典例例题】题型一:非常规空间几何体为载体例1.如图,P为圆锥的顶点,O为圆锥底面的圆心,圆锥的底面直径AB=4,母线PH=22,M是PB的中点,四边形OBCH为正方形.(1)设平面POH∩平面PBC=l,证明:l∥BC;(2)设D为OH的中点,N是线段CD上的一个点,当MN与平面PAB所成角最大时,求MN的长.例2.如图所示,圆锥的底面半径为4,侧面积为162π,线段AB为圆锥底面⊙O的直径,C在线段AB上,且BC=3CA,点D是以BC为直径的圆上一动点;(1)当CD=CO时,证明:平面PAD⊥平面POD(2)当三棱锥P-BCD的体积最大时,求二面角B-PD-A的余弦值.例3.如图,圆锥PO 的母线长为6,△ABC 是⊙O 的内接三角形,平面PAC ⊥平面PBC .BC =23,∠ABC =60°.(1)证明:PA ⊥PC ;(2)设点Q 满足OQ =λOP ,其中λ∈0,1 ,且二面角O -QB -C 的大小为60°,求λ的值.例4.如图,D 为圆锥的顶点,O 为圆锥底面的圆心,AB 为底面直径,C 为底面圆周上一点,DA =AC =BC =2,四边形DOAE 为矩形,点F 在BC 上,且DF ⎳平面EAC .(1)请判断点F 的位置并说明理由;(2)平面DFO 将多面体DBCAE 分成两部分,求体积较大部分几何体的体积.例5.如图,在直角△POA 中,PO ⊥OA ,PO =2OA ,将△POA 绕边PO 旋转到△POB 的位置,使∠AOB =90°,得到圆锥的一部分,点C 为AB的中点.(1)求证:PC ⊥AB ;(2)设直线PC 与平面PAB 所成的角为φ,求sin φ..例6.如图,四边形ABCD 为圆柱O 1O 2的轴截面,EF 是该圆柱的一条母线,EF =2EA ,G 是AD 的中点.(1)证明:AF ⊥平面EBG ;(2)若BE =3EA ,求二面角E -BG -A 的正弦值.例7.例7.如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120°得到的,G 是DF的中点.(1)设P 是CE 上的一点,且AP ⊥BE ,求证BP ⊥BE ;(2)当AB =3,AD =2时,求二面角E -AG -C 的大小.例8.如图,四边形ABCD 是一个半圆柱的轴截面,E ,F 分别是弧DC ,AB 上的一点,EF ∥AD ,点H 为线段AD 的中点,且AB =AD =4,∠FAB =30°,点G 为线段CE 上一动点.(1)试确定点G 的位置,使DG ⎳平面CFH ,并给予证明;(2)求二面角C -HF -E 的大小.例9.坐落于武汉市江汉区的汉口东正教堂是中国南方唯一的拜占庭式建筑,象征着中西文化的有机融合.拜占庭建筑创造了将穹顶支承于独立方柱上的结构方法和与之相呼应的集中式建筑形制,其主体部分由一圆柱与其上方一半球所构成,如图所示.其中O 是下底面圆心,A ,B ,C 是⊙O 上三点,A 1,B 1,C 1是上底面对应的三点.且A ,O ,C 共线,AC ⊥OB ,C 1E =EC ,B 1F =13FB ,AE 与OF 所成角的余弦值为36565.(1)若E 到平面A 1BC 的距离为233,求⊙O 的半径.(2)在(1)的条件下,已知P 为半球面上的动点,且AP =210,求P 点轨迹在球面上围成的面积.例10.如图,ABCD 为圆柱OO 的轴截面,EF 是圆柱上异于AD ,BC 的母线.