康普顿效应及其解释
量子力学最全名词解释及知识点整理
是三重简并的,对应于这些能级的态称为三重态( | 1,1⟩, | 1, − 1⟩, | 1,0⟩)
29. 正氦与仲氦p206
处于三重态的氦称为正氦,处于单态的氦称为仲氦,或者说基态的氦是仲氦
一些结论
1. 谐振子能量本征函数及其性质


为动量,λ为波⻓。
4. 态叠加原理(Superposition principle):p17
对 于 一 般 的 情 况 , 如 果 ψ1 和 ψ2 是 体 系 的 可 能 状 态 , 那 么 它 们 的 线 性 叠 加
ψ = c1ψ1 + c2ψ2也是这个体系的一个可能状态,其中c1和c2为复常数。
20. 偶极跃迁、偶极近似(Electric Dipole Approximation): p146
由于电磁波中电场对电子能量的影响远大于磁场,忽略光波中的磁场作用和原子的尺
寸,把电场近似地用Ex = E0 cos ωt(沿z轴传播的平面单色偏振光的电场)表示后得到的
结果,这样讨论的跃迁称为偶极跃迁,这种近似叫做偶极近似。
22. 简单塞曼效应、复杂塞曼效应(Zeeman e ect):p181
在外磁场较强的情况下,没有外磁场时的一条谱线在外磁场中将分裂为三条,这就是 简单塞曼效应。
在外磁场较弱时,电子自旋与轨道相互作用不能够忽略,光谱线分裂成偶数条,这称 为复杂塞曼效应。
23. 好量子数:p187
守恒量的特点:测量值的几率分布不随时间变化,守恒量的量子数称为好量子数。
•
谐振子能量的本征函数为:ψn(x)
=
Nne−
1 2
α2 x2Hn(α
康普顿效应名词解释
康普顿效应名词解释在原子物理学中,康普顿散射,或称康普顿效应(英语:Compton effect),是指当X射线或伽马射线的光子跟物质相互作用,因失去能量而导致波长变长的现象。
相应的还存在逆康普顿效应——光子获得能量引起波长变短。
这一波长变化的幅度被称为康普顿偏移。
康普顿效应通常指物质电子云与光子的相互作用,但还有物质原子核与光子的相互作用——核康普顿效应存在。
康普顿效应首先在1923年由美国华盛顿大学物理学家康普顿观察到,并在随后的几年间由他的研究生吴有训进一步证实。
康普顿因发现此效应而获得1927年的诺贝尔物理学奖。
这个效应反映出光不仅仅具有波动性。
此前汤姆孙散射的经典波动理论并不能解释此处波长偏移的成因,必须引入光的粒子性。
这一实验说服了当时很多物理学家相信,光在某种情况下表现出粒子性,光束类似一串粒子流,而该粒子流的能量与光频率成正比。
在引入光子概念之后,康普顿散射可以得到如下解释:电子与光子发生弹性碰撞(弹性碰撞产生的非弹性散射),电子获得光子的一部分能量而反弹,失去部分能量的光子则从另一方向飞出,整个过程中总动量守恒,如果光子的剩余能量足够多的话,还会发生第二次甚至第三次弹性碰撞。
康普顿散射可以在任何物质中发生。
当光子从光子源发出,射入散射物质(一般指金属)时,主要是与电子发生作用。
如果光子的能量相当低(与电子束缚能同数量级),则主要产生光电效应,原子吸收光子而产生电离。
如果光子的能量相当大(远超过电子的束缚能)时,则我们可以认为光子对自由电子发生散射,而产生康普顿效应。
如果光子能量极其大(>1.022百万电子伏特)则足以轰击原子核而生成一对粒子:电子和正电子,这个现象被称为成对产生。
由于光子具有波粒二象性,因此,应该可以用波动理论诠释这效应。
埃尔温·薛定谔于1927年给出半经典理论。
这理论是用经典电动力学来描述光子,用量子力学来描述电子。
:28, 286康普顿效应对放射生物学十分重要,由于它是高能量X射线与生物中的原子核间,最有可能发生的相互作用,因此亦被应用于放射疗法。
15-2康普顿效应,氢原子光谱和玻尔理论
--
-
--
很快被卢瑟福的粒子散射实验否定!
粒子散射实验:
粒子
原子核 2. 卢瑟福的原子核式模型(1911年)
原子由原子核和核外电子构成,原子核带正电荷,占据整 个原子的极小一部分空间,而电子带负电,绕着原子核转 动,如同行星绕太阳转动一样。 原子核直径的数量级:10-14m,质量占99.95% 原子直径的数量级:10-10m
1 12
1 32
0.975 107
1 1.025107 m
1 2
1.097 107
1 12
1 22
0.975 107
2 1.216107 m
1 3
1.097 107
1 22
1 32
0.152 107
3 6.579107 m
主要内容
康普顿效应的量子解释
康普顿散射公式:
0
h m0c
h
cc
m0c (1 cos ) ( v v0 ) 0
康普顿散射公式:
0
h m0c
1
cos
康普顿波长:
c
h m0c
2.426
310
241012 m
结论: • 波长的改变量 与散射体无关,
• 波长的改变量 与散射角θ有关,散 射角θ 越大,
也越大。
3. 波长的改变量与入射光的波长无关。
vn
-
+ rn
电子轨道半径:rn
0h2 me2
n2
r1n2
n 1,2,3,
玻尔半径:
r1
0h2 me2
5.291011m
rn r1n2 4r1 , 9r1 ,16r1 , n 1, 2, 3,
康普顿效应及其解释
康普顿效应
[例1]
频率为ν的光子,具有的能量为hν,将这个光
子打在处于静止状态的电子上,光子将偏离原来的运动方 向,这种现象称为光的散射。散射后的光子 A.虽改变原来的运动方向,但频率保持不变 B.光子将从电子处获得能量,因而频率将增大 C.散射后的光子运动方向将与电子运动方向在一条 直线上,但方向相反 D.由于电子受到碰撞,散射后的光子频率低于入射 光的频率 ( )
对康普顿效应的理解
1.康普顿效应现象 用 X 射线照射物体时, 散射出来的 X 射线的波长会变长 的现象称为康普顿效应。 2.康普顿效应的经典解释 单色电磁波作用于比波长尺寸小的带电粒子上时,引起 受迫振动,向各方向辐射同频率的电磁波。 经典理论解释频率不变的一般散射可以,但对康普顿效 应不能作出合理解释。
考向一 考向二
第三节
康普顿效应及其解释
1.用X射线照射物体时,一部分散射出来的X射线 的波长会 变长 ,这个现象称为康普顿效应。 2.按照经典电磁理论,散射前后光的频率 不变 , 因而散射光的波长与入射光的波长 相等 ,不应该出现 波长 变长 的散射光。 3.光子不仅具有能量,其表达式为 ε=hν ,还具
3.康普顿效应的光子理论解释 X射线为一些ε=hν的光子,与自由电子发生完全弹性 碰撞,电子获得一部分能量,散射的光子能量减少,频率 减小,波长变长。
(1)光的散射是光在介质中与物质微粒的相互作 用,使光的传播方向发生改变的现象。 (2)散射光中也有与入射光有相同波长的射线,这 是由于光子与原子碰撞,原子质量很大,光子碰撞 后,能量不变,故散射光频率不变。
[答案]
D
根据光子理论运用能量守恒和动量守恒解释康普顿 效应。理论与实验符合得很好,不仅有力的验证了光子 理论,而且也证实了微观领域的现象也严格遵循能量守 恒和动量守恒。 对康普顿现象的理解,可以类比实物粒子的弹性碰 撞,在散射过程中要遵守动量守恒和能量守恒。
康普顿效应及其解释练习
