高一物理知识点动量
物理高中动量知识总结归纳
物理高中动量知识总结归纳物理中,动量是描述物体运动状态的重要量之一。
了解和掌握动量的概念、性质和相关定律,对于理解力学问题具有重要意义。
在这篇文章中,我们将对高中物理中的动量知识进行总结归纳,以帮助读者更好地理解和应用这一概念。
一、动量的概念与定义动量是物体运动状态的物理量,通常用字母P表示。
对于质量为m的物体,其动量的定义为P = mv,其中m为物体的质量,v为物体的速度。
动量的单位是千克·米/秒(kg·m/s)。
动量有方向,与物体的速度方向一致。
在一维运动中,速度的正负与运动方向一致,因此动量也有正负之分。
当物体运动方向与某一参考方向一致时,动量取正值;反之,动量取负值。
二、动量守恒定律动量守恒定律是力学中的重要定律之一,表明在没有外力作用的情况下,系统的总动量保持不变。
在碰撞问题中,动量守恒定律可以用来解决碰撞前后物体的速度和质量之间的关系。
在完全弹性碰撞中,两物体碰撞前后动量守恒和动能守恒同时成立。
完全弹性碰撞是指在碰撞过程中没有能量损失,碰撞后物体的总机械能仍然保持不变。
在完全非弹性碰撞中,两物体碰撞后会发生能量损失,动能会转化为其他形式的能量。
三、冲量和动量定理冲量是描写力对物体作用的效果的物理量,通常用字母J表示。
冲量的定义是力对时间的积分,也可以表示为冲量等于力乘以时间Δt,即J = FΔt。
根据冲量的定义可以推导出动量定理,动量定理表示物体的动量变化与物体所受冲量成正比。
动量定理的数学表达式为:ΔP = J,即物体的动量变化等于所受冲量的大小。
四、动量定律的应用动量定律在力学问题中具有广泛的应用,例如在爆炸、碰撞、发射等过程中。
下面我们以两个经典的力学问题为例,说明动量定律的应用。
(一)弹簧压缩与释放的运动考虑一个弹簧和一个质量为m的物体,当弹簧被压缩时,物体受到一个恢复力F,根据牛顿第二定律F = ma,可以得到加速度a与恢复力F之间的关系。
在弹簧释放时,由于物体受到一个相反方向的恢复力,物体会以一定的速度v离开弹簧。
高中物理力学知识汇总:动量、冲量、动量定理、动量守恒定律
高中物理力学知识汇总:动量、冲量、动量定理、动量守恒定律【知识要点复习】1、动量是矢量,其方向与速度方向相同,大小等于物体质量和速度的乘积,即P=mv。
2、冲量也是矢量,它是力在时间上的积累。
冲量的方向和作用力的方向相同,大小等于作用力的大小和力作用时间的乘积。
在计算冲量时,不需要考虑被作用的物体是否运动,作用力是何种性质的力,也不要考虑作用力是否做功。
在应用公式I=Ft进行计算时,F应是恒力,对于变力,则要取力在时间上的平均值,若力是随时间线性变化的,则平均值为3、动量定理:动量定理是描述力的时间积累效果的,其表示式为I=ΔP=mv-mv0式中I表示物体受到所有作用力的冲量的矢量和,或等于合外力的冲量;ΔP是动量的增量,在力F作用这段时间内末动量和初动量的矢量差,方向与冲量的方向一致。
动量定理可以由牛顿运动定律与运动学公式推导出来,但它比牛顿运动定律适用范围更广泛,更容易解决一些问题。
4、动量守恒定律(1)内容:对于由多个相互作用的质点组成的系统,若系统不受外力或所受外力的矢量和在某力学过程中始终为零,则系统的总动量守恒,公式:(2)内力与外力:系统内各质点的相互作用力为内力,内力只能改变系统内个别质点的动量,与此同时其余部分的动量变化与它的变化等值反向,系统的总动量不会改变。
外力是系统外的物体对系统内质点的作用力,外力可以改变系统总的动量。
(3)动量守恒定律成立的条件a、不受外力b、所受合外力为零c、合外力不为零,但F内>>F外,例如爆炸、碰撞等。
d、合外力不为零,但在某一方向合外力为零,则这一方向动量守恒。
(4)应用动量守恒应注意的几个问题:a、所有系统中的质点,它们的速度应对同一参考系,应用动量守恒定律建立方程式时它们的速度应是同一时刻的。
b、无论机械运动、电磁运动以及微观粒子运动、只要满足条件,定律均适用。
(5)动量守恒定律的应用步骤。
第一,明确研究对象。
第二,明确所研究的物理过程,分析该过程中研究对象是否满足动量守恒的条件。
动量知识点总结
动量知识点总结1、动量和冲量(1)动量:运动物体的质量和速度的乘积叫做动量,即p=mv。
是矢量,方向与v的方向相同。
两个动量相同必须是大小相等,方向一致。
(2)冲量:力和力的作用时间的乘积叫做该力的冲量,即I=Ft。
冲量也是矢量,它的方向由力的方向决定。
2、动量定理:物体所受合外力的冲量等于它的动量的变化。
表达式:Ft=p′―p或Ft=mv′―mv(1)上述公式是一矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向。
(2)公式中的.F是研究对象所受的包括重力在内的所有外力的合力。
(3)动量定理的研究对象可以是单个物体,也可以是物体系统。
对物体系统,只需分析系统受的外力,不必考虑系统内力。
系统内力的作用不改变整个系统的总动量。
(4)动量定理不仅适用于恒定的力,也适用于随时间变化的力。
对于变力,动量定理中的力F应当理解为变力在作用时间内的平均值。
3、动量守恒定律:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变。
表达式:m1v1+m2v2=m1v1′+m2v2′(1)动量守恒定律成立的条件①系统不受外力或系统所受外力的合力为零。
②系统所受的外力的合力虽不为零,但系统外力比内力小得多,如碰撞问题中的摩擦力,爆炸过程中的重力等外力比起相互作用的内力来小得多,可以忽略不计。
③系统所受外力的合力虽不为零,但在某个方向上的分量为零,则在该方向上系统的总动量的分量保持不变。
(2)动量守恒的速度具有“四性”:①矢量性;②瞬时性;③相对性;④普适性。
4、爆炸与碰撞(1)爆炸、碰撞类问题的共同特点是物体间的相互作用突然发生,作用时间很短,作用力很大,且远大于系统受的外力,故可用动量守恒定律来处理。
(2)在爆炸过程中,有其他形式的能转化为动能,系统的动能爆炸后会增加,在碰撞过程中,系统的总动能不可能增加,一般有所减少而转化为内能。
(3)由于爆炸、碰撞类问题作用时间很短,作用过程中物体的位移很小,一般可忽略不计,可以把作用过程作为一个理想化过程简化处理。
高中物理动量知识点汇总
高中物理动量知识点汇总高中物理动量知识点1.物理考点动量和冲量(1)动量:运动物体的质量和速度的乘积叫做动量,即p=mv.是矢量,方向与v的方向相同.两个动量相同必须是大小相等,方向一致.(2)冲量:力和力的作用时间的乘积叫做该力的冲量,即I=Ft.冲量也是矢量,它的方向由力的方向决定.2.动量定理:物体所受合外力的冲量等于它的动量的变化.表达式:Ft=p′-p或Ft=mv′-mv(1)上述公式是一矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向.(2)公式中的F是研究对象所受的包括重力在内的所有外力的合力.(3)动量定理的研究对象可以是单个物体,也可以是物体系统.对物体系统,只需分析系统受的外力,不必考虑系统内力.系统内力的作用不改变整个系统的总动量.(4)动量定理不仅适用于恒定的力,也适用于随时间变化的力.对于变力,动量定理中的力F应当理解为变力在作用时间内的平均值.3.动量守恒定律:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变.表达式:m1v1+m2v2=m1v1′+m2v2′(1)动量守恒定律成立的条件①系统不受外力或系统所受外力的合力为零.②系统所受的外力的合力虽不为零,但系统外力比内力小得多,如碰撞问题中的摩擦力,爆炸过程中的重力等外力比起相互作用的内力来小得多,可以忽略不计.③系统所受外力的合力虽不为零,但在某个方向上的分量为零,则在该方向上系统的总动量的分量保持不变.(2)动量守恒的速度具有“四性”:①矢量性;②瞬时性;③相对性;④普适性.4.爆炸与碰撞(1)爆炸、碰撞类问题的共同特点是物体间的相互作用突然发生,作用时间很短,作用力很大,且远大于系统受的外力,故可用动量守恒定律来处理。
(2)在爆炸过程中,有其他形式的能转化为动能,系统的动能爆炸后会增加,在碰撞过程中,系统的总动能不可能增加,一般有所减少而转化为内能。
高一物理动量与动量守恒知识点归纳
高一物理动量与动量守恒知识点归纳在高一物理学中,动量是与物体的质量和速度相关的物理量,动量守恒是最早发现的一条守恒定律。
下面店铺给大家带来高一物理动量与动量守恒知识点,希望对你有帮助。
