Zigbee协议栈原理基础

合集下载

传感网应用开发(高级)课件4.1 Zigbee协议栈基础

传感网应用开发(高级)课件4.1 Zigbee协议栈基础

Zstack结构
应用层 网络层 MAC层 物理层
IEEE802.15.4
Zstack结构层次
Zstack层次功能
➢ APP:为应用层目录,用户可以根据需求添加自己 的任务。这个目录中包含了应用层和这个项目的主 要内容,在协议栈里面一般是以操作任务实现的。
➢ HAL:硬件驱动层,包括硬件相关的配置、驱动以 及操作函数。
ZigBee协议栈安装
Zstack下载
Zstack安装
Zstack安说明文档
工程文档
工具文件
“1+X”传感网应用开发
ZigBee协议基本概念+Z-Stack协议 栈介绍与协议栈安装
目录
CONTENTS
01 ZigBee协议基本概念
02 ZigBee协议栈
03 ZigBee协议栈安装
ZigBee协议基本概念
ZigBee协议
ZigBee一词来自人们对 蜜蜂的移动姿态的观察。 ZigBee是基于IEEE802.15.4标 准的低功耗局域网协议。 适合于无线传感器信息传 输,具有以下主要特点: ➢短距离 ➢低速率 ➢低能耗
ZigBee设备
ZigBee网络设备有三 种逻辑类型:
➢协调器(Coordinator)
➢路由器(Router)
➢终端设备(End-device)
ZigBee频谱分布
ZigBee信道
ZigBee PAN ID
即ZigBee局域网ID,是节点用于判断自身 所属网络的标识。Zigbee无线传感网的协调器 是通过选择网络工作信道及各域网识别标志 PANID(网络号)来启动一个无线传感网的。
➢ Tools : 工 程 配 置 目 录 , 包 括 空 间 划 分 及 ZStack相关配置信息。

ZIGBEE协议栈OSAL运行机理及任务添加

ZIGBEE协议栈OSAL运行机理及任务添加
ZIGBEE协议栈OSAL运行 机理及任务添加
授课内容

OSAL的调度机制

OSAL任务添加
OSAL的简介

OSAL是一种支持多任务运行的系统资源分配机 制。 OSAL与标准的操作系统有一定的区别,它实现 了类似操作系统的功能,如:任务切换、提供了 内存管理功能等,但OSAL并不是真正意义的操 作系统。
OSAL添加新任务

将事件处理函数的地址加入tasksArr[]数组中:
void osalInitTasks(void) { Uint8 taskID=0; taskEvent=(uint16*)osal_mem_alloc(sizeof(uint16)*task aCnt); Osal_memset(tasksEvents,0,(sizof(uint16)*tasksCnt)) macTaskInit(taskID++); nwk_init(taskID++) ; Hal_Init(taskID++); #if defined(MT_TASK)
}
OSAL添加新任务
GenericApp_ProcessEvent函数添加到了数组的 末尾,GenericApp_Init函数在osalInitTasks中被 调用
taskArr[]数组各事件处理函数的排列顺序与 osalInitTasks函数调用各任务初始化函数的顺序 保持一致; 为了保存osalInitTasks函数所分配的任务ID,给 每个任务定义一个全局变量。
APS_event_loop;
#if defined (ZIGBEE_FRAGMENTATION)
OSAL添加新任务

事件处理函数的地址加入tasksArr[]数组, 代码:

zigbee 协议栈

zigbee 协议栈

zigbee 协议栈Zigbee是一种基于IEEE 802.15.4标准的无线通信协议,它是一种低功耗、短距离的无线网络协议,可以用于物联网中各种设备的通信。

Zigbee协议栈是指一套软件的层次结构,用于实现Zigbee协议的功能和特性。

Zigbee协议栈由四个层次组成:应用层,网络层,MAC层和物理层。

应用层是Zigbee协议栈的最高层,它提供了应用程序与其他网络层之间的接口。

应用层负责处理数据的收发,以及定义数据的格式和协议。

应用层也负责处理设备与设备之间的通信,例如传感器与控制器之间的通信。

网络层是Zigbee协议栈的中间层,它负责网络的发现和路由选择。

网络层的主要功能是将数据传输到目标设备,以及维护网络拓扑结构。

网络层使用一种叫做AODV(Ad-hoc On-Demand Distance Vector)的路由选择算法来决定数据的传输路径。

MAC层是Zigbee协议栈的第二层,它负责实现对数据的传输和控制。

MAC层的主要功能包括数据的处理、帧的编码和解码、对信道的管理等。

MAC层使用CSMA-CA(Carrier Sense Multiple Access with Collision Avoidance)协议来控制数据的传输,并通过BEACON帧来管理设备之间的通信。

物理层是Zigbee协议栈的最底层,它负责将数据从电子信号转换为无线信号,并传输到接收设备。

物理层的主要功能包括信号的调制和解调、信道编码和解码、信号的传输和接收等。

Zigbee协议栈还支持一种叫做ZDO(Zigbee Device Object)的设备对象。

ZDO是一个与设备相关的软件模块,提供了设备的管理和控制功能。

ZDO负责设备的发现、加入网络、离开网络、重置等操作,并通过指定的应用程序接口来与设备进行通信。

总的来说,Zigbee协议栈是一个非常复杂的系统,包含了多个层次和各种功能。

它通过不同的层次和模块来实现Zigbee协议的各种特性和功能,从而使得物联网设备之间可以方便地进行通信和控制。

3.ZigBee协议栈[共2页]

3.ZigBee协议栈[共2页]

通信网技术基础172 用,如灯的开关、被动式红外线传感器等。

根据设备的功能,ZigBee 网络定义了三种设备:协调器、路由器和终端设备。

协调器和路由器必须是FFD 设备,终端设备可以是FFD 或RFD 设备。

每个ZigBee 网络都必须有且仅有一个协调器,也称为PAN 协调器。

当一个全功能设备启动时,首先通过能量检测等方法确定有无网络存在,有则作为子设备加入,无则自己作为协调器,负责建立并启动网络,包括广播信标帧以提供同步信息、选择合适的射频信道、选择唯一的网络标识符等一系列操作。

