电磁场与电磁波理论 概念归纳
电磁场与电磁波知识点总结 知乎
电磁场与电磁波知识点总结知乎
电磁场和电磁波是物理学中的重要基础知识,涉及到电学、磁学、波动光学等多个领域。
下面是对电磁场和电磁波的一些重要知识点总结:
1. 电场和磁场:电场是指空间中由电荷引起的电力作用,磁场是指空间中由电流引起的磁力作用。
电场和磁场都是矢量场,可以用矢量图形表示。
2. 麦克斯韦方程组:麦克斯韦方程组是描述电磁场行为的基本方程,包括四个方程:高斯定理、高斯磁定理、法拉第电磁感应定律和安培环路定理。
3. 电磁波:电磁波是由电场和磁场相互作用引起的一种波动现象,包括无线电波、可见光、紫外线、X射线等。
电磁波具有波长、频率等特征,可以用波动方程表示。
4. 偏振:偏振是指电磁波中电场矢量的振动方向。
根据电场矢量的振动方向,电磁波可以分为线偏振、圆偏振和不偏振等。
5. 折射和反射:当电磁波从一种介质传播到另一种介质时,会发生折射现象,即波的传播方向改变。
同时,当电磁波遇到介质的边界时,会发生反射现象,即波发生反向传播。
折射和反射现象可以用斯涅尔定律和菲涅尔公式计算。
6. 衍射和干涉:电磁波在经过小孔或射缝等障碍物时,会发生衍射现象,即波扩散后形成干涉条纹。
同时,当两束电磁波相遇时,会发生干涉现象,即波的振幅会增强或减弱。
衍射和干涉现象可以用
菲涅尔衍射和双缝干涉等理论进行描述。
以上是电磁场和电磁波的一些重要知识点总结。
熟练掌握这些知识,对于理解电学、磁学、波动光学等学科都具有重要意义。
电磁场与电磁波基础知识总结
电磁场与电磁波基础知识总结静电场是指电场和电荷之间关系稳定不变的情况下的电磁场。
在静电场中,电场的强度由电荷及其分布决定,遵循库仑定律。
静磁场是指磁场和磁荷之间关系稳定不变的情况下的电磁场。
在静磁场中,磁场的强度由磁荷及其分布决定,遵循比奥-萨伐尔定律。
静电场和静磁场所产生的相互作用称为电磁感应。
变化电磁场是指电荷和磁荷随时间变化而产生的电磁场。
在变化电磁场中,电场和磁场相互作用、相互产生、相互影响,遵循麦克斯韦方程组。
电场和磁场的变化会引起彼此的变化,形成电磁波的传播。
电磁波是电磁场的一种特殊表现形式,它是由电场和磁场相互作用而产生的一种能量传播方式。
电磁波是横波,垂直于电磁场传播方向的振动方向,传播速度等于真空中光速,约为3×10^8米/秒。
在电磁波中,电场和磁场的振幅相等、相位差为90°,并且电场和磁场的变化存在一定的关系,它们之间满足麦克斯韦方程组的关系式。
根据电磁波的频率范围,可以将电磁波分为射频波、微波、红外线、可见光、紫外线、X射线和γ射线等。
不同频率的电磁波所具有的性质和应用也不同,例如,微波可以用于通讯和加热食物,红外线可用于夜视和遥控等。
电磁场和电磁波在现代科学技术中有广泛的应用。
电磁波的发现和应用是无线通信、雷达、卫星通信、数字电视、手机等现代通讯技术的基础。
电磁波对物质的作用和能量的传递是放射治疗、医学诊断以及无线能量传输的基础。
电磁波与物质相互作用和散射形成了X射线检查、光电子学、红外光谱学等现代科学技术的核心原理。
总结起来,电磁场与电磁波是电磁学的基础知识。
电磁场是电场和磁场的总和,根据静态和动态特性可以分为静电场、静磁场和变化电磁场。
电磁波是电磁场的一种特殊表现形式,是由变化电磁场产生的能量传播方式。
电磁场和电磁波在现代科学技术中有广泛的应用。
深入理解和应用电磁场与电磁波的原理,对于掌握电磁学的基础知识和发展现代科学技术具有重要意义。
电子行业电磁场与电磁波(知识点)
电子行业电磁场与电磁波(知识点)电子行业是一个广泛且快速发展的行业,众多的电子设备与技术改变了我们的生活。
在电子行业中,电磁场与电磁波是关键的知识点之一。
本文将深入探讨电子行业中关于电磁场与电磁波的相关知识。
一、电磁场的概念及特点电磁场是电磁力的载体,是电荷或电流的存在所致的一种场。
电场与磁场是电磁场的两个基本概念。
电场是由电荷产生的,而磁场则是由电流产生的。
电磁场具有以下特点:1. 电场和磁场互相作用:根据法拉第电磁感应定律,一个变化的磁场可以在相邻的电路中产生电动势。
同样,一个变化的电场可以在相邻的导体中产生感应电流。
这种相互作用是基于电磁场的重要特点之一。
2. 电磁波的传播:根据麦克斯韦方程组,当电场和磁场发生变化时,它们可以相互激发,并以电磁波的形式传播。
电磁波可以在真空中传播,无需介质的支持。
这是无线通信和无线电波传输的基础原理。
3. 电磁波的频率和波长:电磁波具有不同的频率和波长。
频率是指单位时间内波动的次数,通常用赫兹(Hz)表示。
波长是指电磁波的一个周期所对应的长度,通常用米(m)表示。
不同频率和波长的电磁波在电子行业中起到不同的作用。
二、电磁场与电子设备电磁场在电子设备中起到重要的作用,以保证设备的正常运行。
例如,我们常见的手机、电视、电脑等设备都依赖于电磁场的产生和传播。
以下是几个例子:1. 无线通信:手机是电子行业中最具代表性的设备之一。
手机中的通信模块利用电磁波的传播特性,将信号转化为电磁波,通过天线发送出去。
电磁波在空间中传播,并被接收方的设备接收与解码,实现通信。
2. 电子显示器:电视、电脑显示器等设备利用电磁场控制像素的亮度和颜色。
电子显示器中的荧光物质受到电磁场激发后会发出可见光,通过控制电磁场的强度和频率,可以调整屏幕上像素的亮度和颜色。
3. 磁共振成像:磁共振成像(MRI)是一种医学影像技术,通过使用电磁场和无线电波来生成高质量的身体断层影像。
磁共振成像利用强磁场产生一系列电磁波来与人体的原子核相互作用,从而获取身体内部的详细结构信息。
电磁场与电磁波
电磁场与电磁波电磁场和电磁波是电磁学领域中的两个重要概念,它们在我们日常生活中起着重要的作用。
本文将从电磁场的基本概念、电磁波的传播和应用等方面进行详细论述。
一、电磁场的基本概念电磁场是一种物质周围或内部存在的一种物理场。
简单来说,电磁场是由电荷或电流所产生的一种力场。
根据麦克斯韦方程组,电磁场可以分为静电场和静磁场。
静电场是由电荷产生的力场,而静磁场则是由电流所产生的力场。
静电场在物质中以电场的形式存在,而静磁场则以磁场的形式存在。
电场和磁场之间存在一种相互作用的关系,即电场的变化会引起磁场的变化,而磁场的变化也会引起电场的变化。
这种相互作用产生了一个重要的现象,即电磁波的产生与传播。
二、电磁波的传播电磁波是电场和磁场以波的形式传播的现象。
电磁波可以分为射频波、微波、红外线、可见光、紫外线、X射线和γ射线等不同频率范围的波动现象。
电磁波的传播速度是光速,也就是299792458米每秒。
光速是一个宇宙常数,而且是真空中传播速度最快的物理量。
根据麦克斯韦方程组,电磁波的传播可以分为横波和纵波。
横波是指电场和磁场垂直于波的传播方向的波动,而纵波则是指电场和磁场与波的传播方向平行的波动。
电磁波的传播需要介质的存在,例如空气、水和固体等。
不同介质对电磁波的传播有不同的影响,例如折射、反射和散射。
这些现象广泛应用于光学、通信和雷达等领域。
三、电磁场和电磁波的应用电磁场和电磁波的应用范围非常广泛,涉及到许多领域。
首先是通信领域。
无线电和移动通信就是利用电磁波进行信息传输的技术。
我们日常使用的手机、无线网络和卫星通信等都是基于电磁波传播的原理。
其次是光学领域。
光是一种电磁波,光学就是研究光的传播和性质的学科。
光学应用非常广泛,例如光纤通信、显微镜、激光器等。
此外,电磁波还广泛应用于医学诊断和治疗。
X射线、核磁共振和放射治疗等技术都是基于电磁波的原理。
在材料科学领域,电磁场也起着重要的作用。
例如利用电磁场技术进行材料表面改性、溶液混合和催化反应等。
电磁场与电磁波基础知识总结.