康普顿效应及其解释练习1 两块瓷片,在常温下,一片黑色,另一片白色.使它们加热到能够发光的相同温度,这时,哪一块瓷片更明亮?答:吸收能力强的物体,必定辐射能力强.黑色瓷片的吸收能力大大超过白色瓷片;黑色瓷片的辐射能力也超过白色瓷片.在常温下,它们辐射的是红外电磁波,人们的眼睛无法区分.使它加热到能够发出可见光的相同温度时,将看到黑色瓷片更明亮.把一片黑白花纹的瓷片投人炉中,使它们达到发光的温度,就会看到黑纹比白纹更亮.2 .试估计一下人体辐射最强的波长,此辐射在电磁波谱的哪一区域?解:人体正常温度为(273+37)K =310 K ,由维恩位移定律T λm =b 得m T b m μλ35.91035.9310108978.263=⨯=⨯==-- 此辐射在红外线区间.3.某金属在一束绿光照射下产生光电效应.试问,如果(l )改用更强的绿光照射;(2)改用强度相同的蓝光照射,光电效应有何变化?答人1)根据光子论,用更强的绿光照射在单位时间内会产生更多光电子,因而饱和电流增大,但光电子的最大初动能不会变化,故遏止电压不变;(2)蓝光频率比绿光高,光子能量大,产生的光电子初动能大,因而遏止电压变大(指反向电压的绝对值),但由于光强度 I =nh γ.I 不变而γ增大,因此单位时间内照射在单位面积金属上的光子数n 减少,产生的光电子数减少,故饱和光电流下降.4. 光电效应和康普顿效应都包含有电子与光子的相互作用过程.对此,以下几种理解哪些是正确的?(A )两种效应中电子与光子组成的系统都服从动量守恒定律和能量守恒定律(B )两种效应都相当于电子与光子的弹性碰撞过程(C )两种效应都属于电子吸收光子的过程(D )光电效应是吸收光子的过程,而康普顿效应则相当于光子和电子的弹性碰撞过程 答:选(D ).5.某金属在一束绿光照射下产生光电效应.试问,如果(l )改用更强的绿光照射;(2)改用强度相同的蓝光照射,光电效应有何变化?答人1)根据光子论,用更强的绿光照射在单位时间内会产生更多光电子,因而饱和电流增大,但光电子的最大初动能不会变化,故遏止电压不变;(2)蓝光频率比绿光高,光子能量大,产生的光电子初动能大,因而遏止电压变大(指反向电压的绝对值),但由于光强度 I =nh γ,I 不变而γ增大,因此单位时间内照射在单位面积金属上的光子数n 减少,产生的光电子数减少,故饱和光电流下降.6.光电效应和康普顿效应在对光的粒子性的认识方面,其意义有何不同?试小结一下两种效应在产生条件、过程机制以及入射光子与电子组成的系统在相互作用过程中遵循的物理规律等方面的异同.答:光电效应的实验结果无法用光的电磁波理论来解释,是爱因斯坦提出光子理论的一个直接的实验基础,它揭示了光子的能量与频率的关系,表明在光子与电子相互作用过程中遵守能量守恒定律.康普顿效应除再一次证实了光的粒子性以及光子与电子作用遵循能量守恒定律外,还验证了光子的动量与光波长的关系,它与电子相互作用过程中遵守动量守恒定律.两种效应都是光子与电子间的相互作用,都满足能量守恒定律.不同之处在于两种效应中入射光子的能量不同.在光电效应中,人射光一般为可见光与紫外光,光子能量约几个eV,与原子外层电子的束缚能相当,光子与电子相互作用时不能忽略原子核对电子的作用,因而不能将电子看成孤立的自由电子,这样光子与电子系统在作用过程中动量不守恒.而在康普顿效应中,入射的一般为X光,光子能量约104-105eV,此时原子外层电子的电离能(小于102eV)及电子脱离金属的逸出功都可忽略,该电子可近似看成孤立的自由电子,在光子与电子作用过程中既满足能量守恒定律,又满足动量守恒定律.。
康普顿效应
2-4 光的波粒二象性
光电效应以及康普顿效应无可 辩驳的证实了光是一种粒子.
爱因斯坦
康普顿
光是一种波,同时也是一种粒子,光具有波粒二象性
当我们用很弱的光做双缝干涉实验时,将感光胶片 放在屏的位置上,会看到什么样的照片呢?为什么会 有这种现象?
点 击 观 看 动 画
当光源和感光胶片之间不可能同时有两个和多个光 子时,长时间曝光得到的照片仍然和光源很强、曝光时 间较短时一样,则光的波动性不是光子之间的相互作用 引起的. 波动性是光子本身的一种属性
物体的波长 物体的动量
人们把这种波叫做物质 波,也叫德布罗意波.
德布罗意
h h p mc 2 c c C
又因为:
c
h
所以:
p
h p
宏观物体的德布罗意波的波长比 微观粒子的波长小的多,很难观察 到它们的波动性,但是微观粒子的 情形完全不同,1927年,两位美国 物理学家利用观察“电子束照射到 晶体晶格上发生的衍射现象”证实 了德布罗意的假设.
经典电磁理论在解释康普顿效应 时遇到的困难:
根据经典电磁波理论,当电磁波通 过物质时,物质中带电粒子将作受迫 动,其频率等于入射光频率,所以它所 发射的散射光频率应等于入射光频率。 无法解释波长改变的现象。
光子理论对康普顿效应的解释
康普顿效应是光子和电子作弹性碰撞 的结果,具体解释如下: 1. 若光子和外层电子相碰撞,光子有一部 分能量传给电子,散射光子的能量减少,于 是散射光的波长大于入射光的波长。
•康普顿将0.71埃的X光投射到石墨上,然后在不同的角度测量被石墨分子散射的X光强 度。当θ=0时,只有等于入射频率的单一频率光。当θ≠0(如45°、90°、135°)时, 发现存在两种频率的散射光。一种频率与入射光相同,另一种则频率比入射光低。后者 随角度增加偏离增大。
第三节_康普顿效应及其解释
5.康普顿效应的意义: (1)证明了爱因斯坦光子假说的正确性; (2)揭示了光子不仅有能量h ν,还有动量 p=h /λ; (3)揭示了光具有粒子性;
6.巩固练习: (1)假如一个光子与一个静止的电子碰撞, 光子并没有被吸收,只是电子被反弹回来, 散射光子的频率和原来光子的频率相比中电子 的受迫振动,这种振动频率必与入射波的频 率相同,从而引起的散射波也应该与入射波 的频率相同,而散射前后介质相同,所以散射 前后波长也不变. 光波波长在散射 4.康普顿效应的理论解释: 前后不变 光子与静止的电子发生碰撞,光子把部分能 量转移给了电子能量由hν减小为h ν’,因此频 率减小,波长变大; 同时光子要把一部分动量转移给电子,因而 光子动量减小,由P= h / λ 看,散射后有些光 子波长变长;
第三节 康普顿效应及其解释
1.康普顿效应: 用x射线照射物体时,散射出来的x射线的 波长会变长.
x射线谱仪
石墨体
康普顿效应:在散射的 x射线中,不但 存在与入射线波长相同的反射线,同 时还存在波长大于入射线波长的反射 线现象。
x射线谱仪
石墨体
说明:光子在介质中和物质微粒相互作用, 使得光的传播方向转向其他方向的现 象 2.光子的动量: p= h /λ 光子的能量: E=hν 3.经典电磁理论的困难:
2019-2020年高中物理 第2章 第3、4节 康普顿效应及其解释 光的波粒二象性学案 粤教版选修3-5
2019-2020年高中物理第2章第3、4节康普顿效应及其解释光的波粒二象性学案粤教版选修3-51.用X射线照射物体时,一部分散射出来的X射线的波长会变长,这个现象称为康普顿效应.2.按照经典电磁理论,散射前后光的频率不变,因而散射光的波长与入射光的波长相等,不应该出现波长变长的散射光.3.光子不仅具有能量,其表达式为ε=hν,还具有动量,其表达式为p=hλ.4.光的干涉和衍射实验表明,光是一种电磁波,具有波动性;光电效应和康普顿效应则表明,光在与物体相互作用时,必须看成是一颗颗光子的形式出现的,具有粒子性.5.双缝干涉中每次穿过双缝的只有一个光子,它不可能跟其他光子产生干涉.但光的干涉还是发生了.可见,波动性是每一个光子的属性.光既有粒子性,又有波动性,单独使用波或粒子都无法完整地描述光的所有性质.6.光既有波动性,又有粒子性,我们把光的这种性质叫做光的波粒二象性.7.干涉条纹是光子在感光片上各点的概率分布的反映.这种概率分布就好像波的强度的分布,称光波是一种概率波.基础达标1.人类对光的本性的认识经历了曲折的过程.下列关于光的本性的陈述不符合科学规律或历史事实的是(A)A.