概率统计高考题题集
高考概率大题及答案
高考概率大题及答案1.某市高中毕业生中有80%选择进入大学,20%选择就业。
已知选择就业的学生中,70%在第一年获得满意的工作,而选择进入大学的学生中,80%在第一年获得满意的工作。
现从该市高中毕业生中任选一人,问他第一年获得满意工作的概率是多少?解答:由全概率公式可知,某毕业生获得满意工作的概率可以分为两种情况:1)选择就业的情况下获得满意工作的概率:0.2 × 0.7 = 0.14 2)选择进入大学的情况下获得满意工作的概率:0.8 × 0.8 = 0.64因此,获得满意工作的总概率为:0.14 + 0.64 = 0.78所以,任选一人的第一年获得满意工作的概率为0.78。
2.一批产品某种型号有20%的不合格品。
现从中任意抽取2个进行检查,问两个都是合格品的概率是多少?解答:抽取两个产品都是合格品的概率可以通过计算来得到。
首先,第一次抽取的产品是合格品的概率为80%(不合格品的概率为20%)。
而第二次抽取的产品也是合格品的概率会受到第一次抽取的影响。
因为第一次抽取合格品后,剩下的产品中合格品的比例会减少。
假设第一次抽取合格品后,剩下的产品中有a个合格品和b个不合格品,则第二次抽取的产品也是合格品的概率为a/(a+b)。
因此,两个都是合格品的概率为:0.8 × (a/(a+b))具体数值需要根据实际情况来计算。
3.某门考试的通过率为60%,现已知通过考试的学生中,有70%是靠自己的努力而没有借助辅导班;而未通过考试的学生中,有30%是通过辅导班的帮助提高的。
现从所有参加考试的学生中任意选取一人,问他通过考试并没有借助辅导班的概率是多少?解答:通过考试并没有借助辅导班的概率可以分为两种情况:1)通过考试的学生中靠自己的努力的概率:0.6 × 0.7 = 0.42 2)通过辅导班帮助提高通过考试的概率:0.4 × 0.3 = 0.12因此,通过考试并没有借助辅导班的总概率为:0.42 + 0.12 = 0.54所以,任选一人通过考试并没有借助辅导班的概率为0.54。
2024届新高考数学大题精选30题:概率统计(精选30题)(解析版)
大题概率统计(精选30题)1(2024·浙江绍兴·二模)盒中有标记数字1,2的小球各2个.(1)若有放回地随机取出2个小球,求取出的2个小球上的数字不同的概率;(2)若不放回地依次随机取出4个小球,记相邻小球上的数字相同的对数为X(如1122,则X=2),求X的分布列及数学期望E X.【答案】(1)1 2;(2)分布列见解析,1.【分析】(1)根据组合知识求得取球的方法数,然后由概率公式计算概率;(2)确定X的所有可能取值为0,1,2,然后分别计算概率得分布列,再由期望公式计算出期望.【详解】(1)设事件A=“取出的2个小球上的数字不同”,则P A=C12C12+C12C12C14C14=12.(2)X的所有可能取值为0,1,2.①当相邻小球上的数字都不同时,如1212,有2×A22×A22种,则P X=0=2×A22×A22A44=13.②当相邻小球上的数字只有1对相同时,如1221,有2×A22×A22种,则P X=1=2×A22×A22A44=13.③当相邻小球上的数字有2对相同时,如1122,有2×A22×A22种,则P X=2=2×A22×A22A44=13.所以X的分布列为X012P 131313所以X的数学期望E X=0×13+1×13+2×13=1.2(2024·江苏扬州·模拟预测)甲、乙两人进行某棋类比赛,每局比赛时,若决出输赢则获胜方得2分,负方得0分;若平局则各得1分.已知甲在每局中获胜、平局、负的概率均为13,且各局比赛结果相互独立.(1)若比赛共进行了三局,求甲共得3分的概率;(2)规定比赛最多进行五局,若一方比另一方多得4分,则停止比赛,求比赛局数X的分布列与数学期望.【答案】(1)7 27;(2)分布列见解析,31781.【分析】(1)写出所有可能情形,利用互斥事件的概率和公式即可求出;(2)算出X为不同值时对应的概率并填写分布列,之后求出数学期望即可.【详解】(1)设“三局比赛后,甲得3分”为事件A,甲得3分包含以下情形:三局均为平局,三局中甲一胜一平一负,所以P A=133+A3313 3=727,故三局比赛甲得3分的概率为7 27 .(2)依题意知X的可能取值为2,3,4,5,P X=2=2×132=29,P X=3=2×C12133=427,P X=4=2×C12134+C1313 4=1081,P X=5=1-P X=2-P X=3-P X=4=1-29-427-1081=4181,故其分布列为:X2345P2942710814181期望E X=2×29+3×427+4×1081+5×4181=31781.3(2024·江苏南通·二模)某班组建了一支8人的篮球队,其中甲、乙、丙、丁四位同学入选,该班体育老师担任教练.(1)从甲、乙、丙、丁中任选两人担任队长和副队长,甲不担任队长,共有多少种选法?(2)某次传球基本功训练,体育老师与甲、乙、丙、丁进行传球训练,老师传给每位学生的概率都相等,每位学生传球给同学的概率也相等,学生传给老师的概率为17.传球从老师开始,记为第一次传球,前三次传球中,甲同学恰好有一次接到球且第三次传球后球回到老师手中的概率是多少?【答案】(1)9种(2)349.【分析】(1)法一,利用分步乘法计数原理集合组合数的计算,即可求得答案;法二,利用间接法,即用不考虑队长人选对甲的限制的所有选法,减去甲担任队长的选法,即可得答案;(2)考虑第一次传球,老师传给了甲还是传给乙、丙、丁中的任一位,继而确定第二次以及第三次传球后球回到老师手中的情况,结合乘法公式以及互斥事件的概率求法,即可求得答案.【详解】(1)法一,先选出队长,由于甲不担任队长,方法数为C13;再选出副队长,方法数也是C13,故共有方法数为C13×C13=9(种).方法二先不考虑队长人选对甲的限制,共有方法数为A 24=4×3=12(种);若甲任队长,方法数为C 13,故甲不担任队长的选法种数为12-3=9(种)答:从甲、乙、丙、丁中任选两人分别担任队长和副队长,甲不担任队长的选法共有9种.(2)①若第一次传球,老师传给了甲,其概率为14;第二次传球甲只能传给乙、丙、丁中的任一位同学,其概率为67;第三次传球,乙、丙、丁中的一位传球给老师,其概率为17,故这种传球方式,三次传球后球回到老师手中的概率为:14×67×17=398.②若第一次传球,老师传给乙、丙、丁中的任一位,其概率为34,第二次传球,乙、丙、丁中的一位传球给甲,其概率为27,第三次传球,甲将球传给老师,其概率为17,这种传球方式,三次传球后球回到老师手中的概率为34×27×17=398,所以,前三次传球中满足题意的概率为:398+398=349.答:前三次传球中,甲同学恰好有一次接到球且第三次传球后球回到老师手中的概率是349.4(2024·重庆·模拟预测)中国在第75届联合国大会上承诺,努力争取2060年之前实现碳中和(简称“双碳目标”).新能源电动汽车作为战略新兴产业,对于实现“双碳目标”具有重要的作用.赛力斯汽车有限公司为了调查客户对旗下AITO 问界M 7的满意程度,对所有的意向客户发起了满意度问卷调查,将打分在80分以上的客户称为“问界粉”.现将参与调查的客户打分(满分100分)进行了统计,得到如下的频率分布直方图:(1)估计本次调查客户打分的中位数(结果保留一位小数);(2)按是否为“问界粉”比例采用分层抽样的方法抽取10名客户前往重庆赛力斯两江智慧工厂参观,在10名参观的客户中随机抽取2名客户赠送价值2万元的购车抵用券.记获赠购车券的“问界粉”人数为ξ,求ξ的分布列和数学期望E ξ .【答案】(1)73.3分(2)分布列见解析;期望为35【分析】(1)根据频率分布直方图求解中位数的方法可得答案;(2)确定抽取的“问界粉”人数,再确定ξ的取值,求解分布列,利用期望公式求解期望.【详解】(1)由频率分布直方图可知:打分低于70分的客户所占比例为40%,打分低于80分的客户的所占比例为70%,所以本次调查客户打分的中位数在[70,80)内,由70+10×0.50-0.400.70-0.40=2203≈73.3,所以本次调查客户打分的中位数约为73.3分;(2)根据按比例的分层抽样:抽取的“问界粉”客户3人,“非问界粉”客户7人,则ξ的所有可能取值分别为0,1,2,其中:P (ξ=0)=C 03C 27C 210=715,P (ξ=1)=C 13C 17C 210=715,P (ξ=2)=C 23C 07C 210=115,所以ξ的分布列为:ξ012P715715115所以数学期望E (ξ)=0×715+1×715+2×115=35.5(2024·福建三明·三模)某校开设劳动教育课程,为了有效推动课程实施,学校开展劳动课程知识问答竞赛,现有家政、园艺、民族工艺三类问题海量题库,其中家政类占14,园艺类占14,民族工艺类占12.根据以往答题经验,选手甲答对家政类、园艺类、民族工艺类题目的概率分别为25,25,45,选手乙答对这三类题目的概率均为12.(1)求随机任选1题,甲答对的概率;(2)现进行甲、乙双人对抗赛,规则如下:两位选手进行三轮答题比赛,每轮只出1道题目,比赛时两位选手同时回答这道题,若一人答对且另一人答错,则答对者得1分,答错者得-1分,若两人都答对或都答错,则两人均得0分,累计得分为正者将获得奖品,且两位选手答对与否互不影响,每次答题的结果也互不影响,求甲获得奖品的概率.【答案】(1)35(2)4411000【分析】(1)利用全概率公式,即可求得答案;(2)求出乙答对的概率,设每一轮比赛中甲得分为X ,求出X 的每个值对应的概率,即可求得三轮比赛后,甲总得分为Y 的每个值相应的概率,即可得答案.【详解】(1)记随机任选1题为家政、园艺、民族工艺试题分别为事件A i i =1,2,3 ,记随机任选1题,甲答对为事件B ,则P A 1 =14,P A 2 =14,P A 3 =12,P B |A 1 =25,P B |A 2 =25,P B |A 3 =45,则P B =P A1 P B |A 1 +P A2 P B |A 2 +P A3 P B |A 3=14×25+14×25+12×45=35;(2)设乙答对记为事件C ,则P C =P A 1 P C |A 1 +P A 2 P C |A 2 +P A 3 P C |A 3 =14×12+14×12+12×12=12,设每一轮比赛中甲得分为X ,则P X =1 =P BC =P B P C =35×1-12 =310,P X =0 =P BC ∪BC =P BC +P CB=35×12+1-35 ×1-12 =12,P (X =-1)=P B C =1-35 ×12=15,三轮比赛后,设甲总得分为Y ,则P Y =3 =3103=271000,P Y =2 =C 23310 2×12=27200,P Y =1 =C 13×310×122+C 23×3102×15=2791000,所以甲最终获得奖品的概率为P =P Y =3 +P Y =2 +P Y =1 =271000+27200+2791000=4411000.6(2024·江苏南京·二模)某地5家超市春节期间的广告支出x (万元)与销售额y (万元)的数据如下:超市A B C D E 广告支出x 24568销售额y3040606070(1)从A ,B ,C ,D ,E 这5家超市中随机抽取3家,记销售额不少于60万元的超市个数为X ,求随机变量X 的分布列及期望E (X );(2)利用最小二乘法求y 关于x 的线性回归方程,并预测广告支出为10万元时的销售额.附:线性回归方程y =b x +a中斜率和截距的最小二乘估计公式分别为:b =ni =1x i y i -nx yni =1x 2i -nx2,a =y -b x .【答案】(1)X 的分布列见解析,期望E (X )=95(2)y=7x +17;预测广告费支出10万元时的销售额为87万元.【分析】(1)根据超几何分布的概率公式求解分布列,进而可求解期望,(2)利用最小二乘法求解线性回归方程即可.【详解】(1)从A ,B ,C ,D ,E 这5家超市中随机抽取3家,记销售额不少于60万元的超市有C ,D ,E 这3家超市,则随机变量X 的可能取值为1,2,3P (X =1)=C 13C 22C 35=310,P (X =2)=C 23C 12C 35=35,P (X =3)=C 33C 35=110,∴X 的分布列为:X123P31035110数学期望E (X )=1×310+2×35+3×110=95.(2)x =2+4+5+6+85=5,y =30+40+60+60+705=52,b=ni =1x i y i -nx yni =1x 2i -nx2=60+160+300+360+560-5×5×524+16+25+36+64-5×52=7,a=52-7×5=17.∴y 关于x 的线性回归方程为y=7x +17;在y =7x +17中,取x =10,得y =7×10+17=87.∴预测广告费支出10万元时的销售额为87万元.7(2024·重庆·三模)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为12,各局比赛的结果都相互独立,第1局甲当裁判.记随机变量X i =1,第i 局乙当裁判0,第i 局甲或丙当裁判, i =1,2,⋅⋅⋅,n ,p i =P X i =1 ,X 表示前n 局中乙当裁判的次数.(1)求事件“n =3且X =1”的概率;(2)求p i ;(3)求E X ,并根据你的理解,说明当n 充分大时E X 的实际含义.附:设X ,Y 都是离散型随机变量,则E X +Y =E X +E Y .【答案】(1)34;(2)p i =-13 ×-12i -1+13;(3)p i ,答案见解析。
高考数学2024概率与统计历年题目全集
高考数学2024概率与统计历年题目全集概率与统计是高中数学中一门重要的学科,也是高考数学考试的一部分。
在概率与统计中,我们需要通过概率的计算和统计的方法来分析和解决实际问题。
为了帮助同学们复习和准备高考数学考试,本文整理了高考数学2024概率与统计历年题目全集,希望能对同学们有所帮助。
1. 单项选择题1) 已知概率为P(A) = 0.2,P(B) = 0.4,事件A、B相互独立,求P(A并B)的值。
2) 一次抛掷一硬币,设正面向上的概率为p,反面向上的概率为q。
连续抛掷3次硬币,求正面朝上的次数不超过2次的概率。
3) 某音乐社有男生40人,女生60人。
从中随机抽取一人,求抽到女生的概率。
2. 典型案例题1) 某超市中购买了100个某品牌产品,其中有5个是次品。
现从中不放回地连续抽取3个产品,求至少有一个次品的概率。
2) 某餐厅的饭菜有4个主食和6个副食。
现从中选择2个饭菜,求至少有一个主食的概率。
3. 解答题1) 设事件A与事件B相互独立,且P(A) = 0.3,P(B) = 0.5。
求下列事件的概率:a) P(A并B)b) P(A或B)c) P(A的对立事件)2) 设P(A) = 0.4,P(B) = 0.3,P(A并B) = 0.1,求下列事件的概率:a) P(A的对立事件)b) P(B的对立事件)c) P(A或B)3) 有一批产品,其中20%是次品。
现从中不放回地连续抽取3个产品,求以下事件的概率:a) 已抽出的3个产品都是次品;b) 至少有一个次品。
(提示:利用组合数学中的排列、组合知识进行计算)本文仅列举了一部分高考数学2024概率与统计历年题目,希望能给同学们提供一些复习和备考的参考。
在备考过程中,同学们还需结合教材和课堂上的知识,多进行习题训练和模拟考试,提高解题能力和应试技巧。
祝同学们取得优异的高考成绩!。
高考数学概率统计大题综合试题含答案解析