第一章一、矢量代数 A ∙B =AB cos θA B⨯=ABe AB sin θ A ∙(B ⨯C ) = B ∙(C ⨯A ) = C ∙(A ⨯B )()()()C A C C A B C B A ⋅-⋅=⨯⨯二、三种正交坐标系 1. 直角坐标系 矢量线元x y z =++le e e d x y z矢量面元=++Se e e x y z d dxdy dzdx dxdy体积元d V = dx dy dz 单位矢量的关系⨯=e e e x y z ⨯=e e e y z x ⨯=e e e z x y2. 圆柱形坐标系 矢量线元=++l e e e z d d d dz ρϕρρϕl 矢量面元=+e e z dS d dz d d ρρϕρρϕ体积元dz d d dVϕρρ= 单位矢量的关系⨯=⨯⨯=e e e e e =e e e e zz z ρϕϕρρϕ3. 球坐标系 矢量线元d l = e r d r e θr d θ + e ϕr sin θ d ϕ矢量面元d S = e r r 2sin θ d θ d ϕ体积元ϕθθd d r r dV sin 2= 单位矢量的关系⨯=⨯⨯=e e e e e =e e e e r rr θϕθϕϕθ三、矢量场的散度和旋度 1. 通量与散度=⋅⎰A S Sd Φ 0lim∆→⋅=∇⋅=∆⎰A S A A Sv d div v2. 环流量与旋度=⋅⎰A l ld Γ maxn 0rot =lim∆→⋅∆⎰A lA e lS d S3. 计算公式∂∂∂∇=++∂∂∂⋅A y x zA A A x y z11()zA A A zϕρρρρρϕ∂∂∂∇=++∂∂∂⋅A 22111()(s i n )s i n s i n ∂∂∂∇=++∂∂∂⋅A r A r A A r r r r ϕθθθθθϕxy z ∂∂∂∇⨯=∂∂∂e e e A x y zx y z A A A1z zz A A A ρϕρϕρρϕρ∂∂∂∇⨯=∂∂∂e e e A21sin sin rr zr rA r A r A ρϕθθθϕθ∂∂∂∇⨯=∂∂∂e e e A4. 矢量场的高斯定理与斯托克斯定理⋅=∇⋅⎰⎰A S A SVd dV⋅=∇⨯⋅⎰⎰A l A S lSd d四、标量场的梯度 1. 方向导数与梯度00()()lim∆→-∂=∂∆l P u M u M u llcos cos cos ∂∂∂∂=++∂∂∂∂P uu u ulx y zαβγ cos ∇⋅=∇e l u u θ grad ∂∂∂∂==+∂∂∂∂e e e +e n x y z u u u u u n x y z2. 计算公式∂∂∂∇=++∂∂∂e e e xy z u u uu x y z1∂∂∂∇=++∂∂∂e e e z u u uu zρϕρρϕ 11sin ∂∂∂∇=++∂∂∂e e e ru u uu r r r zθϕθθ 五、无散场与无旋场1. 无散场()0∇⋅∇⨯=A =∇⨯F A 2. 无旋场 ()0∇⨯∇=u -u =∇F六、拉普拉斯运算算子 1. 直角坐标系22222222222222222222222222222222∂∂∂∇=++∇=∇+∇+∇∂∂∂∂∂∂∂∂∂∂∂∂∇=++∇=++∇=++∂∂∂∂∂∂∂∂∂A e e e x x y y z zy y y x x x z z z x y z u u u u A A A x y zA A A A A A A A A A A A x y z x y z x y z,,2. 圆柱坐标系22222222222222111212⎛⎫∂∂∂∂∇=++ ⎪∂∂∂∂⎝⎭∂∂⎛⎫⎛⎫∇=∇--+∇-++∇ ⎪ ⎪∂∂⎝⎭⎝⎭A e e e z z u u uu z A A A A A A A ϕρρρρϕϕϕρρρρρϕρρϕρρϕ3. 球坐标系22222222111sin sin sin ⎛⎫∂∂∂∂∂⎛⎫∇=++ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭u u uu r r r r r r θθθϕθϕ⎪⎪⎭⎫⎝⎛∂∂+-∂∂+∇+⎪⎪⎭⎫⎝⎛∂∂--∂∂+∇+⎪⎪⎭⎫⎝⎛∂∂-∂∂---∇=∇ϕθθθϕθϕθθθθϕθθθθϕϕϕϕθθθϕθθA r A r A r A A r A r A r A A r A r A r A r A r r r r r 222222222222222222sin cos 2sin 1sin 2sin cos 2sin 12sin 22cot 22e e e A七、亥姆霍兹定理如果矢量场F 在无限区域中处处是单值的,且其导数连续有界,则当矢量场的散度、旋度和边界条件(即矢量场在有限区域V’边界上的分布)给定后,该矢量场F 唯一确定为()()()=-∇+∇⨯F r r A r φ其中1()()4''∇⋅'='-⎰F r r r r V dV φπ 1()()4''∇⨯'='-⎰F r A r r r V dV π第二章一、麦克斯韦方程组 1. 静电场 真空中:001d ==VqdV ρεε⋅⎰⎰SE S (高斯定理)d 0⋅=⎰lE l 0∇⋅=E ρε0∇⨯=E场与位:3'1'()(')'4'V dV ρπε-=-⎰r r E r r r r ϕ=-∇E 01()()d 4πV V ρϕε''='-⎰r r |r r |介质中:d ⋅=⎰D S Sqd 0⋅=⎰lE l ∇⋅=D ρ 0∇⨯=E极化:0=+D E P ε e 00(1)=+==D E E E r χεεεε ==⋅P e PS n n P ρ =-∇⋅P P ρ2. 恒定电场电荷守恒定律:⎰⎰-=-=⋅Vsdv dtddt dq ds J ρ 0∂∇⋅+=∂J tρ传导电流与运流电流:=J E σ ρ=J v恒定电场方程:d 0⋅=⎰J S Sd 0⋅=⎰J l l0∇⋅=J 0∇⨯J =3. 恒定磁场 真空中:0 d ⋅=⎰B l lI μ (安培环路定理)d 0⋅=⎰SB S 0∇⨯=BJ μ0∇⋅=B场与位:03()( )()d 4π ''⨯-'='-⎰J r r r B r r r VV μ =∇⨯B A 0 ()()d 4π'''='-⎰J r A r r r V V μ介质中:d ⋅=⎰H l lId 0⋅=⎰SB S ∇⨯=H J 0∇⋅=B磁化:=-BH M μ m 00(1)=+B H =H =H r χμμμμ m =∇⨯J M ms n =⨯J M e4. 电磁感应定律() d d in lCdv B dldt ⋅=-⋅⨯⋅⎰⎰⎰SE l B S +)(法拉第电磁感应定律∂∇⨯=-∂BE t5. 