高中二次函数练习题
二次函数练习题
![二次函数练习题](https://img.taocdn.com/s3/m/2d4ef760590216fc700abb68a98271fe900eaf7b.png)
二次函数练习题一、选择题1. 下列哪个函数是二次函数?A. y = x + 1B. y = 2x^2 3x + 1C. y = x^3 3xD. y = sqrt(x)2. 二次函数y = ax^2 + bx + c(a≠0)的图象是()。
A. 抛物线B. 直线C. 双曲线D. 圆3. 二次函数y = 2x^2 + 4x + 5的顶点坐标是()。
A. (1, 3)B. (2, 9)C. (1, 7)D. (0, 5)4. 当a > 0时,二次函数y = ax^2 + bx + c的图象开口()。
A. 向上B. 向下C. 向左D. 向右二、填空题1. 二次函数y = x^2 4x + 4可以写成y = (x ____)^2的形式。
2. 已知二次函数y = x^2 + 2x + 3的顶点坐标为(1, 4),则该函数的对称轴是直线____。
3. 若二次函数y = ax^2 + bx + c的图象开口向上,且顶点坐标为(1, 2),则a的取值范围是____。
三、解答题1. 已知二次函数y = x^2 6x + 9,求其顶点坐标。
2. 求二次函数y = 2x^2 + 4x + 5在x = 2时的函数值。
3. 已知二次函数y = ax^2 + bx + c的图象经过点(1, 3)和(1, 7),且顶点坐标为(0, 5),求该二次函数的解析式。
4. 设二次函数y = x^2 + mx + 1的图象与x轴相交于A、B两点,求线段AB的长度。
5. 已知二次函数y = x^2 4x + 3的图象与x轴相交于C、D两点,求线段CD的中点坐标。
四、应用题1. 一抛物线开口向上,其顶点为原点O(0,0),且经过点P(2,8)。
求该抛物线的解析式。
2. 一运动员在水平地面上进行跳远训练,其跳跃的高度h(单位:米)与跳跃的水平距离x(单位:米)之间的关系可以近似表示为二次函数h = 0.02x^2 + 0.6x。
求运动员跳跃时水平距离为4米时的高度。
二次函数练习题8套
![二次函数练习题8套](https://img.taocdn.com/s3/m/f31e1636453610661ed9f450.png)
一、填空1、二次函数y=-x 2+6x+3的图象顶点为_________对称轴为_________。
2、二次函数y=(x-1)(x+2)的顶点为_________,对称轴为________。
3、二次函数y=2(x+3)(x-1)的x 轴的交点的个数有_______个,交点坐标为_____________。
4、y=x 2-3x-4与x 轴的交点坐标是__________,与y 轴交点坐标是____________5、由y=2x 2和y=2x 2+4x-5的顶点坐标和二次项系数可以得出y=2x 2+4x-5的图象可由y=2x 2的图象向__________平移________个单位,再向_______平移______个单位得到。
二、解答:6、求y=2x 2+x-1与x 轴、y 轴交点的坐标。
7、求y=31x 2212--x 的顶点坐标。
8、已知二次函数图象顶点坐标(-3,21)且图象过点(2,211),求二次函数解析式及图象与y 轴的交点坐标。
9、已知二次函数图象与x 轴交点(2,0)(-1,0)与y 轴交点是(0,-1)求解析式及顶点坐标。
10、分析若二次函数y=ax 2+bx+c 经过(1,0)且图象关于直线x=21,对称,那么图象还必定经过哪一点?1、二次函数y=-3x2-2x+1,∵a=_________ ∴图象开口向________2、二次函数y=2x2-1 ∵a=_________∴函数有最_________值。
3、二次函数y=x2+x+1 ∵b2-4ac=____________∴函数图象与x轴____________交点。
4、二次函数y=x2-2x-3的图象是开口向_________的抛物线,抛物线的对称轴是直线______,抛物线的顶点坐标是______________。
5、已知y=ax2+bx+c的图象如下,则:a+b+c_______0,a-b+c__________0。
2a+b________07、描点画函数y=3x2-4x+1图象并根据图象回答问题画图①当x________时,y>0当__________时,y<0当__________时,y=01②若x1=5,x2=7,x3=3对应的函数值是y1,y2,y3,用“<”连接y1,y2,y3 8、求y=x2-5x+6与x轴交点的坐标9、求抛物线y=x2+x+2与直线x=1的交点坐标。
二次函数练习题及答案
![二次函数练习题及答案](https://img.taocdn.com/s3/m/0c67dc6a25c52cc58bd6be1b.png)