概率统计大题综合知识点总结1.数字样本特征(1)众数:在一组数据中出现次数最多的数(2)中位数:将一组数据按从小到大(或从大到小)的顺序排列,如果为奇数个,中位数为中间数;若为偶数个,中位数为中间两个数的平均数(3)平均数:x =x 1+x 2+⋯⋯+x nn ,反映样本的平均水平(4)方差:s 2=(x 1−x )2+(x 2−x )2+⋯⋯(x n −x )2n反映样本的波动程度,稳定程度和离散程度;s 2越大,样本波动越大,越不稳定;s 2越小,样本波动越小,越稳定;(5)标准差:σ=s 2,标准差等于方差的算术平方根,数学意义和方差一样(6)极差:等于样本的最大值−最小值2.求随机变量X 的分布列的步骤:(1)理解X 的意义,写出X 可能取得全部值;(2)求X 取每个值的概率;(3)写出X 的分布列;(4)根据分布列的性质对结果进行检验.还可判断随机变量满足常见分布列:两点分布,二项分布,超几何分布,正态分布.3.求随机变量的期望和方差的基本方法:(1)已知随机变量的分布列,直接利用期望和方差公式直接求解;(2)已知随机变量X 的期望、方差,求aX +b a ,b ∈R 的期望与方差,利用期望和方差的性质E aX +b =aE X +b ,D aX +b =a 2D X 进行计算;(3)若能分析出所给的随机变量服从常用的分布(如:两点分布、二项分布等),可直接利用常用分布列的期望和方差公式进行计算,若ξ~B (n ,p ),则Eξ=np ,Dξ=np (1-p ).4.求解概率最大问题的关键是能够通过P ξ=k ≥P ξ=k +1P ξ=k ≥Pξ=k -1构造出不等关系,结合组合数公式求解结果5.线性回归分析解题方法:(1)计算x ,y,ni =1x i 2 ,ni =1x i y i 的值;(2)计算回归系数a ,b ;(3)写出回归直线方程y =b x +a.线性回归直线方程为:y =b x +a ,b=ni =1x i −x y i −yni =1x i −x2=ni =1x i y i −nx yni =1x i 2−nx2,a =y −b x其中x ,y为样本中心,回归直线必过该点(4)线性相关系数(衡量两个变量之间线性相关关系的强弱)r=ni=1x i−xy i−yni=1x i−x2ni=1y i−y2=ni=1x i y i−nx yni=1x i2−nx 2ni=1y i2−ny 2r>0,正相关;r<0,负相关r ≤1,且r 越接近于1,线性相关性越强;r 越接近于0,线性相关性越弱,几乎不存在线性相关性6.独立性检验解题方法:(1)依题意完成列联表;(2)用公式求解;(3)对比观测值即可得到所求结论的可能性独立性检验计算公式:K2=n ad-bc2a+bc+da+cb+d模拟训练一、解答题1.(2023·福建三明·统考三模)在二十大报告中,体育、健康等关键词被多次提及,促进群众体育和竞技体育全面发展,加快建设体育强国是全面建设社会主义现代化国家的一个重要目标.某校为丰富学生的课外活动,加强学生体质健康,拟举行羽毛球团体赛,赛制采取3局2胜制,每局都是单打模式,每队有5名队员,比赛中每个队员至多上场一次且是否上场是随机的,每局比赛结果互不影响.经过小组赛后,最终甲、乙两队进入最后的决赛,根据前期比赛的数据统计,甲队种子选手M对乙队每名队员的胜率均为34,甲队其余4名队员对乙队每名队员的胜率均为12.(注:比赛结果没有平局)(1)求甲队最终2:1获胜且种子选手M上场的概率;(2)已知甲队2:1获得最终胜利,求种子选手M上场的概率.2.(2023·湖北武汉·统考模拟预测)“英才计划”最早开始于2013年,由中国科协、教育部共同组织实施,到2022年已经培养了6000多名具有创新潜质的优秀中学生,为选拔培养对象,某高校在暑假期间从武汉市的中学里挑选优秀学生参加数学、物理、化学、信息技术学科夏令营活动.(1)若化学组的12名学员中恰有5人来自同一中学,从这12名学员中选取3人,ξ表示选取的人中来自该中学的人数,求ξ的分布列和数学期望;(2)在夏令营开幕式的晚会上,物理组举行了一次学科知识竞答活动.规则如下:两人一组,每一轮竞答中,每人分别答两题,若小组答对题数不小于3,则取得本轮胜利,假设每轮答题结果互不影响.已知甲、乙两位同学组成一组,甲、乙答对每道题的概率分别为p1,p2,且p1+p2=43,如果甲、乙两位同学想在此次答题活动中取得6轮胜利,那么理论上至少要参加多少轮竞赛?3.(2023·福建宁德·校考二模)某科研团以为了考察某种药物预防疾病的效果,进行动物实验,得到如下列联表.患病未患病总计服用药物1045末服用药物50总计30(1)请将上面的列联表补充完整.(2)认为“药物对预防疾病有效”犯错误的概率是多少?(3)为了进一步研究,现按分层抽样的方法从未患病动物中抽取10只,设其中未服用药物的动物数为ξ,求ξ的分布列与期望.下面的临界值表供参考:P(K2≥k)0.150.100.050.0250.0100.0050.001k 2.0722706 3.841 5.024 6.6357.87910.828(参考公式:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d)4.(2023·江苏常州·校考一模)设X,Y是一个二维离散型随机变量,它们的一切可能取的值为a i,b j,其中i,j∈N*,令p ij=P X=a i,Y=b j,称p ij i,j∈N*是二维离散型随机变量X,Y的联合分布列,与一维的情形相似,我们也习惯于把二维离散型随机变量的联合分布列写成下表形式;X,Yb1b2b3⋅⋅⋅a1p11p12p13⋅⋅⋅a2p21p22p23⋅⋅⋅a3p31p32p33⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅现有n n∈N*个球等可能的放入编号为1,2,3的三个盒子中,记落入第1号盒子中的球的个数为X,落入第2号盒子中的球的个数为Y.(1)当n=2时,求X,Y的联合分布列,并写成分布表的形式;(2)设p k=nm=0P X=k,Y=m,k∈N且k≤n,求nk=0kp k的值.(参考公式:若X~B n,p,则nk=0kC k np k1-pn-k=np)5.(2023·江苏南京·南京市第九中学校考模拟预测)某种疾病可分为A,B两种类型,为了解该疾病的类型与患者性别是否相关,在某地区随机抽取了若干名该疾病的患者进行调查,发现女性患者人数是男性患者的2倍,男性患A型疾病的人数占男性患者的56,女性患A型疾病的人数占女性患者的13.A型病B型病合计男女合计(1)填写2×2列联表,若本次调查得出“在犯错误的概率不超过0.005的前提下认为‘所患疾病的类型'与‘性别'有关”的结论,求被调查的男性患者至少有多少人?(2)某团队进行预防A型疾病的疫苗的研发试验,试验期间至多安排2个周期接种疫苗,每人每个周期接种3次,每次接种费用为m m>0元.该团队研发的疫苗每次接种后产生抗体的概率为p0<p<1,如果一个周期内至少2次出现抗体,则该周期结束后终止试验,否则进入第二个周期.若p=23,试验人数为1000人,试估计该试验用于接种疫苗的总费用.K2=n ad-bc2a+bc+da+cb+d,P K2≥k00.100.050.010.0050.001k0 2.706 3.841 6.6357.87910.8286.(2023·安徽蚌埠·统考三模)某校为了丰富学生课余生活,组建了足球社团.为了解学生喜欢足球是否与性别有关,随机抽取了男、女同学各100名进行调查,部分数据如表所示:喜欢足球不喜欢足球合计男生40女生30合计(1)根据所给数据完成上表,依据α=0.001的独立性检验,能否认为该校学生喜欢足球与性别有关?(2)社团指导老师从喜欢足球的学生中抽取了2名男生和1名女生示范点球射门.已知这两名男生进球的概率均为23,这名女生进球的概率为12,每人射门一次,假设各人射门相互独立,求3人进球总次数X的分布列和数学期望.附:χ2=n ad-bc2a+bc+da+cb+dα0.10.050.010.0050.001 xα 2.706 3.841 6.6357.87910.8287.(2023·海南海口·海南华侨中学校考模拟预测)在以视觉为主导的社交媒体时代,人们常借助具有美颜功能的产品对自我形象进行美化.移动端的美颜拍摄类APP 主要有两类:A 类是以自拍人像、美颜美妆为核心功能的APP ;B 类是图片编辑、精修等图片美化类APP .某机构为调查市民对上述A ,B 两类APP 的使用情况,随机调查了部分市民.已知被调查的市民中使用过A 类APP 的占60%,使用过B 类APP 的占50%,设个人对美颜拍摄类APP 类型的选择及各人的选择之间相互独立.(1)从样本人群中任选1人,求该人使用过美颜拍摄类APP 的概率;(2)从样本人群中任选5人,记X 为5人中使用过美颜拍摄类APP 的人数,设X 的数学期望为E X ,求P X =E X ;(3)在单独使用过A ,B 两类APP 的样本人群中,按类型分甲、乙两组,并在各组中随机抽取8人,甲组对A 类APP ,乙组对B 类APP 分别评分如下:甲组评分9486929687939082乙组评分8583859175908380记甲、乙两组评分的平均数分别为x 1 ,x 2 ,标准差分别为s 1,s 2,试判断哪组评价更合理.(设V i=s ix i (i =1,2),V i 越小,则认为对应组评价更合理.)参考数据:0.1925≈0.439,0.2325≈0.482.8.(2023·广东·统考模拟预测)某工厂车间有6台相同型号的机器,各台机器相互独立工作,工作时发生故障的概率都是14,且一台机器的故障由一个维修工处理.已知此厂共有甲、乙、丙3名维修工,现有两种配备方案,方案一:由甲、乙、丙三人维护,每人负责2台机器;方案二:由甲乙两人共同维护6台机器,丙负责其他工作.(1)对于方案一,设X 为甲维护的机器某一时刻发生故障的台数,求X 的分布列与数学期望E (X );(2)在两种方案下,分别计算某一时刻机器发生故障时不能得到及时维修的概率,并以此为依据来判断,哪种方案能使工厂的生产效率更高?9.(2023·福建福州·福建省福州第一中学校考模拟预测)相关统计数据显示,中国经常参与体育锻炼的人数比例为37.2%,城乡居民达到《国民体质测定标准》合格以上的人数比例达到90%以上.某健身连锁机构对其会员的年龄等级和一个月内到健身房健身次数进行了统计,制作成如下两个统计图.图1为会员年龄分布图(年龄为整数),其中将会员按年龄分为“年轻人”(20岁-39岁)和“非年轻人”(19岁及以下或40岁及以上)两类;图2为会员一个月内到健身房次数分布扇形图,其中将一个月内到健身房锻炼16次及以上的会员称为“健身达人”,15次及以下的会员称为“健身爱好者”,且已知在“健身达人”中有56是“年轻人”.(1)现从该健身连锁机构会员中随机抽取一个容量为100的样本,根据图表数据,补全2×2列联表,并依据小概率值α=0.05的独立性检验,是否可以认为“健身达人”与年龄有关?年轻人非年轻人合计健身达人健身爱好者合计(2)该健身机构在今年年底将针对全部的150名会员举办消费返利活动,预设有如下两种方案.方案1:按分层抽样从健身爱好者和健身达人中总共抽取20位“幸运之星”给予奖励.其中,健身爱好者和健身达人中的“幸运之星”每人分别奖励500元和800元.方案2:每位会员均可参加摸奖游戏,游戏规则如下:从一个装有3个白球、2个红球(球只有颜色不同)的箱子中,有放回地摸三次球,每次只能摸一个球.若摸到红球的总数为2,则可获得100元奖励金;若摸到红球的总数为3,则可获得300元奖励金;其他情况不给予奖励.如果每位健身爱好者均可参加1次摸奖游戏;每位健身达人均可参加3次摸奖游戏(每次摸奖的结果相互独立).以方案的奖励金的数学期望为依据,请你预测哪一种方案投资较少?并说明理由.附:χ2=n(ad-bc)2a+bc+da+cb+d.α0.100.050.0250.0100.0050.001χα 2.706 3.841 5.024 6.6357.87910.82810.(2023·云南昭通·校联考模拟预测)为了检测某种抗病毒疫苗的免疫效果,需要进行临床人体试验.研究人员将疫苗注射到200名志愿者体内,一段时间后测量志愿者的某项指标值,按0,20 ,20,40 ,40,60 ,60,80 ,80,100 分组,绘制频率分布直方图如图所示.试验发现志愿者体内产生抗体的共有160人,其中该项指标值不小于60的有110人.假设志愿者注射疫苗后是否产生抗体相互独立.(1)填写下面的2×2列联表,并根据列联表及小概率值α=0.05的独立性检验,判断能否认为注射疫苗后志愿者产生抗体与指标值不小于60有关.抗体指标值合计小于60不小于60有抗体没有抗体合计(2)为检验疫苗二次接种的免疫抗体性,对第一次注射疫苗后没有产生抗体的40名志愿者进行第二次注射疫苗,结果又有m 名志愿者产生抗体.(i )用频率估计概率,已知一名志愿者注射2次疫苗后产生抗体的概率p =0.9,求m 的值;(ⅱ)以(i )中的概率p 作为人体注射2次疫苗后产生抗体的概率,再进行另一组人体接种试验,记110名志愿者注射2次疫苗后产生抗体的数量为随机变量X ,求P X =k 最大时的k 的值.参考公式:χ2=n ad -bc 2a +b c +d a +c b +d(其中n =a +b +c +d 为样本容量).α0.500.400.250.150.1000.0500.025x α0.4550.7081.3232.0722.7063.8415.02411.(2023·湖南长沙·长沙市实验中学校考二模)首批全国文明典范城市将于2023年评选,每三年评选一次,2021年长沙市入选为全国文明典范城市试点城市,目前我市正全力争创首批全国文明典范城市,某学校号召师生利用周末从事创建志愿活动.高一(1)班一组有男生4人,女生2人,现随机选取2人作为志愿者参加活动,志愿活动共有交通协管员、创建宣传员、文明监督员三项可供选择,每名女生至多从中选择参加2项活动,且选择参加1项或2项的可能性均为12;每名男生至少从中选择参加2项活动,且选择参加2项或3项的可能性也均为12,每人每参加1项活动可获得综合评价10分,选择参加几项活动彼此互不影响,求:(1)在有女生参加活动的条件下,恰有一名女生的概率;(2)记随机选取的两人得分之和为X,求X的期望.12.(2023·江苏南京·南京市第一中学校考模拟预测)为了宣传航空科普知识,某校组织了航空知识竞赛活动.活动规定初赛需要从8道备选题中随机抽取4道题目进行作答.假设在8道备选题中,小明正确完成每道题的概率都是34且每道题正确完成与否互不影响,小宇能正确完成其中6道题且另外2道题不能完成.(1)求小明至少正确完成其中3道题的概率;(2)设随机变量X表示小宇正确完成题目的个数,求X的分布列及数学期望;(3)现规定至少完成其中3道题才能进入决赛,请你根据所学概率知识,判断小明和小宇两人中选择谁去参加市级比赛(活动规则不变)会更好,并说明理由.13.(2023·广东·校联考模拟预测)某商场在五一假期间开展了一项有奖闯关活动,并对每一关根据难度进行赋分,竞猜活动共五关,规定:上一关不通过则不进入下一关,本关第一次未通过有再挑战一次的机会,两次均未通过,则闯关失败,且各关能否通过相互独立,已知甲、乙、丙三人都参加了该项闯关活动.(1)若甲第一关通过的概率为23,第二关通过的概率为56,求甲可以进入第三关的概率;(2)已知该闯关活动累计得分服从正态分布,且满分为450分,现要根据得分给共2500名参加者中得分前400名发放奖励.①假设该闯关活动平均分数为171分,351分以上共有57人,已知甲的得分为270分,问甲能否获得奖励,请说明理由;②丙得知他的分数为430分,而乙告诉丙:“这次闯关活动平均分数为201分,351分以上共有57人”,请结合统计学知识帮助丙辨别乙所说信息的真伪.附:若随机变量Z∼Nμ,σ2,则Pμ-σ≤X≤μ+σ≈0.6827;Pμ-2σ≤X≤μ+2σ≈0.9545;Pμ-3σ≤X≤μ+3σ≈0.9973.14.(2023·广东韶关·统考模拟预测)研究表明,如果温差本大,人们不注意保暖,可能会导致自身受到风寒刺激,增加感冒患病概率,特别是对于几童以及年老体弱的人群,要多加防范某中学数学建模社团成员研究了昼夜温差大小与某小学学生患感冒就诊人数多少之间的关系,他们记录了某六天的温差,并到校医室查阅了这六天中每天学生新增感冒就诊的人数,得到数据如下:日期第一天第二天第三天第四天第五天第六天昼夜温差x (°C )47891412新增感就诊人数y (位)y 1y 2y 3y 4y 5y 6参考数据:6iy 2i=3463,6iy i -y 2=289(1)已知第一天新增感冒就的学生中有4位男生,从第一天多增的感冒就诊的学生中随机取2位,其中男生人数记为X ,若抽取的2人中至少有一位女生的概率为56,求随机变量X 的分布列和数学期望;(2)已知两个变量x 与y 之间的样本相关系数r =1617,请用最小二乘法求出y 关于x 的经验回归方程y =b x +a ,据此估计昼夜温差为15°C 时,该校新增感冒就诊的学生人数. 