全电流定律和位移电流全电流定律: d ()d ∂⋅=+⋅∂⎰⎰D H l J S lSt∂∇⨯=+∂DH J t 位移电流:d =DJ d dt6. Maxwell Equationsd ()d d d d d 0∂⎧⋅=+⋅⎪∂⎪∂⎪⋅=-⋅⎪∂⎨⎪⋅=⎪⎪⋅=⎪⎩⎰⎰⎰⎰⎰⎰⎰D H J S B E S D S B S lS l SS V Sl tl t V d ρ 0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩D H J BE D B t tρ()()()()0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩E H E H E E H t t εσμερμ 二、电与磁的对偶性em e m em e e m m e e m mm e 00∂∂⎫⎧∇⨯=-∇⨯=⎪⎪∂∂⎪⎪∂∂⎪⎪∇⨯=+∇⨯=--⎬⎨∂∂⎪⎪∇=∇=⎪⎪⎪⎪∇=∇=⎩⎭⋅⋅⋅⋅B D E H DB H J E J D B D B t t&tt ρρ m e e m ∂⎧∇⨯=--⎪∂⎪∂⎪∇⨯=+⇒⎨∂⎪∇=⎪⎪∇=⎩⋅⋅B E J D H J D B t t ρρ三、边界条件1. 一般形式12121212()0()()()0n n S n Sn σρ⨯-=⨯-=→∞⋅-=⋅-=()e E E e H H J e D D e B B2. 理想导体界面和理想介质界面111100⨯=⎧⎪⨯=⎪⎨⋅=⎪⎪⋅=⎩e E e H J e D e B n n Sn S n ρ 12121212()0()0()0()0⨯-=⎧⎪⨯-=⎪⎨⋅-=⎪⎪⋅-=⎩e E E e H H e D D e B B n n n n 第三章一、静电场分析1. 位函数方程与边界条件 位函数方程:220∇=-∇=ρφφε电位的边界条件:121212=⎧⎪⎨∂∂-=-⎪∂∂⎩s nn φφφφεερ 111=⎧⎪⎨∂=-⎪∂⎩s const nφφερ(媒质2为导体) 2. 电容定义:=qCφ两导体间的电容:=C q /U 任意双导体系统电容求解方法:3. 静电场的能量N 个导体: 112ne iii W qφ==∑ 连续分布: 12e VW dV φρ=⎰电场能量密度:12ω=⋅D E e二、恒定电场分析1.位函数微分方程与边界条件位函数微分方程:20∇=φ 边界条件:121212=⎧⎪⎨∂∂=⎪∂∂⎩n n φφφφεε 12()0⋅-=e J J n 1212[]0⨯-=J J e n σσ2. 欧姆定律与焦耳定律欧姆定律的微分形式: =J E σ 焦耳定律的微分形式: =⋅⎰E J VP dV3. 任意电阻的计算2211d d 1⋅⋅====⋅⋅⎰⎰⎰⎰E lE l J S E S SSU R G I d d σ (L R =σS) 4. 静电比拟法:G C —,σε—2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE l S S d d qC Ud d ε 2211d d d ⋅⋅===⋅⋅⎰⎰⎰⎰J S E SE lE lSS d I G Uσ三、恒定磁场分析1. 位函数微分方程与边界条件矢量位:2∇=-A J μ 12121211⨯⨯⨯A A e A A J n s μμ()=∇-∇=标量位:20m φ∇= 211221∂∂==∂∂m m m m n nφφφφμμ 2. 电感2211⋅⋅===⋅⋅⎰⎰⎰⎰D SE S E lE lS S d d q C Ud d ε定义:d d ⋅⋅===⎰⎰B S A l SlL IIIψ=+i L L L3. 恒定磁场的能量N 个线圈:112==∑Nmj j j W I ψ 连续分布:m 1d 2=⋅⎰A J V W V 磁场能量密度:m 12ω=⋅H B第四章一、边值问题的类型(1)狄利克利问题:给定整个场域边界上的位函数值()=f s φ(2)纽曼问题:给定待求位函数在边界上的法向导数值()∂=∂f s nφ(3)混合问题:给定边界上的位函数及其向导数的线性组合:2112()()∂==∂f s f s nφφ (4)自然边界:lim r r φ→∞=有限值二、唯一性定理静电场的惟一性定理:在给定边界条件(边界上的电位或边界上的法向导数或导体表面电荷分布)下,空间静电场被唯一确定。
电磁场与电磁波知识点整理
电磁场与电磁波知识点整理一、电磁场的基本概念电磁场是由电场和磁场相互作用而形成的一种物理场。
电场是由电荷产生的,而磁场则是由电流或者变化的电场产生的。
电荷是产生电场的源。
正电荷会产生向外辐射的电场,负电荷则产生向内汇聚的电场。
电场强度 E 用来描述电场的强弱和方向,其单位是伏特每米(V/m)。
电流是产生磁场的源。
电流产生的磁场方向可以通过右手螺旋定则来确定。
磁场强度 H 用来描述磁场的强弱和方向,其单位是安培每米(A/m)。
法拉第电磁感应定律表明,变化的磁场会产生电场。
麦克斯韦进一步提出,变化的电场也会产生磁场。
这两个定律共同揭示了电磁场的相互联系和相互转化。
二、电磁波的产生电磁波是电磁场的一种运动形态。
当电荷加速运动或者电流发生变化时,就会产生电磁波。
例如,在一个开放的电路中,电荷在电容器和电感之间来回振荡,就会产生电磁波。
这种振荡电路是产生电磁波的一种简单方式。
电磁波的频率和波长之间存在着一定的关系,即光速 c =λf,其中c 是光速(约为 3×10^8 m/s),λ 是波长,f 是频率。
不同频率的电磁波具有不同的特性和应用。
例如,无线电波频率较低,用于通信和广播;而X 射线频率较高,用于医学成像和材料检测。
三、电磁波的传播电磁波在真空中可以无需介质传播,在介质中传播时,其速度会发生变化。
电磁波在传播过程中遵循反射、折射和衍射等规律。
当电磁波遇到障碍物时,会发生反射。
如果电磁波从一种介质进入另一种介质,会发生折射,折射的程度取决于两种介质的电磁特性。
衍射则是指电磁波绕过障碍物传播的现象。
当障碍物的尺寸与电磁波的波长相当或较小时,衍射现象较为明显。
电磁波的极化是指电场矢量的方向在传播过程中的变化。
常见的极化方式有线极化、圆极化和椭圆极化。
四、电磁波的特性1、电磁波是横波,电场和磁场的振动方向都与电磁波的传播方向垂直。
2、电磁波具有能量,其能量密度与电场强度和磁场强度的平方成正比。
3、电磁波的传播速度是恒定的,在真空中为光速。
公共基础知识电磁场与电磁波基础知识概述
《电磁场与电磁波基础知识概述》一、引言电磁场与电磁波是现代物理学的重要组成部分,在通信、电子、电力等众多领域都有着广泛的应用。
从无线电广播到手机通信,从雷达探测到卫星导航,电磁场与电磁波无处不在。
深入了解电磁场与电磁波的基础知识,对于理解现代科技的发展和应用具有重要意义。
二、电磁场的基本概念(一)电场1. 定义电场是电荷及变化磁场周围空间里存在的一种特殊物质。