(1)证明:BE ⊥平面DEF ;(2)若AB =BC =6,当三棱锥B -DEF 的体积最大时,求二面角B -DF -E 的正弦值.例11.如图,O1,O分别是圆台上、下底的圆心,AB为圆O的直径,以OB为直径在底面内作圆E,C为圆O的直径AB所对弧的中点,连接BC交圆E于点D,AA1,BB1,CC1为圆台的母线,AB=2A1B1=8.(1)证明;C1D⎳平面OBB1O1;(2)若二面角C1-BC-O为π3,求O1D与平面AC1D所成角的正弦值.例12.某市在滨海文化中心有滨海科技馆,其建筑有鲜明的后工业风格,如图所示,截取其中一部分抽象出长方体和圆台组合,如图所示,长方体ABCD-A1B1C1D1中,AB=4,AD=AA1=2,圆台下底圆心O为AB的中点,直径为2,圆与直线AB交于E,F,圆台上底的圆心O1在A1B1上,直径为1.(1)求A1C与平面A1ED所成角的正弦值;(2)圆台上底圆周上是否存在一点P使得FP⊥AC1,若存在,求点P到直线A1B1的距离,若不存在则说明理由.题型二:立体几何存在性问题例13.如图,三棱锥P-ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°.(1)求三棱锥A-PBC的体积;(2)在线段PC上是否存在一点M,使得BM⊥AC?若存在,求MCPM的值,若不存在,请说明理由.例14.已知四棱锥P-ABCD中,底面ABCD是矩形,且AD=2AB,△PAD是正三角形,CD⊥平面PAD,E、F、G、O分别是PC、PD、BC、AD的中点.(1)求平面EFG与平面ABCD所成的锐二面角的大小;(2)线段PA上是否存在点M,使得直线GM与平面EFG所成角的大小为π6,若存在,求出PMPA的值;若不存在,说明理由.例15.已知三棱柱ABC-A1B1C1中,∠ACB=90°,A1B⊥AC1,AC=AA1=4,BC=2.(1)求证:平面A1ACC1⊥平面ABC;(2)若∠A1AC=60°,在线段AC上是否存在一点P,使二面角B-A1P-C的平面角的余弦值为34若存在,确定点P的位置;若不存在,说明理由.例16.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AD⎳BC,AD⊥CD,且AD=CD,BC=2CD,PA=2AD.(1)证明:AB⊥PC;(2)在线段PD上是否存在一点M,使得二面角M-AC-D的余弦值为1717,若存在,求BM与PC所成角的余弦值;若不存在,请说明理由.例17.如图,△ABC是边长为6的正三角形,点E,F,N分别在边AB,AC,BC上,且AE=AF=BN=4,M 为BC边的中点,AM交EF于点O,沿EF将三角形AEF折到DEF的位置,使DM=15.(1)证明:平面DEF⊥平面BEFC;(2)试探究在线段DM上是否存在点P,使二面角P-EN-B的大小为60°?若存在,求出DPPM的值;若不存在,请说明理由.例18.图1是直角梯形ABCD ,AB ⎳CD ,∠D =90∘,AB =2,DC =3,AD =3,CE =2ED ,以BE 为折痕将△BCE 折起,使点C 到达C 1的位置,且AC 1=6,如图2.(1)求证:平面BC 1E ⊥平面ABED ;(2)在棱DC 1上是否存在点P ,使得C 1到平面PBE 的距离为62?若存在,求出二面角P -BE -A 的大小;若不存在,说明理由.例19.