参考数据:r =n ix i -x y i -y n i =1x i -x 2 ⋅ni =1y i -y2,b =ni x i -x y i -yni =1x i -x 2 15.(2023·重庆·统考模拟预测)某地区由于农产品出现了滞销的情况,从而农民的收入减少,很多人开始在某直播平台销售农产品并取得了不错的销售量.有统计数据显示2022年该地利用网络直播形式销售农产品的销售主播年龄等级分布如图1所示,一周内使用直播销售的频率分布扇形图如图2所示,若将销售主播按照年龄分为“年轻人”(20岁~39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用直播销售用户”,使用次数为5次或不足5次的称为“不常使用直播销售用户”,且“经常使用直播销售用户”中有34是“年轻人”.(1)现对该地相关居民进行“经常使用网络直播销售与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,完成2×2列联表,依据小概率值α=0.05的χ2独立性检验,能否认为经常使用网络直播销售与年龄有关?使用直播销售情况与年龄列联表年轻人非年轻人合计经常使用直播销售用户不常使用直播销售用户合计(2)某投资公司在2023年年初准备将1000万元投资到“销售该地区农产品”的项目上,现有两种销售方案供选择:方案一:线下销售、根据市场调研,利用传统的线下销售,到年底可能获利30%,可能亏损15%,也可能不是不赚,且这三种情况发生的概率分别为35,15,15;方案二:线上直播销售,根据市场调研,利用线上直播销售,到年底可能获利50%,可能亏损30%,也可能不赔不赚,且这三种情况发生的概率分别为12,310,15.针对以上两种销售方案,请你从期望和方差的角度为投资公司选择一个合理的方案,并说明理由.参考数据:独立性检验临界值表α0.150.100.050.0250.0100.0050.001xα 2.072 2.706 3.841 5.024 6.6357.87910.828其中χ2=n ad-bc2a+bc+da+cb+d,n=a+b+c+d.16.(2023·河北衡水·衡水市第二中学校考三模)某医疗科研小组为研究某市市民患有疾病A 与是否具有生活习惯B 的关系,从该市市民中随机抽查了100人,得到如下数据:疾病A 生活习惯B 具有不具有患病2515未患病2040(1)依据α=0.01的独立性检验,能否认为该市市民患有疾病A 与是否具有生活习惯B 有关?(2)从该市市民中任选一人,M 表示事件“选到的人不具有生活习惯B ”,N 表示事件“选到的人患有疾病A ”,试利用该调查数据,给出P N M的估计值;(3)从该市市民中任选3人,记这3人中具有生活习惯B ,且末患有疾病A 的人数为X ,试利用该调查数据,给出X 的数学期望的估计值.附:χ2=n (ad -bc )2a +b c +d a +c b +d,其中n =a +b +c +d .α0.100.050.0100.001 x α2.7063.8416.63510.82817.(2023·江苏扬州·统考模拟预测)随着网络技术的迅速发展,各种购物群成为网络销售的新渠道.在凤梨销售旺季,某凤梨基地随机抽查了100个购物群的销售情况,各购物群销售凤梨的数量情况如下:凤梨数量(盒)100,200 200,300 300,400 400,500 500,600购物群数量(个)12m2032m(1)求实数m的值,并用组中值估计这100个购物群销售风梨总量的平均数(盒);(2)假设所有购物群销售凤梨的数量X服从正态分布Nμ,σ2,其中μ为(1)中的平均数,σ2=12100.若该凤梨基地参与销售的购物群约有1000个,销售风梨的数量在266,596(单位:盒)内的群为“一级群”,销售数量小于266盒的购物群为“二级群”,销售数量大于等于596盒的购物群为“优质群”.该凤梨基地对每个“优质群”奖励1000元,每个“一级群”奖励200元,“二级群”不奖励,则该风梨基地大约需要准备多少资金?(群的个数按四舍五入取整数)附:若X服从正态分布X~Nμ,σ2,则P(μ-σ<X<μ+σ)≈0.683,P(μ-2σ<X<μ+2σ)≈0.954,P(μ-3σ<X<μ+3σ)≈0.997.18.(2023·浙江·校联考模拟预测)某校有一个露天的篮球场和一个室内乒乓球馆为学生提供锻炼场所,甲、乙两位学生每天上下午都各花半小时进行体育锻炼,近50天天气不下雨的情况下,选择体育锻炼情况统计如下:上下午体育锻炼项目的情况(上午,下午)(篮球,篮球)(篮球,乒乓球)(乒乓球,篮球)(乒乓球,乒乓球)甲20天15天5天10天乙10天10天5天25天假设甲、乙选择上下午锻炼的项目相互独立,用频率估计概率.(1)分别估计一天中甲上午和下午都选择篮球的概率,以及甲上午选择篮球的条件下,下午仍旧选择篮球的概率;(2)记X 为甲、乙在一天中选择体育锻炼项目的个数,求X 的分布列和数学期望E (X );(3)假设A 表示事件“室外温度低于10度”,B 表示事件“某学生去打乒乓球”,P (A )>0,一般来说在室外温度低于10度的情况下学生去打乒乓球的概率会比室外温度不低于10度的情况下去打乒乓球的概率要大,证明:P (A |B )>P (A |B).19.(2023·广东深圳·统考二模)某校体育节组织定点投篮比赛,每位参赛选手共有3次投篮机会.统计数据显示,每位选手投篮投进与否满足:若第k 次投进的概率为p (0<p <1),当第k 次投进时,第k +1次也投进的概率保持p 不变;当第k 次没能投进时,第k +1次能投进的概率降为p2.(1)若选手甲第1次投进的概率为p (0<p <1),求选手甲至少投进一次的概率;(2)设选手乙第1次投进的概率为23,每投进1球得1分,投不进得0分,求选手乙得分X 的分布列与数学期望.20.(2023·湖北武汉·华中师大一附中校考模拟预测)2021年春节前,受疫情影响,各地鼓励外来务工人员选择就地过年.某市统计了该市4个地区的外来务工人数与就地过年人数(单位:万),得到如下表格:A 区B 区C 区D 区外来务工人数x /万3456就地过年人数y /万2.5344.5(1)请用相关系数说明y 与x 之间的关系可用线性回归模型拟合,并求y 关于x 的线性回归方程y =a +bx 和A 区的残差(2)假设该市政府对外来务工人员中选择就地过年的每人发放1000元补贴.①若该市E 区有2万名外来务工人员,根据(1)的结论估计该市政府需要给E 区就地过年的人员发放的补贴总金额;②若A 区的外来务工人员中甲、乙选择就地过年的概率分别为p ,2p -1,其中12<p <1,该市政府对甲、乙两人的补贴总金额的期望不超过1400元,求p 的取值范围.参考公式:相关系数r =ni =1x i y i -nx yn i =1x 2i -nx 2ni =1y 2i -ny2,回归方程y =a +bx 中斜率和截距的最小二乘估计公式分别为b =ni =1x i y i -nx yni =1x 2i -nx2,a =y -b x .21.(2023·山西运城·山西省运城中学校校考二模)甲、乙两人进行象棋比赛,赛前每人发3枚筹码.一局后负的一方,需将自己的一枚筹码给对方;若平局,双方的筹码不动,当一方无筹码时,比赛结束,另一方最终获胜.由以往两人的比赛结果可知,在一局中甲胜的概率为0.3、乙胜的概率为0.2.(1)第一局比赛后,甲的筹码个数记为X,求X的分布列和期望;(2)求四局比赛后,比赛结束的概率;(3)若P i i=0,1,⋯,6表示“在甲所得筹码为i枚时,最终甲获胜的概率”,则P0=0,P6=1.证明:P i+1-P ii=0,1,2,⋯,5为等比数列.22.(2023·湖北襄阳·襄阳四中校考三模)为倡导公益环保理念,培养学生社会实践能力,某中学开展了旧物义卖活动,所得善款将用于捐赠“圆梦困境学生”计划.活动共计50多个班级参与,1000余件物品待出售.摄影社从中选取了20件物品,用于拍照宣传,这些物品中,最引人注目的当属优秀毕业生们的笔记本,已知高三1,2,3班分别有12,13,14的同学有购买意向.假设三个班的人数比例为6:7:8.(1)现从三个班中随机抽取一位同学:(i)求该同学有购买意向的概率;(ii)如果该同学有购买意向,求此人来自2班的概率;(2)对于优秀毕业生的笔记本,设计了一种有趣的“掷骰子叫价确定购买资格”的竞买方式:统一以0元为初始叫价,通过掷骰子确定新叫价,若点数大于2,则在已叫价格基础上增加1元更新叫价,若点数小于3,则在已叫价格基础上增加2元更新叫价;重复上述过程,能叫到10元,即获得以10元为价格的购买资格,未出现叫价为10元的情况则失去购买资格,并结束叫价.若甲同学已抢先选中了其中一本笔记本,试估计其获得该笔记本购买资格的概率(精确到0.01).23.(2023·广东茂名·统考二模)春节过后,文化和旅游业逐渐复苏,有意跨省游、出境游的旅客逐渐增多.某旅游景区为吸引更多游客,计划在社交媒体平台和短视频平台同时投放宣传广告并进行线上售票,通过近。
高考数学-概率与统计(含22年真题讲解)
高考数学-概率与统计(含22年真题讲解)1.【2022年全国甲卷】某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则()A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差【答案】B【解析】【分析】由图表信息,结合中位数、平均数、标准差、极差的概念,逐项判断即可得解.【详解】>70%,所以A错;讲座前中位数为70%+75%2讲座后问卷答题的正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,所以B对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C错;讲座后问卷答题的正确率的极差为100%−80%=20%,讲座前问卷答题的正确率的极差为95%−60%=35%>20%,所以D错.故选:B.2.【2022年全国甲卷】从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A.15B.13C.25D.23【答案】C【解析】【分析】先列举出所有情况,再从中挑出数字之积是4的倍数的情况,由古典概型求概率即可.【详解】从6张卡片中无放回抽取2张,共有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3 ,4),(3,5),(3,6),(4,5),(4,6),(5,6)15种情况,其中数字之积为4的倍数的有(1,4),(2,4),(2,6),(3,4),(4,5),(4,6)6种情况,故概率为615=25.故选:C.3.【2022年全国乙卷】分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h),得如下茎叶图:则下列结论中错误的是()A.甲同学周课外体育运动时长的样本中位数为7.4B.乙同学周课外体育运动时长的样本平均数大于8C.甲同学周课外体育运动时长大于8的概率的估计值大于0.4D.乙同学周课外体育运动时长大于8的概率的估计值大于0.6【答案】C【解析】【分析】结合茎叶图、中位数、平均数、古典概型等知识确定正确答案.【详解】=7.4,A选项结论正确.对于A选项,甲同学周课外体育运动时长的样本中位数为7.3+7.52对于B选项,乙同学课外体育运动时长的样本平均数为:6.3+7.4+7.6+8.1+8.2+8.2+8.5+8.6+8.6+8.6+8.6+9.0+9.2+9.3+9.8+10.1=8.50625>8,16B选项结论正确.=0.375<0.4,对于C选项,甲同学周课外体育运动时长大于8的概率的估计值616C选项结论错误.=0.8125>0.6,对于D选项,乙同学周课外体育运动时长大于8的概率的估计值1316D选项结论正确.故选:C4.【2022年全国乙卷】某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为p1,p2,p3,且p3>p2>p1>0.记该棋手连胜两盘的概率为p,则()A.p与该棋手和甲、乙、丙的比赛次序无关B.该棋手在第二盘与甲比赛,p最大C.该棋手在第二盘与乙比赛,p最大D.该棋手在第二盘与丙比赛,p最大【答案】D【解析】【分析】该棋手连胜两盘,则第二盘为必胜盘.分别求得该棋手在第二盘与甲比赛且连胜两盘的概率p;该棋手在第二盘与乙比赛且连胜两盘的概率p乙;该棋手在第二盘与丙比赛且连胜两盘甲的概率p丙.并对三者进行比较即可解决【详解】该棋手连胜两盘,则第二盘为必胜盘,记该棋手在第二盘与甲比赛,且连胜两盘的概率为p甲则p甲=2(1−p2)p1p3+2p2p1(1−p3)=2p1(p2+p3)−4p1p2p3记该棋手在第二盘与乙比赛,且连胜两盘的概率为p乙则p乙=2(1−p1)p2p3+2p1p2(1−p3)=2p2(p1+p3)−4p1p2p3记该棋手在第二盘与丙比赛,且连胜两盘的概率为p丙则p丙=2(1−p1)p3p2+2p1p3(1−p2)=2p3(p1+p2)−4p1p2p3则p甲−p乙=2p1(p2+p3)−4p1p2p3−[2p2(p1+p3)−4p1p2p3]=2(p1−p2)p3<0p 乙−p丙=2p2(p1+p3)−4p1p2p3−[2p3(p1+p2)−4p1p2p3]=2(p2−p3)p1<0即p甲<p乙,p乙<p丙,则该棋手在第二盘与丙比赛,p最大.选项D判断正确;选项BC判断错误;p与该棋手与甲、乙、丙的比赛次序有关.选项A判断错误.故选:D5.【2022年新高考1卷】从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.16B.13C.12D.23【答案】D【解析】【分析】由古典概型概率公式结合组合、列举法即可得解.【详解】从2至8的7个整数中随机取2个不同的数,共有C72=21种不同的取法,若两数不互质,不同的取法有:(2,4),(2,6),(2,8),(3,6),(4,6),(4,8),(6,8),共7种,故所求概率P=21−721=23.故选:D.6.【2022年全国甲卷】从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.【答案】635.【解析】【分析】根据古典概型的概率公式即可求出.【详解】从正方体的8个顶点中任取4个,有n=C84=70个结果,这4个点在同一个平面的有m=6+6=12个,故所求概率P=mn =1270=635.故答案为:635.7.【2022年全国乙卷】从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.【答案】310##0.3【解析】【分析】根据古典概型计算即可【详解】从5名同学中随机选3名的方法数为C53=10甲、乙都入选的方法数为C31=3,所以甲、乙都入选的概率P=310故答案为:3108.【2022年新高考2卷】已知随机变量X服从正态分布N(2,σ2),且P(2<X≤2.5)=0.36,则P(X>2.5)=____________.【答案】0.14##750.【解析】【分析】根据正态分布曲线的性质即可解出.【详解】因为X∼N(2,σ2),所以P(X<2)=P(X>2)=0.5,因此P(X>2.5)=P(X>2)−P(2<X ≤2.5)=0.5−0.36=0.14.故答案为:0.14.9.【2022年浙江】现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为ξ,则P(ξ=2)=__________,E(ξ)=_________.