电场对放入其中的电荷有作用力,这种力称为电场力。
2. 电场强度电场强度是描述电场强弱和方向的物理量,用 E 表示。
它的定义是单位正电荷在电场中所受的电场力。
电场强度是矢量,其方向与正电荷在该点所受电场力的方向相同。
3. 电场线电场线是为了形象地描述电场而引入的假想曲线。
电场线上每一点的切线方向表示该点电场强度的方向,电场线的疏密程度表示电场强度的大小。
(二)磁场1. 定义磁场是一种看不见、摸不着的特殊物质,它存在于磁体、电流和运动电荷周围。
磁场对放入其中的磁体、电流和运动电荷有力的作用。
2. 磁感应强度磁感应强度是描述磁场强弱和方向的物理量,用 B 表示。
它的定义是在磁场中垂直于磁场方向的通电导线,所受的磁场力 F 与电流 I 和导线长度 L 的乘积 IL 的比值。
磁感应强度是矢量,其方向与小磁针在该点静止时 N 极所指的方向相同。
3. 磁感线磁感线是为了形象地描述磁场而引入的假想曲线。
磁感线上每一点的切线方向表示该点磁感应强度的方向,磁感线的疏密程度表示磁感应强度的大小。
(三)电磁场1. 定义电磁场是有内在联系、相互依存的电场和磁场的统一体和总称。
变化的电场产生磁场,变化的磁场产生电场,两者相互激发,形成电磁场。
2. 麦克斯韦方程组麦克斯韦方程组是描述电磁场基本规律的一组方程,由四个方程组成。
它揭示了电场和磁场之间的内在联系,以及电磁波的产生和传播规律。
三、电磁波的基本概念(一)定义电磁波是由同相且互相垂直的电场与磁场在空间中衍生发射的振荡粒子波,是以波动的形式传播的电磁场。
电磁场与电磁波知识点总结
电磁场与电磁波知识点总结电磁场知识点总结篇一电磁场知识点总结电磁场与电磁波在高考物理中属于非主干知识点,多以选择题的形式出现,题目难度较低,属于必得分题目,重点考察考生对基本概念的理解和掌握情况。
下面为大家简单总结一下高中阶段需要大家掌握的电磁场与电磁波相关知识点。
电磁场知识点总结一、电磁场麦克斯韦的电磁场理论:变化的电场产生磁场,变化的磁场产生电场。
理解:* 均匀变化的电场产生恒定磁场,非均匀变化的电场产生变化的磁场,振荡电场产生同频率振荡磁场* 均匀变化的磁场产生恒定电场,非均匀变化的磁场产生变化的电场,振荡磁场产生同频率振荡电场* 电与磁是一个统一的整体,统称为电磁场(麦克斯韦最杰出的贡献在于将物理学中电与磁两个相对独立的部分,有机的统一为一个整体,并成功预言了电磁波的存在)二、电磁波1、概念:电磁场由近及远的传播就形成了电磁波。
(赫兹用实验证实了电磁波的存在,并测出电磁波的波速)2、性质:* 电磁波的传播不需要介质,在真空中也可以传播* 电磁波是横波* 电磁波在真空中的传播速度为光速* 电磁波的波长=波速*周期3、电磁振荡LC振荡电路:由电感线圈与电容组成,在振荡过程中,q、I、E、B 均随时间周期性变化振荡周期:T = 2πsqrt[LC]4、电磁波的发射* 条件:足够高的振荡频率;电磁场必须分散到尽可能大的'空间* 调制:把要传送的低频信号加到高频电磁波上,使高频电磁波随信号而改变。
调制分两类:调幅与调频# 调幅:使高频电磁波的振幅随低频信号的改变而改变# 调频:使高频电磁波的频率随低频信号的改变而改变(电磁波发射时为什么需要调制?通常情况下我们需要传输的信号为低频信号,如声音,但低频信号没有足够高的频率,不利于电磁波发射,所以才将低频信号耦合到高频信号中去,便于电磁波发射,所以高频信号又称为“载波”)5、电磁波的接收* 电谐振:当接收电路的固有频率跟收到的电磁波频率相同时,接受电路中振荡电流最强(类似机械振动中的“共振”)。
电磁场与电磁波知识点
电磁场与电磁波知识点电磁场与电磁波是电磁学的基本概念。
电磁场是由电荷或电流所产生的具有一定强度和方向的力场,它对空间中的其他电荷或电流起相互作用的作用。
电磁波是电磁场的一种传播形式,它是以电场和磁场相互作用而产生的一种波动现象。
首先,我们来了解一下电磁场的基本概念。
电磁场是由电荷或电流所产生的力场。
当电荷或电流存在时,它们会在周围产生电场和磁场。
电场是由电荷产生的力场,它与电荷的性质和位置有关,遵循库仑定律。
磁场是由电流产生的力场,它与电流的性质和流动方向有关,遵循安培定律。
电磁场有一定的强度和方向,它们可以通过电场强度和磁感应强度来描述。
电磁场是非常重要的物理概念,它在电磁学、电动力学和电磁波学等领域中发挥着重要的作用。
电磁场不仅能够解释电荷或电流之间的相互作用,还能够解释光的传播和电磁波的形成。
接下来,我们来了解一下电磁波的基本概念。
电磁波是电磁场的一种传播形式,它是以电场和磁场相互作用而产生的一种波动现象。
电磁波是由振荡的电荷或电流产生的,当电荷或电流振荡时,它们会在周围产生电磁场的波动。
电磁波有许多特性,包括频率、波长、速度和偏振等。
频率是指电磁波的振荡次数,它与波长之间有一个简单的关系,即频率等于速度除以波长。
波长是指电磁波的空间周期,它是电磁波在一个周期内传播的距离。
速度是指电磁波的传播速度,它在真空中的数值约为光速。
偏振是指电磁波的振动方向,电磁波可以是线偏振、圆偏振或者非偏振的。
电磁波在物质中的传播速度和真空中的传播速度有所不同。
当电磁波传播到介质中时,它会与介质中的电荷和电流相互作用,从而减小传播速度。
介质对电磁波的传播速度的影响可以用折射率来描述,折射率是介质中光速与真空中光速的比值。
电磁波在空间中传播时,它能够传递能量和动量。
电磁波的能量和动量密度与电场和磁场的强度有关,它们可以通过能量密度和动量密度来描述。
能量密度是单位体积内的能量,动量密度是单位体积内的动量。
电磁波的能量和动量密度与电磁场的强度有一个简单的关系,即能量密度等于电场强度和磁感应强度的平方之和的一半,动量密度等于电场强度和磁感应强度的矢量叉乘的一半。
电磁场与电磁波总结
电磁场与电磁波总结电磁场与电磁波是物理学中的重要概念,它们是描述电磁现象的理论基础。
电磁场是指电荷或电流在空间中产生的具有能量和动量的场,它包括静电场和静磁场,以及相互作用后的电磁场。
电磁波是电磁场在空间中传播的波动现象,它是由变化的电场和磁场耦合产生的。
电磁场的产生与电荷和电流密切相关。
根据库仑定律,电荷之间存在相互作用力,这种相互作用力可以通过电场来描述。
电场是指电荷在周围空间中产生的场,它由电荷所带来的力场引起。
电场的强度可以通过电场线来表示,电场线是指沿着电场方向的曲线。
电场线越密集,电场强度越大。
电场的另一种表达方式是电势。
电势是指单位正电荷在电场中所具有的能量。
电势的计算可以通过电势差来实现,电势差是指单位正电荷从一个点移动到另一个点所做的功。
电势差也可以通过电势面来表示,电势面是指电势相等的点所组成的曲面。
电势是标量量,它没有方向。
静电场是指电荷分布不变的电场。
根据高斯定律,静电场满足库仑定律,即电场强度与电荷量正比,与距离的平方成反比。