牛顿的“ 微粒说” 与爱因斯坦的“ 光子说” 本质上是一样的B.光的双缝干涉实验显示了光具有波动性C.麦克斯韦预言了光是一种电磁波D.光具有波粒二象性解析:牛顿的“微粒说”认为光是一种物质微粒,爱因斯坦的“光子说”认为光是一份一份不连续的能量,显然A错;干涉、衍射是波的特性,光能发生干涉说明光具有波动性,B正确;麦克斯韦根据光的传播不需要介质,以及电磁波在真空中的传播速度与光速近似相等认为光是一种电磁波,后来赫兹用实验证实了光的电磁说,C正确;光具有波动性与粒子性,称为光的波粒二象性,D正确.2.康普顿效应证实了光子不仅具有能量,也有动量,如图给出了光子与静止电子碰撞后,电子的运动方向,则碰后光子可能沿方向________运动,并且波长________(选填“ 不变” 、“ 变短” 或“ 变长” ).解析:根据动量守恒定律知,光子与静止电子碰撞前后动量守恒,相碰后合动量应沿2方向,所以碰后光子可能沿1方向运动,由于动量变小,故波长应变长.答案:1 变长3.(多选)下列有关光的说法正确的是(BD )A .光电效应表明在一定条件下,光子可以转化为电子B .大量光子易表现出波动性,少量光子易表现粒子性C .光有时是波,有时是粒子D .康普顿效应表明光子和电子、质子等实物粒子一样也具有能量和动量 4.下列实验中,能证实光具有粒子性的是(A ) A .光电效应实验 B .光的双缝干涉实验 C .光的圆孔衍射实验 D .泊松亮斑实验解析:光电效应证明光具有粒子性,A 正确.光的干涉和衍射可证明光具有波动性.B 、C 、D 错误.5.下列现象能说明光具有波粒二象性的是(D ) A .光的色散和光的干涉 B .光的干涉和光的衍射 C .光的反射和光电效应 D .泊松亮斑和光电效应解析:光的色散、光的反射可以从波动性和粒子性两方面分别予以理解,故A 、C 选项错误.光的干涉、衍射现象只说明光的波动性,B 选项错误.泊松亮斑能说明光具有波动性,光电效应说明光具有粒子性,故D 选项正确.能力提升6.下列关于光的波粒二象性的理解,正确的是(D )A .大量的光子中有些光子表现出波动性,有些光子表现出粒子性B .光在传播时是波,而与物质相互作用时就转变成粒子C .高频光是粒子,低频光是波D .波粒二象性是光的属性,有时它的波动性显著,有时它的粒子性显著 解析:光的波粒二象性是光的属性,不论其频率的高低还是光在传播或者是与物质相互作用,光都具有波粒二象性,大量光子的行为易呈现出波动性,个别光子的行为易表现出粒子性,光的频率越高,粒子性越强,光的频率越低,波动性越强,故A 、B 、C 错误,D 正确.7.(多选)下列各种波是概率波的是(CD ) A .声波 B .无线电波 C .光波 D .物质波解析:声波是机械波,A 错.电磁波是一种能量波,B 错.由概率波的概念和光波以及物质波的特点分析可以得知光波和物质波均为概率波,故C 、D 正确.8.根据爱因斯坦的“光子说”可知(B ) A .“光子说”的本质就是牛顿的“微粒说” B .光的波长越长,光子的能量越小 C .一束单色光的能量可以连续变化 D .只有光子数很多时,光才具有粒子性解析:爱因斯坦的“光子说”认为光是一份一份的,是不连续的,它并不否定光的波动性,而牛顿的“微粒说”与波动说是对立的,因此A 错误.在爱因斯坦的“光子说”中光子的能量ε=h ν=hcλ;可知波长越长,光子的能量越小,因此B 正确.某一单色光,波长恒定,光子的能量也是恒定的,因此C 错误.大量光子表现为波动性,而少数光子才表现为粒子性,因此D 错误.9.在做双缝干涉实验时,发现100个光子中有96个通过双缝后打到了观察屏上的b 处,则b 处是(A )A .亮纹B .暗纹C .既有可能是亮纹也有可能是暗纹D .以上各种情况均有可能解析:由光子按波的概率分布的特点去判断,由于大部分光子都落在b 点,故b 处一定是亮纹,选项A 正确.10.在康普顿效应实验中,X 射线光子的动量为h νc,一个静止的C 原子吸收了一个X 射线光子后将(B )A .仍然静止B .沿着光子原来运动的方向运动C .沿光子运动的相反方向运动D .可能向任何方向运动解析:由动量守恒定律知,吸收了X 射线光子的原子与光子原来运动方向相同,故正确选项为B.2019-2020年高中物理 第2章 第3节 欧姆定律教案 新人教版选修3-1三维目标 知识与技能1.理解电阻的概念,明确导体的电阻是由导体本身的特性所决定; 2.理解欧姆定律,并能用来解决有关电路的问题;3.知道导体的伏安特性曲线,知道什么是线性元件和非线性元件。
康普顿效应及其解释
第 二 章
第 三 节
师之说
知识点
考之向 梦之旅
考向一 考向二
第三节
康普顿效应及其解释
1.用X射线照射物体时,一部分散射出来的X射线 的波长会 变长 ,这个现象称为康普顿效应。 2.按照经典电磁理论,散射前后光的频率 不变 , 因而散射光的波长与入射光的波长 相等 ,不应该出现 波长 变长 的散射光。 3.光子不仅具有能量,其表达式为 ε=hν ,还具
康普顿效应
[例1]
频率为ν的光子,具有的能量为hν,将这个光
子打在处于静止状态的电子上,光子将偏离原来的运动方 向,这种现象称为光的散射。散射后的光子 A.虽改变原来的运动方向,但频率保持不变 B.光子将从电子处获得能量,因而频率将增大 C.散射后的光子运动方向将与电子运动方向在一条 直线上,但方向相反 D.由于电子受到碰撞,散射后的光子频率低于入射 光的频率 ( )
答案:5.68×10-16 J
1.89×1Байду номын сангаас-24 kg· m/s
梦之旅见课时跟踪检测(九)
光子的动量和波长是多少?在电磁波谱中它属于何种射线?
[解析] 由题意知光子的动量p=mc=0.91×10
-30
×3×
108 kg· m· s-1=2.73×10-22 kg· m· s-1。 光子的波长 6.63×10-34 J· s h λ= p= =0.002 4 nm 2.73×10-22 kg· m· s- 1 因电磁波谱中γ射线的波长在1 nm以下,所以该光子在 电磁波谱中属于γ射线。 [答案] 2.73×10-22 kg· m/s
3.康普顿效应的光子理论解释 X射线为一些ε=hν的光子,与自由电子发生完全弹性 碰撞,电子获得一部分能量,散射的光子能量减少,频率 减小,波长变长。
第三节康普顿效应及其解释
小结1
5. 康普顿散射实验的意义:
(1)有力地支持了爱因斯坦“光量子”假设; (2)首次在实验上证实了“光子具有动量” 的假设; (3)证实了在微观世界的单个碰撞事件中,动量和 能量守恒定律仍然是成立的。
6. 光子的能量和动量
7. 用可见光能否观察到康普顿散射?
E h
P
h
0 c (1 cos j )
c = 0.0241Å=2.4110-3nm(实验值)
称为电子的Compton波长 只有当入射波长0与c可比拟时,康普顿效应才显 著,因此要用X射线才能观察到康普顿散射,用可 见光观察不到康普顿散射。
小结1
1. 什么是康普顿效应? 2. 经典电磁理论解释康普顿效应:可以解释 不变 的一般散射。 无法解释波长 频率______ 改变和散射角的关系。 3. 光子理论对康普顿效应的解释:康普顿效 弹性碰撞 的结果 应是光子和电子作__________ 4. 若光子和外层电子相碰撞,散射光的波长 变长 。若光子和内层电子相碰撞,碰撞 _____ 不变 。波长改变和散射角 前后光子波长_____ 有关。
第三节 康普顿效应及其解释
光的波动理论在解释 光电效应时遇到了巨大的 困难。后来,爱因斯坦在 普朗克量子化理论的启发 下,提出了光子学说.