A B C D O x y 二次函数练习题(1)1.二次函数y=ax 2+bx+c 的图象如图1所示,下列五个代数式ab 、ac 、a-b+c 、b 2- 4ac 、2a+b 中,值大于0的个数为( )A.5B.4C.3D.22.二次函数c bx ax y ++=2的图象如图所示,下列结论:①0<c ;②0>b ;③024>++c b a ;④042>-ac b .其中正确的有 ( )(A ) 1个 (B ) 2个 (C ) 3个 (D ) 4个3.已知二次函数c bx ax y ++=2的图象与x 轴交于点(-2,0),(x 1,0)且1<x 1<2,与y·轴正半轴的交点在点(0,2)的下方,下列结论:①a <b <0;②2a+c >0;③4a+c< 0,④2a -b+l >0.其中的有正确的结论是(填写序号)__________.4.把抛物线y=12x 2 向左平移三个单位, 再向下平移两个单位所得的关系式为________. 5.将抛物线y=ax 2向右平移2个单位,再向上平移3个单位,移动后的抛物线经过点(3,-1),那么移动后的抛物线的关系式为__________. 6.抛物线c bx ax y ++=2如右图所示,则它关于y 轴对称 的抛物线的解析式是__________.7.已知二次函数y=2x 2-mx-4的图象与x 轴的两个交点的横坐标的倒数和为2,则m=_________.8.如图,四边形ABCD 是矩形,A 、B 两点在x 轴的正半轴上,C 、D 两点在抛物线y =-x 2+6x 上.设OA =m (0<m <3),矩形ABCD 的周长为l ,则l 与m 的函数解析式为 .9.已知抛物线22b x x y ++=经过点1()4a -,和1()a y -,,则1y 的值是 .10、若二次函数y=ax 2+bx+c 的顶点在第一象限,且经过点(0,1),(-1,0),则S=a+b+c 的变化范围是 ( ) 图1 yO 3 31(A) 0<S<2 (B) S>1 (C) 1<S<2 (D)-1<S<111、已知二次函数y =ax 2(a ≥1)的图像上两点A 、B 的横坐标分别是-1、2,点O 是坐标原点,如果△AOB 是直角三角形,则△OAB 的周长为 。
高考资料 二次函数基础练习题大全(含答案)
![高考资料 二次函数基础练习题大全(含答案)](https://img.taocdn.com/s3/m/258362ffad02de80d5d8407d.png)
二次函数基础练习题练习一 二次函数1、 一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t (秒)的数据如下表:写出用t 表示s 的函数关系式:2、下列函数:① 23yx ;② 21y x x x ;③ 224y x x x ;④ 21y x x ; ⑤ 1y x x ,其中是二次函数的是 ,其中a ,b ,c3、当m 时,函数2235ym x x (m 为常数)是关于x 的二次函数4、当____m 时,函数2221m m ym m x 是关于x 的二次函数 5、当____m 时,函数2564m m ym x +3x 是关于x 的二次函数 6、若点 A ( 2,m ) 在函数 12-=x y 的图像上,则A 点的坐标是____.7、在圆的面积公式 S =πr 2 中,s 与 r 的关系是( )A 、一次函数关系B 、正比例函数关系C 、反比例函数关系D 、二次函数关系8、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式;(2)当小正方形边长为3cm 时,求盒子的表面积.9、如图,矩形的长是 4cm ,宽是 3cm ,如果将长和宽都增加 x cm , 那么面积增加 ycm 2, ① 求 y 与 x 之间的函数关系式.② 求当边长增加多少时,面积增加 8cm 2.10、已知二次函数),0(2≠+=a c ax y 当x=1时,y= -1;当x=2时,y=2,求该函数解析式.11、富根老伯想利用一边长为a 米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形.(1) 如果设猪舍的宽AB 为x 米,则猪舍的总面积S (米2)与x 有怎样的函数关系?(2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?练习二 函数2ax y =的图像与性质1、填空:(1)抛物线221x y =的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ;(2)抛物线221x y -=的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ;2、对于函数22x y =下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④图像关于y 轴对称.其中正确的是 .3、抛物线 y =-x 2 不具有的性质是( )A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点4、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S =12gt 2(g =9.8),则 s 与 t 的函数图像大致是( )tttA B C D5、函数2ax y =与b ax y +-=的图像可能是( )A .B .C .D . 6、已知函数24m m y mx 的图像是开口向下的抛物线,求m 的值.7、二次函数12-=m mxy 在其图像对称轴的左侧,y 随x 的增大而增大,求m 的值.8、二次函数223x y -=,当x 1>x 2>0时,求y 1与y 2的大小关系. 9、已知函数()422-++=m m x m y 是关于x 的二次函数,求:(1) 满足条件的m 的值;(2) m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时,y 随x 的增大而增大;(3) m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x 的增大而减小?10、如果抛物线2y ax 与直线1y x 交于点,2b ,求这条抛物线所对应的二次函数的关系式.