静磁场是指电流分布不变的磁场。
根据比奥-萨伐尔定律,静磁场满足安培定律,即磁场强度与电流正比,与距离成反比。
静电场和静磁场可以通过麦克斯韦方程组来描述。
根据电磁波的频率,可以将其分为不同的波段。
其中,频率低于3000Hz的电磁波称为低频电磁波,主要包括工频电磁波和无线电波;频率在3000Hz到300GHz之间的电磁波称为射频电磁波,主要包括微波和雷达波;频率高于300GHz的电磁波称为高频电磁波,主要包括红外线、可见光、紫外线、X射线和γ射线。
电磁波在生活中有广泛的应用。
无线通信、广播电视、雷达导航、医学影像、光纤通信等都是基于电磁波的技术。
此外,电磁波还有助于人类对宇宙的认知,天文学家利用电磁波对星系、恒星和行星进行观测和研究。
总结起来,电磁场与电磁波是物理学中重要的概念。
电磁场是由电荷和电流产生的具有能量和动量的场,它包括静电场和静磁场,以及相互作用后的电磁场。
电磁场与电磁波知识点整理
电磁场与电磁波知识点整理一、电磁场的基本概念电磁场是有内在联系、相互依存的电场和磁场的统一体的总称。
电场是电荷及变化磁场周围空间里存在的一种特殊物质,电场这种物质与通常的实物不同,它不是由分子原子所组成,但它是客观存在的。
电场的基本性质是对放入其中的电荷有作用力,这种力称为电场力。
电场强度是描述电场强弱和方向的物理量,用 E 表示,单位为伏特/米(V/m)。
磁场是一种看不见、摸不着的特殊物质。
磁体周围存在磁场,磁体间的相互作用就是以磁场作为媒介的。
电流、运动电荷、磁体或变化电场周围空间存在的一种特殊形态的物质。
磁场的基本特性是对处于其中的磁体、电流和运动电荷有力的作用。
磁感应强度是描述磁场强弱和方向的物理量,用 B 表示,单位为特斯拉(T)。
二、库仑定律与电场强度库仑定律是描述真空中两个静止的点电荷之间相互作用力的定律。
其表达式为:$F = k\frac{q_1q_2}{r^2}$,其中 F 是两个点电荷之间的库仑力,k 是库仑常量,q1 和 q2 分别是两个点电荷的电荷量,r是两个点电荷之间的距离。
电场强度是用来描述电场力的性质的物理量。
点电荷 Q 产生的电场中,距离点电荷 r 处的电场强度为:$E = k\frac{Q}{r^2}$。
对于多个点电荷组成的系统,某点的电场强度等于各个点电荷单独在该点产生的电场强度的矢量和。
三、高斯定理高斯定理是电场的一个重要定理。
通过一个闭合曲面的电通量等于该闭合曲面所包围的电荷的代数和除以真空中的介电常数。
在计算具有对称性的电场分布时,高斯定理非常有用。
例如,对于均匀带电的无限长直导线,利用高斯定理可以方便地求出其周围的电场强度分布。
四、安培环路定理安培环路定理反映了磁场的一个重要性质。
在稳恒磁场中,磁感应强度 B 沿任何闭合路径的线积分,等于这闭合路径所包围的各个电流的代数和乘以磁导率。
利用安培环路定理,可以方便地计算具有对称性的电流分布所产生的磁场。
五、法拉第电磁感应定律法拉第电磁感应定律指出,闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。
电磁场与电磁波
电磁场与电磁波电磁场和电磁波是我们生活中经常接触到的物理现象。
本文将以通俗易懂的方式,详细介绍电磁场和电磁波的基本概念、特性及应用。
一、电磁场的概念与特性电磁场是由电荷所产生的力场和磁荷所产生的磁场组成的物理场。
它包括电场和磁场两个方面。
电场是由静止电荷所产生的场,具有方向和大小;磁场是由运动电荷所产生的场,同样也具有方向和大小。
电磁场具有以下特性:1. 空间的任何一点都存在电场和磁场;2. 电场和磁场相互作用,相互转换;3. 电场和磁场都遵循相应的物理规律,如库仑定律和安培定律;4. 电场和磁场的强度与产生它们的电荷和电流的大小有关。
二、电磁波的概念与特性电磁波是一种能够在真空中传播的无线电波,它是电磁场的一种表现形式。
电磁波具有电场和磁场的振荡,并且垂直于传播方向。
通常将电磁波按照频率分成不同的波段,如无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等。
电磁波的特性如下:1. 电磁波具有波长和频率的关系,波长和频率互为倒数;2. 不同频率的电磁波在介质中传播的速度是相同的,即为光速;3. 电磁波可以在真空中传播,不需要介质媒质;4. 电磁波的能量和强度与其频率有关。
三、电磁场与电磁波的应用电磁场和电磁波在生活中有着广泛的应用。
以下是其中几个重要的应用领域:1. 通信技术:无线电通信、卫星通信、手机通信等都是基于电磁波传播原理进行的。
2. 电磁辐射与医学:医学影像学中的X射线和核磁共振都是利用电磁波进行的影像诊断。
3. 电磁感应:电磁感应是电动机、发电机和变压器等电器工作原理的基础。
4. 光学技术:光学仪器和光通信等利用了可见光的电磁波特性。
5. 无人驾驶和雷达系统:雷达系统利用电磁波的反射与接收原理,实现物体的探测与定位。
总结:电磁场与电磁波是我们日常生活中不可或缺的物理现象。
电磁场是由电场和磁场组成的物理场,而电磁波则是电磁场在真空中的一种传播形式。
电磁场和电磁波在通信技术、医学、电气工程、光学技术、雷达系统等方面都有广泛应用。
电磁场与电磁波的教学内容概述
电磁场与电磁波是电磁学的重要内容,是进入现代物理的基础知识。
它是我们了解电子学、信息科学、电力工程、电磁兼容等领域的理论基础。
本文将从电磁场与电磁波的概念、数学表示及其应用等方面进行全面的阐述,共分为以下几个部分。
一、电磁场的概念与基本特性电磁场是指在电荷或电流存在的情况下,在空间中发生的电场和磁场的相互作用。
它是一个连续的场,具有能量、动量、角动量等物理量。
电磁场的基本特性有:1)超距作用;2)场的线性性;3)场的可加性;4)场的相互作用。
二、电磁场的数学表示电磁场的数学表示主要有两种方法:一是使用麦克斯韦方程式,它包括麦克斯韦电场定律、麦克斯韦磁场定律、法拉第电磁感应定律和安培电流定律。
二是利用应用数学中的向量分析,包括向量导数、散度和旋度等。
三、电磁波的概念与基本特性电磁波是由电场和磁场相互作用而产生的一种波动现象。
它具有电场和磁场的可旋转、垂直并互相垂直、传播方向垂直于电场和磁场的特点。
电磁波分为许多不同的频率和波长,其中包括无线电波、光波、X射线、γ射线等。
四、电磁波的数学表示电磁波的数学表示主要有两种方法:一是通过电磁场的数学表示导出电磁波的运动方程,即麦克斯韦方程组。
二是通过电磁波本身的性质进行数学建模,如用傅里叶分析法,将电磁波表示为谐波和完整的谱等。
五、电磁场与电磁波的应用电磁场与电磁波在各个领域均有着广泛的应用。
在电子学领域,电磁场在电磁管、电子束匀器及微波电路等设备的设计与优化中发挥着重要的作用。