如图所示,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB ⊥AC ,AB =1,AC =AA 1=2,AD =CD =5,E 为棱AA 1上的点,且AE =12.(1)求证:BE ⊥平面ACB 1;(2)求二面角D 1-AC -B 1的余弦值;(3)在棱A 1B 1上是否存在点F ,使得直线DF ∥平面ACB 1?若存在,求A 1F 的长;若不存在,请说明理由.例20.如图,在五面体ABCDE中,已知AC⊥BD,AC⊥BC,ED⎳AC,且AC=BC=2ED=2,DC=DB =3.(1)求证:平面ABE⊥与平面ABC;(2)线段BC上是否存在一点F,使得平面AEF与平面ABE夹角余弦值的绝对值等于54343,若存在,求BFBC的值;若不存在,说明理由.题型三:立体几何折叠问题例21.如图1,在边上为4的菱形ABCD中,∠DAB=60°,点M,N分别是边BC,CD的中点,AC∩BD=O1,AC∩MN=G.沿MN将△CMN翻折到△PMN的位置,连接PA,PB,PD,得到如图2所示的五棱锥P -ABMND.(1)在翻折过程中是否总有平面PBD⊥平面PAG?证明你的结论;(2)当四棱锥P-MNDB体积最大时,求直线PB和平面MNDB所成角的正弦值;(3)在(2)的条件下,在线段PA上是否存在一点Q,使得二面角Q-MN-P余弦值的绝对值为1010若存在,试确定点Q的位置;若不存在,请说明理由.例22.如图,在等腰直角三角形PAD中,∠A=90°,AD=8,AB=3,B、C分别是PA、PD上的点,且AD⎳BC,M、N分别为BP、CD的中点,现将△BCP沿BC折起,得到四棱锥P-ABCD,连接MN.(1)证明:MN⎳平面PAD;(2)在翻折的过程中,当PA=4时,求二面角B-PC-D的余弦值.例23.如图1,在平面四边形PDCB中,PD∥BC,BA⊥PD,PA=AB=BC=2,AD=1.将△PAB沿BA 翻折到△SAB的位置,使得平面SAB⊥平面ABCD,如图2所示.(1)设平面SDC与平面SAB的交线为l,求证:BC⊥l;(2)点Q在线段SC上(点Q不与端点重合),平面QBD与平面BCD夹角的余弦值为66,求线段BQ的长.例24.如图,在平面五边形PABCD 中,△PAD 为正三角形,AD ∥BC ,∠DAB =90°且AD =AB =2BC =2.将△PAD 沿AD 翻折成如图所示的四棱锥P -ABCD ,使得PC =7.F ,Q 分别为AB ,CE 的中点.(1)求证:FQ ∥平面PAD ;(2)若DE PE=12,求平面EFC 与平面PAD 夹角的余弦值.例25.如图,在平行四边形ABCD 中,AB =3,AD =2,∠A =60°,E ,F 分别为线段AB ,CD 上的点,且BE =2AE ,DF =FC ,现将△ADE 沿DE 翻折至△A 1DE 的位置,连接A 1B ,A 1C .(1)若点G 为线段A 1B 上一点,且A 1G =3GB ,求证:FG ⎳平面A 1DE ;(2)当三棱锥C -A 1DE 的体积达到最大时,求二面角B -A 1C -D 的正弦值.例26.如图1,四边形ABCD是边长为2的正方形,四边形ABEF是等腰梯形,AB=BE=12EF,现将正方形ABCD沿AB翻折,使CD与C D 重合,得到如图2所示的几何体,其中D E=4.(1)证明:AF⊥平面AD E;(2)求二面角D -AE-C 的余弦值.例27.如图,在梯形ABCD中,AD∥BC,AB=BC=2,AD=4,现将△ABC所在平面沿对角线AC翻折,使点B翻折至点E,且成直二面角E-AC-D.