练习三 函数c ax y +=2的图象与性质st O1、抛物线322--=x y 的开口 ,对称轴是 ,顶点坐标是 ,当x 时, y 随x 的增大而增大, 当x 时, y 随x 的增大而减小.2、将抛物线231x y =向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 .3、任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是 .4、将抛物线122-=x y 向上平移4个单位后,所得的抛物线是 ,当x= 时,该抛物线有最 (填大或小)值,是 .5、已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m =________;6、二次函数c ax y +=2()0≠a 中,若当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值等于 .练习四 函数()2h x a y -=的图象与性质1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有最 值 .2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标.(1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位.3、请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个).4、二次函数()2h x a y -=的图象如图:已知21=a ,OA=OC ,试求该抛物线的解析式.5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积.6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6.(1)求出此函数关系式.(2)说明函数值y 随x 值的变化情况.7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值.练习五 ()k h x a y +-=2的图象与性质 1、请写出一个二次函数以(2, 3)为顶点,且开口向上.____________.2、二次函数 y =(x -1)2+2,当 x =____时,y 有最小值.3、函数 y =12 (x -1)2+3,当 x ____时,函数值 y 随 x 的增大而增大.4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到.5、 已知抛物线的顶点坐标为2,1,且抛物线过点3,0,则抛物线的关系式是6、 如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( )A 、x>3B 、x<3C 、x>1D 、x<17、已知函数()9232+--=x y .(1) 确定下列抛物线的开口方向、对称轴和顶点坐标;(2) 当x= 时,抛物线有最 值,是 .(3) 当x 时,y 随x 的增大而增大;当x 时,y 随x的增大而减小.(4) 求出该抛物线与x 轴的交点坐标及两交点间距离;(5) 求出该抛物线与y 轴的交点坐标;(6) 该函数图象可由23x y -=的图象经过怎样的平移得到的?8、已知函数()412-+=x y .(1) 指出函数图象的开口方向、对称轴和顶点坐标;(2) 若图象与x 轴的交点为A 、B 和与y 轴的交点C ,求△ABC 的面积;(3) 指出该函数的最值和增减性;(4) 若将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式;(5) 该抛物线经过怎样的平移能经过原点.(6) 画出该函数图象,并根据图象回答:当x 取何值时,函数值大于0;当x 取何值时,函数值小于0.练习六 c bx ax y ++=2的图象和性质1、抛物线942++=x x y 的对称轴是 .2、抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 .3、试写出一个开口方向向上,对称轴为直线x=-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .4、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,则 y =____.5、把二次函数215322y x x 的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是6、抛物线1662--=x x y 与x 轴交点的坐标为_________;7、函数x x y +-=22有最____值,最值为_______;8、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于( )A 、6,4B 、-8,14C 、-6,6D 、-8,-149、二次函数122--=x x y 的图象在x 轴上截得的线段长为( )A 、22B 、23C 、32D 、3310、通过配方,写出下列函数的开口方向、对称轴和顶点坐标:(1)12212+-=x x y ; (2)2832-+-=x x y ; (3)4412-+-=x x y 11、把抛物线1422++-=x x y 沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由.12、求二次函数62+--=x x y 的图象与x 轴和y 轴的交点坐标 13、已知一次函数的图象过抛物线223yx x 的顶点和坐标原点1) 求一次函数的关系式;2)判断点2,5是否在这个一次函数的图象上14、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?