【答案】 1635, 127##157 【解析】 【分析】利用古典概型概率公式求P(ξ=2),由条件求ξ分布列,再由期望公式求其期望. 【详解】从写有数字1,2,2,3,4,5,6的7张卡片中任取3张共有C 73种取法,其中所抽取的卡片上的数字的最小值为2的取法有C 41+C 21C 42种,所以P(ξ=2)=C 41+C 21C 42C 73=1635,由已知可得ξ的取值有1,2,3,4, P(ξ=1)=C 62C 73=1535,P(ξ=2)=1635,,P(ξ=3)=C 32C 73=335,P(ξ=4)=1C 73=135所以E(ξ)=1×1535+2×1635+3×335+4×135=127,故答案为:1635,127.10.【2022年全国甲卷】甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率; (2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关? 附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d), P (K 2⩾k )0.100 0.050 0.010 k2.7063.8416.635【答案】(1)A ,B 两家公司长途客车准点的概率分别为1213,78(2)有 【解析】 【分析】(1)根据表格中数据以及古典概型的概率公式可求得结果;(2)根据表格中数据及公式计算K 2,再利用临界值表比较即可得结论. (1)根据表中数据,A 共有班次260次,准点班次有240次, 设A 家公司长途客车准点事件为M , 则P(M)=240260=1213;B 共有班次240次,准点班次有210次, 设B 家公司长途客车准点事件为N , 则P(N)=210240=78.A 家公司长途客车准点的概率为1213; B 家公司长途客车准点的概率为78. (2)列联表K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)=500×(240×30−210×20)2260×240×450×50≈3.205>2.706,根据临界值表可知,有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关.11.【2022年全国甲卷】甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立. (1)求甲学校获得冠军的概率;(2)用X 表示乙学校的总得分,求X 的分布列与期望.【答案】(1)0.6;(2)分布列见解析,E(X)=13.【解析】【分析】(1)设甲在三个项目中获胜的事件依次记为A,B,C,再根据甲获得冠军则至少获胜两个项目,利用互斥事件的概率加法公式以及相互独立事件的乘法公式即可求出;(2)依题可知,X的可能取值为0,10,20,30,再分别计算出对应的概率,列出分布列,即可求出期望.(1)设甲在三个项目中获胜的事件依次记为A,B,C,所以甲学校获得冠军的概率为P=P(ABC)+P(A BC)+P(AB̅C)+P(ABC)=0.5×0.4×0.8+0.5×0.4×0.8+0.5×0.6×0.8+0.5×0.4×0.2=0.16+0.16+0.24+0.04=0.6.(2)依题可知,X的可能取值为0,10,20,30,所以,P(X=0)=0.5×0.4×0.8=0.16,P(X=10)=0.5×0.4×0.8+0.5×0.6×0.8+0.5×0.4×0.2=0.44,P(X=20)=0.5×0.6×0.8+0.5×0.4×0.2+0.5×0.6×0.2=0.34,P(X=30)=0.5×0.6×0.2=0.06.即X的分布列为期望E(X)=0×0.16+10×0.44+20×0.34+30×0.06=13.12.【2022年全国乙卷】某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:2)和材积量(单位:3),得到如下数据:并计算得∑x i 210i=1=0.038,∑y i 210i=1=1.6158,∑x i y i10i=1=0.2474. (1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量; (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186m 2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值. 附:相关系数r =∑(x i−x̅)n i=1(y i −y̅)√∑(x i −x̅)2ni=1∑(y i−y ̅)2ni=1√1.896≈1.377.【答案】(1)0.06m 2;0.39m 3 (2)0.97 (3)1209m 3 【解析】 【分析】(1)计算出样本的一棵根部横截面积的平均值及一棵材积量平均值,即可估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)代入题给相关系数公式去计算即可求得样本的相关系数值;(3)依据树木的材积量与其根部横截面积近似成正比,列方程即可求得该林区这种树木的总材积量的估计值. (1)样本中10棵这种树木的根部横截面积的平均值x̅=0.610=0.06样本中10棵这种树木的材积量的平均值y̅=3.910=0.39据此可估计该林区这种树木平均一棵的根部横截面积为0.06m 2, 平均一棵的材积量为0.39m 3 (2)r =∑(x i −x)10i=1(y i −y)√∑10i=1(x i −x)2∑10i=1(y i −y)2=∑10i=1i i 10xy√(∑10i=1x i 2−10x2)(∑10i=1y i 2−10y 2)=0.2474−10×0.06×0.39√(0.038−10×0.062)(1.6158−10×0.392)=0.0134√0.0001896≈0.01340.01377≈0.97则r ≈0.97 (3)设该林区这种树木的总材积量的估计值为Y m 3, 又已知树木的材积量与其根部横截面积近似成正比, 可得0.060.39=186Y,解之得Y =1209m 3. 则该林区这种树木的总材积量估计为1209m 313.【2022年新高考1卷】一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A 表示事件“选到的人卫生习惯不够良好”,B 表示事件“选到的人患有该疾病”.P(B|A)P(B ̅|A)与P(B|A )P(B ̅|A )的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R .(ⅰ)证明:R =P(A|B)P(A |B)⋅P(A |B ̅)P(A|B ̅);(ⅱ)利用该调查数据,给出P(A|B),P(A|B ̅)的估计值,并利用(ⅰ)的结果给出R 的估计值.附K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),【答案】(1)答案见解析 (2)(i )证明见解析;(ii)R =6; 【解析】【分析】(1)由所给数据结合公式求出K2的值,将其与临界值比较大小,由此确定是否有99%的把握认为患该疾病群体与未黄该疾病群体的卫生习惯有差异;(2)(i) 根据定义结合条件概率公式即可完成证明;(ii)根据(i)结合已知数据求R.(1)由已知K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)=200(40×90−60×10)250×150×100×100=24,又P(K2≥6.635)=0.01,24>6.635,所以有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异.(2)(i)因为R=P(B|A)P(B̅|A)⋅P(B̅|A)P(B|A)=P(AB)P(A)⋅P(A)P(AB̅)⋅P(A B̅)P(A)⋅P(A)P(A B),所以R=P(AB)P(B)⋅P(B)P(A B)⋅P(A B̅)P(B̅)⋅P(B̅)P(AB̅)所以R=P(A|B)P(A|B)⋅P(A|B̅) P(A|B̅),(ii)由已知P(A|B)=40100,P(A|B̅)=10100,又P(A|B)=60100,P(A|B̅)=90100,所以R=P(A|B)P(A|B)⋅P(A|B̅)P(A|B̅)=614.【2022年新高考2卷】在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);(2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).【答案】(1)44.65岁;(2)0.89;(3)0.0014.【解析】【分析】(1)根据平均值等于各矩形的面积乘以对应区间的中点值的和即可求出;(2)设A={一人患这种疾病的年龄在区间[20,70)},根据对立事件的概率公式P(A)=1−P (A)即可解出;(3)根据条件概率公式即可求出.(1)平均年龄x̅=(5×0.001+15×0.002+25×0.012+35×0.017+45×0.023 +55×0.020+65×0.012+75×0.006+85×0.002)×10=44.65(岁).(2)设A={一人患这种疾病的年龄在区间[20,70)},所以P(A)=1−P(A)=1−(0.001+0.002+0.006+0.002)×10=1−0.11=0.89.(3)设B={任选一人年龄位于区间[40,50)},C={任选一人患这种疾病},则由条件概率公式可得P(C|B)=P(BC)P(B)=0.1%×0.023×1016%=0.001×0.230.16=0.0014375≈0.0014.15.【2022年北京】在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到9.50m以上(含9.50m)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,935,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;(2)设X是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X的数学期望E(X);(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)【答案】(1)0.4(2)75(3)丙【解析】【分析】(1)由频率估计概率即可(2)求解得X的分布列,即可计算出X的数学期望.(3)计算出各自获得最高成绩的概率,再根据其各自的最高成绩可判断丙夺冠的概率估计值最大.(1)由频率估计概率可得甲获得优秀的概率为0.4,乙获得优秀的概率为0.5,丙获得优秀的概率为0.5,故答案为0.4(2)设甲获得优秀为事件A1,乙获得优秀为事件A2,丙获得优秀为事件A3P(X=0)=P(A1̅̅̅A2̅̅̅A3̅̅̅)=0.6×0.5×0.5=3,20P(X=1)=P(A1A2̅̅̅A3̅̅̅)+P(A1̅̅̅A2A3̅̅̅)+P(A1̅̅̅A2̅̅̅A3)=0.4×0.5×0.5+0.6×0.5×0.5+0.6×0.5×0.5=8,20P(X=2)=P(A1A2A3̅̅̅)+P(A1A2̅̅̅A3)+P(A1̅̅̅A2A3)=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=7,20P(X=3)=P(A1A2A3)=0.4×0.5×0.5=2.20∴X的分布列为∴E(X)=0×320+1×820+2×720+3×220=75 (3)丙夺冠概率估计值最大.因为铅球比赛无论比赛几次就取最高成绩.比赛一次,丙获得9.85的概率为14,甲获得9.80的概率为110,乙获得9.78的概率为16.并且丙的最高成绩是所有成绩中最高的,比赛次数越多,对丙越有利.1.(2022·河南省杞县高中模拟预测(理))某市有11名选手参加了田径男子100米赛的选拔比赛,前5名可以参加省举办的田径赛,如果各个选手的选拔赛成绩均不相同,选手小强已经知道了自己的成绩,为了判断自己能否参加省举办的田径赛,他还需要知道这11名选手成绩的( ) A .平均数 B .中位数 C .众数 D .方差【答案】B 【解析】 【分析】中位数恰好是第6名,比中位数成绩高即可确认自己能否进入省田径赛. 【详解】因为11名选手成绩的中位数恰好是第6名,知道了第6名的成绩,小强就可以判断自己是否能参加省举办的田径赛了,其余数字特征不能反映名次. 故选:B .2.(2022·黑龙江·大庆实验中学模拟预测(理))2021年5月30日清晨5时01分,天舟二号货运飞船在成功发射约8小时后,与中国空间站天和核心舱完成自主快速交接.如果下次执行空间站的任务由3名航天员承担,需要在3名女性航天员和3名男性航天员中选择,则选出的3名航天员中既有男性航天员又有女性航天员的概率为( ) A .67B .910 C .25D .415【答案】B 【解析】 【分析】利用对立事件和古典概型的概率公式求解即可. 【详解】设“选出的3名航天员中既有男性航天员又有女性航天员”为事件M ,则()333336C C 91C 10P M ==+-.故选:B.3.(2022·全国·模拟预测(文))如图是一组实验数据的散点图,拟合方程()0by c x x=+>,令1t x=,则y 关于t 的回归直线过点()2,5,()12,25,则当()1.01,1.02y ∈时,x 的取值范围是( )A .()0.01,0.02B .()50,100C .()0.02,0.04D .()100,200【答案】D 【解析】 【分析】 先令1t x =可得()0y bt c t =+>,由y 关于t 的回归直线过点()2,5,()12,25可得522512b c b c=+⎧⎨=+⎩从而求得21y t =+,再由y 的范围求得t 的范围,进而求得x 的范围. 【详解】根据题意可得()0y bt c t =+>,由y 关于t 的回归直线过点()2,5,()12,25可得:522512b cb c =+⎧⎨=+⎩,所以2,1b c ==, 所以21y t =+,由()1.01,1.02y ∈可得1.0121 1.02t <+<, 所以0.0050.01t <<, 所以10.0050.01x<<,所以100200x <<, 故选:D4.(2022·辽宁实验中学模拟预测)某国计划采购疫苗,现在成熟的疫苗中,三种来自中国,一种来自美国,一种来自英国,一种由美国和德国共同研发,从这6种疫苗中随机采购三种,若采购每种疫苗都是等可能的,则买到中国疫苗的概率为( ) A .16B .12C .910D .1920【答案】D 【解析】 【分析】由对立事件的概率公式计算. 【详解】没有买到中国疫苗的概率为13611C 20P ==, 所以买到中国疫苗的概率为119120P P =-=. 故选:D .5.(2022·四川省泸县第二中学模拟预测(理))食物链亦称“营养链”,是指生态系统中各种生物为维持其本身的生命活动,必须以其他生物为食物的这种由食物联结起来的链锁关系.如图为某个生态环境中的食物链,若从鹰、麻雀、兔、田鼠以及蝗虫中任意选取两种,则这两种生物不能构成摄食关系的概率( )A .35B .25C .23D .13【解析】 【分析】用列举法写出构成的摄食关系,计数后可求得概率. 【详解】从鹰、麻雀、兔、田鼠以及蝗虫中任意选取两种,共有10种选法:鹰麻雀,鹰兔,鹰田鼠,鹰蝗虫,麻雀兔,麻雀田鼠,麻雀蝗虫,兔田鼠,兔蝗虫,田鼠蝗虫.其中田鼠鹰,兔鹰,麻雀鹰,蝗虫麻雀共四种可构成摄食关系,不能构成摄食关系的有6种,所以概率为63105P ==. 故选:A .6.(2022·山东潍坊·模拟预测)Poisson 分布是统计学里常见的离散型概率分布,由法国数学家西莫恩·德尼·泊松首次提出,Poisson 分布的概率分布列为()()e 0,1,2,!kP X K k k λλ-===⋅⋅⋅,其中e 为自然对数的底数,λ是Poisson 分布的均值.