路由器在节点设备之间提供中继功能,负责邻居发现、搜寻网络路径、维护路由、存储转发数据,以便在任意两个设备之间建立端到端的传输。

路由器扩展了ZigBee 网络的范围。

终端设备就是网络中的任务执行节点,负责采集、发送和接收数据,在不进行数据收发时进入休眠状态以节省能量。

协调器和路由器也可以负责数据的采集。

ZigBee 网络有信标和非信标两种工作模式。

在信标工作模式下,网络中所有设备都同步工作、同步休眠,以减小能耗。

网络协调器负责以一定的时间间隔广播信标帧,两个信标帧之间有16个时隙,这些时隙分为休眠区和活动区两个部分,数据只能在网络活动区的各时隙内发送。

在非信标模式下,只有终端设备进行周期性休眠,协调器和路由器一直处于工作状态。

ZigBee 网络的拓扑结构有星型、网状和簇树三种,如图6-11所示。

在实际环境中,拓扑结构取决于节点设备的类型和地理环境位置,由协调器负责网络拓扑的形成和变化。

星型拓扑网状拓扑簇树拓扑PAN 协调器全功能设备精简功能设备图6-11 ZigBee 网络的拓扑结构星型拓扑组网简单、成本低、电池使用寿命长,但是网络覆盖范围有限,可靠性不如网状拓扑结构,对充当中心节点的PAN 协调器依赖性较大。

网状拓扑中的每个全功能节点都具有路由功能,彼此可以通信,网络可靠性高、覆盖范围大,但是电池使用寿命短、管理复杂。

zigbee技术文档0 zigbee协议栈基础概念简介

zigbee技术文档0  zigbee协议栈基础概念简介

一、ZigBee之基本概念物联网的定义是:通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物体与互联网相连接,进行信息交换和通信,以实现对物体的智能化识别、定位、跟踪、监控和管理的一种网络。

无线传感网络的定义是:大规模,无线、自组织、多跳、无分区、无基础设施支持的网络.其中的节点是同构的、成本较低、体积较小,大部分节点不移动,被随意撒布在工作区域,要求网络系统有尽可能长的工作时间。

在通信方式上,虽然可以采用有线、无线、红外和光等多种形式,但一般认为短距离的无线低功率通信技术最适合传感器网络使用,为明确起见,一般称无线传感器网络(WSN.Wireless Sensor Network)。

无线传感网络的无线通信技术可以采用ZigBee技术、蓝牙、Wi-Fi和红外等技术。

ZigBee技术是一种短距离、低复杂度、低功耗、低数据速率、低成本的双向无线通信技术或无线网络技术,是一组基于IEEE802.15.4无线标准研制开发的组网、安全和应用软件方面的通信技术。

Zigbee是IEEE 802.15.4协议的代名词。

根据这个协议规定的技术是一种短距离、低功耗的无线通信技术。

这一名称来源于蜜蜂的八字舞,由于蜜蜂(bee)是靠飞翔和“嗡嗡”(zig)地抖动翅膀的“舞蹈”来与同伴传递花粉所在方位信息,也就是说蜜蜂依靠这样的方式构成了群体中的通信网络。

其特点是近距离、低复杂度、自组织、低功耗、低数据速率、低成本。

主要适合用于自动控制和远程控制领域,可以嵌入各种设备。

简而言之,ZigBee就是一种便宜的,低功耗的近距离无线组网通讯技术。

IEEE 802.15.4是一个低速率无线个人局域网(Low Rate Wireless PersonalArea Networks,LR-WPAN)标准。

该标准定义了物理层(PHY)和介质访问控制层(MAC)。

这种低速率无线个人局域网的网络结构简单、成本低廉、具有有限的功率和灵活的吞吐量。

Zigbee协议栈原理基础

Zigbee协议栈原理基础

Zigbee协议栈原理基础1Zigbee协议栈相关概念1.1近距离通信技术比较:近距离无线通信技术有wifi、蓝牙、红外、zigbee,在无线传感网络中需求的网络通信恰是近距离需求的,故,四者均可用做无线传感网络的通信技术。

而,其中(1)红外(infrared):能够包含的信息过少;频率低波衍射性不好只能视距通信;要求位置固定;点对点传输无法组网。

(2)蓝牙(bluetooth):可移动,手机支持;通信距离10m;芯片价格贵;高功耗(3)wifi:高带宽;覆盖半径100m;高功耗;不能自组网;(4)zigbee:价格便宜;低功耗;自组网规模大。

▫▫▫▫⇨WSN中zigbee通信技术是最佳方案,但它连接公网需要有专门的网关转换→进一步学习stm32。

1.2协议栈协议栈是网络中各层协议的总和,其形象的反映了一个网络中文件传输的过程:由上层协议到底层协议,再由底层协议到上层协议。

1.2.1Zigbee协议规范与zigbee协议栈Zigbee各层协议中物理层(phy)、介质控制层(mac)规范由IEEE802.15.4规定,网络层(NWK)、应用层(apl)规范由zigbee联盟推出。

Zigbee联盟推出的整套zigbee规范:2005年第一版ZigBeeSpecificationV1.0,zigbee2006,zigbee2007、zigbeeprozigbee协议栈:很多公司都有自主研发的协议栈,如TI公司的:RemoTI,Z-Stack,SimpliciTI、freakz、msstatePAN 等。

1.2.2z-stack协议栈与zigbee协议栈z-stack协议栈与zigbee协议栈的关系:z-stack是zigbee协议栈的一种具体实现,或者说是TI公司读懂了zigbee协议栈,自己用C语言编写了一个软件—---z-stack,是由全球几千名工程师共同开发的。

ZStack-CC2530-2.3.1-1.4.0软件可与TI的SmartRF05平台协同工作,该平台包括MSP430超低功耗微控制器(MCU)、CC2520RF收发器以及CC2591距离扩展器,通信连接距离可达数公里。