练习七c=2的性质+bxy+ax1、函数2y x px q的图象是以3,2为顶点的一条抛物线,这个二次函数的表达式为2、二次函数22y mx x m m的图象经过原点,则此抛物线的顶点24坐标是3、如果抛物线2y ax bx c与y轴交于点A(0,2),它的对称轴是1x,那么acb4、抛物线c+=2与x轴的正半轴交于点A、B两点,与y轴交于y+bxx点C,且线段AB的长为1,△ABC的面积为1,则b的值为______. 5、已知二次函数c=2的图象如图所示,则a___0,b___0,c___0,y++bxax2-____0;b4ac6、二次函数c=2的图象如图,则直线bc+bxy+ax=的图象不经过第axy+象限.7、已知二次函数2y ax bx c(0≠a)的图象如图所示,则下列结论:1),a b同号;2)当1a b;4)x时,函数值相同;3)40x和3当2y时,x 的值只能为0;其中正确的是(第5题) (第6题) (第7题) (第10题)8、已知二次函数2224m mx x y +--=与反比例函数xm y 42+=的图象在第二象限内的一个交点的横坐标是-2,则m=9、二次函数2yx ax b 中,若0a b ,则它的图象必经过点( ) A 1,1 B 1,1 C 1,1 D 1,110、函数b ax y +=与c bx ax y ++=2的图象如上图所示,则下列选项中正确的是( )A 、0,0>>c abB 、0,0><c abC 、0,0<>c abD 、0,0<<c ab11、已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )12、二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有( )A .4个B .3个C .2个D .1个13、抛物线的图角如图,则下列结论:①>0;②;③>;④<1.其中正确的结论是().(A)①②(B)②③(C)②④(D)③④14、二次函数2y ax bx c的最大值是3a,且它的图象经过1,2,1,6两点,求a、b、c的值。
二次函数基础练习题
![二次函数基础练习题](https://img.taocdn.com/s3/m/763e3b8a32d4b14e852458fb770bf78a64293a5e.png)
二次函数基础练习题一、选择题1. 二次函数的一般形式是:A. y = ax^2 + bx + cB. y = ax + bC. y = a(x - h)^2 + kD. y = a(x - b)(x - c)2. 对于二次函数y = ax^2 + bx + c,当a > 0时,其图像开口:A. 向上B. 向下C. 不确定D. 无开口3. 二次函数的顶点坐标可以通过公式求得,该公式是:A. (-b/2a, f(-b/2a))B. (-b/a, f(-b/a))C. (2b/a, f(2b/a))D. (a/b, f(a/b))4. 抛物线y = x^2 - 4x + 4的对称轴是:A. x = 2B. x = -2C. x = 4D. x = 05. 如果一个二次函数的图像与x轴有两个交点,那么这个二次函数的判别式:A. Δ > 0B. Δ = 0B. Δ < 0D. 不能确定二、填空题6. 二次函数y = ax^2 + bx + c的顶点坐标可以通过公式_________求得。
7. 当二次函数的图像与x轴相交时,其判别式Δ_________。
8. 给定二次函数y = 3x^2 + 6x - 5,其顶点的x坐标是_________。
9. 若二次函数y = ax^2 + bx + c的图像开口向上,且与y轴交于点(0, 2),则c的值为_________。
10. 对于二次函数y = -2x^2 + 4x + 3,其图像与x轴的交点坐标为_________。
三、解答题11. 已知二次函数y = ax^2 + bx + c的图像经过点(1, 2)和(-1, 0),求a和b的值。
12. 给定二次函数y = x^2 - 2x - 3,求其图像与x轴的交点坐标,并判断其图像的开口方向。
13. 已知二次函数y = 2x^2 + 4x + 1的图像与x轴相交于点A和B,求AB线段的长度。
14. 某二次函数的图像经过点(-2, 6)和(1, -3),且顶点在y轴上,求该二次函数的解析式。
《二次函数》练习题及答案
![《二次函数》练习题及答案](https://img.taocdn.com/s3/m/985146144028915f814dc247.png)
《二次函数》练习一.选择题(共8小题)1.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大2.对于二次函数y=﹣+x﹣4,下列说法正确的是()A.当x>0时,y随x的增大而增大B.当x=2时,y有最大值﹣3C.图象的顶点坐标为(﹣2,﹣7) D.图象与x轴有两个交点 3 43.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0 ②4a+2b+c>0 ③4ac﹣b2<8a ④<a<⑤b>c.其中含所有正确结论的选项是()A.①③B.①③④ C.②④⑤ D.①③④⑤4.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A.1 B.2 C.3 D.45.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,下列结论:①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,其中,正确的个数有()A.1 B.2 C.3 D.46.