高一物理动量与动量守恒知识点1.力的冲量定义:力与力作用时间的乘积--冲量I=Ft 矢量:方向--当力的方向不变时,冲量的方向就是力的方向。
过程量:力在时间上的累积作用,与力作用的一段时间相关单位:牛秒、N?9?9s2. 动量定义:物体的质量与其运动速度的乘积--动量p=mv 矢量:方向--速度的方向状态量:物体在某位置、某时刻的动量单位:千克米每秒、kgm/s3. 动量定理∑Ft=mvt-mv0动量定理研究对象是一个质点,研究质点在合外力作用下、在一段时间内的一个运动过程。
定理表示合外力的冲量是物体动量变化的原因,合外力的冲量决定并量度了物体动量变化的大小和方向。
矢量性:公式中每一项均为矢量,公式本身为一矢量式,在同一条直线上处理问题,可先确定正方向,可用正负号表矢量的方向,按代数方法运算。
当研究的过程作用时间很短,作用力急剧变化(打击、碰撞)时,∑F可理解为平均力。
动量定理变形为∑F=Δp/Δt,表明合外力的大小方向决定物体动量变化率的大小方向,这是牛顿第二定律的另一种表述。
4. 动量守恒:一个系统不受外力或所受到的合外力为零,这个系统的动量就保持不变,可用数学公式表达为p=p' 系统相互作用前的总动量等于相互作用后的总动量。
Δp1=-Δp2 相互作用的两个物体组成的系统,两物体动量的增量大小相等方向相反。
Δp=0系统总动量的变化为零“守衡”定律的研究对象为一个系统,上式均为矢量运算,一维情况可用正负表示方向。
注意把握变与不变的关系,相互作用过程中,每一个参与作用的成员的动量均可能在变化着,但只要合外力为零,各物体动量的矢量合总保持不变。
注意各状态的动量均为对同一个参照系的动量。
而相互作用的系统可以是两个或多个物体组成。
物理动量定理知识点总结
物理动量定理知识点总结一、动量定理的基本概念。
1. 动量。
- 定义:物体的质量和速度的乘积叫做动量,用p表示,p = mv。
- 单位:千克·米/秒(kg· m/s)。
- 矢量性:动量是矢量,方向与速度方向相同。
2. 冲量。
- 定义:力和力的作用时间的乘积叫做冲量,用I表示,I = Ft。
- 单位:牛·秒(N· s)。
- 矢量性:冲量是矢量,方向与力的方向相同。
当力为变力时,I=∫_t_1^t_2Fdt (高中阶段一般研究恒力冲量)。
3. 动量定理。
- 内容:物体所受合外力的冲量等于物体的动量变化,即I=Δ p。
- 表达式:Ft = mv_2 - mv_1(F为合外力,t为作用时间,m为物体质量,v_1为初速度,v_2为末速度)。
- 意义:动量定理反映了力对时间的累积效应与物体动量变化之间的关系。
二、动量定理的理解与应用。
1. 解题步骤。
- 确定研究对象:明确要研究的物体或系统。
- 进行受力分析:找出研究对象所受的合外力。
- 确定初末状态:明确研究对象的初速度v_1和末速度v_2,从而得到初动量p_1 = mv_1和末动量p_2=mv_2。
- 应用动量定理列方程求解:根据Ft=Δ p = p_2 - p_1列方程求解。
2. 应用举例。
- 碰撞问题。
- 例如,两个小球发生碰撞,已知碰撞前两球的速度和质量,求碰撞后小球的速度。
先确定系统(两小球组成的系统),分析系统所受合外力(若碰撞过程中合外力为零,系统动量守恒),再根据动量定理(或动量守恒定律结合动量定理)求解。
- 缓冲问题。
- 如汽车安装安全带和安全气囊。
当汽车突然停止时,人由于惯性会继续向前运动。
根据Ft=Δ p,在动量变化Δ p一定的情况下,延长作用时间t,可以减小作用力F。
安全带和安全气囊就是通过延长人停止运动的时间,从而减小人受到的冲击力。
- 反冲问题。
- 火箭发射是典型的反冲现象。
火箭燃料燃烧产生的气体向后喷出,根据动量守恒定律(系统总动量为零),火箭就会获得向前的动量。
高一物理公式大全总结必修一
高一物理公式大全总结必修一
以及选修
必修一:
一、动量定理:
动量定理:物体的动量p=mv(m表示物体质量,v表示物体线速度)。
二、力学能量定理:
力学能量定理:一个物体的力学能量E与其物理性质有关,其定义E
=mgh+1/2mv²(m表示物体质量,g表示重力加速度,h表示从参考面
到物体重心的高度,v表示物体线速度)。
三、动量矢量定理:
动量矢量定理:在任意给定时刻,任意物体的总力矩与它的总动量之
间的关系是ΣM=dP/dt(P表示矢量,t表示动量角度)。
四、重力加速度定理:
重力加速度定理:球体或其他物体离地心越远,其重力加速度g减小,所以g=GM/r²(G为万有引力常数,M为物体的质量,r为物体离地心
的距离)。
选修:
一、弹力学定理:
弹力学定理:当一个受力的弹簧处于其本征长度位置上,此时的弹簧的应力σ与它的拉伸量x的关系式为σ=k(x-x0)(x0 为本征长度,k 为弹性系数)。
二、电学定理:
电学定理:电压V和电阻R之间的关系式为V=I*R(I是电流,R是电阻)。
三、热力学定理:
热力学定理:热力学第二定律概述:整个过程中热力学熵呈现增加趋势。
其定义为ΔS≥0。
(ΔS表示热力学熵)。
(完整版)动量知识总结
动量知识总结第一单元 动量和动量定理一、动量、冲量1.动量(1)定义:运动物体的质量和速度的乘积叫做动量,p =mv ,动量的单位:kg ·m/s.(2速度为瞬时速度,通常以地面为参考系.(3)动量是矢量,其方向与速度v 的方向相同(4)注意动量与动能的区别和联系:动量、动能和速度都是描述物体运动的状态量;动量是矢量,动能是标量;动量和动能的关系是:p 2=2mE k .2.动量的变化量(1)Δp =p t -p 0.(2)动量的变化量是矢量,其方向与速度变化的方向相同,与合外力冲量的方向相同(3)求动量变化量的方法:①Δp =p t -p 0=mv 2-mv 1;②Δp =Ft .3.冲量(1)定义:力和力的作用时间的乘积,叫做该力的冲量,I =Ft ,冲量的单位:N ·s.(2)冲量是过程量,它表示力在一段时间内的累积作用效果.(3)冲量是矢量,其方向由力的方向决定.(4)求冲量的方法:①I =Ft (适用于求恒力的冲量,力可以是合力也可能是某个力);②I =Δp .(可以是恒力也可是变力)二、动量定理(1)物体所受合外力的冲量,等于这个物体动量的增加量,这就是动量定理.表达式为:Ft =p p -'或Ft =mv v m -'(2)动量定理的研究对象一般是单个物体(3)动量定理公式中的F 是研究对象所受的包括重力在内的所有外力的合力.它可以是恒力,也可以是变力.当合外力为变力时,F 应该是合外力对作用时间的平均值.(4)动量定理公式中的F Δt 是合外力的冲量,也可以是外力冲量的矢量和,是使研究对象动量发生变化的原因.在所研究的物理过程中,如果作用在研究对象上的各个外力的作用时间相同,求合外力的冲量时,可以先按矢量合成法则求所有外力的合力,然后再乘以力的作用时间;也可以先求每个外力在作用时间内的冲量,然后再按矢量合成法则求所有外力冲量的矢量和;如果作用在研究对象上的各个力的作用时间不相同,就只能求每个力在相应时间内的冲量,然后再求所有外力冲量的矢量和.三.用动量定理解题的基本思路(1)明确研究对象和研究过程.研究对象一般是一个物体,研究过程既可以是全过程,也可以是全过程中的某一阶段.(2)规定正方向.(3)进行受力分析,写出总冲量的表达式,如果在所选定的研究过程中的不同阶段中物体的受力情况不同,就要分别计算它们的冲量,然后求它们的矢量和.(4)写出研究对象的初、末动量.(5)根据动量定理列式求解四、典型题1、动量和动量的变化例1 一个质量为m =40g 的乒乓球自高处落下,以速度v =1m/s 碰地,竖直向上弹回,碰撞时间极短,离地的速率为v '=0.5m/s 。
物理动量归纳总结
物理动量归纳总结物理学是自然科学的一个分支,研究物质的本质、性质和相互关系。
在物理学中,动量是一个重要的概念,它描述了物体的运动状态和运动变化。
本文将对物理动量进行归纳总结,以便更好地理解和应用物理学中的动量概念。
一、动量的定义和基本原理动量定义为物体质量乘以其速度,用公式表示为p = mv,其中p表示动量,m表示质量,v表示速度。
根据动量的定义可知,质量和速度都是决定动量大小的因素。
动量的基本原理是动量守恒定律,它表明在一个系统内,当没有外力作用时,系统的总动量保持不变。
这个原理可以用公式表示为Σpi = Σpf,其中Σpi表示初始动量的矢量和,Σpf表示最终动量的矢量和。
根据动量守恒定律,我们可以预测在不同物体之间的碰撞或者其他相互作用中,动量的转移和变化情况。
二、动量定律与应用1. 牛顿第二定律牛顿第二定律是动力学中的基本定律,它描述了力和物体的运动之间的关系。
根据牛顿第二定律,物体的加速度与作用在物体上的力成正比,与物体的质量成反比。