当二项分布的n 很大()20n ≥而p 很小()0.05p ≤时,Poisson 分布可作为二项分布的近似.假设每个大肠杆菌基因组含有10000个核苷酸对,采用20.05/J m 紫外线照射大肠杆菌时,每个核苷酸对产生嘧啶二体的概率均为0.0003,已知该菌株基因组有一个嘧啶二体就致死,则致死率是( ) A .31e -- B .3e - C .313e -- D .314e --【答案】A 【解析】 【分析】结合题意1000020n =≥,0.00030.05p =≤,此时Poisson 分布满足二项分布的近似条件,再计算二项分布的均值为Poisson 分布的均值λ,再代入公式先求不致死的概率,再用对立事件的概率和为1计算即可 【详解】由题, 1000020n =≥,0.00030.05p =≤,此时Poisson 分布满足二项分布的近似的条件,此时100000.00033λ=⨯=,故不致死的概率为()03330e e 0!P X --===,故致死的概率为()3101e P X --==-7.(2022·河南安阳·模拟预测(理))某房产销售公司有800名销售人员,为了了解销售人员上一个季度的房屋销量,公司随机选取了部分销售人员对其房屋销量进行了统计,得到上一季度销售人员的房屋销量(20,4)X N ,则全公司上一季度至少完成22套房屋销售的人员大概有( )附:若随机变量X 服从正态分布()2,N μσ,则()0.6827P X μσμσ-<≤+≈,(22)0.9545P X μσμσ-<≤+≈,(33)0.9973P X μσμσ-<≤+≈.A .254人B .127人C .18人D .36人【答案】B 【解析】 【分析】根据正态分布的性质求出()22P X ≥,从而估计出人数; 【详解】 解:因为(20,4)X N ,所以20μ=,2σ=,所以()1()10.6827220.1586522P X P X μσμσ--<≤+-≥===所以全公司上一季度至少完成22套房屋销售的人员大概有8000.15865127⨯≈(人); 故选:B8.(2022·河南·模拟预测)某公司生产的一种产品按照质量由高到低分为A ,B ,C ,D 四级,为了增加产量、提高质量,该公司改进了一次生产工艺,使得生产总量增加了一倍.为了解新生产工艺的效果,对改进生产工艺前、后的四级产品的占比情况进行了统计,绘制了如下扇形图:根据以上信息:下列推断合理的是( ) A .改进生产工艺后,A 级产品的数量没有变化B.改进生产工艺后,D级产品的数量减少C.改进生产工艺后,C级产品的数量减少D.改进生产工艺后,B级产品的数量增加了不到一倍【答案】C【解析】【分析】由题可得改进生产工艺前后四个等级的生产量,逐项分析即得.【详解】设原生产总量为1,则改进生产工艺后生产总量为2,所以原A,B,C,D等级的生产量为0.3,0.37,0.28,0.05,改进生产工艺后四个等级的生产量为0.6,1.2,0.12,0.08,故改进生产工艺后,A级产品的数量增加,故A错误;改进生产工艺后,D级产品的数量增加,故B错误;改进生产工艺后,C级产品的数量减少,故C正确;改进生产工艺后,B级产品的数量增加超过2倍,故D错误.故选:C.9.(2022·河南安阳·模拟预测(文))为推动就业与培养有机联动、人才供需有效对接,促进高校毕业生更加充分更高质量就业,教育部今年首次实施供需对接就业育人项目.现安排甲、乙两所高校与3家用人单位开展项目对接,若每所高校至少对接两家用人单位,则两所高校的选择涉及到全部3家用人单位的概率为()A.12B.23C.34D.1316【答案】D【解析】【分析】由古典概型与对立事件的概率公式求解即可【详解】因为每所高校至少对接两家用人单位,所以每所高校共有2333314C C+=+=种选择,所以甲、乙两所高校共有4416⨯=种选择,其中甲、乙两所高校的选择涉及两家用人单位的情况有233C =种,所以甲、乙两所高校的选择涉及到全部3家用人单位的概率为31311616P =-=, 故选:D10.(2022·江苏·南京师大附中模拟预测)某同学在课外阅读时了解到概率统计中的马尔可夫不等式,该不等式描述的是对非负的随机变量X 和任意的正数a ,都有()()(),P X a f E X a ≥≤,其中()(),f E X a 是关于数学期望()E X 和a 的表达式.由于记忆模糊,该同学只能确定()(),f E X a 的具体形式是下列四个选项中的某一种.请你根据自己的理解,确定该形式为( ) A .()aE X B .()1aE XC .()a E XD .()E X a【答案】D 【解析】 【分析】根据期望的计算公式,以及m x a ≥即可求解. 【详解】设非负随机变量X 的所有可能取值按从小到大依次为0,i x i N *>∈,对应的概率分别为,0i i p p >设满足i x a ≥的有,,,m a a x k m n m N k N **≤≤∈∈,()ani i k P X a p =≥=∑,()111a ai nk i iii n i ii k i ax pE ax p x pX a -===+==∑∑∑,因为m x a ≥,所以1mx a≥()()()1111a a aaannniiiiiik k i k i k i k ii i i i x px px px p p P X a P X a E aa aaaX --=====⎛⎫+≥+=+≥≥≥ ⎪⎝⎭=∑∑∑∑∑故选:D11.(2022·吉林·三模(理))为了切实维护居民合法权益,提高居民识骗防骗能力,守好居民的“钱袋子”,某社区开展“全民反诈在行动——反诈骗知识竞赛”活动,现从参加该活动的居民中随机抽取了100名,统计出他们竞赛成绩分布如下:(1)求抽取的100名居民竞赛成绩的平均分x 和方差2s (同一组中数据用该组区间的中点值为代表);(2)以频率估计概率,发现该社区参赛居民竞赛成绩X 近似地服从正态分布()2,N μσ,其中μ近似为样本成绩平均分x ,2σ近似为样本成缋方差2s ,若2μσμσ-<≤+X ,参赛居民可获得“参赛纪念证书”;若2μσ>+X ,参赛居民可获得“反诈先锋证书”,①若该社区有3000名居民参加本次竞赛活动,试估计获得“参赛纪念证书”的居民人数(结果保留整数);②试判断竞赛成绩为96分的居民能否获得“反诈先锋证书”. 附:若()2,XN μσ,则()0.6827P X μσμσ-<≤+≈,(22)0.9545P X μσμσ-<≤+≈,(33)0.9973P X μσμσ-<≤+≈.【答案】(1)75x =,2100s = (2)①2456 ;②能 【解析】 【分析】(1)利用公式直接求出均值、方差即可;(2)①结合给的概率和正态分布的性质,确定获得“参赛纪念证书”,进而计算可得人数; ②利用正态分布的知识求出2μσ>+X ,即95>X ,进而可得结果. (1)100名居民本次竞赛成绩平均分24224028445556575859575100100100100100100=⨯+⨯+⨯+⨯+⨯+⨯=x , 100名居民本次竞赛成绩方差22222422(4575)(5575)(6575)100100100=-⨯+-⨯+-⨯s 22240284(7575)(8575)(9575)100100100100+-⨯+-⨯+-⨯=, (2)①由于μ近似为样本成绩平均分x ,2σ近似为样本成绩方差2s , 所以,275,100μσ==,可知,10σ=,由于竞赛成绩X 近似地服从正态分布()2,N μσ,因此竞赛居民可获得“参赛纪念证书”的概率 (2)P X μσμσ-<≤+11()(22)22μσμσμσμσ=-<≤++-<≤+P X P X 110.68270.95450.818622≈⨯+⨯= 30000.81862455.82456⨯=≈估计获得“参赛纪念证书”的居民人数为2456;②当2μσ>+X 时,即95>X 时,参赛居民可获得“反诈先锋证书”, 所以竞赛成绩为96分的居民能获得“反诈先峰证书”.12.(2022·贵州·贵阳一中模拟预测(文))“十四五”规划纲要提出,全面推动长江经济带发展,协同推动生态环境保护和经济发展长江水资源约占全国总量的36%,长江流域河湖、水库、湿地面积约占全国的20%,珍稀濒危植物占全国的39.7%,淡水鱼类占全国的33%.长江经济带在我国生态文明建设中占据重要位置.长江流域某地区经过治理,生态系统得到很大改善,水生动物数量有所增加.为调查该地区某种水生动物的数量,将其分成面积相近的100个水域,从这些水域中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据()(),1,2,,20,i i x y i =其中i x 和i y 分别表示第i 个样区的水草覆盖面积(单位:公顷)和这种水生动物的数量,并计算得20160i i x ==∑,2011200i i y ==∑,2021-)120,i i x x ==∑(2021-)9000,i i y ==∑(y 201-)-)1000.i iix x y ==∑((y (1)求该地区这种水生动物数量的估计值(这种水生动物数量的估计值等于样区这种水生动物数量的平均数乘以地块数); (2)求样本()(),1,2,,20i i x y i =的相关系数(精确到0.01);(3)根据现有统计资料,各地块间水草覆盖面积差异很大.为提高样本的代表性以获得该地区这种水生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数-)-) 1.732.niix y x r =≈∑((y【答案】(1)6000 (2)0.96(3)采用分层抽样的方法,理由见解析 【解析】 【分析】(1)根据该地区这种水生动物数量的估计值的计算方法求解即可; (2)根据相关系数的公式求解即可;(3)根据(2)中的结论各样区的这种水生动物的数量与水草覆盖面积有很强的正相关性考虑即可 (1)样区水生动物平均数为201111200602020i i y ==⨯=∑, 地块数为100,该地区这种水生动物的估计值为100606000⨯=. (2)样本()(),1,2,,20i i x y i =⋯的相关系数为()()20,0.96.iix x y y r -===≈∑ (3)由(2)知各样区的这种水生动物的数量与水草覆盖面积有很强的正相关性,由于各地块间水草覆盖面积差异很大,从而各地块间这种野生动物的数量差异很大,所以采用分层抽样的方法较好地保持了样本结构与总体结构得以执行,提高了样本的代表性,从而可以获得该地区这种水生动物数量更准确的估计.13.(2022·河南开封·模拟预测(理))大豆是我国重要的农作物,种植历史悠久.某种子实验基地培育出某大豆新品种,为检验其最佳播种日期,在A ,B 两块试验田上进行实验(两地块的土质等情况一致).6月25日在A 试验田播种该品种大豆,7月10日在B 试验田播种该品种大豆.收获大豆时,从中各随机抽取20份(每份1千粒),并测量出每份的质量(单位:克),按照[)100,150,[)150,200,[]200,250进行分组,得到如下表格:。
2024全国高考真题数学汇编:概率与统计章节综合
2024全国高考真题数学汇编概率与统计章节综合一、单选题1.(2024上海高考真题)已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是()A .气候温度高,海水表层温度就高B .气候温度高,海水表层温度就低C .随着气候温度由低到高,海水表层温度呈上升趋势D .随着气候温度由低到高,海水表层温度呈下降趋势2.(2024天津高考真题)下列图中,线性相关性系数最大的是()A .B .C .D .二、多选题3.(2024全国高考真题)随着“一带一路”国际合作的深入,某茶叶种植区多措并举推动茶叶出口.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x ,样本方差20.01s ,已知该种植区以往的亩收入X 服从正态分布 21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布 2N x s,则()(若随机变量Z 服从正态分布 2,N,()0.8413P Z )A .(2)0.2P XB .(2)0.5P XC .(2)0.5P Y D .(2)0.8P Y 三、填空题4.(2024上海高考真题)某校举办科学竞技比赛,有、、A B C 3种题库,A 题库有5000道题,B 题库有4000道题,C 题库有3000道题.小申已完成所有题,已知小申完成A 题库的正确率是0.92,B 题库的正确率是0.86,C 题库的正确率是0.72.现他从所有的题中随机选一题,正确率是.5.(2024天津高考真题),,,,A B C D E 五种活动,甲、乙都要选择三个活动参加.甲选到A 的概率为;已知乙选了A 活动,他再选择B 活动的概率为.6.(2024全国高考真题)甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为.四、解答题7.(2024全国高考真题)某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p ,设p 为升级改造后抽取的n 件产品的优级品率.如果p p 150件产品的数据,能否认为生12.247 )附:22()()()()()n ad bc K a b c d a c b d2P K k0.0500.0100.001k3.8416.63510.8288.(2024上海高考真题)为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:时间范围学业成绩0,0.50.5,11,1.51.5,22,2.5优秀5444231不优秀1341471374027(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1)(3)是否有95%的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?(附:22(),n ad bc a b c d a c b d 其中n a b c d , 2 3.8410.05P .)9.(2024北京高考真题)某保险公司为了了解该公司某种保险产品的索赔情况,从合同险期限届满的保单中随机抽取1000份,记录并整理这些保单的索赔情况,获得数据如下表:赔偿次数01234单数800100603010假设:一份保单的保费为0.4万元;前3次索赔时,保险公司每次赔偿0.8万元;第四次索赔时,保险公司赔偿0.6万元.假设不同保单的索赔次数相互独立.用频率估计概率.(1)估计一份保单索赔次数不少于2的概率;(2)一份保单的毛利润定义为这份保单的保费与赔偿总金额之差.(i )记X 为一份保单的毛利润,估计X 的数学期望 E X ;(ⅱ)如果无索赔的保单的保费减少4%,有索赔的保单的保费增加20%,试比较这种情况下一份保单毛利润的数学期望估计值与(i )中 E X 估计值的大小.(结论不要求证明)10.(2024全国高考真题)某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成绩为0分;若至少投中一次,则该队进入第二阶段.第二阶段由该队的另一名队员投篮3次,每次投篮投中得5分,未投中得0分.该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p ,乙每次投中的概率为q (1)若0.4p ,0.5q 5分的概率.(2)假设0p q ,(i )为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段比赛?(ii )为使得甲、乙所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛?参考答案1.C【分析】根据相关系数的性质可得正确的选项.【详解】对于AB ,当气候温度高,海水表层温度变高变低不确定,故AB 错误.