ZigBee协议栈学习总结

ZigBee协议栈学习总结

ZigBee协议栈学习总结近年来,物联网技术发展迅猛,智能家居、智能工厂等应用逐渐普及。

而ZigBee协议作为一种广泛应用于物联网中的低功耗、近距离、网状网络通信协议,受到了广泛的关注和应用。

在ZigBee技术中,协议栈是关键的一环。

本文将对ZigBee协议栈的相关知识进行总结。

一、ZigBee协议栈概述ZigBee协议栈是指在物联网中实现ZigBee通信的软件系统,它包含了多个层级,每个层级负责不同的功能。

ZigBee协议栈分为应用层、网络层、MAC层和物理层,通过这些层级的协同工作,实现了ZigBee设备之间的通信。

1.1 应用层在ZigBee协议栈中,应用层是最上层的一层,负责定义应用数据的传输方式和应用协议。

应用层通过上层应用与下层协议栈进行交互,将上层应用数据封装为ZigBee命令帧发送给网络层。

1.2 网络层网络层是ZigBee协议栈的中间层,负责实现设备的网络发现、路由选择和网络管理等功能。

网络层通过维护网络拓扑结构,实现了ZigBee设备之间的互联互通。

1.3 MAC层MAC层即介质访问控制层,是介于网络层和物理层之间的一层。

MAC层负责管理无线通信信道,实现了数据的可靠传输和统计信息的收集。

1.4 物理层物理层是ZigBee协议栈的最底层,负责处理物理信号的传输和接收。

物理层根据不同的频段和传输速率,将数字信号转换为模拟信号进行无线传输。

二、ZigBee协议栈的工作原理ZigBee协议栈的各层级通过相互协作,实现了物联网设备之间的通信。

协议栈从应用层开始,将上层应用数据经过各层的处理和封装,最终通过物理层进行无线传输。

在接收端,协议栈将接收到的信号依次经过物理层、MAC层、网络层和应用层的解析,最终将数据传递给上层应用进行处理。

三、ZigBee协议栈的特点和优势ZigBee协议栈相较于其他通信协议具有以下特点和优势:3.1 低功耗ZigBee协议栈采用低功耗设计,设备在待机状态下功耗非常低,能够延长设备的使用寿命。

zigbee 原理

zigbee 原理

zigbee 原理
Zigbee是一种无线通信协议,专门用于低功耗、短距离通信。

它基于IEEE 802.15.4标准,并且通过射频通信进行数据传输。

Zigbee的原理如下:
1. 网络拓扑:Zigbee网络由一个或多个设备组成,这些设备可以是传感器、控制器、终端设备等。

这些设备按照不同的拓扑结构组成网络,常见的拓扑结构包括星型、网状和树状结构。

2. 节点角色:在Zigbee网络中,不同的设备扮演不同的角色。

其中,协调器(Coordinator)是网络的核心,负责管理网络节
点和协调通信。

路由器(Router)用于转发数据,扩展网络范围。

终端设备(End Device)通常是最简单的设备,用于与其
他设备进行通信。

3. 数据通信:Zigbee使用无线射频通信方式,在2.4GHz频段
进行数据传输。

通信过程中,设备通过发送和接收数据帧进行交互。

数据帧中包含了一些必要的信息,如发送者、接收者、数据内容等。

4. 网络组建:Zigbee网络的组建过程通常包括扫描、加入和路由等步骤。

设备首先进行扫描,查找网络中可用的节点。

然后,设备可以加入到网络中,成为网络的一部分。

路由器设备可以通过建立多个路径,实现节点之间的数据传输。

5. 低功耗设计:Zigbee在设计上非常注重低功耗,以满足无线传感器网络的需求。

设备可以进入睡眠模式以节省能源,并且
可以通过唤醒信号来重新激活。

总的来说,Zigbee的原理是基于低功耗、短距离的无线通信,通过网络拓扑、节点角色、数据通信和低功耗设计等要素,实现设备之间的数据传输和协作。

ZigBee协议栈原理简介

ZigBee协议栈原理简介

第1章ZigBee协议栈原理2007 年4 月,德州仪器推出业界领先的ZigBee 协议栈(Z-Stack)。

Z-Stack 符合ZigBee2006 规范,支持多种平台,包括基于CC2420 收发器以及TI MSP430 超低功耗单片机的平台、CC2530 SOC 平台等。

Z-Stack 包含了网状网络拓扑的几近于全功能的协议栈,在竞争激烈的ZigBee 领域占有很重要地位。

4.1 Zigbee设备类型在 ZigBee 网络中存在三种逻辑设备类型:Coordinator(协调器),Router(路由器)和End-Device(终端设备)。

ZigBee 网络由一个Coordinator 以及多个Router 和多个End_Device组成。

下图是一个简单的ZigBee 网络示意图。

其中黑色节点为Coordinator,红色节点为Router,白色节点为End-Device。

1、Coordinator(协调器)协调器负责启动整个网络。

它也是网络的第一个设备。

协调器选择一个信道和一个网络ID(也称之为PAN ID,即Personal Area Network ID),随后启动整个网络。

协调器也可以用来协助建立网络中安全层和应用层的绑定(bindings)。

注意,协调器的角色主要涉及网络的启动和配置。

一旦这些都完成后,协调器的工作就像一个路由器。

2、Router(路由器)路由器的功能主要是:允许其他设备加入网络,多跳路由和协助它自己的由电池供电的子终端设备的通讯。

通常,路由器希望是一直处于活动状态,因此它必须使用主电源供电。

但是当使用树型网络模式时,允许路由间隔一定的周期操作一次,这样就可以使用电池给其供电。

3、End-Device(终端设备)终端设备没有特定的维持网络结构的责任,它可以睡眠或者唤醒,因此它可以是一个电池供电设备。

通常,终端设备对存储空间(特别是RAM)的需要比较小。

注意:在Z-Stack 1.4.1 中一个设备的类型通常在编译的时候通过编译选项(ZDO_COORDINATOR 和RTR_NWK)确定。

zigbee协议栈

zigbee协议栈

zigbee协议栈
ZigBee协议栈是一种低功耗、近距离、无线通信协议,
它以IEEE 802.15.4标准为基础,支持点对点和星形拓扑网络。

ZigBee协议栈分为物理层、MAC层、网络层和应用层。

物理层:ZigBee的物理层工作于2.4GHz带宽,提供了
16个信道,可以在不同频段工作。

此外,它还支持双向数据
传输、自适应,能够自动优化网络性能。

物理层与MAC层之间的接口在帧结构中定义。

MAC层:ZigBee MAC层是机制,它负责管理网络的访问
控制、组织网络拓扑结构等。

在ZigBee中,通信是按照设备
类型进行的,有一些设备被指定为“协调器”,这些设备负责管理网络中的资源,调度传输时间等。

网络层:ZigBee网络层的主要职责是管理设备之间的通信,为应用层提供稳定的通信基础。

它提供了一组缺省的网络协议,可以在多种不同环境下使用。

应用层:ZigBee应用层是通过使用设备描述文件来定义
应用层协议和服务的标准集合。

通过设备描述文件(或“簇”),应用程序可以访问底层硬件和网络服务。

总之,ZigBee协议栈是一种广泛应用于安防、能源管理、自动化等领域的低功耗、近距离、无线通信协议,能够支持多种应用需求,有着良好的安全性和稳定性。

ZIGBEE技术及协议

ZIGBEE技术及协议

ZIGBEE技术及协议ZigBee技术及协议是一种基于无线通信的网络协议,它为低功耗设备之间的通信提供了一种简单、低成本的解决方案。

ZigBee技术及协议在物联网、智能家居、工业自动化等领域得到了广泛应用。

本文将详细介绍ZigBee技术及协议的基本原理、特点及应用。

一、ZigBee技术及协议基本原理ZigBee技术及协议基于IEEE 802.15.4标准,它是一种短距离、低功耗的无线通信技术,操作频率在2.4GHz、868MHz及915MHz三个频段。