根据动量的定义,可以将牛顿第二定律改写为F = Δp/Δt,其中F表示作用力,Δp表示动量的变化量,Δt表示时间的变化量。
这个公式说明了力与动量之间的关系,力的大小和方向决定了物体动量的改变情况。
2. 动量守恒定律在碰撞中的应用动量守恒定律在碰撞过程中具有重要的应用。
碰撞是指物体之间发生的相互作用,其中涉及到动量的转移和改变。
根据动量守恒定律,碰撞前后系统的总动量保持不变。
利用动量守恒定律,我们可以计算碰撞过程中物体的速度和质量变化。
3. 动量定律在流体力学中的应用动量定律在流体力学中也有广泛的应用。
流体力学研究流体的运动和相互作用,动量定律可以描述流体的力和加速度之间的关系。
例如,通过应用动量定律,我们可以计算水流对岸边的压力、流体在管道中的速度分布以及飞机在空气中的飞行状态等。
三、动量的量纲和单位动量的量纲是质量乘以速度,根据国际单位制规定,质量的单位为千克(kg),速度的单位为米/秒(m/s),因此动量的单位为千克·米/秒(kg·m/s)。
高中物理动量知识点
高中物理动量知识点一、动量的定义- 动量是物体质量和速度的乘积,用符号 \( p \) 表示。
- 动量是一个矢量量,具有大小和方向。
- 公式:\( p = m \cdot v \),其中 \( m \) 是质量,\( v \) 是速度。
二、动量守恒定律- 动量守恒定律指出,在一个封闭系统中,系统内所有物体的总动量在没有外力作用下保持不变。
- 表达式:\( \sum \vec{p}_{\text{initial}} = \sum\vec{p}_{\text{final}} \)。
三、碰撞问题中的动量- 碰撞可以分为弹性碰撞和非弹性碰撞。
- 弹性碰撞中,动量和机械能都守恒。
- 非弹性碰撞中,动量守恒,但机械能不完全守恒。
四、动量定理- 动量定理是牛顿第二定律的另一种表述,它说明力对物体的冲量等于物体动量的变化。
- 公式:\( \vec{F} \cdot \Delta t = \Delta \vec{p} \)。
五、冲量- 冲量是力和作用时间的乘积。
- 公式:\( \vec{J} = \vec{F} \cdot \Delta t \)。
六、动量与动能的关系- 动能是动量的标量形式,表示为 \( K = \frac{1}{2}mv^2 \)。
- 弹性碰撞后,动能守恒,但动量的方向可能改变。
七、动量在实际问题中的应用- 通过动量守恒定律可以解决涉及碰撞、爆炸和其他动力学问题。
- 动量的概念在粒子物理学、天体物理学和工程学等领域都有广泛应用。
八、实验验证动量守恒- 通过实验可以验证动量守恒定律,例如通过观察和测量碰撞前后物体的速度变化。
九、动量的高级应用- 在相对论物理学中,动量与能量的关系需要根据相对论进行修正。
- 在量子力学中,动量的概念与波函数和概率幅相关联。
请注意,以上内容是一个概要,您可以根据每个部分的主题来扩展内容,确保每个部分都有详细的解释和例子。
在撰写完整的文档时,确保使用清晰、准确的语言,并保持逻辑连贯性。
高中物理动量守恒定律知识点总结
高中物理动量守恒定律知识点(一)一、动量守恒定律1、动量守恒定律的条件:系统所受的总冲量为零(不受力、所受外力的矢量和为零或外力的作用远小于系统内物体间的相互作用力),即系统所受外力的矢量和为零。
(碰撞、爆炸、反冲)注意:内力的冲量对系统动量是否守恒没有影响,但可改变系统内物体的动量。
内力的冲量是系统内物体间动量传递的原因,而外力的冲量是改变系统总动量的原因。
2、动量守恒定律的表达式m1v1+m2v2=m1v1/+m2v2/(规定正方向)△p1=—△p2/3、某一方向动量守恒的条件:系统所受外力矢量和不为零,但在某一方向上的力为零,则系统在这个方向上的动量守恒。
必须注意区别总动量守恒与某一方向动量守恒。
二、碰撞1、完全非弹性碰撞:获得共同速度,动能损失最多动量守恒。
2、弹性碰撞:动量守恒,碰撞前后动能相等。
特例1:A、B两物体发生弹性碰撞,设碰前A初速度为v0,B静止,则碰后速度,vB=.特例2:对于一维弹性碰撞,若两个物体质量相等,则碰撞后两个物体互换速度(即碰后A的速度等于碰前B的速度,碰后B的速度等于碰前A的速度)3、一般碰撞:有完整的压缩阶段,只有部分恢复阶段,动量守恒,动能减小。
4、人船模型——两个原来静止的物体(人和船)发生相互作用时,不受其它外力,对这两个物体组成的系统来说,动量守恒,且任一时刻的总动量均为零,由动量守恒定律,有mv=MV(注意:几何关系)高中物理动量守恒定律知识点(二)冲量与动量(物体的受力与动量的变化)1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}5.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}9.物体m1以v1初速度与静止的物体m2发生弹性正碰:v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2)10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移}高中物理学习方法要重视实验物理学是一门以实验为基础的科学,许多物理概念、物理规律都是从自然现象的实验中总结出来的。
高中物理动量公式大全
高中物理动量公式总结
1.动量公式(定义式):
2.冲量公式(定义式):
I=Ft
3.动量定理公式:
4.动量守恒定律公式的几种表达式:
a,
b,
c,△P1=△P2
5.动量守恒定律的推导式:
ms1=Ms2(人船模型)
通过下述反冲案例对该推导式进行推导。
质量为m的人站在质量为M,长为L的静止小船的右端,小船的左端靠在岸边。
当他向左走到船的左端时,船左端离岸多远?
解:先画出示意图如上图所示。
人、船系统动量守恒,总动量始终为零,所以人、船动量大小始终相等。
从图中可以看出,人、船的位移大小之和等于L。
设人、船位移大小分别为l1、l2,则:mv1=Mv2,两边同乘时间t,ml1=Ml2,而l1+l2=L代入可得
应该注意到:此结论与人在船上行走的速度大小无关。
不论是匀速行走还是变速行走,甚至往返行走,只要人最终到达船的左端,那么结论都是相同的。
高考动量定理知识点
高考动量定理知识点动量定理是力学中的重要定律之一,它描述了力的作用下物体的运动情况。
在高考物理中,动量定理是一个重点和难点,理解和掌握动量定理的知识点对于解题和应用非常重要。
一、动量的定义和单位动量是物体运动的一种量度,它表示物体在运动中的惯性大小。
动量的定义是物体质量乘以其速度,即p = mv,其中p表示动量,m表示质量,v表示速度。
动量的单位是千克米/小时,也可以用千克米/秒表示。
二、动量定理的表达方式动量定理可以用数学公式来表示,即Δp = FΔt,其中Δp表示力的作用下物体动量的变化,F表示力的大小,Δt表示力作用的时间。
动量定理也可以有其他的表达方式,如p1 - p0 = F(t1 - t0),或者mv1 - mv0 = F(t1 - t0)。
这些表达方式都是等价的。
三、动量守恒定理动量守恒定理是动量定理的一个应用,它描述了一个封闭系统内总动量的不变性。
在一个封闭系统中,如果没有外力作用,系统内物体的总动量保持不变。
这意味着,如果一个物体的动量增加,另一个物体的动量就会减少,它们的动量变化是互相抵消的。
动量守恒定理常常用于解决多物体碰撞和爆炸问题。
四、动量定理的应用动量定理是一个非常实用的定理,它被广泛应用于力学中各种问题的求解。
在高考中,动量定理常常被用来解决质点受力运动、碰撞和爆炸等问题。
例如,在质点受力运动问题中,可以通过动量定理求解物体的加速度和速度变化。
在碰撞问题中,可以利用动量守恒定理求解碰撞物体的速度和碰撞后的状态。
在爆炸问题中,可以利用动量定理分析爆炸物的速度和爆炸后的运动情况。
五、动量定理的应用举例1. 轻弹球的反弹假设一个质量为m的轻弹球以速度v撞击墙壁,在撞击后以速度v'反弹。
根据动量守恒定理,球的动量变化为Δp = mv' - mv =2mv - mv = mv。
由于撞击前球的速度为正,所以撞击后球的速度应为负数。
因此,根据动量定理,撞击墙壁时球受到的力的大小为F = Δp/Δt。
动量 动量定律知识点总结
动量动量定律知识点总结一、动量的概念(一)动量的定义动量是物体运动状态的基本属性,通常用符号p来表示,动量的定义为物体的质量m与速度v的乘积,即p=mv,其中p表示动量,m表示物体的质量,v表示物体的速度。
动量的单位为千克·米/秒(kg·m/s)。
(二)动量的方向动量与速度方向一致,即物体的速度方向决定了其动量的方向。