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=﹣1,有以下结论:①abc>0;②4ac<b2;③2a+b=0;④a﹣b+c>2.其中正确的结论的个数是()A.1 B.2 C.3 D.47.如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(﹣),()是抛物线上两点,则y1<y2其中结论正确的是()A.①②B.②③C.②④D.①③④8.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,其中正确结论是()A.②④B.①④C.①③D.②③5 6 7 8二.填空题(共4小题)9.若二次函数y=x2+2x+m的图象与x轴没有公共点,则m的取值范围是.10.若二次函数y=2x2﹣4x﹣1的图象与x轴交于A(x1,0)、B(x2,0)两点,则+的值为.11.二次函数y=x2+mx+n的图象经过点(1,﹣2),则代数式(m+n﹣1)(1﹣m﹣n)的值为.12.若二次函数y=mx2+(m﹣2)x+的图象与x轴有交点,那么m的取值范围为.三.解答题(共8小题)13.2016年3月国际风筝节在铜仁市万山区举办,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:(1)用表达式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3)当售价定为多少时,王大伯获得利润最大,最大利润是多少?14.天水市某企业接到一批粽子生产任务,按要求在19天内完成,约定这批粽子的出厂价为每只4元,为按时完成任务,该企业招收了新工人,设新工人李红第x天生产的粽子数量为y只,y与x满足如下关系:y=(1)李红第几天生产的粽子数量为260只?(2)如图,设第x天生产的每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画,若李红第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价﹣成本)15.某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?16.如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C 是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.17.如图,抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC,CD.(1)求抛物线的函数表达式;(2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标;(3)点M在y轴上且位于点C上方,点N在直线BC上,点P为第一象限内抛物线上一点,若以点C,M,N,P为顶点的四边形是菱形,求菱形的边长.18.如图,直线y=﹣x+3与x轴、y轴分别相交于点B、C,经过B、C两点的抛物线y=ax2+bx+c与x轴的另一个交点为A,顶点为P,且对称轴为直线x=2.(1)求该抛物线的解析式;(2)连接PB、PC,求△PBC的面积;(3)连接AC,在x轴上是否存在一点Q,使得以点P,B,Q为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.19.如图,抛物线y=ax2+bx﹣5(a≠0)与x轴交于点A(﹣5,0)和点B(3,0),与y轴交于点C.(1)求该抛物线的解析式;(2)若点E为x轴下方抛物线上的一动点,当S△ABE=S△ABC时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.20.在平面直角坐标系中,抛物线y=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C,顶点为D.(1)请直接写出点A,C,D的坐标;(2)如图(1),在x轴上找一点E,使得△CDE的周长最小,求点E的坐标;(3)如图(2),F为直线AC上的动点,在抛物线上是否存在点P,使得△AFP为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.初中数学组卷参考答案与试题解析一.选择题(共8小题)1.(2016•宁波)已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大【解答】解:A、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故错误;C、∵抛物线的对称轴为直线x=﹣=1,∴若a>0,则当x≥1时,y随x的增大而增大,故错误;D、∵抛物线的对称轴为直线x=﹣=1,∴若a<0,则当x≤1时,y随x的增大而增大,故正确;故选D.2.(2016•广州)对于二次函数y=﹣+x﹣4,下列说法正确的是()A.当x>0时,y随x的增大而增大B.当x=2时,y有最大值﹣3C.图象的顶点坐标为(﹣2,﹣7) D.图象与x轴有两个交点【解答】解:∵二次函数y=﹣+x﹣4可化为y=﹣(x﹣2)2﹣3,又∵a=﹣<0∴当x=2时,二次函数y=﹣x2+x﹣4的最大值为﹣3.故选B.3.(2016•达州)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0②4a+2b+c>0③4ac﹣b2<8a④<a<⑤b>c.其中含所有正确结论的选项是()A.①③B.①③④ C.②④⑤ D.