ZigBee技术采用了自组织、自动路由、分布式网络的概念,可以实现大规模的无线传感网络,支持千万级的节点数量。

ZigBee协议是一种基于星型或网状拓扑结构的网络协议,它通过对数据包的传输进行优化,实现了低功耗和低延时的通信效果。

ZigBee设备通常由协调器(Coordinator)、路由器(Router)和终端节点(End Device)组成,协调器负责网络的管理和控制,路由器负责数据包的转发,终端节点负责数据的采集和传输。

二、ZigBee技术及协议的特点1.低功耗:ZigBee设备采用了睡眠和唤醒的方式来降低功耗,终端节点可以通过休眠来降低功耗,并且可以根据需要定期唤醒进行通信。

2.低速率:ZigBee技术的传输速率相对较低,通常在250Kbps以下。

这使得ZigBee技术非常适合传输小量数据和低频率的通信。

3.低成本:ZigBee设备采用了低成本的硬件和软件设计,可以降低设备的制造成本,提高设备的可扩展性。

4.安全性:ZigBee协议支持AES 128位加密算法,保护网络通信的安全性,防止数据被非法访问和篡改。

5.自组织性:ZigBee设备可以自动组建网络,无需人工干预,可以方便地扩展网络规模。

三、ZigBee技术及协议的应用1.物联网:ZigBee技术及协议在物联网领域被广泛应用,可以实现智能家居、智能能源管理、智能健康监测等功能。

通过ZigBee技术,各种传感器和控制设备可以实现互联互通,实现信息的采集和传输。

zigbee协议栈

zigbee协议栈

zigbee协议栈Zigbee协议栈是一种基于IEEE 802.15.4无线技术的低功耗通信协议,用于构建无线传感器网络和物联网设备。

它由几个层次的协议组成,包括物理层、MAC层、网络层和应用层。

物理层是Zigbee协议栈的最底层,负责无线信号传输和接收。

它定义了无线模块和设备的硬件要求,包括频率、调制方式、传输速率等。

在物理层之上是MAC层,负责网络节点之间的数据传输和管理。

它提供了一系列函数,用于数据包的发送和接收,以及网络节点的寻址和路由。

网络层位于MAC层之上,负责整个网络的拓扑结构和数据路由。

每个节点都有一个唯一的网络地址,用于标识和寻址。

网络层使用路由算法决定最佳的数据传输路径,以确保数据的可靠传输。

最上层是应用层,这是开发人员编写应用程序的层次。

它提供了一系列应用程序程序接口(API),用于数据的发送和接收。

开发人员可以利用这些API实现各种应用程序,如传感器数据采集、远程控制等。

Zigbee协议栈具有以下几个特点。

第一,低功耗。

由于无线传感器网络和物联网设备通常是由电池供电,因此低功耗是一个非常重要的设计考虑。

Zigbee协议栈通过最小化数据传输以及使用睡眠和唤醒机制来实现低功耗。

第二,短距离通信。

Zigbee协议栈的设计目标是用于部署在短距离范围内的网络,通常不超过100米。

这使得它非常适用于家庭自动化、智能电网等场景。

第三,高可靠性。

Zigbee协议栈支持多路径数据传输,以确保数据能够在网络中快速可靠地传输。

此外,它还支持自动路由和包重传机制,以应对网络中节点的故障或丢失。

第四,安全性。

Zigbee协议栈支持数据加密和身份验证功能,确保数据在传输过程中的保密性和完整性。

这对于保护物联网设备和网络免受黑客攻击非常重要。

总的来说,Zigbee协议栈是一种可靠、低功耗、安全的通信协议,适用于构建无线传感器网络和物联网设备。

它的设计目标是满足家庭自动化、智能电网等应用场景中的通信需求。

见过的最浅显易懂的ZigBee协议栈解析

见过的最浅显易懂的ZigBee协议栈解析

见过的最浅显易懂的ZigBee协议栈解析ZigBee技术是物联网领域最常用的无线技术之一,如果我们要做基于ZigBee技术的物联网应用,最好对ZigBee协议栈有一个基本的了解。

这篇文章对ZigBee协议栈做一个简单明了的介绍。

概述本文准备介绍的ZigBee协议栈是ZigBee2007,也是目前业界最常用的标准版本,对于ZigBee协议栈的演进历程,可以参加《5分钟了解Zigbee的前世今生》。

ZigBee协议栈可以分为四层:物理层(PHY)、媒体访问控制层(MAC)、网络层(NWK)及应用层(APL)。

如图所示,粉色的部分是由IEEE标准中定义的,浅蓝色部分是由ZigBee联盟规定的,黄色部分是由设备厂商自行定义。

ZigBee协议栈图示在ZigBee协议栈的图示中,我们还可以发现有很多圆角矩形,都带有SAP的字样。

SAP的意思就是服务接入点(Service Access Point)的意思,是协议栈层与层之间的接口,协议栈都是分层结构的,接口就是层与层之间的沟通渠道。

协议栈相邻的上下层之间一般都有两个接口,也就是两个SAP。

名字中带字母D的SAP是数据接口,负责层间数据传输;名字中带字母M的SAP是管理接口,供上层或协议栈的管理平面对该层进行控制,比如进行一些参数配置,或读取状态等。

PHY & MAC & NWKZigBee2007协议栈的物理层及MAC层都是IEEE802.5.14-2003标准中定义的。

PHY层(物理层)规定了所使用的频段,以及所使用的编码、调制、扩频、调频等无线传输技术;有了物理层,就有了一个实现点到点之间的信号发射与接收的基础,没有物理层协议,设备间是根本没有办法通信的,有可能都不在一个频段上。

MAC层的主要作用规定了无线信道的访问控制机制,也就是规定各个设备按照什么规矩轮流使用信道;如果没有MAC层协议,节点一多,大家没有个规矩,就会发生信号冲突,谁都没法正常传输数据了。