当物体的速度和运动方向发生改变时,其动量的方向也会发生相应的改变。
(三)动量的数量物体的动量大小与其质量和速度成正比,即动量的大小取决于物体的质量和速度,质量越大,速度越快,动量也越大。
二、动量定律的内容动量定律是描述物体运动状态的基本定律之一,包括了动量定律和动量守恒定律两个重要内容。
下面将分别对这两个内容进行详细的介绍。
(一)动量定律动量定律又称牛顿第二定律,它描述了物体受到外力作用时,产生的动量变化情况。
具体表述为:物体所受外力的冲量等于物体动量的变化量,即FΔt=Δp,其中F表示物体所受外力,Δt表示外力作用时间,Δp表示物体动量的变化量。
这个定律揭示了物体运动状态的变化和外力作用之间的关系,是动力学的基本定律之一。
动量定律适用于描述物体在外力作用下的运动状态和变化规律,可以用来分析和计算物体的加速度、速度和位置随时间的变化情况,是物理学中非常重要的一个定律。
(二)动量守恒定律动量守恒定律是描述多体系统中动量守恒的定律,它表示了多个物体在相互作用过程中动量守恒的规律。
具体表述为:一个封闭系统中,若物体之间不存在外力作用,那么系统的总动量保持不变,即Σpi=Σpf,其中Σpi表示系统初态的总动量,Σpf表示系统末态的总动量。
这个定律告诉我们,在没有外力作用的情况下,多体系统的总动量是守恒的,不会发生改变。
动量守恒定律适用于描述多体系统的动量变化规律,例如弹道问题、碰撞问题等都可以利用动量守恒定律来分析和计算。
它是物理学中重要的一个定律,有着很广泛的应用。
三、动量定律的适用条件动量定律是描述物体运动状态的基本定律之一,但并非适用于所有情况,下面将介绍动量定律的适用条件。
高考物理一轮复习专题之《动量守恒》核心知识点汇总
高考物理一轮复习专题之《动量守恒》核心知识点汇总【基本概念、规律】一、动量动量定理1.冲量(1)定义:力和力的作用时间的乘积.(2)公式:I=Ft,适用于求恒力的冲量.(3)方向:与力F的方向相同.2.动量(1)定义:物体的质量与速度的乘积.(2)公式:p=mv.(3)单位:千克·米/秒,符号:kg·m/s.(4)意义:动量是描述物体运动状态的物理量,是矢量,其方向与速度的方向相同.3.动量定理(1)内容:物体所受合力的冲量等于物体动量的增量.(2)表达式:F·Δt=Δp=p′-p.(3)矢量性:动量变化量方向与合力的方向相同,可以在某一方向上用动量定理.4.动量、动能、动量的变化量的关系(1)动量的变化量:Δp=p′-p.二、动量守恒定律1.守恒条件(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒.(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒.2.动量守恒定律的表达式:m1v1+m2v2=m1v′1+m2v′2或Δp1=-Δp2.三、碰撞1.碰撞物体间的相互作用持续时间很短,而物体间相互作用力很大的现象.2.特点在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒.3.分类【重要考点归纳】考点一动量定理的理解及应用1.动量定理不仅适用于恒定的力,也适用于随时间变化的力.这种情况下,动量定理中的力F应理解为变力在作用时间内的平均值.2.动量定理的表达式F·Δt=Δp是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F是物体或系统所受的合力.3.应用动量定理解释的两类物理现象(1)当物体的动量变化量一定时,力的作用时间Δt越短,力F就越大,力的作用时间Δt越长,力F就越小,如玻璃杯掉在水泥地上易碎,而掉在沙地上不易碎.(2)当作用力F一定时,力的作用时间Δt越长,动量变化量Δp越大,力的作用时间Δt越短,动量变化量Δp越小4.应用动量定理解题的一般步骤(1)明确研究对象和研究过程.研究过程既可以是全过程,也可以是全过程中的某一阶段.(2)进行受力分析.只分析研究对象以外的物体施加给研究对象的力,不必分析内力.(3)规定正方向.(4)写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和),根据动量定理列方程求解.考点二动量守恒定律与碰撞1.动量守恒定律的不同表达形式(1)p=p′,系统相互作用前的总动量p等于相互作用后的总动量p′.(2)m1v1+m2v2=m1v′1+m2v′2,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(3)Δp1=-Δp2,相互作用的两个物体动量的增量等大反向.(4)Δp=0,系统总动量的增量为零.2.碰撞遵守的规律(1)动量守恒,即p1+p2=p′1+p′2.(3)速度要合理.①碰前两物体同向,则v后>v前;碰后,原来在前的物体速度一定增大,且v′前≥v′后.②两物体相向运动,碰后两物体的运动方向不可能都不改变.3.两种碰撞特例(1)弹性碰撞两球发生弹性碰撞时应满足动量守恒和机械能守恒.以质量为m1、速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为例,则有(2)完全非弹性碰撞两物体发生完全非弹性碰撞后,速度相同,动能损失最大,但仍遵守动量守恒定律.4.应用动量守恒定律解题的步骤(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);(2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);(3)规定正方向,确定初、末状态动量;(4)由动量守恒定律列出方程;(5)代入数据,求出结果,必要时讨论说明.考点三爆炸和反冲人船模型1.爆炸的特点(1)动量守恒:由于爆炸是在极短的时间内完成的,爆炸时物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒.(2)动能增加:在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸后系统的总动能增加.(3)位移不变:爆炸的时间极短,因而作用过程中物体运动的位移很小,一般可忽略不计,可以认为爆炸后仍然从爆炸时的位置以新的动量开始运动.2.反冲(1)现象:物体的不同部分在内力的作用下向相反方向运动.(2)特点:一般情况下,物体间的相互作用力(内力)较大,因此系统动量往往有以下几种情况:①动量守恒;②动量近似守恒;③某一方向动量守恒.反冲运动中机械能往往不守恒.注意:反冲运动中平均动量守恒.(3)实例:喷气式飞机、火箭、人船模型等.3.人船模型若人船系统在全过程中动量守恒,则这一系统在全过程中的平均动量也守恒.如果系统由两个物体组成,且相互作用前均静止,相互作用后均发生运动,则由m11=-m22得m1x1=-m2x2.该式的适用条件是:(1)系统的总动量守恒或某一方向上的动量守恒.(2)构成系统的两物体原来静止,因相互作用而反向运动.(3)x1、x2均为沿动量方向相对于同一参考系的位移.考点五实验:验证动量守恒定律1.实验原理在一维碰撞中,测出物体的质量m和碰撞前后物体的速率v、v′,找出碰撞前的动量p=m1v1+m2v2及碰撞后的动量p′=m1v′1+m2v′2,看碰撞前后动量是否守恒.2.实验方案方案一:利用气垫导轨完成一维碰撞实验(1)测质量:用天平测出滑块质量.(2)安装:正确安装好气垫导轨.(3)实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度(①改变滑块的质量.②改变滑块的初速度大小和方向).(4)验证:一维碰撞中的动量守恒.方案二:利用等长悬线悬挂等大小球完成一维碰撞实验(1)测质量:用天平测出两小球的质量m1、m2.(2)安装:把两个等大小球用等长悬线悬挂起来.(3)实验:一个小球静止,拉起另一个小球,放下时它们相碰.(4)测速度:可以测量小球被拉起的角度,从而算出碰撞前对应小球的速度,测量碰撞后小球摆起的角度,算出碰撞后对应小球的速度.(5)改变条件:改变碰撞条件,重复实验.(6)验证:一维碰撞中的动量守恒.方案三:在光滑桌面上两车碰撞完成一维碰撞实验(1)测质量:用天平测出两小车的质量.(2)安装:将打点计时器固定在光滑长木板的一端,把纸带穿过打点计时器,连在小车的后面,在两小车的碰撞端分别装上撞针和橡皮泥.(3)实验:接通电源,让小车A运动,小车B静止,两车碰撞时撞针插入橡皮泥中,把两小车连接成一体运动.(5)改变条件:改变碰撞条件,重复实验.(6)验证:一维碰撞中的动量守恒.