普朗克 爱因斯坦
E h
1.光的散射 光在介质中与物质微粒相互作用,因而传 播方向发生改变,这种现象叫做光的散射 2.康普顿效应 1923年康普顿在做 X 射线通过物质散射的 实验时,发现散射线中除有与入射线波长相同 的射线外,还有比入射线波长更长的射线,其 波长的改变量与散射角有关,而与入射线波长 和散射物质都无关。
一.康普顿散射的实验装置与规律:
康普顿效应
康普顿效应compton effect概述1923年,美国物理学家康普顿在研究x射线通过实物物质发生散射的实验时,发现了一个新的现象,即散射光中除了有原波长l0的x光外,还产生了波长l>l0 的x光,其波长的增量随散射角的不同而变化。
这种现象称为康普顿效应(compton effect)。
用经典电磁理论来解释康普顿效应遇到了困难。
康普顿借助于爱因斯坦的光子理论,从光子与电子碰撞的角度对此实验现象进行了圆满地解释.我国物理学家吴有训也曾对康普顿散射实验作出了杰出的贡献。
对康普顿散射现象的研究经历了一、二十年才得出正确结果。
康普顿效应第一次从实验上证实了爱因斯坦提出的关于光子具有动量的假设。
这在物理学发展史上占有重要的位置。
光子在介质中和物质微粒相互作用时,可能使得光向任何方向传播,这种现象叫光的散射.1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时发现,有些散射波的波长比入射波的波长略大,他认为这是光子和电子碰撞时,光子的一些能量转移给了电子,康普顿假设光子和电子、质子这样的实物粒子一样,不仅具有能量,也具有动量,碰撞过程中能量守恒,动量也守恒.按照这个思想列出方程后求出了散射前后的波长差,结果跟实验数据完全符合,这样就证实了他的假设。
这种现象叫康普顿效应。
发现1922~1923年康普顿研究了X射线被较轻物质(石墨、石蜡等)散射后光的成分,发现散射谱线中除了有波长与原波长相同的成分外,还有波长较长的成分。
这种散射现象称为康普顿散射或康普顿效应。
康普顿将0.71埃的X光投射到石墨上,然后在不同的角度测量被石墨分子散射的X光强度。
当θ=0时,只有等于入射频率的单一频率光。
当θ≠0(如45°、90°、135°)时,发现存在两种频率的散射光。
一种频率与入射光相同,另一种则频率比入射光低。
后者随角度增加偏离增大。
实验结果:(1)散射光中除了和原波长λ0相同的谱线外还有λ>λ0的谱线。
第四章 3 光的波粒二象性
3 光的波粒二象性[学习目标] 1.了解康普顿效应及其意义,了解光子理论对康普顿效应的解释.2.知道光的波粒二象性,知道波和粒子的对立、统一的关系.3.了解什么是概率波,知道光是一种概率波.一、康普顿效应1.光的散射 光子在介质中与物质微粒相互作用,使光的传播方向发生偏转,这种现象叫做光的散射. 2.康普顿效应 美国物理学家康普顿在研究石墨对X 射线的散射时,发现在散射的X 射线中,除了与入射波长λ0相同的成分外,还有波长大于λ0的成分,这个现象称为康普顿效应.3.康普顿效应的意义康普顿效应表明光子除了具有能量之外,还具有动量,深入揭示了光的粒子性的一面.4.光子的动量(1)表达式:p =h λ. (2)说明:在康普顿效应中,入射光子与晶体中电子碰撞时,把一部分动量转移给电子,光子的动量变小.因此,有些光子散射后波长变大.二、光的波粒二象性1.光的干涉和衍射现象说明光具有波动性,光电效应和康普顿效应说明光具有粒子性.2.光子的能量ε=hν,光子的动量p =h λ. 3.光子既有粒子的特征,又有波的特征,即光具有波粒二象性.三、光是一种概率波在双缝干涉实验中,屏上亮纹的地方,是光子到达概率大的地方,暗纹的地方是光子到达概率小的地方.所以光波是一种概率波.即光波在某处的强度代表着光子在该处出现概率的大小.1.判断下列说法的正误.(1)光子的动量与波长成反比.( √ )(2)光子发生散射后,其动量大小发生变化,但光子的频率不发生变化.( × )(3)光的干涉、衍射、偏振现象说明光具有波动性.( √ )(4)光子数量越大,其粒子性越明显.(×)(5)光具有粒子性,但光子又是不同于宏观观念的粒子.(√)(6)光在传播过程中,有的光是波,有的光是粒子.(×)2.康普顿效应证实了光子不仅具有能量,也具有动量.入射光和电子的作用可以看成弹性碰撞,则当光子与电子碰撞时,光子的一些能量转移给了电子,如图1给出了光子与静止电子碰撞后,电子的运动方向,则碰撞过程中动量________(选填“守恒”或“不守恒”),能量________(选填“守恒”或“不守恒”),碰后光子可能沿________(选填“1”“2”或“3”)方向运动,并且波长________(选填“不变”“变短”或“变长”).图1答案守恒守恒1变长解析光子与电子碰撞过程满足动量守恒和能量守恒,所以碰撞之后光子和电子的总动量的方向与光子碰前的方向一致,由矢量合成知识可知碰后光子的方向可能沿1方向,不可能沿2或3方向;通过碰撞,光子将一部分能量转移给电子,能量减少,由ε=hν知,频率变小,再根据c=λν知,波长变长.一、康普顿效应1.康普顿效应:康普顿在研究石墨对X射线的散射时,发现在散射的X射线中,除了与入射波长λ0相同的成分外,还有波长大于λ0的成分,这个现象称为康普顿效应.2.康普顿效应的解释假定光子与电子发生弹性碰撞,按照爱因斯坦的光子说,一个光子不仅具有能量ε=hν,而且还有动量.如图2所示.这个光子与静止的电子发生弹性碰撞,光子把部分能量转移给了电子,能量由hν减小为hν′,因此频率减小,波长增大.同时,光子还使电子获得一定的动量.这样就圆满地解释了康普顿效应.图23.康普顿效应的意义康普顿效应进一步揭示了光的粒子性,也再次证明了爱因斯坦光子说的正确性.例1科学研究证明,光子既有能量也有动量,当光子与电子碰撞时,光子的一些能量转移给了电子.假设光子与电子碰撞前的波长为λ,碰撞后的波长为λ′,则碰撞过程中() A.能量守恒,动量守恒,且λ=λ′B.能量不守恒,动量不守恒,且λ=λ′C.能量守恒,动量守恒,且λ<λ′D.能量守恒,动量守恒,且λ>λ′答案 C解析能量守恒和动量守恒是自然界的普遍规律,既适用于宏观世界也适用于微观世界.光子与电子碰撞时遵循这两个守恒定律,光子与电子碰撞前光子的能量ε=hν=h cλ,当光子与电子碰撞时,光子的一些能量转移给了电子,光子的能量ε′=hν′=h cλ′,由ε>ε′,可知λ<λ′,选项C正确.二、光的波粒二象性1.对光的本性认识史人类对光的认识经历了漫长的历程,从牛顿的光的微粒说到托马斯·杨和菲涅耳的波动说,从麦克斯韦的光的电磁说到爱因斯坦的光子说.直到二十世纪初,对于光的本性的认识才提升到一个更高层次,即光具有波粒二象性.对于光的本性认识史,列表如下:学说名称微粒说波动说电磁说光子说波粒二象性代表人物牛顿托马斯·杨和菲涅耳麦克斯韦爱因斯坦实验依据光的直线传播、光的反射光的干涉、衍射光能在真空中传播,是横波,光速等于电磁波的传播速度光电效应、康普顿效应光既有波动现象,又有粒子特征内容要点光是一群弹性粒子光是一种机械波光是一种电磁波光是由一份一份光子组成的光是具有电磁本性的物质,既有波动性又有粒子性2.对光的波粒二象性的理解(1)光的波动性①实验基础:光的干涉和衍射.②表现:a.光子在空间各点出现的可能性大小可用波动规律来描述;b.足够能量的光在传播时,表现出波的性质.③说明:a.光的波动性是光子本身的一种属性,不是光子之间相互作用产生的;b.光的波动性不同于宏观观念的波.(2)光的粒子性①实验基础:光电效应、康普顿效应.②表现:a.当光同物质发生作用时,这种作用是“一份一份”进行的,表现出粒子的性质;b.少量或个别光子容易显示出光的粒子性.③说明:a.粒子的含义是“不连续”“一份一份”的;b.光子不同于宏观观念的粒子.例2(多选)下列有关光的波粒二象性的说法中,正确的是()A.有的光是波,有的光是粒子B.光子与电子是同样的一种粒子C.光的波长越长,其波动性越显著;波长越短,其粒子性越显著D.康普顿效应表明光具有粒子性答案CD解析一切光都具有波粒二象性,光的有些行为(如干涉、衍射)表现出波动性,光的有些行为(如光电效应、康普顿效应)表现出粒子性,所以,不能说有的光是波,有的光是粒子.虽然光子与电子都是微观粒子,都具有波粒二象性,但电子是实物粒子,有静止质量,光子不是实物粒子,没有静止质量,电子是以实物形式存在的物质,光子是以场形式存在的物质,所以,不能说光子与电子是同样的一种粒子.光的波长越长,衍射性越好,即波动性越显著,光的波长越短,粒子性就越显著,故选项C、D正确,A、B错误.三、光是一种概率波1.单个粒子运动的偶然性:我们可以知道粒子落在某点的概率,但不能预言粒子落在什么位置,即粒子到达什么位置是随机的,是预先不能确定的.2.