ZigBee协议栈的分析与设计

ZigBee协议栈的分析与设计

ZigBee协议栈的分析与设计ZigBee协议栈的分析与设计引言随着物联网的不断发展,无线传感器网络(WSN)得到了广泛的应用。

ZigBee作为一种低功耗、短距离、低带宽的无线通信协议,逐渐成为物联网中最受欢迎的通信协议之一。

本文将对ZigBee协议栈进行深入的分析与设计,以期更好地理解其工作原理并提供一种优化方案。

一、ZigBee协议栈的结构与功能1. ZigBee协议栈结构ZigBee协议栈由两部分组成:上层和下层。

上层包括应用层(Application Layer)、网络层(Network Layer)和安全层(Security Layer)。

下层包括物理层(Physical Layer)和介质访问控制层(Media Access Control Layer)。

2. ZigBee协议栈功能- 物理层(Physical Layer):负责将数据转换为无线信号,通过无线传输介质进行通信。

ZigBee协议栈支持多种物理层标准,例如2.4GHz、900MHz和868MHz等。

- 介质访问控制层(Media Access Control Layer):负责数据帧的分发和接收,同时处理多跳中继和协议转发。

- 网络层(Network Layer):提供网络拓扑管理、路由选择、数据包传输和安全性等功能。

ZigBee协议栈使用了Ad-hoc On-Demand Distance Vector(AODV)路由协议来实现自组网和动态路由选择。

- 应用层(Application Layer):定义应用程序的协议和接口,包括设备发现、网络配置、设备控制等功能。

- 安全层(Security Layer):提供数据加密和认证等安全机制,确保通信的可靠性和机密性。

二、ZigBee协议栈的分析1. 物理层分析ZigBee协议栈采用低功耗、短距离的射频通信技术。

2.4GHz频段是其最常用的无线传输介质,具有广泛的应用领域。

ZigBee协议栈使用了Direct Sequence Spread Spectrum (DSSS)技术来提高抗干扰性能。

ZigBee基础知识讲解

ZigBee基础知识讲解

MSG命令帧格式如图1-2-3所示:
1.2.3ZigBee设备配置层 ZigBee设备配置层提供标准的ZigBee配置服务,它定义和处理描述符请求。在 ZigBee设备配置层中定义了称为ZigBee设备对象(ZigBee device object,ZDO)的 特殊软件对象,它在其他服务中提供绑定服务。远程设备可以通过ZigBee设备 对象(ZDO)接口请求任何标准的描述符信息。当接受到这些请求时,ZDO会 调用配置对象以获取相应的描述符值。子目前的ZigBee协议栈版本中,还没有 完全实现设备配置层。ZDO是特殊的应用对象,它在端点(end-point)0上实 现。 1.2.4用户程序 运行在ZigBee协议栈上的应用程序实际上就是厂商自定义的应用对象。这些应用 程序使用ZigBee联盟给出的并且批准的规范(profile)进行开发并且运行在端 点1-240上。
图1-3-1各层帧结构的构成
1-4ZigBee网络配置 ZigBee设备类型分为三类:网络协调器、网络路由器和网络终端设备。其中网 络协调者主要负责网络的建立,以及网络的相关配置;路由器主要负责找寻、建 立、以及修复网络报文的路由信息,并负责转发网络报文;网络终端具有加入、 退出网络得功能,并可以接收和发送网络报文,但终端设备不允许路由转发报文。 同常协调者和路由器节点一般由FFD功能设备构成,终端设备由RFD设备构成。 ZigBee网络根据应用的要求可以组织成星形网络、网状网络和簇状网络三种拓 扑结构。如图1-4-1所示。在星形结构中,所有的设备都与中心设备—PAN网络协 调者通信,实际上在这种简单的网络结构中路由器是没有路由作用的。在这种网 络结构中,网络协调者一般使用电力系统供电,而其他设备采用电池供电。星形 网络适合家庭自动化、个人计算机外设以及个人健康护理等小范围的室内应用; 与星形网络不同,网状网络(mesh)只要彼此在对方的无限辐射范围内,任何两 个FFD设备之间都能直接通信,在Mesh中每一个FFD设备之间都可以认为是路由器, 都可以实现对网络报文的路由转发功能,Mesh在构建时比较复杂,节点所要维护 的信息较多;对于簇状网路实际上可以看做是一个复杂的星形网络,一个扩展的 星型拓扑或是有多个简单的星形网络组成的拓扑结构,在簇状网络中,网络协调 者、路由器还和终端设备的功能清晰,相对于Mesh,构建簇状网络比较简单,所 需的资源相对较少,并且可以实现网络的路由转发功能,从而也扩大了网络的通 信范围。

Zigbee协议的基础知识

Zigbee协议的基础知识

Zigbee协议的基础知识一、ZigBee堆栈层ZigBee堆栈是在IEEE 802.15.4标准基础上建立的,定义了协议的MAC和PHY层。

ZigBee设备应该包括IEEE802.15.4(该标准定义了RF射频以及与相邻设备之间的通信)的PHY和MAC层,以及ZigBee堆栈层:网络层(NWK)、应用层和安全服务提供层。

图1-1给出了这些组件的概况。

图:Zigbee堆栈框架每个ZigBee设备都与一个特定模板有关,可能是公共模板或私有模板。

这些模板定义了设备的应用环境、设备类型以及用于设备间通信的簇。

公共模板可以确保不同供应商的设备在相同应用领域中的互操作性。

设备是由模板定义的,并以应用对象(Application Objects)的形式实现(见图1-1)。

每个应用对象通过一个端点连接到ZigBee堆栈的余下部分,它们都是器件中可寻址的组件从应用角度看,通信的本质就是端点到端点的连接,例如,一个带开关组件的设备与带一个或多个灯组件的远端设备进行通信,目的是将这些灯点亮。