(4)不放被撞小球,让入射小球从斜槽上某固定高度处自由滚下,重复10次.用圆规画尽量小的圆把所有的小球落点圈在里面,圆心P 就是小球落点的平均位置.(5)把被撞小球放在斜槽末端,让入射小球从斜槽同一高度自由滚下,使它们发生碰撞,重复实验10次.用步骤(4)的方法,标出碰后入射小球落点的平均位置M和被碰小球落点的平均位置N.如图所示.【思想方法与技巧】动量守恒中的临界问题1.滑块与小车的临界问题滑块与小车是一种常见的相互作用模型.如图所示,滑块冲上小车后,在滑块与小车之间的摩擦力作用下,滑块做减速运动,小车做加速运动.滑块刚好不滑出小车的临界条件是滑块到达小车末端时,滑块与小车的速度相同.2.两物体不相碰的临界问题两个在光滑水平面上做匀速运动的物体,甲物体追上乙物体的条件是甲物体的速度v甲大于乙物体的速度v乙,即v甲>v乙,而甲物体与乙物体不相碰的临界条件是v甲=v乙.3.涉及弹簧的临界问题对于由弹簧组成的系统,在物体间发生相互作用的过程中,当弹簧被压缩到最短时,弹簧两端的两个物体的速度相等.4.涉及最大高度的临界问题在物体滑上斜面(斜面放在光滑水平面上)的过程中,由于弹力的作用,斜面在水平方向将做加速运动.物体滑到斜面上最高点的临界条件是物体与斜面沿水平方向具有共同的速度,物体在竖直方向的分速度等于零.5.正确把握以下两点是求解动量守恒定律中的临界问题的关键:(1)寻找临界状态看题设情景中是否有相互作用的两物体相距最近,避免相碰和物体开始反向运动等临界状态.(2)挖掘临界条件在与动量相关的临界问题中,临界条件常常表现为两物体的相对速度关系与相对位移关系,即速度相等或位移相等.。
高中物理动量相关必考知识点
高中物理动量相关必考知识点高中物理动量相关必考知识点1、冲量:定义:力和力的作用时间的乘积。
即I=F.t方向:与力的方向相同。
单位:牛顿.秒,符号:N.s2、动量定义:运动物体的.质量与速度的乘积。
即P=m.v方向:与速度方向相同。
单位:千克.米每秒,符号,kg.m/s3、动量的变化量:末动量与初动量之差。
即方向:与速度变化量方向相同。
4、动量定理:物体所受合力的冲量等于物体动量的变化量。
即,其中F为合力。
动量变化量一定时,延长作用时间可减小作用力。
5、动量定理不仅适用于恒力,也适用于变力,力不恒定时,F取平均作用力的大小。
6、系统:两个或多个物体组成的整体。
7、动量守恒定律:一个系统不受外力或所受外力之和为0,这个系统的总动量保持不变。
即原来的动量等于后来的动量P0=Pt8、动量定律适用条件:系统不受外力或所受外力之和为0,适用范围:低速、高速、宏观、微观,只要满足动量守恒条件的系统都适用。
9、动量守恒定律的应用(1)处理碰撞问题:物体碰撞过程中,相互作用时间很短,平均作用力很大,把碰撞的物体作为一个系统来看待,外力远小于内力,可以忽略不计,认为碰撞过程动量守恒。
(2)处理爆炸问题:爆炸过程,内力远大于外力,忽略外力,系统动量守恒。
(3)应用动量守恒定律,只需要考虑过程的初末状态,不需要考虑过程的细节。
10、反冲运动:当系统向外抛出一个物体时,剩余部分将向被抛出部分的运动的反方向运动的现象。
11、火箭飞行最大速度的决定因素:(1)质量比(火箭开始飞行时的质量与燃料燃尽时的质量之比);(2)喷气速度。
高中物理动量知识点
动量全章复习资料(专题) 一、冲量与动量、动量与动能概念专题●1.冲量I :I =Ft ,有大小有方向(恒力的冲量沿F 的方向),是矢量.两个冲量相同必定是大小相等方向相同,讲冲量必须明确是哪个力的冲量,单位是N ·s . ●2.动量p :p =mv ,有大小有方向(沿v 的方向)是矢量,两个动量相同必定是大小相等方向相同,单位是kg ·m/s .●3.动量与动能(E k =12mv 2)的关系是:p 2=2m E k .动量与动能的最大区别是动量是矢量,动能是标量.【例题】A 、B 两车与水平地面的动摩擦因数相同,则下列哪些说法正确?A .若两车动量相同,质量大的滑行时间长;B .若两车动能相同,质量大的滑行时间长;C .若两车质量相同,动能大的滑行时间长;D .若两车质量相同,动量大的滑行距离长.【分析】根据动量定理F ·t =mv t -mv 0得?mg ·t =p ∴t =P mg μ∝1m——A 不正确;根据t =221==k k mE E p mg mg gm μμμ∝1m——B 不正确;根据t =2=k mE pmg mgμμ∝k E ——C 正确;根据动能定理F 合·s cos ?=2201122-t mv mv 得?mgs =E k =22p m , ∴s =222p m gμ∝p 2——D 正确. 训练题(1)如图5—1所示,两个质量相等的物体在同一高度沿倾角不同的两个光滑斜面由静止自由滑下,到达斜面底端的过程中,两个物体具有的物理量相同的是: A .重力的冲量;B .弹力的冲量;C .合力的冲量; D .刚到达底端时的动量;E .刚到达底端时动量的水平分量;F .以上几个量都不同.1.F 分析:物体沿斜面作匀加速直线运动,由位移公式,得θsin h =21g sin ?·t 2 t 2∝θ2sin 1 ?不同,则t 不同.又I G =mgt I N =N t 所以I G 、I N 方向相同,大小不同,选项A 、B 错误;根据机械能守恒定律,物体到达底端的速度大小相等,但方向不同;所以刚到达底端时的动量大小相等但方向不同,其水平分量方向相同但大小不等,选项D 、E 错误;又根据动量定理I 合=ΔP =mv -0可知合力的冲量大小相等,但方向不同,选项C 错误. (2)对于任何一个固定质量的物体,下面几句陈述中正确的是:A .物体的动量发生变化,其动能必变化;B .物体的动量发生变化,其动能不一定变化;C .物体的动能发生变化,其动量不一定变化;D .物体的动能变化,其动量必有变化.2.BD 分析:动量和动能的关系是P 2=2mE k ,两者最大区别是动量是矢量,动能是标量.质量一定的物体,其动量变化可能速度大小、方向都变化或速度大小不变方向变化或速度大小变化方向不变.只要速度大小不变,动能就不变.反之,动能变化则意味着速度大小变化,意味着动量变化. (8)A 车质量是B 车质量的2倍,两车以相同的初动量在水平面上开始滑行,如果动摩擦因数相同,并以S A 、S B 和t A 、t B分别表示滑行的最远距离和所用的时间,则A .S A =SB ,t A =t B ; B .S A >S B ,t A >t B ;C .S A <S B ,t A <t B ;D .S A >S B ,t A <t B .8.C 分析:由mv =?mgt 知t A =t B /2, 由Fs =21mv 2=m p 22知s A /s B =1/2二、动量定理专题●1.动量定理表示式:F Δt =Δp .式中:(1)FΔt 指的是合外力的冲量;(2)Δp 指的是动量的增量,不要理解为是动量,它的方向可以跟动量方向相同(同一直线动量增大)也可以跟动量方向相反(同一直线动量减小)甚至可以跟动量成任何角度,但Δp 一定跟合外力冲量I 方向相同;(3)冲量大小描述的是动量变化的多少,不是动量多少,冲量方向描述的是动量变化的方向,不一定与动量的方向相同或相反.●2.牛顿第二定律的另一种表达形式:据F =ma得F =m0'-=ΔΔΔv v pt t,即是作用力F 等于物体动量的变化率Δp /Δt ,两者大小相等,方向相同.●3.变力的冲量:不能用Ft 直接求解,如果用动量定理Ft =Δp 来求解,只要知道物体的始末状态,就能求出I ,简捷多了.注意:若F 是变量时,它的冲量不能写成Ft ,而只能用I 表示.●4.曲线运动中物体动量的变化:曲线运动中速度方向往往都不在同一直线上,如用Δp =mv ′-mv 0来求动量的变化量,是矢量运算,比较麻烦,而用动量定理I =Δp 来解,只要知道I ,便可求出Δp ,简捷多了.*【例题1】质量为0.4kg 的小球沿光滑水平面以5m/s 的速度冲向墙壁,又以4m/s 的速度被反向弹回(如图5—2),球跟墙的作用时间为0.05s ,求:(1)小球动量的增量;(2)球受到的平均冲力.【分析】根据动量定理Ft =mv 2-mv 1,由于式中F 、v 1、v 2都是矢量,而现在v 2与v 1反向,如规定v 1的方向为正方向,那么v 1=5m/s ,v 2=-4m/s ,所以:(1)动量的增量 Δp =mv 2-mv 1=0.4×(-4-5)kg ·m/s =-3.6kg ·m/s . 负号表示动量增量与初动量方向相反.(2)F =21 3.60.05--=mv mv t N =-72N .冲力大小为72N ,冲力的方向与初速反向. 