对于CD ,因为相关系数为正,故随着气候温度由低到高时,海水表层温度呈上升趋势,故C 正确,D 错误.故选:C.2.A【分析】由点的分布特征可直接判断【详解】观察4幅图可知,A 图散点分布比较集中,且大体接近某一条直线,线性回归模型拟合效果比较好,呈现明显的正相关,r 值相比于其他3图更接近1.故选:A 3.BC【分析】根据正态分布的3 原则以及正态分布的对称性即可解出.【详解】依题可知,22.1,0.01x s ,所以 2.1,0.1Y N ,故 2 2.10.1 2.10.10.84130.5P Y P Y P Y ,C 正确,D 错误;因为 1.8,0.1X N ,所以 2 1.820.1P X P X ,因为 1.80.10.8413P X ,所以 1.80.110.84130.15870.2P X ,而 2 1.820.1 1.80.10.2P X P X P X ,B 正确,A 错误,故选:BC .4.0.85【分析】求出各题库所占比,根据全概率公式即可得到答案.【详解】由题意知,,,A B C 题库的比例为:5:4:3,各占比分别为543,,121212,则根据全概率公式知所求正确率5430.920.860.720.85121212p .故答案为:0.85.5.3512【分析】结合列举法或组合公式和概率公式可求甲选到A 的概率;采用列举法或者条件概率公式可求乙选了A 活动,他再选择B 活动的概率.【详解】解法一:列举法从五个活动中选三个的情况有:,,,,,,,,,ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE ,共10种情况,其中甲选到A 有6种可能性:,,,,,ABC ABD ABE ACD ACE ADE ,则甲选到A 得概率为:63105P;乙选A 活动有6种可能性:,,,,,ABC ABD ABE ACD ACE ADE ,其中再选则B 有3种可能性:,,ABC ABD ABE ,故乙选了A 活动,他再选择B 活动的概率为31=62.解法二:设甲、乙选到A 为事件M ,乙选到B 为事件N ,则甲选到A 的概率为 2435C 3C 5P M ;乙选了A 活动,他再选择B 活动的概率为 133524351C 2C C P MN C P N M P M故答案为:35;126.12/0.5【分析】将每局的得分分别作为随机变量,然后分析其和随机变量即可.【详解】设甲在四轮游戏中的得分分别为1234,,,X X X X ,四轮的总得分为X .该轮得分的概率 631448k P X,所以 31,2,3,48k E X k .从而 441234113382k k k E X E X X X X E X .记 0,1,2,3k p P X k k .如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以04411A 24p ;如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以34411A 24p .而X 的所有可能取值是0,1,2,3,故01231p p p p , 1233232p p p E X .所以121112p p,1213282p p ,两式相减即得211242p,故2312p p .所以甲的总得分不小于2的概率为2312p p .故答案为:12.【点睛】关键点点睛:本题的关键在于将问题转化为随机变量问题,利用期望的可加性得到等量关系,从而避免繁琐的列举.7.(1)答案见详解(2)答案见详解【分析】(1)根据题中数据完善列联表,计算2K,并与临界值对比分析;(2)用频率估计概率可得0.64p ,根据题意计算p .【详解】(1)根据题意可得列联表:优级品非优级品甲车间2624乙车间7030可得2215026302470754.687550100965416K,因为3.841 4.6875 6.635,所以有95%的把握认为甲、乙两车间产品的优级品率存在差异,没有99%的把握认为甲,乙两车间产品的优级品率存在差异.(2)由题意可知:生产线智能化升级改造后,该工厂产品的优级品的频率为960.64 150,用频率估计概率可得0.64p ,又因为升级改造前该工厂产品的优级品率0.5p ,则0.50.50.5 1.650.56812.247p ,可知p p所以可以认为生产线智能化升级改造后,该工厂产品的优级品率提高了. 8.(1)12500(2)0.9h(3)有【分析】(1)求出相关占比,乘以总人数即可;(2)根据平均数的计算公式即可得到答案;(3)作出列联表,再提出零假设,计算卡方值和临界值比较大小即可得到结论.【详解】(1)由表可知锻炼时长不少于1小时的人数为占比17943282558058,则估计该地区29000名学生中体育锻炼时长不少于1小时的人数为25 290001250058.(2)估计该地区初中生的日均体育锻炼时长约为10.50.511 1.5 1.522 2.51391911794328580222220.9 .则估计该地区初中学生日均体育锻炼的时长为0.9小时.(3)由题列联表如下:1,2其他合计优秀455095不优秀177308485合计222358580提出零假设0H :该地区成绩优秀与日均锻炼时长不少于1小时但少于2小时无关.其中0.05 .22580(4530817750) 3.976 3.84195485222358.则零假设不成立,即有95%的把握认为学业成绩优秀与日均锻炼时长不小于1小时且小于2小时有关.9.(1)110(2)(i)0.122万元;(ii)这种情况下一份保单毛利润的数学期望估计值大于(i )中 E X 估计值【分析】(1)根据题设中的数据可求赔偿次数不少2的概率;(2)(ⅰ)设 为赔付金额,则 可取0,0.8,0.1.6,2.4,3,用频率估计概率后可求 的分布列及数学期望,从而可求 E X .(ⅱ)先算出下一期保费的变化情况,结合(1)的结果可求 E Y ,从而即可比较大小得解.【详解】(1)设A 为“随机抽取一单,赔偿不少于2次”,由题设中的统计数据可得 603010180010060301010P A.(2)(ⅰ)设 为赔付金额,则 可取0,0.8,1.6,2.4,3,由题设中的统计数据可得 800410010,0.810005100010P P ,603( 1.6)100050P ,303( 2.4)1000100P ,101(3)1000100P,故 4133100.8 1.6 2.430.27851050100100E故 0.40.2780.122E X (万元).(ⅱ)由题设保费的变化为410.496%0.4 1.20.403255,故 0.1220.40320.40.1252E Y (万元),从而 E X E Y .10.(1)0.686(2)(i )由甲参加第一阶段比赛;(i )由甲参加第一阶段比赛;【分析】(1)根据对立事件的求法和独立事件的乘法公式即可得到答案;(2)(i )首先各自计算出331(1)P p q 甲,331(1)Pq p 乙,再作差因式分解即可判断;(ii)首先得到X 和Y 的所有可能取值,再按步骤列出分布列,计算出各自期望,再次作差比较大小即可.【详解】(1)甲、乙所在队的比赛成绩不少于5分,则甲第一阶段至少投中1次,乙第二阶段也至少投中1次,比赛成绩不少于5分的概率 3310.610.50.686P .(2)(i )若甲先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为331(1)P p q 甲,若乙先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为331(1)P q p 乙,0p q ,3333()()P P q q pq p p pq 甲乙2222()()()()()()q p q pq p p q p pq q pq p pq q pq2222()333p q p q p q pq 3()()3()[(1)(1)1]0pq p q pq p q pq p q p q ,P P 甲乙,应该由甲参加第一阶段比赛.(ii)若甲先参加第一阶段比赛,比赛成绩X 的所有可能取值为0,5,10,15,333(0)(1)1(1)(1)P X p p q, 3213511C 1P X p q q ,3223(10)1(1)C (1)P X p q q ,33(15)1(1)P X p q ,332()151(1)1533E X p q p p p q记乙先参加第一阶段比赛,比赛成绩Y 的所有可能取值为0,5,10,15,同理 32()1533E Y q q q p()()15[()()3()]E X E Y pq p q p q pq p q 15()(3)p q pq p q ,因为0p q ,则0p q ,31130p q ,则()(3)0p q pq p q ,应该由甲参加第一阶段比赛.【点睛】关键点点睛:本题第二问的关键是计算出相关概率和期望,采用作差法并因式分解从而比较出大小关系,最后得到结论.。
数学高考概率与统计历年真题精选2024
数学高考概率与统计历年真题精选2024概率与统计是高中数学的重要内容之一,在高考中占有相当的比重。
为了帮助广大考生更好地备考概率与统计,本文整理了数学高考概率与统计的历年真题,并进行了精选,希望对考生的备考有所帮助。
1. 选择题精选1)(2015年广东高考)设事件A、B独立,P(A)=0.3,P(A∪B)=0.7,则P(B)为()A. 0.2B. 0.3C. 0.4D. 0.5解析:由独立事件的性质可得,P(A∪B) = P(A) + P(B) - P(A)·P(B),代入已知条件可得,0.7 = 0.3 + P(B) - 0.3·P(B),整理得P(B) = 0.4,故选C。
2)(2016年江苏高考)某人参加驾驶证考试,第一道选择题有5个选项,有且只有1个正确选项,则某人随机选择答案的通过率为()。
A. 5%B. 20%C. 25%D. 80%解析:某人随机选择答案的通过率为正确答案的比例,即为1/5,转换成百分数为20%,故选B。
2. 解答题精选1)(2017年北京高考)某地下车库共有4层,每层有16个停车位,小明停车习惯于停在第1层,而小红停车习惯于停在第2层,他们同时来到车库停车,请问小明和小红停在同一层的概率是多少?解析:小明停在第1层的概率为1/4,小红停在第2层的概率为1/4,由于小明和小红是同时来到车库停车的,因此小明和小红停在同一层的概率为(1/4)·(1/4) = 1/16。
2)(2018年福建高考)某地区的夏季天气,可以分为晴天、多云、阴天三种情况,以往观测数据表明:晴天、多云、阴天的概率分别为0.4、0.3、0.3。
今有一天这个地区天气为晴天,已知当天多云、阴天的概率为x和y,求概率x与y之和的最大值。
解析:根据题意,晴天的概率为0.4,多云和阴天的概率之和为0.6,因此x+y=0.6。
根据概率的性质,x和y的取值范围为[0, 0.3],且x+y的最大值为0.6。
高三数学练习题:概率与统计
高三数学练习题:概率与统计
问题1:
某班有40名学生,其中有30名学生参加了一个数学竞赛。
现在我们从这些学生中随机抽取一名学生,请计算以下概率:
a) 抽中一位参加了数学竞赛的学生;
b) 抽中一位未参加数学竞赛的学生。
问题2:
某班有50名学生,其中30人喜欢数学,20人喜欢英语,15人同时喜欢数学和英语。
现在我们从这些学生中随机选择一位学生,请计算以下概率:
a) 抽中一位喜欢数学的学生;
b) 抽中一位喜欢英语的学生;
c) 抽中一位同时喜欢数学和英语的学生。
问题3:
某地区的天气预报表明,星期一下雨的概率是0.3,星期二下雨的概率是0.4。
而星期一和星期二都下雨的概率是0.15。
现在,我们从这两个星期中随机选择一个天气预报,请计算以下概率:
a) 抽中星期一下雨;
b) 抽中星期二下雨;
c) 抽中星期一和星期二都下雨。
问题4:
某班有90名学生,其中40人喜欢数学,60人喜欢英语,20人同时喜欢数学和英语。
现在我们从这些学生中选择两个学生,请计算以下概率:
a) 抽中两位喜欢数学的学生;
b) 抽中两位喜欢英语的学生;
c) 抽中一位喜欢数学的学生和一位喜欢英语的学生。
问题5:
某打印店收到100份订单,其中有20份订单有错误。
现在,我们从这些订单中随机抽取一份,请计算以下概率:
a) 抽中一份有错误的订单;
b) 抽中一份没有错误的订单。
2024高考数学概率与统计历年题目大盘点
2024高考数学概率与统计历年题目大盘点概率与统计作为高中数学的重要内容之一,一直以来都是高考中的必考内容。
掌握好概率与统计的理论知识,并通过做题来加深对知识点的理解和应用能力的培养,对于顺利应对高考数学考试至关重要。
本文将通过对2024年高考数学概率与统计部分的历年题目进行大盘点,帮助同学们更好地掌握和复习这一知识点。
一、选择题1. 设随机变量X的概率密度函数为f(x) = kx^2,其中0<x<1,求k的值。
2. 设随机变量X的概率密度函数为f(x) = cx(1-x),其中0<x<1,求c的值。
3. 已知事件A发生的概率为P(A) = 0.4,事件B发生的概率为P(B) = 0.5,事件A与事件B独立,求事件A与事件B同时发生的概率P(A∩B)。
4. 写出使得事件A、B、C相互独立的随机试验的条件。
5. 已知事件A发生的概率为P(A) = 0.3,事件B发生的概率为P(B) = 0.4,事件A与事件B互斥,求事件"A或B发生"的概率P(A∪B)。
6. 已知事件A发生的概率为P(A) = 0.3,事件B发生的概率为P(B) = 0.4,且P(A∪B) = 0.6,求事件"A与B互斥"的概率P(A∩B)。
7. 一批产品共100个,其中有4个次品。
从中任意取出5个,求取出的样本中有2个次品的概率。
8. 已知事件A、B独立,P(A) = 0.4,P(B) = 0.6,求P(A∪B)与P(A∩B)。
二、计算题1. 某汽车4个月出事故的概率为0.01,问8个月中出事故至少2次的概率是多少?2. 某商品的销售量服从正态分布N(400,100),求销售量大于380的概率。
3. 某座城市的某个月的降水量服从正态分布N(150,25),求该月降水量大于200的概率。
4. 某厂生产的电视机寿命服从正态分布N(1000,100^2),求电视机寿命小于900的概率。
专题15 概率与统计专项高考真题(带答案及解析)