(1)证明:平面EDC⊥平面EAC;(2)若直线DE与平面EAC所成角的余弦值为12,求二面角D-EA-C的余弦值.例28.如图1,在△ABC 中,∠ACB =90°,DE 是△ABC 的中位线,沿DE 将△ADE 进行翻折,使得△ACE 是等边三角形(如图2),记AB 的中点为F .(1)证明:DF ⊥平面ABC .(2)若AE =2,二面角D -AC -E 为π6,求直线AB 与平面ACD 所成角的正弦值.题型四:立体几何作图问题例29.已知四棱锥P -ABCD 中,底面ABCD 为正方形,O 为其中心,点E 为侧棱PD 的中点.(1)作出过O 、P 两点且与AE 平行的四棱锥截面(在答题卡上作出该截面与四棱锥表面的交线,并写出简要作图过程);记该截面与棱CD 的交点为M ,求出比值DM MC (直接写出答案);(2)若四棱锥的侧棱与底面边长均相等,求AE 与平面PBC 所成角的正弦值.例30..如图,已知底面为平行四边形的四棱锥P-ABCD中,平面MNGH与直线PB和直线AC平行,点E为PD的中点,点F在CD上,且DF:FC=1:2.(1)求证:四边形MNGH是平行四边形;(2)求作过EF作四棱锥P-ABCD的截面,使PB与截面平行(写出作图过程,不要求证明).截面的定义:用一个平面去截一个几何体,平面与几何体的表面的交线围成的平面图形.例31.如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为棱B1C1的中点,F,G分别是棱CC1,BC上的动点(不与顶点重合).(1)作出平面A1DG与平面CBB1C1的交线(要求写出作图过程),并证明:若平面A1DG⎳平面D1EF,则EF⎳A1D;(2)若G为棱BC的中点,是否存在F,使平面D1EF⊥平面DGF,若存在,求出CF的所有可能值;若不存在,请说明理由.例32.如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为棱B1C1的中点,F,G分别是棱CC1,BC上的动点(不与顶点重合).(1)作出平面A1DG与平面CBB1C1的交线(要求写出作图过程),并证明:若平面A1DG⎳平面D1EF,则EF⎳A1D;(2)若F,G均为其所在棱的中点,求点G到平面D1EF的距离.例33.如图多面体ABCDEF中,面FAB⊥面ABCD,△FAB为等边三角形,四边形ABCD为正方形,EF⎳BC,且EF=32BC=3,H,G分别为CE,CD的中点.(1)求二面角C-FH-G的余弦值;(2)作平面FHG与平面ABCD的交线,记该交线与直线AB交点为P,写出APAB的值(不需要说明理由,保留作图痕迹).例34.如图,已知多面体EABCDF的底面ABCD是边长为2的正方形,EA⊥底面ABCD,FD⎳EA,且FD =12EA=1.(1)求多面体EABCDF的体积;(2)记线段BC的中点为K,在平面ABCD内过点K作一条直线与平面ECF平行,要求保留作图痕迹,但不要求证明.例35.四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠DAB=2π3.AC∩BD=O,且PO⊥平面ABCD,PO=3,点F,G分别是线段PB.PD上的中点,E在PA上.且PA=3PE.(Ⅰ)求证:BD⎳平面EFG;(Ⅱ)求直线AB与平面EFG的成角的正弦值;(Ⅲ)请画出平面EFG与四棱锥的表面的交线,并写出作图的步骤.