大量粒子运动的必然性:由波动规律我们可以准确地知道大量粒子运动时的统计规律,因此我们可以对宏观现象进行预言.3.概率波体现了波粒二象性的和谐统一:概率波的主体是光子、实物粒子,体现了粒子性的一面;同时粒子在某一位置出现的概率受波动规律支配,体现了波动性的一面,所以说概率波将波动性和粒子性统一在一起.例3(多选)在单缝衍射实验中,中央亮纹的光强占从单缝射入的整个光强的95%以上,假设现在只让一个光子通过单缝,那么该光子()A.一定落在中央亮纹处B.一定落在亮纹处C.可能落在暗纹处D.落在中央亮纹处的可能性最大答案CD解析根据光波是概率波的概念,对于一个光子通过单缝落在何处,是不确定的,但概率最大的是落在中央亮纹处,可达95%以上,当然也可能落在其他亮纹处,还可能落在暗纹处,不过,落在暗纹处的概率很小,故C、D选项正确.1.(对康普顿效应的理解)(多选)关于康普顿效应,下列说法正确的是()A.康普顿在研究石墨对X射线的散射时,发现散射光的波长发生了变化,为波动说提供了依据B.X射线散射时,波长改变了多少与散射角有关C.发生散射时,波长较短的X射线或γ射线入射时,产生康普顿效应D.爱因斯坦的光子说能够解释康普顿效应,所以康普顿效应支持粒子说答案BCD2.(对光的波粒二象性的认识)对于光的波粒二象性的说法,正确的是()A.一束传播的光,有的光是波,有的光是粒子B.光波与机械波是同样的一种波C.光的波动性是由于光子间的相互作用而形成的D.光是一种波,同时也是一种粒子,光子说并未否定电磁说,在光子能量ε=hν中,频率ν表示的是波的特性答案 D解析光既具有波动性又具有粒子性,不能说有的光是波,有的光是粒子,故A错误;光波和机械波不是同一种波,故B错误;光波是概率波,个别光子的行为是随机的,往往表现为粒子性,大量光子的行为往往表现为波动性,不是由于光子间的相互作用而形成的,故C错误;根据光子说的内容,光是一种波,同时也是一种粒子,光子说并未否定电磁说,在光子的能量ε=hν中,频率ν表示的是波的特性,故D正确.3.(对光的波粒二象性的理解)有关光的本性,下列说法中正确的是()A.光具有波动性,又具有粒子性,这是相互矛盾和对立的B.光的波动性类似于机械波,光的粒子性类似于质点C.大量光子才具有波动性,个别光子只具有粒子性D.由于光既具有波动性,又具有粒子性,无法只用其中一种去说明光的一切行为,只能认为光具有波粒二象性答案 D解析光在不同条件下表现出不同的行为,其波动性和粒子性并不矛盾,A错,D对;光的波动性不同于机械波,其粒子性也不同于质点,B错;大量光子往往表现出波动性,个别光子往往表现出粒子性,C错.4.(对概率波的理解)下列关于概率波的说法中,正确的是()A.概率波就是机械波B.物质波是一种概率波C.概率波和机械波的本质是一样的,都能发生干涉和衍射现象D.在光的双缝干涉实验中,若只有一个粒子,则可以确定它从其中的哪一个缝中穿过答案 B解析概率波具有波粒二象性,因此,概率波不是机械波,A错;对于电子和其他微观粒子,由于同样具有波粒二象性,所以与它们相联系的物质波也是概率波,B正确;概率波和机械波都能发生干涉和衍射现象,但它们的本质不一样,C错;在光的双缝干涉实验中,若只有一个粒子,则不能确定它从哪个缝中穿过,D错.考点一康普顿效应1.(多选)频率为ν的光子,具有的能量为hν,动量为hνc,将这个光子打在处于静止状态的电子上,光子将偏离原运动方向,这种现象称为光的散射.下列关于光的散射的说法正确的是()A.光子改变原来的运动方向,且传播速度变小B.光子由于在与电子碰撞中获得能量,因而频率增大C.由于受到电子碰撞,散射后的光子波长大于入射光子的波长D.由于受到电子碰撞,散射后的光子频率小于入射光子的频率答案CD解析碰撞后光子改变原来的运动方向,但传播速度不变.光子由于在与电子碰撞中损失能量,因而频率减小,即ν1>ν2,再由c =λ1ν1=λ2ν2,得到λ1<λ2,故选项C 、D 正确.2.白天的天空各处都是亮的,是大气分子对太阳光散射的结果.美国物理学家康普顿由于在这方面的研究而荣获1927年的诺贝尔物理学奖.假设一个沿着一定方向运动的光子和一个静止的自由电子相互碰撞以后,电子向某一个方向运动,光子沿另一方向散射出去,则这个散射光子跟原来的光子相比( )A .频率变大B .速度变小C .光子能量变大D .波长变长答案 D解析 光子与自由电子碰撞时,遵守动量守恒定律和能量守恒定律,自由电子碰撞前静止,碰撞后其动量、能量增加,所以光子的动量、能量减小,故C 错误.由λ=h p、ε=hν可知光子频率变小,波长变长,故A 错误,D 正确.由于光子速度是不变的,故B 错误.3.光电效应和康普顿效应都包含电子与光子的相互作用过程,对此下列说法正确的是( )A .两种效应中电子与光子组成的系统都服从动量守恒定律和能量守恒定律B .两种效应都相当于电子与光子的弹性碰撞过程C .两种效应都属于吸收光子的过程D .光电效应是吸收光子的过程,而康普顿效应相当于光子和电子弹性碰撞的过程 答案 D解析 光电效应吸收光子放出电子,其过程能量守恒,但动量不守恒,康普顿效应相当于光子与电子弹性碰撞的过程,并且遵守动量守恒定律和能量守恒定律,故D 正确.4.在康普顿效应实验中,X 射线光子的动量为hνc.一个静止的C 原子吸收了一个X 射线光子后将( )A .仍然静止B .沿着光子原来运动的方向运动C .沿光子运动的相反方向运动D .可能向任何方向运动答案 B解析 由动量守恒定律知,吸收了X 射线光子的原子与光子原来运动方向相同.故正确选项为B.5.X 射线是一种高频电磁波,若X 射线在真空中的波长为λ,以h 表示普朗克常量,c 表示真空中的光速,以ε和p 分别表示X 射线每个光子的能量和动量,则( )A .ε=hλc,p =0 B .ε=hλc ,p =hλc 2 C .ε=hc λ,p =0 D .ε=hc λ,p =h λ答案 D 解析 根据ε=hν,且λ=h p ,c =λν可得X 射线每个光子的能量为ε=hc λ,每个光子的动量为p =h λ. 考点二 光的波粒二象性6.(多选)人类对光的本性的认识经历了曲折的过程.下列关于光的本性的陈述符合科学规律或历史事实的是( )A .牛顿的“微粒说”与爱因斯坦的“光子说”本质上是一样的B .光的双缝干涉实验说明了光具有波动性C .麦克斯韦预言了光是一种电磁波D .光具有波粒二象性答案 BCD解析 牛顿的“微粒说”认为光是一种物质微粒,爱因斯坦的“光子说”认为光是一份一份不连续的能量,显然A 错误;干涉、衍射是波的特性,光能发生干涉说明光具有波动性,B 正确;麦克斯韦根据光的传播不需要介质,以及电磁波在真空中的传播速度与光速近似相等认为光是一种电磁波,后来赫兹用实验证实了光的电磁说,C 正确;光具有波动性与粒子性,称为光的波粒二象性,D 正确.7.(多选)说明光具有粒子性的现象是( )A .光电效应B .光的干涉C .光的衍射D .康普顿效应答案 AD8.(多选)(2021·临夏中学高二期末)下面关于光的波粒二象性的说法中,正确的是( )A .大量光子产生的效果往往显示出波动性,个别光子产生的效果往往显示出粒子性B .频率越大的光其粒子性越显著,频率越小的光其波动性越显著C .光在传播时往往表现出波动性,光在跟物质相互作用时往往表现出粒子性D .光不可能同时具有波动性和粒子性答案 ABC解析 光既具有粒子性,又具有波动性,大量的光子波动性比较明显,个别光子粒子性比较明显,故A正确;在光的波粒二象性中,频率越大的光其粒子性越显著,频率越小的光其波动性越显著,故B正确;光在传播时往往表现出波动性,光在跟物质相互作用时往往表现出粒子性,故C正确;光的波粒二象性是指光有时表现为波动性,有时表现为粒子性,光具有双重性质,故D错误.9.数码相机几近家喻户晓,用来衡量数码相机性能的一个非常重要的指标就是像素,1像素可理解为光子打在光屏上的一个亮点,现知2 000万像素的数码相机拍出的照片比200万像素的数码相机拍出的等大的照片清晰得多,其原因可以理解为()A.光是一种粒子,它和物质的作用是一份一份的B.光的波动性是大量光子之间的相互作用引起的C.大量光子表现出光的粒子性D.光具有波粒二象性,大量光子表现出光的波动性答案 D解析光是一种电磁波,故A项错误;光的波动性是光的固有属性,故B项错误;大量光子表现光的波动性,故C项错误;光具有波粒二象性,大量光子表现波动性,少量光子表现粒子性,故D项正确.考点三光是概率波10.(多选)下列说法中正确的是()A.光是一种电磁波B.光是一种概率波C.光子相当于高速运动的质点D.