在信息科学领域,电磁波被广泛用于通信技术中的无线传输、卫星通讯等。
在电力工程领域,电磁场在电气设备的设计、制造、维护等方面起着至关重要的作用。
此外,在医学、地质、环境、天文学等领域,电磁场与电磁波也有着广泛的应用。
电磁场与电磁波是电磁学的基础,是现代科学技术的重要组成部分。
本文从电磁场与电磁波的概念、数学表示及其应用等角度进行了概述,希望能够对读者理解和应用电磁场与电磁波有所帮助。
电磁场与电磁波名词解释复习
电磁场与电磁波名词解释复习安培环路定律1)真空中的安培环路定律在真空的磁场中,沿任意回路取B的线积分,其值等于真空的磁导率乘以穿过该回路所限定面积上的电流的代数和。
即Jt—12)—般形式的安培环路定律在任意磁场中,磁场强度 H沿任一闭合路径的线积分等于穿过该回路所包围面积的自由电流(不包括磁化电流)的代数和。
即B(返回顶端)边值问题1)静电场的边值问题静电场边值问题就是在给定第一类、第二类或第三类边界条件下,求电位函数卩的泊松方程(护尸一戏&或拉普拉斯方程(护尸°)定解的问题。
2)恒定电场的边值问题在恒定电场中,电位函数也满足拉普拉斯方程。
很多恒定电场的问题,都可归结为在一定条件下求拉普拉斯方程)的解答,称之为恒定电场的边值问题。
3)恒定磁场的边值问题(1)磁矢位的边值问题磁矢位在媒质分界面上满足的衔接条件和它所满足的微分方程以及场域上给定的边界条件一起构成了描述恒定磁场的边值问题。
对于平行平面磁场,分界面上的衔接条件是'1 54 1 3^ _阳血血湖V a A ——磁矢位A所满足的微分方程(2)磁位的边值问题在均匀媒质中,磁位也满足拉普拉斯方程。
磁位拉普拉斯方程和磁位在媒质分界面上满足的衔接条件以及场域上边界条件一起构成了用磁位描述恒定磁场的边值问题。
磁位满足的拉普拉斯方程两种不同媒质分界面上的衔接条件边界条件1 •静电场边界条件在场域的边界面S上给定边界条件的方式有:第一类边界条件(狄里赫利条件,Dirichlet)已知边界上导体的电位第二类边界条件(聂以曼条件Neuma nn)已知边界上电位的法向导数(即电荷面密度或电力线)第三类边界条件(”嗓已知边界上电位及电位法向导数的线性组合静电场分界面上的衔接条件和称为静电场中分界面上的衔接条件。
前者表明,分界面两侧的电通量密度的法线分量不连续,其不连续量就等于分界面上的自由电荷面密度;后者表明分界面两侧电场强度的切线分量连续。
电磁场与电磁波的基本理论和工程应用
电磁场与电磁波的基本理论和工程应用电磁场和电磁波是电磁学的基础概念,其理论和应用在现代科技社会中起着重要作用。
本文将详细介绍电磁场和电磁波的基本理论以及其在工程应用中的具体情况。
一、电磁场的基本理论1.1 电磁场的概念电磁场是一种存在于空间中的物理现象,描绘了电荷和电流的相互作用过程。
它由电场和磁场两部分组成,具有方向强度和传播速度等特性。
1.2 电磁场的数学表达电磁场的数学表达主要是通过麦克斯韦方程组来描述。
麦克斯韦方程组包括四个方程,分别是高斯定律、法拉第电磁感应定律、安培环路定律和法拉第电磁感应第二定律。
1.3 电磁场的特性电磁场有许多特性,其中包括:- 有源性:电磁场的产生需要带电粒子或电流作为能量源。
- 传播性:电磁场可以在空间中传播,并以光速的速度传递信息。
- 叠加性:多个电磁场可以叠加形成新的电磁场。
- 势能性:电磁场可以与电荷相互转化,从而进行能量的传递。
二、电磁波的基本理论2.1 电磁波的概念电磁波是由电磁场在空间中传播形成的一种波动现象。
它由电场和磁场的相互作用引起,具有电磁场的传播速度和特性。
2.2 电磁波的产生和传播电磁波的产生主要是通过加速带电粒子或振荡电流来实现的。
一旦电磁波产生后,它会以电磁场的形式在空间中传播,直到被吸收或衰减。
2.3 电磁波的分类根据波长和频率的不同,电磁波可以分为不同的分类,包括无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等。
三、电磁场和电磁波的工程应用3.1 通信技术电磁场和电磁波在通信技术中起着关键作用。
无线电波和微波被广泛应用于无线通信和卫星通讯领域,可实现远距离的信息传输。
3.2 雷达技术雷达技术利用电磁波进行探测和测距,广泛应用于航空、军事等领域。
雷达可实现对目标的探测、定位和跟踪,具有重要意义。
3.3 高频加热技术高频加热技术是利用电磁场的能量将物体加热到所需温度。
它在工业生产中广泛应用于熔融金属、加热塑料等领域。
3.4 医学诊断技术电磁波在医学诊断技术中也有重要应用。
电磁场与电磁波
电磁场与电磁波电磁场和电磁波是物理学中非常重要的概念,它们在我们的日常生活和科学研究中扮演着重要角色。
本文将介绍电磁场和电磁波的概念、性质以及它们在现代科技中的应用。
一、电磁场的概念和性质电磁场是指由电荷产生的力场和磁场所组成的物理场。
根据麦克斯韦方程组,电荷的运动会产生电场,而变化的电流则会产生磁场。
这两个场之间相互作用,共同构成了电磁场。
电磁场具有以下几个重要的性质:1. 电磁场是无线的:电磁场的传播速度是光速,约为300,000公里/秒,具有较快的传播速度。
2. 电场和磁场的相互作用:根据法拉第电磁感应定律,变化的磁场可以产生感应电场,而变化的电场则会产生感应磁场。
这种相互作用是电磁波传播的基础。
3. 电磁场的能量传递:电磁场携带能量,能量的传递通过电磁波进行。
电磁波是由电场和磁场相互耦合形成的波动现象。
二、电磁波的概念和性质电磁波是由电场和磁场相互耦合形成的一种波动现象。
它以光速传播,并在真空中可以自由传播。
电磁波具有以下几个重要的性质:1. 频率和波长:电磁波的频率和波长之间存在确定的关系,即频率乘以波长等于光速。
不同频率和波长的电磁波表现出不同的特性,如可见光、射线和无线电波等。
2. 偏振性质:电磁波可以是无偏振的,也可以是偏振的。
偏振电磁波只在一个特定的方向上振动,有利于某些应用,如偏振镜和3D眼镜等。
3. 干涉和衍射:电磁波在遇到障碍物或孔径时会产生干涉和衍射现象。
这些现象可以用来解释光的折射、多普勒效应等现象,对科学研究和技术应用具有重要意义。
三、电磁场和电磁波的应用电磁场和电磁波在现代科技中运用广泛。
以下列举几个例子:1. 通信技术:无线通信离不开电磁波传播,无线电、微波和红外线等电磁波被广泛用于手机、无线网络、卫星通信等领域。
2. 医学影像:射线和磁共振成像等技术利用电磁波对人体进行成像,对医学诊断和治疗起到重要作用。
3. 光学器件:电磁波在光学器件中被广泛应用,如透镜、光电二极管和激光器等。
最新电磁场与电磁波理论 概念归纳
A.电磁场理论B基本概念1.什么是等值面?什么是矢量线?等值面——所有具有相同数值的点组成的面★空间中所有的点均有等值面通过;★所有的等值面均互不相交;★同一个常数值可以有多个互不相交的等值面。