【例题2】以速度v 0平抛出一个质量为1lg 的物体,若在抛出3s 后它未与地面及其它物体相碰,求它在3s 内动量的变化.【分析】不要因为求动量的变化,就急于求初、未动量而求其差值,这样不但求动量比较麻烦,而且动量是矢量,求矢量的差也是麻烦的.但平抛出去的物体只受重力,所求动量的变化应等于重力的冲量,重力是恒量,其冲量容易求出.即:Δp =Ft =1×10×3kg ·m/s =30kg ·m/s . 总结与提高若速度方向变而求动量的变化量,则用ΔP =Ft 求;若力是变力而求冲量,则用I =mv t -mv 0求.训练题(2)某质点受外力作用,若作用前后的动量分别为p 、p ′,动量变化为Δp ,速度变化为Δv ,动能变化量为ΔE k ,则: A .p =-p ′是不可能的; B .Δp 垂直于p 是可能的; C .Δp 垂直于Δv 是可能的; D .Δp ≠0,ΔE k =0是可能的.2.BD 提示:对B 选项,ΔP 方向即为合力F 合的方向,P 的方向即为速度v 的方向,在匀速圆周运动中,F 合⊥v (即ΔP ⊥P );对C 选项,ΔP 的方向就是Δv 的方向,∵ΔP=m Δv ,故C 选项错.(4)在空间某一点以大小相同的速度分别竖直上抛,竖直下抛,水平抛出质量相等的小球,若空气阻力不计,经过t秒:(设小球均未落地)A .作上抛运动小球动量变化最小;B .作下抛运动小球动量变化最大;C .三小球动量变化大小相等;D .作平抛运动小球动量变化最小.4.C 提示:由动量定理得:mgt =Δp ,当t 相同时,Δp 相等,选项C 对.(8)若风速加倍,作用在建筑物上的风力大约是原来的:A .2倍;B .4倍;C .6倍;D .8倍. 8.B 提示:设风以速度v 碰到建筑物,后以速度v 反弹,在t 时间内到达墙的风的质量为m ,由动量定理得:Ft =mv -m (-v )=2m v , 当v 变为2v 时,在相同时间t 内到达墙上的风的质量为2m ,有: F ′t =2m ·2v -2m(-2v )=8m v , ∴F ′=4F ,故选项B 对. (9)质量为0.5kg 的小球从1.25m 高处自由下落,打到水泥地上又反弹竖直向上升到0.8m 高处时速度减为零.若球与水泥地面接触时间为0.2s ,求小球对水泥地面的平均冲击力.(g 取10m/s ,不计空气阻力)9.解:小球碰地前的速度 v 1=12gh =251102.⨯⨯=5m/s 小球反弹的速度 v 2=22gh =80102.⨯⨯=4m/s以向上为正方向,由动量定理: (F -mg )t =mv 2-mv 1 ∴F =0.5×(4+5)/0.2+0.5×10=27.5N 方向向上.四、动量守恒条件专题●1.外力:所研究系统之外的物体对研究系统内物体的作用力.●2.内力:所研究系统内物体间的相互作用力. ●3.系统动量守恒条件:系统不受外力或所受外力合力为零(不管物体是否相互作用).系统不受外力或所受外力合力为零,说明合外力的冲量为零,故系统总动量守恒.当系统存在相互作用的内力时,由牛顿第三定律得知相互作用的内力产生的冲量,大小相等方向相反,使得系统内相互作用的物体的动量改变量大小相等方向相反,系统总动量保持不变.也就是说内力只能改变系统内各物体的动量而不能改变整个系统的总动量.训练题(2)如图5—7所示的装置中,木块B 与水平桌面间的接触是光滑的,子弹A 沿水平方向射入木块后留在木块内,将弹簧压缩到最短,现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中A .动量守恒、机械能守恒;B .动量不守恒,机械能不守恒;C .动量守恒、机械能不守恒;D .动量不守恒,机械能守恒.2.B 解:过程一:子弹打入木板过程(Δt 很小),子弹与木板组成的系统动量守恒,但机械能不守恒(∵子弹在打入木块过程有热能产生);过程二:木块(含子弹)压缩弹簧,对三者组成的系统机械能守恒,但动量不守恒(∵对系统:F合≠0),所以全程动量、机械能均不守恒.(3)光滑水平面上A 、B 两小车中有一弹簧(如图5—8),用手抓住小车并将弹簧压缩后使小车处于静止状态,将两小车及弹簧看作系统,下面的说法正确的是:A .先放B 车后放A 车,(手保持不动),则系统的动量不守恒而机械能守恒;B,先放A车,后放B车,则系统的动量守恒而机械能不守恒;C.先放A车,后用手推动B车,则系统的动量不守恒,机械能也不守恒;D.若同时放开两手,则A、B两车的总动量为零.3.ACD提示:对A选项:先放B车时,A、B车及弹簧三者组成的系统合外力F合≠0,∴动量不守恒,但由于按A车的手不动,故手不做功,此系统机械能守恒.对C选项:F合≠0,且F合又对系统做功(机械能增加),∴动量及机械能均不守恒.五、动量守恒定律各种不同表达式的含义及其应用专题●1.p=p′(系统相互作用前总动量p等于相互作用后总动量p′)●2.Δp=0(系统总动量增量为零).●3.Δp1=-Δp2(相互作用两个物体组成的系统,两物体动量增量大小相等方向相反).●4.m1v1+m2v2=m1v1′+m2v2′(相互作用两个物体组成系统,前动量和等于后动量和)●5.以上各式的运算都属矢量运算,高中阶段只限于讨论一维情况(物体相互作用前、后的速度方向都在同一直线上),可用正、负表示方向.处理时首先规定一个正方向,和规定正方向相同的为正,反之为负,这样就转化为代数运算式,但所有的动量都必须相对于同一参照系.【例题】质量m1=10g的小球在光滑的水平桌面上以v1=30cm/s的速率向右运动,恰遇上质量m2=50g的小球以v2=10cm/s的速率向左运动,碰撞后,小球m2恰好停止,那么碰撞后小球m1的速度是多大?方向如何?【分析与解答】设v1的方向即向右为正方向,则各速度的正负号为:v1=30cm/s,v2=-10cm/s,v2′=0,据m1v1′+m2v2′=m1v1+m2v2有10v1′=10×30+50×(-10).解得v1′=-20(cm/s),负号表示碰撞后,m1的方向与v1的方向相反,即向左.总结提高解此类题一定要规定正方向.正确找出初末态动量.训练题(3)一只小船静止在湖面上,一个人从小船的一端走到另一端(不计水的阻力),以下说法中正确的是:A.人在小船上行走,人对船作用的冲量比船对人作用的冲量小,所以人向前运动得快,船后退得慢;B.人在船上行走时,人的质量比船小,它们所受冲量的大小是相等的,所以人向前运动得快,船后退得慢;C.当人停止走动时,因船的惯性大,所以船将会继续后退;D.当人停止走动时,因总动量任何时刻都守恒,所以船也停止后退.3.BD分析:对A:人对船的作用力和船对人的作用力等大反向,作用时间相等,所以两冲量大小相等;选项A 错.对C:人在船上走的过程,对人和船构成的系统,总动量守恒,所以人停则船停;选项C错.(6)一辆总质量为M的列车,在平直轨道上以速度v匀速行驶,突然后一节质量为m的车厢脱钩,假设列车受到的阻力与质量成正比,牵引力不变,则当后一节车厢刚好静止的瞬间,前面列车的速度为多大?6.解:列车在平直轨道匀速行驶,说明列车受到合外力为零.后一节车厢脱钩后,系统所受合外力仍然为零,系统动量守恒.根据动量守恒定律有:Mv=(M-m)v′v′=Mv/(M-m)六、平均动量守恒专题若系统在全过程中动量守恒(包括单方向动量守恒),则这一系统在全过程中的平均动量也必定守恒.如果系统是由两个物体组成,且相互作用前均静止、相互作用后均发生运动,则由0=m11v-m22v得推论:m1s1=m2s2,使用时应明确s1、s2必须是相对同一参照物位移的大小.【例题】一个质量为M,底面长为b的三角形劈静止于光滑的水平桌面上,(如图5—16所示)有一质量为m的小球由斜面顶部无初速滑到底部时,劈移动的距离为多少?【分析和解答】劈和小球组成的系统在整个运动过程中都不受水平方向外力.所以系统在水平方向平均动量守恒.劈和小球在整个过程中发生的水平位移如图5—15所示,由图见劈的位移为s,小球的水平位移为(b-s).则由m1s1=m2s2得:Ms=m(b-s),∴s=mb/(M+m)总结提高用m1s1=m2s2来解题,关键是判明动量是否守恒、初速是否为零(若初速不为零,则此式不成立),其次是画出各物体的对地位移草图,找出各长度间的关系式.训练题(2)静止在水面的船长为l,质量为M,一个质量为m 的人站在船头,当此人由船头走到船尾时,不计水的阻力,船移动的距离为多少?2.