光的直线传播只是宏观近似规律答案ABD解析光是一种电磁波,是电磁波谱中频率(或波长)很窄的一部分,故A选项正确;光是概率波,单个光子的运动纯属偶然,而大量光子的运动受波动规律支配,故B选项正确;光子是能量粒子,不能看成高速运动的质点,故C选项错误;因光波长很短,比一般物体的尺寸小得多,所以光的衍射非常弱,可看成直线传播,它只是一种近似,故D选项正确.11.(多选)在做双缝干涉实验时,观察屏的某处是亮纹,则对光子到达观察屏的位置,下列说法正确的是()A.到达亮纹处的概率比到达暗纹处的概率大B.到达暗纹处的概率比到达亮纹处的概率大C.光子可能到达光屏的任何位置D.以上说法均有可能答案AC解析根据概率波的含义,光子可能到达光屏的任何位置,只是光子到达亮纹处的概率要比到达暗纹处的概率大得多,故A、C正确.12.(多选)为了验证光的波粒二象性,在双缝干涉实验中将光屏换成照相底片,并设法减弱光的强度,下列说法正确的是()A.使光子一个一个地通过双缝干涉实验装置的单缝,如果时间足够长,底片上将出现双缝干涉图样B.使光子一个一个地通过双缝干涉实验装置的单缝,如果时间很短,底片上将出现不太清晰的双缝干涉图样C.大量光子的运动显示光的波动性,个别光子的运动显示光的粒子性D.光只有波动性没有粒子性答案AC解析光的波动性是统计规律的结果,对个别光子我们无法判断它落到哪个位置;对于大量光子遵循统计规律,即大量光子的运动或曝光时间足够长,显示出光的波动性.。
知识讲解 粒子的波动性、不确定关系
粒子的波动性、不确定关系【学习目标】1.知道康普顿效应及其理论解释;2.知道光具有波粒二象性,从微观角度理解光的波动性和粒子性; 3.了解概率波的含义,了解光是一种概率波. 4.知道微观粒子和光子一样具有波粒二象性;5.掌握波长hpλ=的应用; 6.知道“不确定性关系”以及氢原子中“电子云”的具体含义.【要点梳理】要点一、粒子的波动性 1.光的散射光在介质中与物质微粒相互作用,因而传播方向发生改变,这种现象叫做光的散射. 2.康普顿效应(1)美国物理学家康普顿在研究X 射线通过金属、石墨等物质的散射时,发现在散射的X 射线中,除了有与入射波长0λ相同的成分外,还有波长大于0λ的成分.人们把这种波长变长的现象叫做康普顿效应. (2)经典电磁理论的困难:散射前后光的频率不变,因而散射光的波长与入射光的波长应该相同,不应出现0λλ>的散射光.(3)爱因斯坦的光子说:光子不仅具有能量E h ν=,而且光子具有动量h hp c νλ==. (4)康普顿用光子说成功解释了康普顿效应:他认为散射后X 射线波长改变,是X 射线光子和物质中电子碰撞的结果.由于光子的速度是光速,非常大,而物质中的电子速度相对很小,因此可以看做电子静止.碰撞前后动量和能量都守恒.碰撞后电子动量和能量增加,光子的动量和能量减小,故散射后光子的频率要减小,光子的波长变长.(5)康普顿效应进一步揭示了光的粒子性,也再次证明了爱因斯坦光子说的正确性. 3.光的波粒二象性 (1)光电效应和康普顿效应表明光具有粒子性,光的干涉、衍射、偏振现象表明光具有波动性.光既有波动性又有粒子性,单独使用任何一种都无法完整地描述光的所有性质,把这种性质叫做光的波粒二象性.(2)光波是一种慨率波.光子在空间各点出现的可能性大小(概率),可以用波动规律来描述.如单个光子通过双缝后的落点无法预测,但光子遵循的分布规律可预测,(通过双缝后)产生干涉条纹,亮纹处光子到达的机会大,暗纹处光子到达的机会小.4.光的波动性与粒子性的统一(1)光子和电子、质子等实物粒子一样,具有能量和动量.和其他物质相互作用时,粒子性起主导作用,在光的传播过程中,光子在空间各点出现的可能性的大小(概率)由波动性起主导作用,因此称光波为概率波.(2)光子的能量跟其对应的频率成正比,而频率是波动性特征的物理量,因此E hν=揭示了光的粒子性和波动性之间的密切联系.(3)对不同频率的光,频率低、波长长的光,波动性特征显著;而频率高、波长短的光,粒子性特征显著.要点诠释:光子是能量为hν的微粒,表现出粒子性,而光子的能量与频率ν有关,体现了波动性,所以光子是统一了波粒二象性的微粒,但是,在不同的条件下的表现不同,大量光子表现出波动性,个别光子表现出粒子性;光在传播时表现出波动性,光和其他物质相互作用时表现出粒子性;频率低的光波动性更强,频率高的光粒子性更强.综上所述,光的粒子性和波动性组成一个有机的统一体,相互间并不是独立存在.5.再探光的双缝干涉实验物理学家做了图甲所示的实验,帮助我们认识光的波动性和粒子性的统一.在双缝干涉的屏处放上照相底片,如果让光子一个一个通过双缝,在曝光量很小时,底片上出现如图乙所示的不规则分布的点,表现出光的粒子性.如果曝光量很大,底片上出现规则的干涉条纹反映光子分布规律,遵循波的规律,如图中丙、丁所示.要点诠释:实验表明个别光子的行为无法预测,表现出粒子性;大量光子的行为表现出波动性,在干涉条纹中,光波强度大的地方,即光子出现概率大的地方;光波强度小的地方,是光子到达机会少的地方,即光子出现概率小的地方.因此,光波是一种概率波.要点诠释:曝光量很小时可以清楚地看出光的粒子性,曝光量很大时可以看出粒子的分布遵从波动规律.6.光的波粒二象性的理解光的干涉、衍射、偏振说明光不可怀疑地具有波动性,学习了光电效应、康普顿效应和光子说,认识到光的波动理论具有一定的局限性,光还具有粒子性,经过长期的探索表明:光既具有波动性,项目内容说明光的粒子性当光同物质发生作用时,这种作用是“一份一份”进行的,表现出粒子的性质粒子的含义是“不连续”“一份一份”的光的粒子性中的粒子是不同于宏观观在真空中的传播.麦克斯韦的光的电磁说认为光是一种电磁波,是物质的一种特殊形态,从而揭示了光的电磁本质,能圆满地解释光在真空中的传播以及光的反射、折射、干涉和衍射等现象.牛顿主张的微粒说,认为光是一种“弹性粒子流”,是一种实物粒子,没有波动性;爱因斯坦的光=,其中ν是光的频率,属于波的特征子说认为光是由光子构成的不连续的特殊物质,光的能量E hν物理量之一,因此光子学本身没有否定光的波动性.惠更斯的波动说与牛顿的微粒说由于受传统宏观观念的影响,都试图用一种观点去说明光的本性,因而它们是相互排斥、对立的两种不同的学说.麦克斯韦的光的电磁说与爱因斯坦的光子说是对立的统一体,揭示了光的行为的二重性:既具有波动性,又具有粒子性,即光具有波粒二象性.要点二、不确定关系1.物质的分析物理学把物质分为两大类:一类是分子、原子、电子、质子及由这些粒子所组成的物体,我们称它们为实物;另一类是场,如电场、磁场等,它们并不是由微观粒子所构成的,而是客观存在的一种特殊物质.(1)问题猜想:大家知道,光具有波动性,但同时也具有粒子性,即光具有波粒二象性,那么像分子、原子、质子、电子等微观粒子是否具有波动性呢?(2)德布罗意假设与物质波:1924年,32岁的法国物理学家德布罗意在他的博士论文中提出了一个大胆的假设:任何一个运动着的物体,小到电子、质子,大到行星、太阳,都有一种波与它相对应.这种波叫物质波,也称为德布罗意波.(3)物质波波长的计算公式:hλ=,式中h是普朗克常量,p是运动物体的动量.p(4)物质波的实验验证——电子束的衍射:1927年美国物理学家戴维孙和英国物理学家汤姆孙分别获得了电子束在晶体上的衍射图样(如图所示),从而证实了实物粒子——电子的波动性.他们为此获得了1937年的诺贝尔物理学奖.要点诠释:①1960年约恩孙直接做了电子双缝干涉实验,从屏上摄得了微弱电子束的干涉图样和光的干涉图样是非常相似的(如图所示).这也证明了实物粒子的确具有波动性.②除了电子以外,后来还陆续证实了质子、中子以及原子、分子的波动性,对于这些粒子,德布罗意给出的Eh ν=和h pλ=关系同样正确.1929年,德布罗意获得了诺贝尔物理学奖,成为以学位论文获此殊荣的人.3.物质波是概率波电子和其他微观粒子同光子一样,具有波粒二象性,所以与它们相联系的物质波也是概率波.要点诠释:(1)波粒二象性是包括光子在内的一切微观粒子的共同特征.(2)德布罗意波是概率波,在电子束的衍射图样中,电子落在“亮环”上的概率大,落在“暗环”上的概率小,但概率的大小受波动规律支配.4.不确定性关系(1)在经典力学中,一个质点的位置和动量是可以同时精确测定的,而在量子理论中,要同时准确地测出微观粒子的位置和动量是不可能的,也就是说不能同时用位置和动量来描述微观粒子的运动.我们把这种关系叫做不确定性关系.(2)海森伯(德国物理学家)的不确定性关系对于微观粒子的运动,如果以x ∆表示粒子位置的不确定量,以p ∆表示粒子在x 方向上的动量的不确定量,那么4h x p π∆∆≥, 式中h 是普朗克常量. (3)海森伯的不确定性关系是量子力学的一条基本原理,是物质波粒二象性的生动体现.