题型五:立体几何建系繁琐问题例36.如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点.过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1⎳MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心.若AO⎳平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.例37.如图,在锥体P-ABCD中,ABCD是边长为1的菱形,且∠DAB=60°,PA=PD=2,PB=2,E,F 分别是BC,PC的中点(1)证明:AD⊥平面DEF(2)求二面角P-AD-B的余弦值.例38.如图,AEC 是半径为a 的半圆,AC 为直径,点E 为AC的中点,点B 和点C 为线段AD 的三等分点,平面AEC 外一点F 满足FB =FD =5a ,EF =6a .(1)证明:EB ⊥FD ;(2)已知点Q ,R 为线段FE ,FB 上的点,FQ =23FE ,FR =23FB ,求平面BED 与平面RQD 所成二面角的正弦值.例39.《九章算术》是中国古代的一部数学专著,是《算经十书》中最重要的一部,成于公元一世纪左右.它是一本综合性的历史著作,是当时世界上最简练有效的应用数学,它的出现标志着中国古代数学形成了完整的体系.《九章算术》中将由四个直角三角形组成的四面体称为“鳖臑”,已知在三棱锥P -ABC 中,PA ⊥平面ABC .(1)从三棱锥P -ABC 中选择合适的两条棱填空: BC ⊥ ,则三棱锥P -ABC 为“鳖臑”;(2)如图,已知AD ⊥PB ,垂足为D ,AE ⊥PC ,垂足为E ,∠ABC =90°.(ⅰ)证明:平面ADE ⊥平面PAC ;(ⅱ)设平面ADE 与平面ABC 的交线为l ,若PA =23,AC =2,求二面角E -l -C 的大小.例40.已知四面体ABCD,AD=CD,∠ADB=∠CDB=120°,且平面ABD⊥平面BCD.(Ⅰ)求证:BD⊥AC;(Ⅱ)求直线CA与平面ABD所成角的大小.例41.已知四面体ABCD,∠ADB=∠CDB=120°,且平面ABD⊥平面BCD.(Ⅰ)若AD=CD,求证:BD⊥AC;(Ⅱ)求二面角B-CD-A的正切值.题型六:两角相等(构造全等)的立体几何问题例42.如图,在三棱锥A-BCD中,ΔABC是等边三角形,∠BAD=∠BCD=90°,点P是AC的中点,连接BP,DP(1)证明:平面ACD⊥平面BDP;(2)若BD=6,cos∠BPD=-33,求三棱锥A-BCD的体积.例43.如图,在三棱锥A-BCD中,ΔABC是等边三角形,∠BAD=∠BCD=90°,点P是AC的中点,连接BP,DP.(1)证明:平面ACD⊥平面BDP;(2)若BD=6,且二面角A-BD-C为120°,求直线AD与平面BCD所成角的正弦值.例44.如图,四棱锥F-ABCD中,底面ABCD为边长是2的正方形,E,G分别是CD、AF的中点,AF=4,∠FAE=∠BAE,且二面角F-AE-B的大小为90°.(1)求证:AE⊥BG;(2)求二面角B-AF-E的余弦值.例45.如图,四棱锥E-ABCD中,四边形ABCD是边长为2的菱形,∠DAE=∠BAE=45°,∠DAB=60°.(Ⅰ)证明:平面ADE⊥平面ABE;(Ⅱ)当直线DE与平面ABE所成的角为30°时,求平面DCE与平面ABE所成锐二面角的余弦值.