解:如图,设船移动的距离为s船,人移动的距离为s 人.Ms船=ms人s人+s船=l解得s船=ml/(M+m)(4)气球质量为200kg,载有质量为50kg的人,静止在空中距地面20m的地方,气球下悬一根质量可忽略不计的绳子,此人想从气球上沿绳慢慢下滑至安全到达地面,则这根绳长至少为多长?4、解:如图,设气球产生的位移为s球,气球产生的位移为s人,m人s人=m球s球50×20=200×s球s球=5m所以绳长至少为:l=s人+s球=20+5=25m七、多个物体组成的系统动量守恒专题有时应用整体动量守恒,有时只应用某部分物体动量守恒,有时分过程多次应用动量守恒,有时抓住初、末状态动量守恒即可,要善于选择系统、善于选择过程来研究.【例题】两只小船平行逆向航行,航线邻近,当它们头尾相齐时,由每一只船上各投质量m=50kg的麻袋到对面一只船上去,结果载重较小的一只船停了下来,另一只船则以v=8.5m/s的速度向原方向航行,设两只船及船上的载重量各为m1=500kg及m2=1000kg,问在交换麻袋前两只船的速率为多少?(水的阻力不计).【分析】选取小船和从大船投过的麻袋为系统,如图5—18,并以小船的速度为正方向,根据动量守恒定律有:(m1-m)v1-mv2=0,即450v1-50v2=0……(1).选取大船和从小船投过的麻袋为系统有:-(-m2-m)v2+mv1=-m2v,即-950v2+50v1=-1000×8.5……(2).选取四个物体为系统有:m1v1-m2v2=-m2v,即500v1-1000v2=-1000×8.5……(3).联立(1)(2)(3)式中的任意两式解得:v1=1(m/s),v2=9(m/s).训练题(1)质量m=100kg的小船静止在静水面上,船两端载着m甲=40kg,m乙=60kg的游泳者,在同一水平线上甲朝左乙朝右同时以相对于岸3m/s的速度跃入水中,如图5—19所示,则小船的运动方向和速率为:A.向左,小于1m/s;B.向左,大于1m/s;C.向右,大于1m/s;D.向右,小于1m/s.1.A解:对甲、乙两人及船构成的系统总动量守恒,取向右为正方向,则根据动量守恒定律得0=m甲v甲+m乙v乙+mv,0=40×(-3)+60×3+100×v,v=-0.6m/s负号表示方向向左(3)A、B两船的质量均为M,都静止在平静的湖面上,现A 船中质量为M/2的人,以对地的水平速率v从A船跳到B船,再从B船跳到A船……经n次跳跃后,人停在B船上;不计水的阻力,则:A.A、B两船速度大小之比为2∶3;B.A、B(包括人)两动量大小之比1∶1;C.A、B(包括人)两船的动能之比3∶2;D.以上答案都不对.3.BC分析:不管人跳几次,只关心初状态:人在A船上,系统(包括A、B船和人)总动量为零;末状态人在B船上.整过程动量守恒,根据动量守恒定律得0=Mv1+(M+M/2)v Bv A/v B=3/2(4)小车放在光滑地面上,A、B两人站在车的两头,A在车的左端,B在车的右端,这两人同时开始相向行走,发现小车向左运动,分析小车运动的原因,可能是:(如图5—20所示) A.A、B质量相等,A比B的速率大;B.A、B质量相等,A比B的速率小;C.A、B速率相等,A比B的质量大;D.A、B速率相等,A比B的质量小.4.AC分析:对A、B两人及车构成的系统动量守恒,取向左为正方向.m B v B-m A v A+m车v车=0,m A v A=m B v B+m车v车,所以m A v A>m B v B(7)如图5—21,在光滑水平面上有两个并排放置的木块A和B,已知m A=500g,m B=300g,一质量为80g的小铜块C以25m/s 的水平初速开始,在A表面滑动,由于C与A、B间有摩擦,铜块C最后停在B上,B和C一起以2.5m/s的速度共同前进,求:①木块A的最后速度v A′;②C在离开A时速度v′c.7.解:①因为水平面光滑、C在A、B面上滑动的整个过程,A、B、C系统总动量守恒.木块C离开A滑上B时,木块A 的速度为最后速度,则m C v C=M A v A+(m B+m C)v′BC,代入数据可得v′A=2.1m/s,②对C在A上滑动的过程,A、B、C系统总动量守恒,A、B速度相等.则m C v C=(m A+m B)v′A +m C v′C代入数据可得v′C=4m/s九、用动量守恒定律进行动态分析专题【例题】甲、乙两个小孩各乘一辆冰车在水平冰面上游戏.甲和他的冰车的总质量共为M=30kg,乙和他的冰车的总质量也是30kg,游戏时,甲推着一质量为m=15kg的箱子,和他一起以大小为v0=2m/s的速度滑行.乙以同样大小的速度迎面滑来.为了避免相撞,甲突然将箱子沿冰面推给乙,箱子滑到乙处时乙迅速把它抓住.若不计冰面的摩擦力,求:甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞.【分析和解答】甲把箱子推出后,甲的运动有三种可能,一是继续向前,方向不变;一是静止;一是倒退,方向改变.按题意,要求甲推箱子给乙避免与乙相撞的最起码速度,是上述的第一种情况,即要求推箱子后,动量的变化不是很大,达到避免相撞的条件便可以,所以对甲和箱的系统由动量守恒定律可得:(取v0方向为正方向)(M+m)v0=mv+Mv1即(30+15)×2=15v+30v1……(1)v为箱子相对地速度,v1为甲相对地速度.乙抓住箱子后,避免与甲相遇,则乙必须倒退,与甲运动方向相同,对乙和箱的系统得:mv-Mv0=(M+m)v2即15v-30×2=(30+15)v2……(2)v2为乙抓住箱子后,一起相对地的后退速度.甲、乙两冰车避免相撞的条件是:v2≥v1;当甲、乙同步前进时,甲推箱子的速度为最小.v2=v1……(3)联立(1)(2)(3)式代入数据解得:v=5.2m/s训练题(1)如图5—26所示,水平面上A、B两物体间用线系住,将一根弹簧挤紧,A、B两物体质量之比为2∶1,它们与水平面间的动摩擦因数之比为1∶2.现将线烧断,A、B物体从静止被弹开,则:A.弹簧在弹开过程中(到停止之前),A、B两物体速度大小之比总是1∶2;B.弹簧刚恢复原长时,两物体速度达最大;C.两物体速度同时达到最大;D.两物体同时停止运动.分析:由于A、B受水平地面的摩擦力等大反向,整个过程系统动量守恒,则0=m A v A-m B v B v A/v B=m B/m A=1/2 选项A、C、D正确.当A或B受合外力等于零,加速度为零时,速度达到最大,此时弹簧尚未恢复原长,选项B错误.(2)如图5—27所示,光滑水平面有质量相等的A、B两物体,B上装有一轻质弹簧,B原来处于静止状态,A以速度v 正对B滑行,当弹簧压缩到最短时:A.A的速度减小到零;B.是A和B以相同的速度运动时刻;C.是B开始运动时;D.是B达到最大速度时.2.B分析:当A碰上弹簧后,A受弹簧推力作用而减速,B受弹簧推力作用而加速;当两者速度相等时,A、B之间无相对运动,弹簧被压缩到最短.然后A受弹簧推力作用继续减速,B受弹簧推力作用继续加速,当弹簧恢复原长时,A减速至零,B加速至最大.或用动量守恒定律分析,m A v+0=m A v′A+m B v′B v′A减小,v′B增大;当v′A减至零时,v′B增加至最大为v.(5)如图5—29所示,甲车质量m1=20kg,车上有质量M =50kg的人.甲车(连人)从足够长的光滑斜坡上高h=0.45m 由静止开始向下运动,到达光滑水平面上,恰遇m2=50kg的乙车以速度v0=1.8m/s迎面驶来.为避免两车相撞,甲车上的人以水平速度v′(相对于地面)跳到乙车上,求v′的可取值的范围.(g取10m/s2)5.解:甲车滑到水平面时速度为v甲=gh2=45102.⨯⨯=3(m/s)向右;取向右为正方向,设人从甲车跳到乙车后,甲、乙的速度为v′甲,v′乙(均向右),当v′甲=v′乙时,两车不相碰,由动量守恒定律,对人和甲车有:(20+50)v甲=20v′甲+50v′,对人和乙车有:50v′-50v0=(50+50)v′乙解得v′=3.8m/s当v″甲=-v″乙时两车不相碰,同理有:(20+50)v 甲=50v″+20v″甲50v″-50v0=(50+50)v″乙解得v″=4.8m/s,故v′的范围:3.8m/s≤v′≤4.8m/s(6)如图5—30所示,一个质量为m的玩具蛙,蹲在质量为M的小车的细杆上,小车放在光滑的水平桌面上,若车长为l,细杆高为h,且位于小车的中点,试求:当玩具蛙最小以多大的水平速度v跳出时,才能落到桌面上?(要求写出必要文字,方程式及结果)6.解:取向右为正方向,系统m,M动量守恒:0=mv-MV,蛙在空中运动时间:t=hg/2蛙在t内相对车的水平距离:l/2=(v+V)t,解得:v=hgmMMl2)(2+.十、爆炸、碰撞和反冲专题●1.碰撞过程是指:作用时间很短,作用力大.碰撞过程两物体产生的位移可忽略.●2.爆炸、碰撞和反冲动量近似守恒:有时尽管合外力不为零,但是内力都远大于外力,且作用时间又非常短,所以合外力产生的冲量跟内力产生冲量比较都可忽略,总动量近似守恒.