它表明:在对粒子位置和动量进行测量时,精确度存在一个基本极限,不可能同时准确地知道粒子的位置和动量.5.电子云由不确定性关系可知原子中的电子在原子核周围的运动是不确定的,因而不能用“轨道”来描述它的运动.电子在空间各点出现的概率是不同的.当原子处于稳定状态时,电子会形成一个稳定的概率分布.人们常用一些小黑圆点来表示这种概率分布,概率大的地方小黑圆点密一些,概率小的地方小黑圆点疏一些,这样电子的概率分布图的结果如同电子在原子核周围形成云雾,称为“电子云”.电子云是原子核外电子位置不确定的反映. 要点诠释:(1)电子云描述的是电子在原子核外空间各点出现的概率大小的一种形象化的图示,并不是代表电子的位置.(2)我们通常认为的“核外电子轨道”,只不过是电子出现概率最大的地方. 6.位置和动量的不确定性关系的理解 (1)粒子位置的不确定性.单缝衍射现象中,入射的粒子有确定的动量,但它们可以处于挡板左侧的任何位置,也就是说,粒子在挡板左侧的位置是完全不确定的. (2)粒子动量的不确定性.微观粒子具有波动性,会发生衍射.大部分粒子到达狭缝之前沿水平方向运动,而在经过狭缝之后,有些粒子跑到投影位置以外.这些粒子具有与其原来运动方向垂直的动量.由于哪个粒子到达屏上的哪个位置是完全随机的,所以粒子在垂直方向上的动量也具有不确定性,不确定量的大小可以由中央亮条纹的宽度来衡量.(3)位置和动节的不确定性关系:4h x p π∆∆≥. 由4hx p π∆∆≥可以知道,在微观领域,要准确地测定粒子的位置,动量的不确定性就更大;反之,要准确确定粒子的动量,那么位置的不确定性就更大.如将狭缝变成宽缝,粒子的动量能被精确测定(可认为此时不发生衍射),但粒子通过缝的位置的不确定性却增大了;反之取狭缝0x ∆→,粒子的位置测定精确了,但衍射范围会随Δx 的减小而增大,这时动量的测定就更加不准确了. (4)微观粒子的运动具有特定的轨道吗? 由不确定关系4hx p π∆∆≥可知,微观粒子的位置和动量是不能同时被确定的,这也就决定了不能用“轨道”的观点来描述粒子的运动,因为“轨道”对应的粒子某时刻应该有确定的位置和动量,但这是不符合实验规律的.微观粒子的运动状态,不能像宏观物体的运动那样通过确定的轨迹来描述,而是只能通过概率波作统计性的描述. 7.显微镜的分辨本领最好的光学显微镜能够分辨200 nm 大小的物体.衍射现象限制了光学显微镜的分辨本领.波长越长,衍射现象越明显.可见光波长为370750 nm ~,日常生活中的物体大小比可见光波长大得多,光的衍射不明显,所以我们才说光沿直线传播.当被观察物太小时,衍射现象不能忽略,这样物体的像就模糊了,影响了显微镜的分辨本领.电子显微镜是使用电子束工作的.电子束也是一种波,如果把它加速,电子动量很大,它的德布罗意波波长就很短,衍射现象的影响就很小.现代电子显微镜的分辨本领可以达到0.2 nm .由于加速电压越高电子获得的动量越大,它的波长就越短,分辨本领也就越强,所以电子显微镜的分辨本领大小常用它的加速电压来表示.要点三、本章知识概括1.知识网络2.要点回顾不确定性关系:4hx p π∆∆≥,x ∆表示粒子位置的不确定量,p ∆表示粒子在x 方向上的动量的不确定量.电子云:电子在原子核外空间出现的概率大小的形象表示.黑体辐射的实验规律:随着温度的升高,各种波长的幅度都增加,辐射强度的 极大值向波长较短的方向移动能量子:微观粒子的能量是量子化的;h εν= 能量量子化 (1)产生条件:入射光频率大于被照射金属的极限频率(2)入射光频率→决定每个光子能量E h ν=→决定光电子逸出后最大初动能(3)入射光强度→决定每秒钟逸出的光电子数→决定光电流大小(4)爱因斯坦光电效应方程k E h W ν=- W 表示金属的逸出功,又c ν表示金属的极限频率,则c W h ν=W=h νc 光电效应用X 射线照射物体时,散射出来的X 射线的波长会变长光子不仅具有能量,也具有动量,hp λ= 康普顿效应 (1)光既具有波动性,又具有粒子性,光的波动性和粒子性是光在不同条件下的不同表现 (2)大量的光子产生的效果显示波动性;个别光子产生的效果显示粒子性 (3)波长短的光粒子性显著,波长长的光波动性显著(4)当光和其他物质发生相互作用时表现为粒子性,当光在传播时表现为波动性 (5)光波不同于宏观观念中那种连续的波,它是表示大量光子运动规律的一种概率波光的波粒二象性(1)一切运动的物体都具有波粒二象性(2)物质波波长h pλ=(3)物质波既不是机械波,也不是电磁波,而是概率波粒子的波动性【典型例题】类型一、粒子的波动性例1.科学研究表明:能量守恒和动量守恒是自然界的普遍规律.从科学实践的角度来看,迄今为止,人们还没有发现这些守恒定律有任何例外.相反,每当在实验中观察到似乎是违反守恒定律的现象时,物理学家们就会提出新的假设来补救,最后总是以有新的发现而胜利告终.如人们发现,两个运动着的微观粒子在电磁场的相互作用下,两个粒子的动量的矢量和似乎是不守恒的.这时物理学家又把动量的概念推广到了电磁场,把电磁场的动量也考虑进去,总动量就又守恒了.现有沿一定方向运动的光子与一个原来静止的自由电子发生碰撞后自由电子向某一方向运动,而光子沿另一方向散射出去.这个散射出去的光子与入射前相比较,其波长________(填“增大”“减小”或“不变”).【思路点拨】光子具有动量且与其他物质相互作用时,动量守恒。
康普顿效应
康普顿效应科学常识 2008-12-31 15:25 阅读3 评论0字号:大大中中小小康普顿效应compton effect概述1923年,美国物理学家康普顿在研究x射线通过实物物质发生散射的实验时,发现了一个新的现象,即散射光中除了有原波长l0的x光外,还产生了波长l>l0 的x光,其波长的增量随散射角的不同而变化。
这种现象称为康普顿效应(compton effect)。
用经典电磁理论来解释康普顿效应遇到了困难。
康普顿借助于爱因斯坦的光子理论,从光子与电子碰撞的角度对此实验现象进行了圆满地解释.我国物理学家吴有训也曾对康普顿散射实验作出了杰出的贡献。
对康普顿散射现象的研究经历了一、二十年才得出正确结果。
康普顿效应第一次从实验上证实了爱因斯坦提出的关于光子具有动量的假设。
这在物理学发展史上占有重要的位置。
光子在介质中和物质微粒相互作用时,可能使得光向任何方向传播,这种现象叫光的散射.1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时发现,有些散射波的波长比入射波的波长略大,他认为这是光子和电子碰撞时,光子的一些能量转移给了电子,康普顿假设光子和电子、质子这样的实物粒子一样,不仅具有能量,也具有动量,碰撞过程中能量守恒,动量也守恒.按照这个思想列出方程后求出了散射前后的波长差,结果跟实验数据完全符合,这样就证实了他的假设。
这种现象叫康普顿效应。
发现1922~1923年康普顿研究了X射线被较轻物质(石墨、石蜡等)散射后光的成分,发现散射谱线中除了有波长与原波长相同的成分外,还有波长较长的成分。
这种散射现象称为康普顿散射或康普顿效应。
康普顿将0.71埃的X光投射到石墨上,然后在不同的角度测量被石墨分子散射的X光强度。
当θ=0时,只有等于入射频率的单一频率光。
当θ≠0(如45°、90°、135°)时,发现存在两种频率的散射光。
一种频率与入射光相同,另一种则频率比入射光低。
康普顿效应
康普顿效应1923年,康普顿的X 射线散射实验证实了辐射的粒子性;在康普顿的“X 射线在轻元素上的散射的量子理论”中写道:“这个实验非常令人信服的指出,辐射量子确实既带有能量,也带有定向的动量.” “康普顿效应”是以发现者的名字命名的一种散射现象,这是波长极短的x 射线跟原子中结合得很松散的电子发生作用时产生的一种现象.1923年,这一效应证实了光子的实在性,给人的印象极为深刻,从此以后光量子学说成为现代物理学的当然组成部分.在1922-1923年间,康普顿做实验发现:散射线中有与射线波长入.相同的射线,也有波长入>入.的射线.这种改变波长的散射称为康普顿效应.1923年,康普顿利用Einstein 的光量子理论,提出了合理解释.但是,大家知道传统的理论认为一份光量子hr 是不能再分小的,同时,又根据Einstein 的真空光速不变原理,光子的运动速度既不能增加,也不能减小;所以,康普顿认为:“……入射光子的一部分能量传递给了电子,所以,‘反冲光子’具有较低的能量……”,这种解释与传统理论是相矛盾的,这个矛盾有待进一步的探讨,以使理论趋于统一【1】.设原来静止的自由电子与光子碰撞后吸收了光子而以u 的速度运动,则由能量守恒定律有:22202201c u c m m c c m hv -==+ (1),式中0m 和m 分别是电子的静止质量和运动质量,ν为入射光子的频率.