专题15概率与统计(解答题)1.【2021·全国高考真题(理)】某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备9.810.310.010.29.99.810.010.110.29.7新设备10.110.410.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和y ,样本方差分别记为21s 和22s .(1)求x ,y ,21s ,22s ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x -≥不认为有显著提高).【答案】(1)221210,10.3,0.036,0.04x y s s ====;(2)新设备生产产品的该项指标的均值较旧设备有显著提高.【分析】(1)根据平均数和方差的计算方法,计算出平均数和方差.(2)根据题目所给判断依据,结合(1)的结论进行判断.【详解】(1)9.810.31010.29.99.81010.110.29.71010x +++++++++==,10.110.410.11010.110.310.610.510.410.510.310y +++++++++==,22222222210.20.300.20.10.200.10.20.30.03610s +++++++++==,222222222220.20.10.20.30.200.30.20.10.20.0410s +++++++++==.(2)依题意,0.320.15y x -==⨯=,=,y x -≥,所以新设备生产产品的该项指标的均值较旧设备有显著提高.2.【2021·北京高考真题】为加快新冠肺炎检测效率,某检测机构采取“k 合1检测法”,即将k 个人的拭子样本合并检测,若为阴性,则可以确定所有样本都是阴性的;若为阳性,则还需要对本组的每个人再做检测.现有100人,已知其中2人感染病毒.(1)①若采用“10合1检测法”,且两名患者在同一组,求总检测次数;②已知10人分成一组,分10组,两名感染患者在同一组的概率为111,定义随机变量X 为总检测次数,求检测次数X 的分布列和数学期望E (X );(2)若采用“5合1检测法”,检测次数Y 的期望为E (Y ),试比较E (X )和E (Y )的大小(直接写出结果).【答案】(1)①20次;②分布列见解析;期望为32011;(2)()()E Y E X >.【分析】(1)①由题设条件还原情境,即可得解;②求出X 的取值情况,求出各情况下的概率,进而可得分布列,再由期望的公式即可得解;(2)求出两名感染者在一组的概率,进而求出()E Y ,即可得解.【详解】(1)①对每组进行检测,需要10次;再对结果为阳性的组每个人进行检测,需要10次;所以总检测次数为20次;②由题意,X 可以取20,30,()12011P X ==,()1103011111P X ==-=,则X 的分布列:X2030P1111011所以()1103202030111111E X =⨯+⨯=;(2)由题意,Y 可以取25,30,两名感染者在同一组的概率为232981510020499C C P C ==,不在同一组的概率为19599P =,则()()49529502530=999999E Y E X =⨯+⨯>.3.【2021·全国高考真题】某学校组织“一带一路”知识竞赛,有A ,B 两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A 类问题中的每个问题回答正确得20分,否则得0分;B 类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A 类问题的概率为0.8,能正确回答B 类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A 类问题,记X 为小明的累计得分,求X 的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.【答案】(1)见解析;(2)B 类.【分析】(1)通过题意分析出小明累计得分X 的所有可能取值,逐一求概率列分布列即可.(2)与(1)类似,找出先回答B 类问题的数学期望,比较两个期望的大小即可.【详解】(1)由题可知,X 的所有可能取值为0,20,100.()010.80.2P X ==-=;()()200.810.60.32P X ==-=;()1000.80.60.48P X ==⨯=.所以X 的分布列为X020100P0.20.320.48(2)由(1)知,()00.2200.321000.4854.4E X =⨯+⨯+⨯=.若小明先回答B 问题,记Y 为小明的累计得分,则Y 的所有可能取值为0,80,100.()010.60.4P Y ==-=;()()800.610.80.12P Y ==-=;()1000.80.60.48P X ==⨯=.所以()00.4800.121000.4857.6E Y =⨯+⨯+⨯=.因为54.457.6<,所以小明应选择先回答B 类问题.4.【2021·全国高考真题】一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X 表示1个微生物个体繁殖下一代的个数,()(0,1,2,3)i P X i p i ===.(1)已知01230.4,0.3,0.2,0.1p p p p ====,求()E X ;(2)设p 表示该种微生物经过多代繁殖后临近灭绝的概率,p 是关于x 的方程:230123p p x p x p x x +++=的一个最小正实根,求证:当()1E X ≤时,1p =,当()1E X >时,1p <;(3)根据你的理解说明(2)问结论的实际含义.【答案】(1)1;(2)见解析;(3)见解析.【分析】(1)利用公式计算可得()E X .(2)利用导数讨论函数的单调性,结合()10f =及极值点的范围可得()f x 的最小正零点.(3)利用期望的意义及根的范围可得相应的理解说明.【详解】(1)()00.410.320.230.11E X =⨯+⨯+⨯+⨯=.(2)设()()3232101f x p x p x p x p =++-+,因为32101p p p p +++=,故()()32322030f x p x p x p p p x p =+-+++,若()1E X ≤,则123231p p p ++≤,故2302p p p +≤.()()23220332f x p x p x p p p '=+-++,因为()()20300f p p p '=-++<,()230120f p p p '=+-≤,故()f x '有两个不同零点12,x x ,且1201x x <<≤,且()()12,,x x x ∈-∞⋃+∞时,()0f x '>;()12,x x x ∈时,()0f x '<;故()f x 在()1,x -∞,()2,x +∞上为增函数,在()12,x x 上为减函数,若21x =,因为()f x 在()2,x +∞为增函数且()10f =,而当()20,x x ∈时,因为()f x 在()12,x x 上为减函数,故()()()210f x f x f >==,故1为230123p p x p x p x x +++=的一个最小正实根,若21>x ,因为()10f =且在()20,x 上为减函数,故1为230123p p x p x p x x +++=的一个最小正实根,综上,若()1E X ≤,则1p =.若()1E X >,则123231p p p ++>,故2302p p p +>.此时()()20300f p p p '=-++<,()230120f p p p '=+->,故()f x '有两个不同零点34,x x ,且3401x x <<<,且()()34,,x x x ∈-∞+∞ 时,()0f x '>;()34,x x x ∈时,()0f x '<;故()f x 在()3,x -∞,()4,x +∞上为增函数,在()34,x x 上为减函数,而()10f =,故()40f x <,又()000f p =>,故()f x 在()40,x 存在一个零点p ,且1p <.所以p 为230123p p x p x p x x +++=的一个最小正实根,此时1p <,故当()1E X >时,1p <.(3)意义:每一个该种微生物繁殖后代的平均数不超过1,则若干代必然灭绝,若繁殖后代的平均数超过1,则若干代后被灭绝的概率小于1.5.【2020年高考全国Ⅰ卷理数】甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12,(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.【解析】(1)甲连胜四场的概率为116.(2)根据赛制,至少需要进行四场比赛,至多需要进行五场比赛.比赛四场结束,共有三种情况:甲连胜四场的概率为116;乙连胜四场的概率为116;丙上场后连胜三场的概率为18.所以需要进行第五场比赛的概率为11131161684---=.(3)丙最终获胜,有两种情况:比赛四场结束且丙最终获胜的概率为18.比赛五场结束且丙最终获胜,则从第二场开始的四场比赛按照丙的胜、负、轮空结果有三种情况:胜胜负胜,胜负空胜,负空胜胜,概率分别为116,18,18.因此丙最终获胜的概率为111178168816+++=.6.【2020年高考全国Ⅰ卷理数】某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i=1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i iy==∑,2021)8(0ii x x =-=∑,2021)9000(i iy y =-=∑,201)()800(i i i y y x x =--=∑.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i=1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数)((iinx y r x y --=∑1.414≈.【解析】(1)由已知得样本平均数20160120i iy y===∑,从而该地区这种野生动物数量的估计值为60×200=12000.(2)样本(,)i i x y (1,2,,20)i =的相关系数20220.943(iix y y x r --=∑.(3)分层抽样:根据植物覆盖面积的大小对地块分层,再对200个地块进行分层抽样.理由如下:由(2)知各样区的这种野生动物数量与植物覆盖面积有很强的正相关.由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.7.【2020年高考全国III 卷理数】某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次锻炼人次空气质量等级[0,200](200,400](400,600]1(优)216252(良)510123(轻度污染)6784(中度污染)72(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:K 2=()()()()2) n ad bc a b c d a c b d -++++,P (K 2≥k )0.0500.0100.001k 3.841 6.63510.828.【解析】(1)由所给数据,该市一天的空气质量等级为1,2,3,4的概率的估计值如下表:空气质量等级1234概率的估计值0.430.270.210.09(2)一天中到该公园锻炼的平均人次的估计值为1(100203003550045)350100⨯+⨯+⨯=.(3)根据所给数据,可得22⨯列联表:人次≤400人次>400空气质量好3337空气质量不好228根据列联表得22100(3382237) 5.82055457030K ⨯⨯-⨯=≈⨯⨯⨯.由于5.820 3.841>,故有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.8.【2020年高考山东】为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM 2.5和2SO 浓度(单位:3μg/m ),得下表:2SO [0,50](50,150](150,475]PM 2.5[0,35]32184(35,75]6812(75,115]3710(1)估计事件“该市一天空气中PM 2.5浓度不超过75,且2SO 浓度不超过150”的概率;(2)根据所给数据,完成下面的22⨯列联表:2SO PM 2.5[0,150](150,475][0,75](75,115](3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM 2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,2()P K k ≥0.0500.0100.001k3.8416.63510.828【解析】(1)根据抽查数据,该市100天的空气中PM2.5浓度不超过75,且2SO 浓度不超过150的天数为32186864+++=,因此,该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150的概率的估计值为640.64100=.(2)根据抽查数据,可得22⨯列联表:2SO PM 2.5[0,150](150,475][0,75]6416(75,115]1010(3)根据(2)的列联表得22100(64101610)7.48480207426K ⨯⨯-⨯=≈⨯⨯⨯.由于7.484 6.635>,故有99%的把握认为该市一天空气中PM 2.5浓度与2SO 浓度有关.9.【2020年高考北京】某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:男生女生支持不支持支持不支持方案一200人400人300人100人方案二350人250人150人250人假设所有学生对活动方案是否支持相互独立.(Ⅰ)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(Ⅲ)将该校学生支持方案的概率估计值记为0p ,假设该校年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为1p ,试比较0p 与1p 的大小.(结论不要求证明)【解析】(Ⅰ)该校男生支持方案一的概率为2001200+4003=,该校女生支持方案一的概率为3003300+1004=;(Ⅱ)3人中恰有2人支持方案一分两种情况,(1)仅有两个男生支持方案一,(2)仅有一个男生支持方案一,一个女生支持方案一,所以3人中恰有2人支持方案一概率为:2121311313((1)()3433436C -+-=;(Ⅲ)01p p <【点睛】本题考查利用频率估计概率、独立事件概率乘法公式,考查基本分析求解能力,属基础题.10.【2019年高考全国Ⅲ卷理数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).【答案】(1)a=0.35,b=0.10;(2)甲、乙离子残留百分比的平均值的估计值分别为4.05,6.00.【解析】(1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1–0.05–0.15–0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.11.【2019年高考全国Ⅱ卷理数】11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.【答案】(1)0.5;(2)0.1.【解析】(1)X=2就是10∶10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P(X=2)=0.5×0.4+(1–0.5)×(1–0.4)=0.5.(2)X =4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为[0.5×(1–0.4)+(1–0.5)×0.4]×0.5×0.4=0.1.12.【2019年高考天津卷理数】设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.【答案】(1)分布列见解析,()2E X =;(2)20243.【分析】本小题主要考查离散型随机变量的分布列与数学期望,互斥事件和相互独立事件的概率计算公式等基础知识.考查运用概率知识解决简单实际问题的能力.满分13分.【解析】(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23,故2~(3,)3X B ,从而3321()C ()(),0,1,2,333k k k P X k k -===.所以,随机变量X 的分布列为X0123P 1272949827随机变量X 的数学期望2()323E X =⨯=.(2)设乙同学上学期间的三天中7:30之前到校的天数为Y ,则2~(3,)3Y B ,且{3,1}{2,0}M X Y X Y ===== .由题意知事件{3,1}X Y ==与{2,0}X Y ==互斥,且事件{3}X =与{1}Y =,事件{2}X =与{0}Y =均相互独立,从而由(1)知()({3,1}{2,0})P M P X Y X Y ===== (3,1)(2,0)P X Y P X Y ===+==(3)(1)(2)(0)P X P Y P X P Y ===+==824120279927243=⨯+⨯=.13.