例46.如图,在四面体ABCD中,已知∠ABD=∠CBD=60°,AB=BC=2,(1)求证:AC⊥BD;(2)若平面ABD⊥平面CBD,且BD=52,求二面角C-AD-B的余弦值.题型七:利用传统方法找几何关系建系例47.如图:长为3的线段PQ与边长为2的正方形ABCD垂直相交于其中心O(PO>OQ).(1)若二面角P-AB-Q的正切值为-3,试确定O在线段PQ的位置;(2)在(1)的前提下,以P,A,B,C,D,Q为顶点的几何体PABCDQ是否存在内切球?若存在,试确定其内切球心的具体位置;若不存在,请说明理由.例48.在四棱锥P-ABCD中,E为棱AD的中点,PE⊥平面ABCD,AD⎳BC,∠ADC=90°,ED=BC= 2,EB=3,F为棱PC的中点.(Ⅰ)求证:PA⎳平面BEF;(Ⅱ)若二面角F-BE-C为60°,求直线PB与平面ABCD所成角的正切值.例49.三棱柱ABC-A1B1C1中,AB⊥AC,AB=AC=2,侧面BCC1B1为矩形,∠A1AB=2π3,二面角A-BC-A1的正切值为12.(Ⅰ)求侧棱AA1的长;(Ⅱ)侧棱CC1上是否存在点D,使得直线AD与平面A1BC所成角的正切值为63,若存在,判断点的位置并证明;若不存在,说明理由.例50.如图,在四棱锥P-ABCD中,底面四边形ABCD内接于圆O,AC是圆O的一条直径,PA⊥平面ABCD,PA=AC=2,E是PC的中点,∠DAC=∠AOB(1)求证:BE⎳平面PAD;(2)若二面角P-CD-A的正切值为2,求直线PB与平面PCD所成角的正弦值.例51.如图所示,PA⊥平面ABCD,ΔCAB为等边三角形,PA=AB,AC⊥CD,M为AC中点.(Ⅰ)证明:BM⎳平面PCD;(Ⅱ)若PD与平面PAC所成角的正切值为62,求二面角C-PD-M的正切值.题型八:空间中的点不好求例52.如图,直线AQ⊥平面α,直线AQ⊥平行四边形ABCD,四棱锥P-ABCD的顶点P在平面α上,AB =7,AD=3,AD⊥DB,AC∩BD=O,OP⎳AQ,AQ=2,M,N分别是AQ与CD的中点.(1)求证:MN⎳平面QBC;(2)求二面角M-CB-Q的余弦值.例53.如图,四棱锥S-ABCD中,AB⎳CD,BC⊥CD,侧面SAB为等边三角形.AB=BC=2,CD=SD=1.(1)证明:SD⊥平面SAB(2)求AB与平面SBC所成角的正弦值.例54.如图,四棱锥S-ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=2,DC=SD=2,点M在侧棱SC上,∠ABM=60°.(Ⅰ)证明:M是侧棱SC的中点;(Ⅱ)求二面角S-AM-B的余弦值.例55.如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,底面ABCD为直角梯形,其中AB⎳CD,∠CDA=90°,CD=2AB=2,AD=3,PA=5,PD=22,点E在棱AD上且AE=1,点F为棱PD的中点.在棱AD上且AE=1,点F位棱PD的中点.(1)证明:平面BEF⊥平面PEC;(2)求二面角A-BF-C的余弦值的大小.例56.如图,在四棱锥A-BCFE中,四边形EFCB为梯形,EF⎳BC,且EF=34BC,ΔABC是边长为2的正三角形,顶点F在AC上的射影为点G,且FG=3,CF=212,BF=52.(1)证明:平面F GB⊥平面ABC;(2)求二面角E-AB-F的余弦值.