①③④⑤【解答】解:①∵函数开口方向向上,∴a>0;∵对称轴在y轴右侧∴ab异号,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴abc>0,故①正确;②∵图象与x轴交于点A(﹣1,0),对称轴为直线x=1,∴图象与x轴的另一个交点为(3,0),∴当x=2时,y<0,∴4a+2b+c<0,故②错误;③∵图象与x轴交于点A(﹣1,0),∴当x=﹣1时,y=(﹣1)2a+b×(﹣1)+c=0,∴a﹣b+c=0,即a=b﹣c,c=b﹣a,∵对称轴为直线x=1∴=1,即b=﹣2a,∴c=b﹣a=(﹣2a)﹣a=﹣3a,∴4ac﹣b2=4•a•(﹣3a)﹣(﹣2a)2=﹣16a2<0∵8a>0∴4ac﹣b2<8a故③正确④∵图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间,∴﹣2<c<﹣1∴﹣2<﹣3a<﹣1,∴>a>;故④正确⑤∵a>0,∴b﹣c>0,即b>c;故⑤正确;故选:D.4.(2016•孝感)如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A.1 B.2 C.3 D.4【解答】解:∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间.∴当x=﹣1时,y>0,即a﹣b+c>0,所以①正确;∵抛物线的对称轴为直线x=﹣=1,即b=﹣2a,∴3a+b=3a﹣2a=a,所以②错误;∵抛物线的顶点坐标为(1,n),∴=n,∴b2=4ac﹣4an=4a(c﹣n),所以③正确;∵抛物线与直线y=n有一个公共点,∴抛物线与直线y=n﹣1有2个公共点,∴一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确.故选C.5.(2016•广安)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,下列结论:①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,其中,正确的个数有()A.1 B.2 C.3 D.4【解答】解:如图所示:图象与x轴有两个交点,则b2﹣4ac>0,故①错误;∵图象开口向上,∴a>0,∵对称轴在y轴右侧,∴a,b异号,∴b<0,∵图象与y轴交于x轴下方,∴c<0,∴abc>0,故②正确;当x=﹣1时,a﹣b+c>0,故此选项错误;∵二次函数y=ax2+bx+c的顶点坐标纵坐标为:﹣2,∴关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,则m>﹣2,故④正确.故选:B.6.(2016•兰州)二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=﹣1,有以下结论:①abc>0;②4ac<b2;③2a+b=0;④a﹣b+c>2.其中正确的结论的个数是()A.1 B.2 C.3 D.4【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=﹣1,∴b=2a<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc>0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以②正确;∵b=2a,∴2a﹣b=0,所以③错误;∵抛物线开口向下,x=﹣1是对称轴,所以x=﹣1对应的y值是最大值,∴a﹣b+c>2,所以④正确.故选C.7.(2016•日照)如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c <0;④若(﹣),()是抛物线上两点,则y1<y2其中结论正确的是()A.①②B.②③C.②④D.①③④【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①错误;∵b=﹣2a,∴2a+b=0,所以②正确;∵抛物线与x轴的一个交点为(﹣1,0),抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(3,0),∴当x=2时,y>0,∴4a+2b+c>0,所以③错误;∵点(﹣)到对称轴的距离比点()对称轴的距离远,∴y1<y2,所以④正确.故选C.8.(2015•恩施州)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,其中正确结论是()A.②④B.①④C.①③D.②③【解答】解:∵抛物线的开口方向向下,∴a<0;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,故①正确由图象可知:对称轴x=﹣=﹣1,∴2a﹣b=0,故②错误;∵抛物线与y轴的交点在y轴的正半轴上,∴c>0由图象可知:当x=1时y=0,∴a+b+c=0;故③错误;由图象可知:若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,故④正确.故选B二.填空题(共4小题)9.(2016•徐州)若二次函数y=x2+2x+m的图象与x轴没有公共点,则m的取值范围是m>1.【解答】解:∵二次函数y=x2+2x+m的图象与x轴没有公共点,∴方程x2+2x+m=0没有实数根,∴判别式△=22﹣4×1×m<0,解得:m>1;故答案为:m>1.10.(2016•泸州)若二次函数y=2x2﹣4x﹣1的图象与x轴交于A(x1,0)、B(x2,0)两点,则+的值为﹣4.【解答】解:设y=0,则2x2﹣4x﹣1=0,∴一元二次方程的解分别是点A和点B的横坐标,即x1,x2,∴x1+x2=﹣=2,x1,•x2=﹣,∴+==﹣4,故答案为:﹣4.11.