端点之间的通信是通过称之为簇的数据结构实现的。

这些簇是应用对象之间共享信息所需的全部属性的容器,在特殊应用中使用的簇在模板中有定义。

图1-1-2就是设备及其接口的一个例子:每个接口都能接收(用于输入)或发送(用于输出)簇格式的数据。

一共有二个特殊的端点,即端点0和端点255。

端点0用于整个ZigBee 设备的配置和管理。

应用程序可以通过端点0与ZigBee堆栈的其它层通信,从而实现对这些层的初始化和配置。

附属在端点0的对象被称为ZigBee设备对象(ZD0);端点255用于向所有端点的广播;端点241到254是保留端点。

所有端点都使用应用支持子层(APS)提供的服务。

APS通过网络层和安全服务提供层与端点相接,并为数据传送、安全和绑定提供服务,因此能够适配不同但兼容的设备,比如带灯的开关。

APS使用网络层(NWK)提供的服务。

NWK负责设备到设备的通信,并负责网络中设备初始化所包含的活动、消息路由和网络发现。

zigbee学习之路(十二):zigbee协议原理介绍

zigbee学习之路(十二):zigbee协议原理介绍

zigbee学习之路(⼗⼆):zigbee协议原理介绍⼀.前⾔从今天开始,我们要正式开始进⾏zigbee相关的通信实验了,我所使⽤的协议栈是ZStack 是TI ZStack-CC2530-2.3.0-1.4.0版本,⼤家也可以从TI的官⽹上直接下载TI公司为cc2530写的协议栈代码,毕竟,我们作为初学者,应该先不要去深究协议栈是怎么⽤代码编写的,毕竟zigbee已经相当成熟了,我们应该先学会使⽤zigbee协议栈进⾏通信,并能应⽤于实际项⽬中,⽐如说智能家具,不知道⼤家是不是有同感,所以下⾯我就先给⼤家介绍⼀下zigbee通信的原理以及体系架构。

⼆.ZStack 体系架构ZStack 的体系结构由称为层的各模块组成。

每⼀层为其上层提供特定的服务:即由数据服务实体提供数据传输服务;管理实体提供所有的其他管理服务。

每个服务实体通过相应的服务接⼊点(SAP) 为其上层提供⼀个接⼝,每个服务接⼊点通过服务原语来完成所对应的功能。

ZStack 根据IEEE 802.15.4 和ZigBee 标准分为物理层,介质接⼊控制层,⽹络层,应⽤层。

物理层提供了基础的服务,数据传输和接收,⽹络层提供了各个节点连⼊的服务,是zigbee⽹络通信的关键,应⽤层是我们关注的重点,提供了应⽤的框架和ZDO。

⼤家如果想了解体系结构的具体内容,可以⾃⼰去看说明⽂档,下⾯我给⼤家介绍⼀下zigbee⼯作原理。

ZStack 采⽤操作系统的思想来构建,采⽤事件轮循机制,⽽且有⼀个专门的Timer2 来负责定时。

从CC2530 ⼯作开始,Timer2 周⽽复始地计时,有采集、发送、接收、显⽰…等任务要执⾏时就执⾏。

当各层初始化之后,系统进⼊低功耗模式,当事件发⽣时,唤醒系统,开始进⼊中断处理事件,结束后继续进⼊低功耗模式。

如果同时有⼏个事件发⽣,判断优先级,逐次处理事件。

这种软件构架可以极⼤地降级系统的功耗。

整个ZStack 的主要⼯作流程,如图所⽰,⼤致分为以下6 步:(1) 关闭所有中断;(2) 芯⽚外部(板载外设)初始化;(3) 芯⽚内部初始化;(4) 初始化操作系统;(5) 打开所有中断;(6) 执⾏操作系统。

6-Zigbee协议栈

6-Zigbee协议栈

ZigBee/IEEE802.15.4规格架构
IEEE 802.15.4无线个人局域网络的架构
• 一般在IEEE 802.15.4网络拓朴上,功能方面又可区分为两 种型态
– 全功能装置(Full-Function Device;FFD) • FFD之节点具备控制器之功能提供资料交换
– 精简型装置(Reduced-Function Device;RFD) • RFD则是只能单纯地传送资料给予FFD或是从FFD接 受简单资料。RFD多用在简单的电灯开关或是感测节 点的侦测上。
– Include目录下主要包含各个硬件模块的头文 件,
– Target 目录下的文件是跟硬件平台相关的。
• (3)MAC
– 包含MAC层的参数配置文件及其MAC的 LIB库的函数接口文件
TI Z-Stack软件架构
• (4)MT:监控调试层目录
– 该目录下的文件主要用于调试目的,及实现通 过串口调试各层,与各层进行直接交互。
• 将数百个sensor布署于森林中,以对任何火灾地点的判定提供最快的讯 息。
• sensor network能提供遭受化学污染的位置及检定出何种化学污染,不 需要人亲自冒险进入受污染区。
• 水灾判定。 • 监测空气污染、水污染及土壤污染。 • 生态上的监控,例如生物栖息地与觅食习惯。
TI Z-Stack简介
TI Z-Stack软件架构
• Z-Stack的main函数在ZMain.c中,总体上来 说,它一共做了两件工作,一个是系统初 始化,即由启动代码来初始化硬件系统和 软件构架需要的各个模块,另外一个就是 开始执行操作系统实体 。
TI Z-Stack软件架构
• 在项目中组织Z-Stack文件

ZigBee基础知识讲解

ZigBee基础知识讲解

ZigBee基础知识讲解目录一、ZigBee技术概述 (2)二、ZigBee网络结构 (3)2.1 网络拓扑结构 (4)2.2 设备角色 (5)2.3 基本网络模式 (6)三、ZigBee协议栈 (7)3.1 物理层 (8)3.2 链路层 (10)3.3 网络层 (11)3.4 应用层 (12)四、ZigBee设备类型 (13)4.1 网络协调器 (14)4.2 节点设备 (15)4.3 外部设备 (17)五、ZigBee通信机制 (18)5.1 数据传输方式 (19)5.2 通信协议 (21)5.3 数据传输速率与容量 (22)六、ZigBee安全机制 (23)6.1 认证机制 (25)6.2 隐私保护 (26)6.3 安全服务与应用 (27)七、ZigBee设备配置与调试 (29)7.1 设备初始化 (30)7.2 网络参数设置 (32)7.3 设备状态监控与维护 (33)八、ZigBee应用案例分析 (35)8.1 智能家居系统 (36)8.2 工业自动化控制系统 (38)8.3 智能交通系统 (39)8.4 公共安全监测系统 (41)九、ZigBee发展趋势与挑战 (42)9.1 技术发展趋势 (44)9.2 应用前景展望 (45)9.3 面临的挑战与应对策略 (47)一、ZigBee技术概述定义与特点:ZigBee是基于IEEE 标准的无线通信技术,具有低功耗、低数据速率、低成本和可靠性的特点。