矢量线(通量线)---- 一系列有方向的曲线。
线上每一点的切线方向代表该点矢量场方向,而横向的矢量线密度代表该点矢量场大小。
例如,电场中的电力线、磁场中的磁力线。
2.什么是右手法则或右手螺旋法则?本课程中的应用有哪些?(图)右手定则是指当食指指向矢量A的方向,中指指向矢量B的方向,则大拇指的指向就是矢量积C=A*B的方向。
右手法则又叫右手螺旋法则,即矢量积C=A*B的方向就是在右手螺旋从矢量A转到矢量B的前进方向。
本课程中的应用:★无限长直的恒定线电流的方向与其所产生的磁场的方向。
★平面电磁波的电场方向、磁场方向和传播方向。
3.什么是电偶极子?电偶极矩矢量是如何定义的?电偶极子的电磁场分布是怎样的?电偶极子——电介质中的分子在电场的作用下所形成的一对等值异号的点电荷。
电偶极矩矢量——大小等于点电荷的电量和间距的乘积,方向由负电荷指向正电荷。
4.麦克斯韦积分和微分方程组的瞬时形式和复数形式;积分形式:微分方式:(1)安培环路定律(2)电磁感应定律(3)磁通连续性定律(4)高斯定律5.结构方程6.什么是电磁场边界条件?它们是如何得到的?(图)边界条件——由麦克斯韦方程组的积分形式出发,得到的到场量在不同媒质交界面上应满足的关系式(近似式)。
边界条件是在无限大平面的情况得到的,但是它们适用于曲率半径足够大的光滑曲面。
7.不同媒质分界面上以及理想导体表面上电磁场边界条件及其物理意义;(1)导电媒质分界面的边界条件★导电媒质分界面上不存在传导面电流,但可以有面电荷。
在不同媒质分界面上,电场强度的切向分量、磁场强度的切向分量和磁感应强度的法向分量永远是连续的(2)理想导体表面的边界条件★理想导体内部,时变电磁场处处为零。
电磁场与电磁波
电磁场与电磁波电磁场与电磁波是物理学中重要的概念,对于解释电磁现象及其应用具有重要意义。
本文将介绍电磁场和电磁波的概念,以及它们在日常生活和科学研究中的应用。
同时,将对电磁场和电磁波的相互关系进行探讨,帮助读者更好地理解电磁现象。
一、电磁场的概念电磁场是指电荷或者电流产生的一种物理场。
它是一种具有电场和磁场性质的物质环境。
电荷在空间中运动时,由于其电场和磁场的相互作用,产生了电磁场。
电磁场具有电磁感应、辐射和传播的特性。
电磁场的基本性质是通过电场和磁场来描述。
电场是由电荷产生的力场,它对电荷的运动具有作用力。
磁场是由电流产生的力场,它对电流和磁矩具有作用力。
电场和磁场的强度、方向和空间分布可以通过电磁场的方程来描述,其中包括麦克斯韦方程组。
二、电磁波的概念电磁波是电磁场的一种传播方式,它是由变化的电场和磁场相互作用而产生的波动。
电磁波传播的速度是光速,即299792458米/秒。
电磁波可以按照其频率和波长来分类,包括射线、微波、红外线、可见光、紫外线、X射线和γ射线等。
电磁波具有电场和磁场的振荡特性,这种振荡在空间中以波的形式传播。
在电磁波的传播过程中,电场和磁场两者之间是相互关联的,它们的变化是同步的,且以相同的频率进行振荡。
三、电磁场和电磁波的应用电磁场和电磁波的应用非常广泛,几乎贯穿于各个领域。
下面列举了其中的几个重要应用:1. 通信技术:电磁场和电磁波在无线通信中起着至关重要的作用。
无线电、移动通信和卫星通信等都是建立在电磁场和电磁波的基础上。
2. 医学影像学:医学中的X射线、CT扫描、MRI等影像技术都是利用电磁波在人体内部的传播和反射特性来进行诊断的。
3. 电磁感应:电磁场的变化可以引起电磁感应现象,这一原理被应用于变压器、发电机等装置中。
4. 光学技术:光学是电磁场的重要分支,利用光的特性进行实验和应用,如激光、光导纤维通信等。
5. 环境监测:电磁场可以用于环境监测,例如雷达、卫星遥感技术可以对天气、地壳运动等进行观测和预测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.电磁场理论B基本概念1.什么就是等值面?什么就是矢量线?等值面——所有具有相同数值的点组成的面★空间中所有的点均有等值面通过;★所有的等值面均互不相交;★同一个常数值可以有多个互不相交的等值面。
矢量线(通量线)---- 一系列有方向的曲线。
线上每一点的切线方向代表该点矢量场方向,而横向的矢量线密度代表该点矢量场大小。
例如,电场中的电力线、磁场中的磁力线。
2.什么就是右手法则或右手螺旋法则?本课程中的应用有哪些?(图)右手定则就是指当食指指向矢量A的方向,中指指向矢量B的方向,则大拇指的指向就就是矢量积C=A*B的方向。
右手法则又叫右手螺旋法则,即矢量积C=A*B的方向就就是在右手螺旋从矢量A转到矢量B的前进方向。
本课程中的应用:★无限长直的恒定线电流的方向与其所产生的磁场的方向。
★平面电磁波的电场方向、磁场方向与传播方向。
3.什么就是电偶极子?电偶极矩矢量就是如何定义的?电偶极子的电磁场分布就是怎样的?电偶极子——电介质中的分子在电场的作用下所形成的一对等值异号的点电荷。
电偶极矩矢量——大小等于点电荷的电量与间距的乘积,方向由负电荷指向正电荷。
4、麦克斯韦积分与微分方程组的瞬时形式与复数形式;积分形式: 微分方式:(1)安培环路定律(2)电磁感应定律(3)磁通连续性定律(4)高斯定律5、结构方程6、什么就是电磁场边界条件?它们就是如何得到的?(图)边界条件——由麦克斯韦方程组的积分形式出发,得到的到场量在不同媒质交界面上应满足的关系式(近似式)。
边界条件就是在无限大平面的情况得到的,但就是它们适用于曲率半径足够大的光滑曲面。
7、不同媒质分界面上以及理想导体表面上电磁场边界条件及其物理意义;(1)导电媒质分界面的边界条件★导电媒质分界面上不存在传导面电流,但可以有面电荷。
在不同媒质分界面上,电场强度的切向分量、磁场强度的切向分量与磁感应强度的法向分量永远就是连续的(2)理想导体表面的边界条件★理想导体内部,时变电磁场处处为零。
导体表面可以存在时变的面电流与面电荷。
电磁场边界条件一般形式的标量形式与矢量形式★理想导体表面上不存在电场强度的切向分量与磁感应强度的法向分量。
★电力线总就是垂直于理想导体表面的,而磁力线总就是平行于理想导体表面的。
★磁场强度的切向分量等于面电流密度的大小,导体表面的外法线、磁场强度的切向分量与面电流三者的方向满足右手螺旋法则。
★电位移的法向分量等于面电荷密度的大小。
(3)理想介质分界面的边界条件理想媒质分界面上电场强度与磁场强度的切向分量就是连续的。
磁感应强度的法向分量与电位移法向分量也就是连续的。
8、什么就是静电场折射定律?(图)在界面上电场强度的方向将会发生突变9.直接积分法的基本概念;直接求解一维电位分布所满足的二阶常微分方程,即直接求解一维的泊松方程(有源区)或一维的拉普拉斯方程(无源区)的方法。
10.分离变量法的基本概念;将待求的多变量的未知函数分离成多个单变量的函数后分别进行求解的方法。