●3.三种碰撞的特点:(1)弹性碰撞——碰撞结束后,形变全部消失,末态动能没有损失.所以,不仅动量守恒,而且初、末动能相等,即m1v1+m2v2=m1v'1+m2v'222221122112211112222''+=+m v m v m v m v(2)一般碰撞——碰撞结束后,形变部分消失,动能有部分损失.所以,动量守恒,而初、末动能不相等,即m1v1+m2v2=m1v'1+m2v'222221122112211112222''+=+m v m v m v m v+ΔE K减(3)完全非弹性碰撞——碰撞结束后,两物体合二为一,以同一速度运动;形变完全保留,动能损失最大.所以,动量守恒,而初、末动能不相等,即m1v1+m2v2=(m1+m2)v222112212111()222+=m v m v m+m v+ΔE k max●4.“一动一静”弹性正碰的基本规律如图5—32所示,一个动量为m1v1的小球,与一个静止的质量为m2的小球发生弹性正碰,这种最典型的碰撞,具有一系列应用广泛的重要规律(1)动量守恒,初、末动能相等,即(2)根据①②式,碰撞结束时,主动球(m1)与被动球(m2)的速度分别为(3)判定碰撞后的速度方向当m1>m2时;v′1>0,v′2>0——两球均沿初速v1方向运动.当m 1=m 2时;v ′1=0,v ′2=v 1——两球交换速度,主动球停下,被动球以v 1开始运动.当m 1<m 2时;v ′1<0,v ′2>0——主动球反弹,被动球沿v 1方向运动.●5.“一动一静”完全非弹性碰撞的基本计算关系如图5—33所示,在光滑水平面上,有一块静止的质量为M 的木块,一颗初动量为mv 0的子弹,水平射入木块,并深入木块d ,且冲击过程中阻力f 恒定.(1)碰撞后共同速度(v )根据动量守恒,共同速度为v =mv m+M……① (2)木块的冲击位移(s) 设平均阻力为f ,分别以子弹,木块为研究对象,根据动能定理,有 fs =12Mv 2………②,f (s +d )=12m 20v -12mv 2……③ 由①、②和③式可得s =+mm Md <d 在物体可视为质点时:d =0,s =0——这就是两质点碰撞瞬时,它们的位置变化不计的原因 (3)冲击时间(t )以子弹为研究对象,根据子弹相对木块作末速为零的匀减速直线运动,相对位移d =12v 0t ,所以冲击时间为t =2d v (4)产生的热能Q在认为损失的动能全部转化为热能的条件下Q =ΔE K =f ·s 相=fd =12m 20v ()+M M m【例题1】质量相等的A 、B 两球在光滑水平面上沿同一直线、同一方向运动,A 球的动量是7kg ·m/s ,B 球的动量是5kg ·m/s ,当A 球追上B 球时发生碰撞,则碰撞后A 、B两球的动量可能值是:A .p A =6kg ·m/s ,pB =6kg ·m/s ; B .p A =3kg ·m/s ,p B =9kg ·m/s ;C .p A =-2kg ·m/s ,p B =14kg ·m/s ;D .p A =-4kg ·m/s ,p B =17kg ·m/s .【分析】从碰撞前后动量守恒p 1+p 2=p 1′+p 2′验证,A 、B 、C 三种情况皆有可能,从总动能只有守恒或减少:221222+p p m m ≥221222''+p p m m来看,答案只有A 可能. 【例题2】锤的质量是m 1,桩的质量为m 2,锤打桩的速率为一定值.为了使锤每一次打击后桩更多地进入土地,我们要求m 1m 2.假设锤打到桩上后,锤不反弹,试用力学规律分析说明为什么打桩时要求m 1m 2.【分析】两个阶段,第一阶段锤与桩发生完全非弹性碰撞,即碰后二者具有相同的速度,第二阶段二者一起克服泥土的阻力而做功,桩向下前进一段.我们希望第一阶段中的机械能损失尽可能小,以便使锤的动能中的绝大部分都用来克服阻力做功,从而提高打桩的效率.设锤每次打桩时的速度都是v ,发生完全非弹性碰撞后的共同速度是v ′. 则m 1v =(m 1+m 2)v ′.非弹性碰撞后二者的动能为E k =12(m 1+m 2)v ′2=211212+m m m v 2.当m 1m 2时,E K ≈12m 1v 2,即当m 1m 2时碰撞过程中系统的机械能损失很小.训练题(1)甲、乙两个小球在同一光滑水平轨道上,质量分别是m 甲和m 乙.甲球以一定的初动能E k 0向右运动,乙球原来静止.某时刻两个球发生完全非弹性碰撞(即碰撞后两球粘合在一定),下面说法中正确的是:A .m 甲与m 乙的比值越大,甲球和乙球组成的系统机械能的减少量就越小;B .m 甲与m 乙的比值越小,甲球和乙球组成的系统机械能的减少量就越小;C .m 甲与m 乙的值相等,甲球和乙球组成的系统机械能的减少量最小;D .m 甲与m 乙的值相等,甲球和乙球组成的系统机械能的减少量最大.1.A 提示:由动量守恒有:mv 0=(M +m )v ,由能量守恒有:ΔE =21mv 02-21(M +m )v 2,,ΔE =21mv 02mM M +=21mv 02·Mm +11,∴越大,ΔE 越小,故选项A 对.(2)半径相等的两个小球甲和乙,在光滑水平面上沿同一直线相向运动.若甲球的质量大于乙球的质量,碰撞前两球的动能相等,则碰撞后两球的运动状态可能是: A .甲球的速度为零而乙球的速度不为零;B .乙球的速度为零而甲球的速度不为零;C .两球的速度均不为零;D .两球的速度方向均与原方向相反,两球的动能不变.2.提示:不知道是哪一种碰撞. ∵m 甲>m 乙,E k 相同,∴由P 2=2mE k 知P 甲>P 乙,故系统总动量的方向与甲的初速相同. 对A 选项,当球反弹时可保证P 总与A 球的初速相同,∴可能出现; 对B 选项,∵P 甲>P 乙,∴碰后乙球不可能静止;对C 选项,可保证动量守恒和能量守恒成立; 对D 选项,碰后系统总动量的方向与碰前总动量方向相反,违反了动量守恒定律.(3)质量为1kg 的小球以4m/s 的速度与质量为2kg 的静止。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一物理知识点动量
精品学习为各位同学整理了高一物理知识点:动量,供大家参考学习。
更多各科知识点请关注新查字典物理网。
1.动量和冲量
(1)动量:运动物体的质量和速度的乘积叫做动量,即p=mv。
是矢量,方向与v的方向相同。
两个动量相同必须是大小相等,方向一致。
(2)冲量:力和力的作用时间的乘积叫做该力的冲量,即I=Ft。
冲量也是矢量,它的方向由力的方向决定。
2.★★动量定理:物体所受合外力的冲量等于它的动量的变化。
表达式:Ft=p-p或Ft=mv-mv
(1)上述公式是一矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向。
(2)公式中的F是研究对象所受的包括重力在内的所有外力
的合力。
(3)动量定理的研究对象可以是单个物体,也可以是物体系统。
对物体系统,只需分析系统受的外力,不必考虑系统内力。
系统内力的作用不改变整个系统的总动量。
(4)动量定理不仅适用于恒定的力,也适用于随时间变化的力。
对于变力,动量定理中的力F应当理解为变力在作用时间内的平均值。
★★★3.动量守恒定律:一个系统不受外力或者所受外力
之和为零,这个系统的总动量保持不变。
表达式:m1v1+m2v2=m1v1+m2v2
(1)动量守恒定律成立的条件
①系统不受外力或系统所受外力的合力为零。
②系统所受的外力的合力虽不为零,但系统外力比内力小得多,如碰撞问题中的摩擦力,爆炸过程中的重力等外力比起相互作用的内力来小得多,可以忽略不计。
③系统所受外力的合力虽不为零,但在某个方向上的分量为零,则在该方向上系统的总动量的分量保持不变。
(2)动量守恒的速度具有四性:①矢量性;②瞬时性;③相对性;④普适性。
4.爆炸与碰撞
(1)爆炸、碰撞类问题的共同特点是物体间的相互作用突然发生,作用时间很短,作用力很大,且远大于系统受的外力,故可用动量守恒定律来处理。
(2)在爆炸过程中,有其他形式的能转化为动能,系统的动能爆炸后会增加,在碰撞过程中,系统的总动能不可能增加,一般有所减少而转化为内能。
(3)由于爆炸、碰撞类问题作用时间很短,作用过程中物体的位移很小,一般可忽略不计,可以把作用过程作为一个理想化过程简化处理。
即作用后还从作用前瞬间的位置以新的动量开始运动。
5.反冲现象:反冲现象是指在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化的现象。
喷气式飞机、火箭等都是利用反冲运动的实例。
显然,在反冲现象里,系统的动量是守恒的。