例57.三棱柱ABC-A1B1C1的底面ABC是等边三角形,BC的中点为O,A1O⊥底面ABC,AA1与底面ABC所成的角为π3,点D在棱AA1上,且AD=32,AB=2.(1)求证:OD⊥平面BB1C1C;(2)求二面角B-B1C-A1的平面角的余弦值.例58.如图,将矩形ABCD沿AE折成二面角D1-AE-B,其中E为CD的中点,已知AB+2,BC=1.BD1 =CD1,F1为D1B的中点.(1)求证:CF⎳平面AD1E;(2)求AF与平面BD1E所成角的正弦值.题型九:创新定义例59.蜂房是自然界最神奇的“建筑”之一,如图1所示.蜂房结构是由正六棱柱截去三个相等的三棱锥H-ABC,J-CDE,K-EFA,再分别以AC,CE,EA为轴将△ACH,△CEJ,△EAK分别向上翻转180°,使H,J,K三点重合为点S所围成的曲顶多面体(下底面开口),如图2所示.蜂房曲顶空间的弯曲度可用曲率来刻画,定义其度量值等于蜂房顶端三个菱形的各个顶点的曲率之和,而每一顶点的曲率规定等于2π减去蜂房多面体在该点的各个面角之和(多面体的面角是多面体的面的内角,用弧度制表示).例如:正四面体在每个顶点有3个面角,每个面角是π3,所以正四面体在各顶点的曲率为2π-3×π3=π.(1)求蜂房曲顶空间的弯曲度;(2)若正六棱柱底面边长为1,侧棱长为2,设BH=x(i)用x表示蜂房(图2右侧多面体)的表面积S(x);(ii)当蜂房表面积最小时,求其顶点S的曲率的余弦值.例60.类比于二维平面中的余弦定理,有三维空间中的三面角余弦定理;如图1,由射线PA,PB,PC构成的三面角P-ABC,∠APC=α,∠BPC=β,∠APB=γ,二面角A-PC-B的大小为θ,则cosγ=cosαcosβ+sinαsinβcosθ.时,证明以上三面角余弦定理;(1)当α、β∈0,π2(2)如图2,四棱柱ABCD-A1B1C1D1中,平面AA1C1C⊥平面ABCD,∠A1AC=60°,∠BAC=45°,①求∠A1AB的余弦值;②在直线CC1上是否存在点P,使BP⎳平面DA1C1?若存在,求出点P的位置;若不存在,说明理由.例61.(1)如图,对于任一给定的四面体A1A2A3A4,找出依次排列的四个相互平行的平面α1,α2,α3,α4,使得A i ∈αi i=1,2,3,4,且其中每相邻两个平面间的距离都相等;(2)给定依次排列的四个相互平行的平面α1,α2,α3,α4,其中每相邻两个平面间的距离为1,若一个正四面体A1A2A3A4的四个顶点满足:A i∈αi i=1,2,3,4,求该正四面体A1A2A3A4的体积.例62.已知a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),c =(x 3,y 3,z 3),定义一种运算:(a ×b )⋅c =x 1y 2z 3+x 2y 3z 1+x 3y 1z 2-x 1y 3z 2-x 2y 1z 3-x 3y 2z 1,已知四棱锥P -ABCD 中,底面ABCD 是一个平行四边形,AB =(2,-1,4),AD =(4,2,0),AP =(-1,2,1)(1)试计算(AB ×AD )⋅AP 的绝对值的值,并求证PA ⊥面ABCD ;(2)求四棱锥P -ABCD 的体积,说明(AB ×AD )⋅AP 的绝对值的值与四棱锥P -ABCD 体积的关系,并由此猜想向量这一运算(AB ×AD )⋅AP 的绝对值的几何意义.。