(2016•无锡二模)二次函数y=x2+mx+n的图象经过点(1,﹣2),则代数式(m+n﹣1)(1﹣m﹣n)的值为﹣16.【解答】解:∵二次函数y=x2+mx+n的图象经过点(1,﹣2),∴1+m+n=﹣2,∴m+n=﹣3,∴(m+n﹣1)(1﹣m﹣n)=(﹣3﹣1)(1+3)=﹣16.故答案为:﹣16.12.(2016•微山县一模)若二次函数y=mx2+(m﹣2)x+的图象与x轴有交点,那么m的取值范围为m且m≠0.【解答】解:由题意知:,解得m且m≠0,故答案为m且m≠0.三.解答题(共8小题)13.(2016•铜仁市)2016年3月国际风筝节在铜仁市万山区举办,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:(1)用表达式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3)当售价定为多少时,王大伯获得利润最大,最大利润是多少?【解答】解:(1)设蝙蝠型风筝售价为x元时,销售量为y个,根据题意可知:y=180﹣10(x﹣12)=﹣10x+300(12≤x≤30).(2)设王大伯获得的利润为W,则W=(x﹣10)y=﹣10x2+400x﹣3000,令W=840,则﹣10x2+400x﹣3000=840,解得:x1=16,x2=24,答:王大伯为了让利给顾客,并同时获得840元利润,售价应定为16元.(3)∵W=﹣10x2+400x﹣3000=﹣10(x﹣20)2+1000,∵a=﹣10<0,∴当x=20时,W取最大值,最大值为1000.答:当售价定为20元时,王大伯获得利润最大,最大利润是1000元.14.(2016•天水)天水市某企业接到一批粽子生产任务,按要求在19天内完成,约定这批粽子的出厂价为每只4元,为按时完成任务,该企业招收了新工人,设新工人李红第x天生产的粽子数量为y只,y与x满足如下关系:y=(1)李红第几天生产的粽子数量为260只?(2)如图,设第x天生产的每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画,若李红第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价﹣成本)【解答】解:(1)设李红第x天生产的粽子数量为260只,根据题意得20x+60=260,解得x=10,答:李红第10天生产的粽子数量为260只;(2)根据图象得当0≤x≤9时,p=2;当9<x≤19时,设解析式为y=kx+b,把(9,2),(19,3)代入得,解得,所以p=x+,①当0≤x≤5时,w=(4﹣2)•32x=64x,x=5时,此时w的最大值为320(元);②当5<x≤9时,w=(4﹣2)•(20x+60)=40x+120,x=9时,此时w的最大值为480(元);③当9<x≤19时,w=[4﹣(x+)]•(20x+60)=﹣2x2+52x+174=﹣2(x﹣13)2+512,x=13时,此时w的最大值为512(元);综上所述,第13天的利润最大,最大利润是512元.15.(2016•丹东)某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?【解答】解:(1)设函数的表达式为y=kx+b,该一次函数过点(12,74),(28,66),得,解得,∴该函数的表达式为y=﹣0.5x+80,(2)根据题意,得,(﹣0.5x+80)(80+x)=6750,解得,x1=10,x2=70∵投入成本最低.∴x2=70不满足题意,舍去.∴增种果树10棵时,果园可以收获果实6750千克.(3)根据题意,得w=(﹣0.5x+80)(80+x)=﹣0.5 x2+40 x+6400=﹣0.5(x﹣40)2+7200∵a=﹣0.5<0,则抛物线开口向下,函数有最大值∴当x=40时,w最大值为7200千克.∴当增种果树40棵时果园的最大产量是7200千克.16.(2016•淄博)如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.【解答】解:(1)∵抛物线y=ax2+2ax+1与x轴仅有一个公共点A,∴△=4a2﹣4a=0,解得a1=0(舍去),a2=1,∴抛物线解析式为y=x2+2x+1;(2)∵y=(x+1)2,∴顶点A的坐标为(﹣1,0),∵点C是线段AB的中点,即点A与点B关于C点对称,∴B点的横坐标为1,当x=1时,y=x2+2x+1=1+2+1=4,则B(1,4),设直线AB的解析式为y=kx+b,把A(﹣1,0),B(1,4)代入得,解得,∴直线AB的解析式为y=2x+2.17.(2016•威海)如图,抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC,CD.(1)求抛物线的函数表达式;(2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标;(3)点M在y轴上且位于点C上方,点N在直线BC上,点P为第一象限内抛物线上一点,若以点C,M,N,P为顶点的四边形是菱形,求菱形的边长.