ZigBee联盟通过扩展IEEE标准,增加了网络、安全和应用层的功能。

该技术主要适用于需要长时间工作且电池寿命非常关键的应用。

应用领域:ZigBee技术广泛应用于智能家居、工业自动化、智能农业、智能交通等领域。

智能家居中的照明控制、安防系统。

网络结构:ZigBee网络主要由协调器(Coordinator)、路由器(Router)和终端设备(End Device)组成。

协调器负责创建和加入网络,路由器负责路由和数据转发,终端设备则执行特定的任务。

《2024年ZigBee协议栈的分析与设计》范文

《2024年ZigBee协议栈的分析与设计》范文

《ZigBee协议栈的分析与设计》篇一一、引言随着物联网技术的快速发展,无线通信技术已成为连接各种智能设备的重要手段。

ZigBee作为一种基于IEEE 802.15.4标准的低速无线个人区域网络通信协议,以其低功耗、低成本、覆盖范围广等优势,在智能家居、工业监控、农业物联网等领域得到了广泛应用。

本文将对ZigBee协议栈进行分析与设计,探讨其工作原理、关键技术及设计要点。

二、ZigBee协议栈概述ZigBee协议栈是一种为基于IEEE 802.15.4标准的无线个人区域网络(WPAN)设计的协议栈。

它包括物理层(PHY)、媒体访问控制层(MAC)和Z-Stack协议栈三个主要部分。

物理层定义了无线信号的传输方式和特性;媒体访问控制层负责设备的接入与数据传输;Z-Stack协议栈则是为了实现不同设备间的互操作性而设计的一系列服务和应用支持层。

三、ZigBee协议栈分析1. 物理层分析物理层是ZigBee协议栈的基础,它定义了无线信号的传输方式和特性。

物理层包括射频收发器、天线和相关的控制电路等。

在分析物理层时,需要关注其传输速率、传输距离、抗干扰能力等性能指标。

2. MAC层分析MAC层负责设备的接入与数据传输,它通过CSMA-CA(带冲突避免的载波监听多路访问)机制实现信道的访问控制。

在分析MAC层时,需要关注其信道接入的公平性、数据传输的可靠性以及能耗控制等方面。

3. Z-Stack协议栈分析Z-Stack协议栈包括应用支持层(APS)、ZigBee设备对象(ZDO)、以及各种应用框架等。

在分析Z-Stack协议栈时,需要关注其服务发现、绑定、群组通信等机制的实现,以及如何实现不同设备间的互操作性。

四、ZigBee协议栈设计1. 设计目标在设计ZigBee协议栈时,需要明确设计目标,如低功耗、低成本、高可靠性等。

根据实际需求,选择合适的物理层和MAC 层技术,以及适合的应用场景的Z-Stack协议栈版本。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1Zigbee协议栈相关概念1.1近距离通信技术比较:近距离无线通信技术有wifi、蓝牙、红外、zigbee,在无线传感网络中需求的网络通信恰是近距离需求的,故,四者均可用做无线传感网络的通信技术。

而,其中(1)红外(infrared):能够包含的信息过少;频率低波衍射性不好只能视距通信;要求位置固定;点对点传输无法组网。

(2)蓝牙(bluetooth):可移动,手机支持;通信距离10m;芯片价格贵;高功耗(3)wifi:高带宽;覆盖半径100m;高功耗;不能自组网;(4)zigbee:价格便宜;低功耗;自组网规模大。

▫▫▫▫⇨WSN中zigbee通信技术是最佳方案,但它连接公网需要有专门的网关转换→进一步学习stm32。

1.2协议栈协议栈是网络中各层协议的总和,其形象的反映了一个网络中文件传输的过程:由上层协议到底层协议,再由底层协议到上层协议。

1.2.1Zigbee协议规范与zigbee协议栈Zigbee各层协议中物理层(phy)、介质控制层(mac)规范由IEEE802.15.4规定,网络层(NWK)、应用层(apl)规范由zigbee联盟推出。

Zigbee联盟推出的整套zigbee规范:2005年第一版ZigBeeSpecificationV1.0,zigbee2006,zigbee2007、zigbeeprozigbee协议栈:很多公司都有自主研发的协议栈,如TI公司的:RemoTI,Z-Stack,SimpliciTI、freakz、msstatePAN 等。

1.2.2z-stack协议栈与zigbee协议栈z-stack协议栈与zigbee协议栈的关系:z-stack是zigbee协议栈的一种具体实现,或者说是TI公司读懂了zigbee 协议栈,自己用C语言编写了一个软件—---z-stack,是由全球几千名工程师共同开发的。

ZStack-CC2530-2.3.1-1.4.0软件可与TI的SmartRF05平台协同工作,该平台包括MSP430超低功耗微控制器(MCU)、CC2520RF收发器以及CC2591距离扩展器,通信连接距离可达数公里。

Z-Stack中的很多关键的代码是以库文件的形式给出来,也就是我们只能用它们,而看不到它们的具体的实现。

其中核心部分的代码都是编译好的,以库文件的形式给出的,比如安全模块,路由模块,和Mesh自组网模块。

与z-stack 相比msstatePAN、freakz协议栈都是全部真正的开源的,它们的所有源代码我们都可以看到。

但是由于它们没有大的商业公司的支持,开发升级方面,性能方面和z-stack相比差距很大,并没有实现商业应用,只是作为学术研究而已。

还可以配备TI的一个标准兼容或专有的网络协议栈(RemoTI,Z-Stack,或SimpliciTI)来简化开发,当网络节点要求不多在30个以内,通信距离500m-1000m时用simpliciti。

1.2.3IEEE802.15.4标准概述IEEE802.15.4是一个低速率无线个人局域网(LowRateWirelessPersonalAreaNetworks,LR-WPAN)标准。

定义了物理层(PHY)和介质访问控制层(MAC)。

LR-WPAN网络具有如下特点:◆实现250kb/s,40kb/s,20kb/s三种传输速率。

◆支持星型或者点对点两种网络拓扑结构。

◆具有16位短地址或者64位扩展地址。

◆支持冲突避免载波多路侦听技术(carriersensemultipleaccesswithcollisionavoidance,CSMA/CA)。

(mac层)◆用于可靠传输的全应答协议。

(RTS-CTS)◆低功耗。

◆能量检测(EnergyDetection,ED)。

◆链路质量指示(LinkQualityIndication,LQI)。

◆在2.45GHz频带内定义了16个通道;在915MHz频带内定义了10个通道;在868MHz频带内定义了1个通道。

为了使供应商能够提供最低可能功耗的设备,IEEE(InstituteofElectricalandElectronicsEngineers,电气及电子工程师学会)定义了两种不同类型的设备:一种是完整功能设备(full.functionaldevice,FFD),另一种是简化功能设备(reduced.functionaldevice,RFD)。