【2019年高考北京卷理数】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(1)从全校学生中随机抽取1人,估计该学生上个月A ,B 两种支付方式都使用的概率;(2)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由.【答案】(1)0.4;(2)分布列见解析,E (X )=1;(3)见解析.【解析】(1)由题意知,样本中仅使用A 的学生有18+9+3=30人,仅使用B 的学生有10+14+1=25人,A ,B 两种支付方式都不使用的学生有5人.故样本中A ,B 两种支付方式都使用的学生有100−30−25−5=40人.所以从全校学生中随机抽取1人,该学生上个月A ,B 两种支付方式都使用的概率估计为400.4100=.(2)X 的所有可能值为0,1,2.记事件C 为“从样本仅使用A 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”,事件D 为“从样本仅使用B 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”.由题设知,事件C ,D 相互独立,且93141()0.4,()0.63025P C P D ++====.所以(2)()()()0.24P X P CD P C P D ====,(1)()P X P CD CD ==()()()()P C P D P C P D =+0.4(10.6)(10.4)0.6=⨯-+-⨯0.52=,(0)()()()0.24P X P CD P C P D ====.所以X 的分布列为X012P 0.240.520.24故X 的数学期望()00.2410.5220.241E X =⨯+⨯+⨯=.(3)记事件E 为“从样本仅使用A 的学生中随机抽查3人,他们本月的支付金额都大于2000元”.假设样本仅使用A 的学生中,本月支付金额大于2000元的人数没有变化,则由上个月的样本数据得33011()C 4060P E ==.答案示例1:可以认为有变化.理由如下:P (E )比较小,概率比较小的事件一般不容易发生.一旦发生,就有理由认为本月的支付金额大于2000元的人数发生了变化,所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E 是随机事件,P (E )比较小,一般不容易发生,但还是有可能发生的,所以无法确定有没有变化.14.【2019年高考全国Ⅰ卷理数】为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i = 表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i = ,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i = 为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性.【答案】(1)分布列见解析;(2)(i)证明见解析,(ii)45 127p =,解释见解析.【解析】X 的所有可能取值为1,0,1-.(1)(1)P X αβ=-=-,(0)(1)(1)P X αβαβ==+--,(1)(1)P X αβ==-,所以X 的分布列为X1-01P (1)αβ-(1)(1)αβαβ+--(1)αβ-(2)(i )由(1)得0.4,0.5,0.1a b c ===.因此110.40.5 0.1i i i i p p p p -+=++,故110.1()0.4()i i i i p p p p +--=-,即114()i i i i p p p p +--=-.又因为1010p p p -=≠,所以1{}(0,1,2,,7)i i p p i +-= 为公比为4,首项为1p 的等比数列.(ii )由(i )可得88776100p p p p p p p p =-+-++-+ 877610()()()p p p p p p =-+-++-81413p -=.由于8=1p ,故18341p =-,所以44433221101( 411()327)(5())p p p p p p p p p p -=-+-+-+=-=.4p 表示最终认为甲药更有效的概率,由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为410.0039257p =≈,此时得出错误结论的概率非常小,说明这种试验方案合理.。
概率统计高考题2017-2019
高二理科数学概率统计(2017)2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.13.(5分)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次.X表示抽到的二等品件数,则DX=.3.(5分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:经计算得==9.97,s==≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.18.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).K2=.18.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?高二理科数学概率统计(2018)8.(5分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.B.C.D.3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半10.(5分)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p38.(5分)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(x=4)<P(X=6),则p=()A.0.7B.0.6C.0.4D.0.318.(12分)如图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,…,17)建立模型①:=﹣30.4+13.5t;根据2010年至2016年的数据(时间变量t的值依次为1,2,…,7)建立模型②:=99+17.5t.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.20.(12分)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;(ⅱ)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:K2=,高二理科数学概率统计(2019)6.(5分)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.B.C.D.15.(5分)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是.13.(5分)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为.17.为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A、B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如图直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).18.(12分)11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.21.(12分)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得﹣1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得﹣1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i﹣1+bp i+cp i+1(i=1,2,…,7),其中a=P(X=﹣1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.(i)证明:{p i+1﹣p i}(i=0,1,2,…,7)为等比数列;(ii)求p4,并根据p4的值解释这种试验方案的合理性.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.(2019年全国卷1某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:
记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),表示购机的同时购买的易损零件数.
(I)若=19,求y与x的函数解析式;
(II)若要求“需更换的易损零件数不大于”的频率不小于0.5,求的最小值;
(III)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?
2.(2019年全国卷2)
3.(2019年全国卷3)17.(12分)
为了解甲、乙两种离子在小鼠体内的残留程度,进行如下实验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据实验数据分别得到如下直方图:
记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.
(1)求乙离子残留百分比直方图中的a,b的值;
(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用改组区间的中点值为代表).
4.(2018年全国卷)
5.(2018年上海卷)
6.(2018年全国卷1)19.(12分)
某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:
未使用节水龙头50天的日用水量频数分布表
日用水量[)
00.1
,[)
0.10.2
,[)
0.20.3
,[)
0.30.4
,[)
0.40.5
,[)
0.50.6
,[)
0.60.7
,
频数 1 3 2 4 9 26 5 使用了节水龙头50天的日用水量频数分布表
日用水量[)
00.1
,[)
0.10.2
,[)
0.20.3
,[)
0.30.4
,[)
0.40.5
,[)
0.50.6
,
频数 1 5 13 10 16 5 ⑴在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:
⑵估计该家庭使用节水龙头后,日用水量小于0.35m 3的概率;
⑶估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.) 7.(2018年全国卷2)18.(12分)
下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.
20002001200220032004200520062007200820092010201120122013201420152016年份200
406080
为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回
归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,,17L )建立模型①:
ˆ30.413.5y
t =-+;根据2010年至2016年的数据(时间变量t 的值依次为1,2,,7L )建立模型②:ˆ9917.5y
t =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;
(2)你认为用哪个模型得到的预测值更可靠?并说明理由.
8.(2017年全国卷1)
为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:
经计算得16119.9716i i x x ===∑,0.212s ==≈,18.439≈,16
1
()(8.5) 2.78i i x x i =--=-∑,
其中i x 为抽取的第i 个零件的尺寸,
1,2,,16i =⋅⋅⋅.
(1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).
(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?
(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)
9.(2015年全国卷)某公司为确定下一年度投入某种产品的宣传费,需了解年
宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费和年销售量(i=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值。
x r
y u r
w u r
8
1
i =∑
(x 1-x r )2
8
1
i =∑
(w 1-w u r )2
8
1
i =∑
(x 1-x r )
(y-y u r )
8
1
i =∑
(w 1-w u r )
(y-y u r )
46.6 563
6.8
289.8
1.6
1469
108.8
表中w 1 x ,w u r =
1
8
8
1
i w =∑1
(1) 根据散点图判断,y=a+bx 与x y 关于年宣传费x 的
回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;
(Ⅲ)以知这种产品的年利率z与x、y的关系为z=0.2y-x。
根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?
(ii)年宣传费x为何值时,年利率的预报值最大?
附:对于一组数据(u1 v1),(u2 v2)…….. (un vn),其回归线v=αβ
+u的斜
率和截距的最小二乘估计分别为:
10.(2019年全国卷1)某商场为提高服务质量,随机调查了50名男顾客和50名女项客,
满意不满意
男顾客40 10
女顾客30 20
(1
(2)能否有95%的把握认为男、女顾客对该商场服务的评价有些异?
附:
2
2
()
()()()()
n ad bc
k
a b c d a c b d
-
=
++++
.
2
()
P K k
≥0.050 0.010 0.001
k 3.841 6.635 10.828
11.(2017年全国卷18. 某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完。
根据往年销售经验,每天需求量与当天最高气温(单位:C
o)有关。
如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[)
20,25,需求量为300瓶;如果最高气温低于20,需求量为200瓶。
为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频率分布表:
以最高气温位于各区间的频率代替最高气温位于该区间的概率。
(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元)。
当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值并估计Y大于0的概率?。