立体几何题型及解题方法总结

立体几何题型及解题方法总结

立体几何题型及解题方法总结1. 立体几何题型啊,那可是个神奇的领域!有求各种立体图形体积的题型,就像求一个装满水的古怪形状瓶子能装多少水一样。

比如说正方体,正方体的体积公式就是边长的立方。

要是有个正方体边长是3厘米,那它的体积就是3×3×3 = 27立方厘米,简单吧!这类型的题就像是数糖果,一个一个数清楚就行。

2. 还有求立体图形表面积的题型呢。

这就好比给一个形状奇怪的礼物包装纸,得算出需要多少纸才能把它包起来。

像长方体,表面积就是六个面的面积之和。

假如一个长方体长4厘米、宽3厘米、高2厘米,那表面积就是2×(4×3 + 4×2 + 3×2) = 52平方厘米。

哎呀,可别小瞧这表面积,有时候算错一点就像给礼物包了个破纸一样难看。

3. 立体几何里关于线面关系的题型也不少。

这就像在一个迷宫里找路,线和面的关系复杂得很。

比如说直线和平面平行的判定,就像在一个方方正正的房间里,一根直直的杆子和地面平行,只要杆子和地面内的一条直线平行就行。

像有个三棱柱,一条棱和底面的一条棱平行,那这条棱就和底面平行啦,是不是很有趣呢?4. 线面垂直的题型也很重要哦。

这就像是建房子时的柱子和地面的关系,必须垂直才稳当。

判断一条直线和一个平面垂直,就看这条直线是不是和平面内两条相交直线都垂直。

就像搭帐篷,中间那根杆子要和地面上交叉的两根绳子都垂直,帐篷才能稳稳地立起来。

比如一个正四棱锥,它的高就和底面垂直,因为高和底面两条相交的对角线都垂直呢。

5. 面面平行的题型有点像照镜子。

两个平面就像两面镜子,要想平行,得看一个平面内的两条相交直线和另一个平面内的两条相交直线分别平行。

就像有两个一样的盒子,一个盒子里面两条交叉的边和另一个盒子里面对应的两条交叉边平行,那这两个盒子的面就是平行的关系。

想象一下,如果两个平行的黑板,是不是很有画面感?6. 面面垂直的题型就像是打开的书页。

立体几何大题15种归类专题

立体几何大题15种归类专题

立体几何大题15种归类专题立体几何作为数学的一个重要分支,主要研究三维空间中图形的性质、变换和度量。

在高考或中考等数学考试中,立体几何大题往往占据一定的分值,考查学生的空间想象能力、逻辑推理能力和计算能力。

以下是对立体几何大题进行的15种归类专题简述,包括内容分析和特点:1. 平行与垂直关系内容分析:涉及直线与平面、平面与平面的平行与垂直关系的判定和性质。

特点:需要熟练掌握平行与垂直的判定定理和性质定理,能够灵活运用。

2. 空间角内容分析:包括异面直线所成的角、直线与平面所成的角、平面与平面所成的角。

特点:空间角的计算通常需要构造辅助线或面,将空间问题转化为平面问题来解决。

3. 空间距离内容分析:涉及点到直线、点到平面、直线到平面的距离计算。

特点:空间距离的计算通常依赖于空间角和三角形的性质。

4. 三视图与直观图内容分析:根据物体的三视图或直观图,推断物体的形状或计算相关尺寸。

特点:要求考生具备良好的空间想象能力和图形识别能力。

5. 柱体、锥体、台体的表面积与体积内容分析:涉及基本几何体的表面积和体积的计算。

特点:需要熟练掌握各类几何体的表面积和体积公式,能够正确应用。

6. 球的表面积与体积内容分析:考查球的表面积和体积的计算,以及与其他几何体的结合问题。

特点:球的表面积和体积计算通常需要与其他几何体相结合,考查综合应用能力。

7. 空间向量的应用内容分析:利用空间向量解决立体几何问题,如求空间角、空间距离等。

特点:空间向量的引入为立体几何问题提供了新的解决工具,使问题更加简洁明了。

8. 组合体的分析与计算内容分析:涉及由多个基本几何体组成的组合体的分析和计算。

特点:需要综合运用所学的几何知识,对组合体进行分解和组合,考查分析问题和解决问题的能力。

9. 立体几何中的最值问题内容分析:涉及立体几何中的最值问题,如距离的最大值、体积的最小值等。

特点:最值问题通常需要运用不等式、函数等数学知识进行求解,考查综合运用能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长方体底面为正方形一正四棱柱侧棱与底面边长相等
正方

2.棱锥
棱锥一一有一个面是多边形,其余各面是有一个公共顶点的三角形,由这 些面所围成的几何体叫做棱锥。
★正棱锥一一如果有一个棱锥的底面是正多边形,并且顶点在底面的射影
是底面的中心,这样的棱锥叫做正棱锥。
3.球
球的性质:
①球心与截面圆心的连线垂直于截
面;
★②「一厂孑(其中,球心到截面的距离为d、球的半径Fra bibliotekR、截面的半径为
★球与多面体的组合体:球与正四面体,球与长方体,球与正方体等的内
注:球的有关问题转化为圆的问题解决
球面积、体积公式:
S求=4「:r2,v球号R3(其中R为球的半径)
平行垂直基础知识网络★★★
、【知识总结】
基本图形
立体几何专题复习
1.棱柱一一有两个面互相平行,其余各面都是四边形,并且每相邻两个四
边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
①斜棱柱 棱柱《
棱垂直于底面
直棱柱•底面是正多形> 正棱柱
[其他棱柱III
②四棱柱底面为平行四边形平行六面体侧棱垂直于底面
直平
行六面体底面为矩形
相关文档
最新文档