11.什么就是镜像法?导体平面与导体球面的镜像电荷就是如何确定的?(图)用镜像电荷代替导体面或介质面的影响,利用原电荷与镜像电荷来求解场分布的方法。
★点电荷关于无限大导体平面的镜像电荷——大小相等、极性相反,位置以平面为对称。
【1】线电荷与无限大导体平面的镜像法★镜像线电荷与原线电荷大小相等、极性相反,且位置以平面为对称【2】点电荷与两个半无限大相交导体平面的镜像法只有夹角满足条件时,才能利用镜像法进行求解。
镜像电荷总数为个。
当夹角 90度时,点电荷产生的电位分布为当夹为60度时,线电荷产生的电位分布为★零电位参考点取在两个导体平面的交点(2)点电荷关于导体球面的镜像法【1】接地球(壳)外的点电荷的镜像法【2】接地球壳内的点电荷的镜像法导体球面的镜像法特点●电荷在接地球的外部时,总的感应电荷等于镜像电荷,但就是电量小于实际的电荷。
●电荷在接地球壳内部时,总的感应电荷也就是等于镜像电荷,其电量也等于实际的点电荷的电量。
12.什么就是静电比拟法?它有什么用处?静电比拟法——借助静电场的计算方法或者计算结果来得到导体内恒定电场问题的解。
或者借助已有的导体内恒定电场的计算或实验结果得到静电问题的解。
用处:根据静电比拟法可知电容器中电流分布以及电容器的漏电导导体内(源区除外)恒定电场基本方程以及边界条件与理想介质内(源区除外)静电场的基本方程与边界条件源外的恒定电场无源区的静电场场方程结构方程位函数方程边界条件13.什么就是恒定磁场折射定律?(图)14、静电场、恒定电场与时谐电磁场的位函数的基本概念:(定义、微分方程、滞后位)●静电场——由静止电荷所产生的电场:●基本方程的微分形式★若导体中存在有恒定电流,则该导体内部必然存在一个不随时间而变化的电场来驱动电荷做定向运动,这个电场就就是导体内部的恒定电场。
恒定电场也就是时变电磁场的特殊情形。
恒定电场基本方程与边界条件也就是麦克斯韦方程组与时变电磁场的边界条件在各类场量均不随时间而变化时的特殊情形★当导体内部流过恒定电流时,导体内部的电荷密度与电流密度均不随时间而变化。
导体内部的电场应为无旋场,导体内部的体电流密度的散度应为零。
★导体内部恒定电场的微分方程★★欧姆定律微分形式的★时谐电磁场——场量的诸分量都随时间做正弦或余弦形式的变化,即随时间做简谐变化。
★时谐电磁场位函数的定义15、时谐电磁场的达兰贝尔方程(波动方程)与亥母霍兹方程(复波动方程)●位函数的达兰贝尔方程(波动方程)●无源区域内位函数满足的齐次达兰贝尔方程(波动方程)无源区域内电磁场满足的齐次达兰贝尔方程(波动方程)★滞后位——积分表示式中的第一项,代表了从源点向场点传播的电磁波——入射波★超前位——积分表示式中的第二项,代表了从场点向源点传播的电磁波——反射波★在无限大空间中,没有任何障碍物,也就不会有反射波,即不可能存在超前位,只有滞后位。
★无源区的位函数的亥姆霍兹方程●无源区的电磁场的亥姆霍兹方程16、坡印亭定理及其物理意义➢电磁波的传播伴随着电磁能量的传递。
或者说,电磁能量以电磁波的形式在空间传播以送到远方的接收点。
电磁能量在传播的过程中满足能量守恒定律。
➢能量守恒定律——能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变。
17、什么就是均匀平面波的极化?均匀平面波的极化有什么特点●极化(偏振)——空间各点的电场强度矢量随时间变化的特性或各点的电场强度矢量的顶点在一个周期内在等相位面内画出的轨迹的形状。
●均匀平面波极化的特点:●(1)电场的极化就就是磁场的极化;●(2)不同的位置处,极化的形式完全相同,只就是变化的起始点不同;●(3)均匀平面波的极化可以分为线极化、圆极化与椭圆极化三种,而圆极化与椭圆极化又分为右旋(正旋)极化或左旋(反旋)极化。
18、什么就是线极化?什么就是圆极化?什么就是椭圆极化?什么就是右旋圆极化波?什么就是左旋圆极化波?★当均匀平面波的电场的两个分量的初相位就是同相或者反相时,对应的均匀平面波就是线极化波。
★当均匀平面波的电场的两个分量的幅度相等且初相位相差90度时,对应的均匀平面波就是圆极化波。
★将大拇指指向波的传播方向,其余的四指指向电场矢量顶点的旋转方向,符合右手螺旋关系的称为右旋(正旋)极化波,符合左手螺旋关系的称为左旋(反旋)极化波19、什么就是传播常数?什么就是衰减常数?什么就是相位常数?导电媒质中传播的均匀平面波具有什么特点?★导电媒质中的传播常数衰减常数相位常数●均匀平面波在导电媒质中传播的特点●(1)仍然就是横电磁波,即TEM波。
●(2)传播常数就是一个复数,它表明在电磁波的传播过程中,场强的相位按规律随的增加而滞后,场强的振幅按规律随的增加而衰减。
●(3)波阻抗就是复数。
这说明电场与磁场在时间上不同相。
磁场的相位落后于电场。
●(4) 三者在空间上相互垂直且满足右手螺旋关系。
●●(5)导电媒质中的相速与波长20、什么就是色散?什么就是导电媒质的色散?★色散——由于实际中的信号总就是含有不同的频率分量,如果这些不同的频率分量的相速不同的话,将会导致信号不能正常传播,出现失真。
这种现象称为色散(或频散)现象。
★色散媒质——具有色散现象的媒质就称为色散媒质。
由于在导电媒质中,电磁波的相速不就是常数,所以导电媒质就就是一种色散媒质。
当电磁波在无限大的理想介质中传播时,其相速就是与频率无关的常数,因此不会出现色散。
21、什么就是趋肤效应?什么就是趋肤深度(透入深度)?★趋肤效应——当电磁波垂直进入良导体后,场强以及电流密度随着电磁波透入导体深度的增加而迅速衰减。
场强以及电流密度主要分布在导体表面,这种现象就就是所谓的“趋肤效应”。
★趋肤深度——电磁波的场强振幅衰减到表面值的所经过的距离22、均匀平面波对不同媒质分界面的垂直射入的基本概念;(图)★垂直入射——入射波的方向垂直于分界面23、均匀平面波对不同媒质分界面的斜入射的基本概念;(入射面,垂直极化入射,平行极化入射,反射定律,折射定律,全反射,全折射)★斜入射——均匀平面波以任一角度向理想介质平面入射★入射面——由入射线与界面法线所确定的平面,也即入射线、反射线、折射线与分界面的法线所共有的平面。
★垂直极化波的斜入射——入射波的电场垂直于入射面★平行极化波的斜入射——入射波的电场平行于入射面★在垂直极化波斜入射的条件下,不可能出现无反射现象。
★可以利用无反射现象从圆极化中分离出线极化波。
当平面波向无限大分界面平面斜入射时入射角必然等于反射角称为反射定律理想介质分界面上的无反射(全折射)与全反射★非铁磁性媒质分界面无反射的条件:(1)平行极化波斜入射;(2)★布儒斯特角★非铁磁性媒质分界面全反射的条件:(1)光密媒质到光疏媒质 ;(2)临界角垂直极化波斜入射与平行极化波斜入射都可以产生全反射;全反射不等于无折射。