1.2.4ZigBee协议体系结构IEEE802.15.4定义物理层、介质访问控制层ZigBee联盟定义网络层(networklayer,NWK)、应用层(applicationlayer,APL)。

应用层内定义:应用支持子层(applicationsupportsub—layer,APS)、ZigBee设备对象(ZigBeeDeviceObject,ZDO)(端点号0)、应用框架中用户自定义应用对象(端点号1-240,可以定义0-240个应用)。

每一层为其上层提供特定的服务--数据服务实体→数据传输服务;管理实体提供→管理服务。

每个服务实体通过相应的服务接入点(SAP)为其上层提供一个接口,每个服务接入点通过服务原语来完成所对应的功能。

1.2.4.1物理层:物理层定义了物理无线信道和MAC子层之间的接口,提供物理层数据服务和物理层管理服务。

具体内容:1)ZigBee的激活;2)当前信道的能量检测;3)接收链路服务质量信息;4)ZigBee信道接入方式;5)信道频率选择;6)数据传输和接收。

1.2.4.2介质接入控制子层(MAC)MAC层负责处理所有的物理无线信道访问,并产生网络信号、同步信号;支持PAN连接和分离,提供两个对等MAC 实体之间可靠的链路。

具体功能:1)网络协调器产生信标;2)与信标同步;3)支持PAN(个域网)链路的建立和断开;4)为设备的安全性提供支持(加密解密功能);5)信道接入方式采用免冲突载波检测多址接入(CSMA-CA)机制;6)处理和维护保护时隙(GTS)机制;7)在两个对等的MAC实体之间提供一个可靠的通信链路。

1.2.4.3网络层(NWK)ZigBee协议栈的核心部分在网络层。

网络层主要实现节点加入或离开网络、接收或抛弃其他节点、路由查找及传送数据等功能。

具体功能:1)网络发现;(路由器、终端)2)网络形成;(协调器)3)允许设备连接;4)路由器初始化;5)设备同网络连接;6)直接将设备同网络连接;7)断开网络连接;8)重新复位设备;9)接收机同步;10)信息库维护。

1.2.4.4应用层(APL)应用层包括:应用支持层(APS)、ZigBee设备对象(ZDO)、制造商所定义的应用对象(AF)。

(1)APS功能:维持绑定表、在绑定的设备之间传送消息。

(2)ZDO功能:定义设备在网络中的角色(如物理实体节点被定义为协调器、路由器还是终端设备),发起和响应绑定请求,在网络设备之间建立安全机制(加解密),发现网络中的设备并且决定向他们提供何种应用服务。

ZDO使用APS层的APSDE-SAP和网络层的NLME-SAP。

ZDO是特殊的应用对象,它在端点(entire)0上实现。

远程设备通过ZDO请求描述符信息,接收到这些请求时,ZDO会调用配置对象获取相应描述符值(eg设备什么时候出厂的、需不需要电池、传输距离多少、使用什么规范)。

(3)AF(应用程序框架):用户自定义的应用对象,并且遵循规范(profile)运行在端点1~240上。

在ZigBee应用中,提供2种标准服务类型:键值对(KVP)或报文(MSG)。

2ZigBee基本概念2.1设备类型三种逻辑设备类型:协调器、路由器、终端设备。

协调器的角色主要涉及网络的启动和配置。

一旦这些都完成后,协调器的工作就像一个路由器(或者消失goaway)。

由于ZigBee网络本身的分布特性,因此接下来整个网络的操作就不在依赖协调器是否存在。

路由器一直活跃,须使用主电源供电。

但当树状拓扑结构时,允许其间隔一定的周期操作一次,可使用电池。

终端设备没有特定的维持网络结构的责任,可以睡眠或者唤醒,可用电池供电。

对存储空间(特别是RAM的需要)比较小。

2.2协议规范协议栈规范由ZigBee联盟定义指定。

在同一个网络中的设备必须符合同一个协议栈规范(同一个网络中所有设备的协议栈规范必须一致)。

ZigBee联盟为ZigBee协议栈2007定义了2个规范:ZigBee和ZigBeePRO。

所有的设备只要遵循该规范,即使在不同厂商买的不同设备同样可以形成网络。

如果应用开发者改变了规范,那么他的产品将不能与遵循ZigBee联盟定义规范的产品组成网络,也就是说该开发者开发的产品具有特殊性,我们称之为“关闭的网络”,也就是说它的设备只有在自己的产品中使用,不能与其他产品通信。

更改后的规范可以称之为“特定网络”规范。

协议栈规范的ID号可以通过查询设备发送的beacon帧获得。

在设备加入网络之前,首先需要确认协议栈规范的ID。

“特定网络”规范ID号为0;ZigBee协议栈规范的ID号为1;ZigBeePRO协议栈规范的ID号为2。

协议栈规范的ID (STACK_PRO)在nwk_globals.h中定义:#defineNETWORK_SPECIFIC0#defineHOME_CONTROLS1//zigbee首先应用于智能家居,故直接把zigbee协议栈规范定义为home_control#defineZIGBEEPRO_PROFILE2#defineGENERIC_STAR3#defineGENERIC_TREE4#ifdefined(ZIGBEEPRO)#defineSTACK_PRO#else#defineSTACK_PRO#endif2.3拓扑结构星型、树状、网状#defineNWK_MODE_STAR0#defineNWK_MODE_TREE1#defineNWK_MODE_MESH2#if(STACK_PRO)#defineNWK_MODENWK_MODE_MESH#elif(STACK_PRO)#defineNWK_MODENWK_MODE_MESH#elif(STACK_PRO)#defineNWK_MODENWK_MODE_STAR#elif(STACK_PRO)#defineNWK_MODENWK_MODE_MESH#endif一般拓扑结构定义为网状网络2.4信标与非信标模式Zigbee网络的工作模式可以分为信标(Beaeon)和非信标(Non-beaeon)两种模式。

信标:所有设备同步工作、休眠。

协调器负责以一定的间隔时间(一般在15ms-4mins之间)向网络广播信标帧,两个信标帧发送间隔之间有16个相同的时槽,这些时槽分为网络休眠区和网络活动区两个部分,消息只能在网络活动区的各时槽内发送。

相关文档
最新文档