又由动量守恒定律有:==mu c h ν2201c u u m - (2),由(1)式得:2020222c m hv c hvm v h c u ++= ,由(2)式得:42022c m v h hvcu +=.显然,分别由能量守恒定律和动量守恒定律决定的电子运动速度不相同.假设碰撞前电子的运动速度与入射光子的速度相互垂直,光子与处于运动状态的自由电子碰撞后被吸收,则由能量守恒定律应有:2222022211c u c m c m c m hv -==+ (3),式中0m 为电子的静止质量,1m 为电子碰撞前的动质量,2m 为电子碰撞后的动质量.又由动量守恒定律有:X 方向:22220221cos cos cu u m u m c hv -==θθ;Y 方向:2222022111sin sin c u u m u m u m -==θθ;将两式取平方并相加,得:222222021121)()(c u u m u m c h -=+ν (4),由式(3)得:2121420212222)(c m hv c hvm c m m v h c u ++-+=,由式(4)得:221214202222121222c u m c m v h c u m v h c u +++=,可见,由式(3)和式(4)决定的速度不同.量子电动力学(量子规范场论的一种)中的基本问题,一个电子吸收一个光子后,无论如何都不可能只有一个电子而没有别的副作用产物,这是四维时空中的能量动量守恒所要求的. “电子从低能级向高能级跃迁时”这种情况只有在束缚态中才存在,而在束缚态中,电子不是自由的,所以不单单是“一个电子吸收一个光子”,还要考虑原子核的参与.在自由态,一个电子和一个光子的相互作用,最简单的情况下,产物还是一个电子和一个光子,在束缚态中可以只有一个电子,而是最基本的能量动量守恒的要求.康普顿总结道:“现在,几乎不用再怀疑伦琴射线(注:即X 射线)是一种量子现象了……实验令人信服地表明,辐射量子不仅具有能量,而且具有一定方向的冲量.”参考文献:【1】解恩泽等编,《简明自然科学史手册》, 山东教育出版社,1987年出版,P242.。
康普顿效应简单解释
康普顿效应简单解释嘿,朋友!今天咱们来聊聊神秘又有趣的康普顿效应。
你知道光吗?那家伙,平时就像个温柔的小绵羊,乖乖地按照大家熟悉的规律行事。
可在康普顿这里,光就像是突然变了性子!想象一下,光是由一个个小小的光子组成的,就好像一群小精灵在欢快地奔跑。
当这些光子碰到电子,那场面可就热闹了。
原本,大家都觉得光子碰到电子,就像两个礼貌的绅士轻轻点头示意,然后各自安好。
但康普顿效应告诉我们,根本不是这么回事!光子和电子撞在一起,就像是两个调皮的孩子在操场上疯跑,撞了个满怀。
光子把一部分能量和动量传递给了电子,自己的频率和波长都发生了变化。
这就好比你去跑步,原本你充满了力气,步伐轻快。
但跑着跑着,碰到了一些障碍,消耗了一些力气,你的步伐是不是就变得沉重了,速度也慢下来了?光子也是这样!再想想,我们平时觉得光是很“柔和”的东西,对吧?但康普顿效应让我们看到,光也有它“强硬”的一面。
你看,我们通过普通的光学现象,觉得光好像总是那么听话,可康普顿效应却像是光给我们来了个出其不意的恶作剧。
这一效应在很多地方都有着重要的应用呢!比如说在医学上,X 射线的散射就能用康普顿效应来解释。
医生们利用这个原理,就能更清楚地看到我们身体内部的情况,就像给我们的身体来了个“大透视”。
在物理学的研究中,康普顿效应也像是一把神奇的钥匙,打开了一扇又一扇未知的大门,让我们对光和物质的相互作用有了更深的理解。
这不就像是在黑暗中摸索,突然找到了一盏明灯,照亮了前方的路吗?所以说,康普顿效应可不仅仅是一个理论上的玩意儿,它实实在在地影响着我们的生活和科学的进步。
总之,康普顿效应让我们看到了光的另一面,让我们对这个世界的认识又深了一层。
是不是很神奇?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13
1.科学研究证明,光子有能量也有动量,当光子与电子碰撞时, 光子的一些能量转移给了电子.假设光子与电子碰撞前的波长为 λ, 碰撞后的波长为 λ′,则碰撞过程中( )
A.能量守恒,动量守恒,且 λ=λ′ B.能量不守恒,动量不守恒,且 λ=λ′ C.能量守恒,动量守恒,且 λ<λ′ D.能量守恒,动量守恒,且 λ>λ′
1.正误判断(正确的打“√”,错误的打“×”)
Байду номын сангаас
(1)散射光波长的变化,是入射光与物质中的自由电子发生碰撞
的结果.
(√ )
(2)光的电磁理论能够解释康普顿效应.
( ×)
×
栏目导航
5
2.一个沿着一定方向运动的光子和一个原来静止的自由电子相 互碰撞,碰撞之后电子向某一方向运动,而光子沿着另一方向散射 出去.则这个散射光子跟原来入射时相比( )
栏目导航
9
栏目导航
10
【例 1】 (多选)美国物理学家康普顿在研究石墨对 X 射线的散 射时,发现在散射的 X 射线中,除了有与入射波长 λ0 相同的成分外, 还有波长大于 λ0 的成分,这个现象称为康普顿效应.关于康普顿效 应,下列说法正确的是( )
A.康普顿效应现象说明光具有波动性 B.康普顿效应现象说明光具有粒子性 C.当光子与晶体中的电子碰撞后,其能量增加 D.当光子与晶体中的电子碰撞后,其能量减少
栏目导航
11
BD [康普顿用光子的模型成功地解释了康普顿效应,在散射过 程中 X 射线的光子与晶体中的电子碰撞时要遵循动量守恒定律和能 量守恒定律,故 B、D 正确,A、C 错误.]
栏目导航
12
对康普顿效应的三点认识 1.光电效应应用于电子吸收光子的问题;而康普顿效应应用于讨论 光子与电子碰撞且没有被电子吸收的问题. 2.假定 X 射线光子与电子发生弹性碰撞.光子和电子相碰撞时,光 子有一部分能量传给电子,散射光子的能量减少,于是散射光的波长大于 入射光的波长. 3.康普顿效应进一步揭示了光的粒子性,也再次证明了爱因斯坦光 子说的正确性.
栏目导航
Thank you for watching !
栏目导航
8
2.光子理论解释 在 X 射线散射现象中,假定 X 射线光子与电子发生完全弹性碰撞,这种碰 撞跟台球比赛中的两球碰撞很相似.按照爱因斯坦的光子说,一个 X 射线光子 不仅具有能量 ε=hν,而且还有动量.相对 X 射线光子的能量,物质中电子的 能量是很小的,电子可以近似看作是静止的.如图所示,这个光子与静止的电 子发生弹性碰撞,碰撞过程中光子和电子的总能量守恒,总动量也守恒,光子 把部分能量转移给了电子,能量由 hν 减小为 hν′,因此频率减小,波长变长.同 时,光子要把一部分动量转移给电子,因而光子动量变小,从 p=hλ看,动量 p 减小也意味着波长 λ 变大,因此有些光子散射后波长变长了.
栏目导航
14
C [光子与电子碰撞过程中,能量守恒,动量也守恒,因光子 撞击电子的过程中光子将一部分能量传递给电子,光子的能量减少, 由 E=hλc可知,光子的波长增大,即 λ′>λ,故 C 正确.]
栏目导航
15
3.康普顿效应证实了光子不仅具有能量,而且具有动量.如图 所示给出了光子与静止电子碰撞后,电子的运动方向,则碰后光子 ()
第二章 波粒二象性 第三节 康普顿效应及其解释
2
[学习目标] 1.了解康普顿效应现象.(重点) 2.知道康普顿效应进一步说明了光的粒子性.
栏目导航
3
一、康普顿效应及其解释 1.康普顿效应:用光照射物体时,散射出来的光的波长会 变长 的现象,称为康普顿效应. 2.光子的动量:p= h
λ
栏目导航
4
A.散射光子的能量减少 B.光子的能量增加,频率也增大 C.速度减小 D.波长减小
栏目导航
6
A [由于光子既具有能量,也具有动量,因此碰撞过程中遵循 能量守恒定律.]
栏目导航
7
对康普顿效应的理解 1.经典解释(电磁波的解释) 单色电磁波作用于比波长尺寸小的带电粒子上时,引起受迫振 动,向各方向辐射同频率的电磁波. 经典理论可以解释频率不变的一般散射,但对康普顿效应不能 作出合理解释.
栏目导航
A.可能沿 1 方向,且波长变短 B.可能沿 2 方向,且波长变短 C.可能沿 1 方向,且波长变长 D.可能沿 3 方向,且波长变长
16
栏目导航
17
C [因为光子与电子碰撞过程中动量守恒,所以碰撞之后光子 和电子的总动量的方向与碰前光子的方向一致,可见碰后光子的方 向可能沿 1 方向,不可能沿 2 或 3 方向;通过碰撞,光子将一部分 能量转移给电子,光子的能量减小,由 E=hν=hλc知,波长变长.]