【解答】解:(1)∵抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),∴设抛物线解析式为y=a(x+2)(x﹣4),∴﹣8a=4,∴a=﹣,∴抛物线解析式为y=﹣(x+2)(x﹣4)=﹣x2+x+4;(2)如图1,①点E在直线CD上方的抛物线上,记E′,连接CE′,过E′作E′F′⊥CD,垂足为F′,由(1)知,OC=4,∵∠ACO=∠E′CF′,∴tan∠ACO=tan∠E′CF′,∴=,设线段E′F′=h,则CF′=2h,∴点E′(2h,h+4)∵点E′在抛物线上,∴﹣(2h)2+2h+4=h+4,∴h=0(舍)h=∴E′(1,),②点E在直线CD下方的抛物线上,记E,同①的方法得,E(3,),点E的坐标为(1,),(3,)(3)①CM为菱形的边,如图2,在第一象限内取点P′,过点P′作P′N′∥y轴,交BC于N′,过点P′作P′M′∥BC,交y轴于M′,∴四边形CM′P′N′是平行四边形,∵四边形CM′P′N′是菱形,∴P′M′=P′N′,过点P′作P′Q′⊥y轴,垂足为Q′,∵OC=OB,∠BOC=90°,∴∠OCB=45°,∴∠P′M′C=45°,设点P′(m,﹣m2+m+4),在Rt△P′M′Q′中,P′Q′=m,P′M′=m,∵B(4,0),C(0,4),∴直线BC的解析式为y=﹣x+4,∵P′N′∥y轴,∴N′(m,﹣m+4),∴P′N′=﹣m2+m+4﹣(﹣m+4)=﹣m2+2m,∴m=﹣m2+2m,∴m=0(舍)或m=4﹣2,菱形CM′P′N′的边长为(4﹣2)=4﹣4.②CM为菱形的对角线,如图3,在第一象限内抛物线上取点P,过点P作PM∥BC,交y轴于点M,连接CP,过点M作MN∥CP,交BC于N,∴四边形CPMN是平行四边形,连接PN交CM于点Q,∵四边形CPMN是菱形,∴PQ⊥CM,∠PCQ=∠NCQ,∵∠OCB=45°,∴∠NCQ=45°,∴∠PCQ=45°,∴∠CPQ=∠PCQ=45°,∴PQ=CQ,设点P(n,﹣n2+n+4),∴CQ=n,OQ=n+2,∴n+4=﹣n2+n+4,∴n=0(舍),∴此种情况不存在.∴菱形的边长为4﹣4.18.(2016•黔东南州)如图,直线y=﹣x+3与x轴、y轴分别相交于点B、C,经过B、C两点的抛物线y=ax2+bx+c与x轴的另一个交点为A,顶点为P,且对称轴为直线x=2.(1)求该抛物线的解析式;(2)连接PB、PC,求△PBC的面积;(3)连接AC,在x轴上是否存在一点Q,使得以点P,B,Q为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.【解答】解:(1)∵直线y=﹣x+3与x轴相交于点B,∴当y=0时,x=3,∴点B的坐标为(3,0),∵y=﹣x+3过点C,易知C(0,3),∴c=3.又∵抛物线过x轴上的A,B两点,且对称轴为x=2,根据抛物线的对称性,∴点A的坐标为(1,0).又∵抛物线y=ax2+bx+c过点A(1,0),B(3,0),∴解得:∴该抛物线的解析式为:y=x2﹣4x+3;(2)如图1,∵y=x2﹣4x+3=(x﹣2)2﹣1,又∵B(3,0),C(0,3),∴PC===2,PB==,∴BC===3,又∵PB2+BC2=2+18=20,PC2=20,∴PB2+BC2=PC2,∴△PBC是直角三角形,∠PBC=90°,∴S△PBC=PB•BC=××3=3;(3)如图2,由y=x2﹣4x+3=(x﹣2)2﹣1,得P(2,﹣1),设抛物线的对称轴交x轴于点M,∵在Rt△PBM中,PM=MB=1,∴∠PBM=45°,PB=.由点B(3,0),C(0,3)易得OB=OC=3,在等腰直角三角形OBC中,∠ABC=45°,由勾股定理,得BC=3.假设在x轴上存在点Q,使得以点P,B,Q为顶点的三角形与△ABC相似.①当=,∠PBQ=∠ABC=45°时,△PBQ∽△ABC.即=,解得:BQ=3,又∵BO=3,∴点Q与点O重合,∴Q1的坐标是(0,0).②当=,∠QBP=∠ABC=45°时,△QBP∽△ABC.即=,解得:QB=.∵OB=3,∴OQ=OB﹣QB=3﹣,∴Q2的坐标是(,0).③当Q在B点右侧,则∠PBQ=180°﹣45°=135°,∠BAC<135°,故∠PBQ≠∠BAC.则点Q不可能在B点右侧的x轴上,综上所述,在x轴上存在两点Q1(0,0),Q2(,0),能使得以点P,B,Q为顶点的三角形与△ABC相似.19.(2016•贵港)如图,抛物线y=ax2+bx﹣5(a≠0)与x轴交于点A(﹣5,0)和点B(3,0),与y轴交于点C.(1)求该抛物线的解析式;(2)若点E为x轴下方抛物线上的一动点,当S△ABE=S△ABC时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.【解答】解:(1)把A、B两点坐标代入解析式可得,解得,∴抛物线解析式为y=x2+x﹣5;(2)在y=x2+x﹣5中,令x=0可得y=﹣5,∴C(0,﹣5),∵S△ABE=S△ABC,且E点在x轴下方,∴E点纵坐标和C点纵坐标相同,当y=﹣5时,代入可得x2+x=﹣5,解得x=﹣2或x=0(舍去),∴E点坐标为(﹣2,﹣5);(3)假设存在满足条件的P点,其坐标为(m,m2+m﹣5),如图,连接AP、CE、AE,过E作ED⊥AC于点D,过P作PQ⊥x轴于点Q,则AQ=AO+OQ=5+m,PQ=|m2+m﹣5|,在Rt△AOC中,OA=OC=5,则AC=5,∠ACO=∠DCE=45°,由(2)可得EC=2,在Rt△EDC中,可得DE=DC=,∴AD=AC﹣DC=5﹣=4,当∠BAP=∠CAE时,则△EDA∽△PQA,∴=,即=,∴m2+m﹣5=(5+m)或m2+m﹣5=﹣(5+m),当m2+m﹣5=(5+m)时,整理可得4m2+5m﹣75=0,解得m=或m=﹣5(与A点重合,舍去),当m2+m﹣5=﹣(5+m)时,整理可得4m2+11m﹣45=0,解得m=或m=﹣5(与A点重合,舍去),∴存在满足条件的点P,其横坐标为或.20.(2016•河池)在平面直角坐标系中,抛物线y=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C,顶点为D.(1)请直接写出点A,C,D的坐标;(2)如图(1),在x轴上找一点E,使得△CDE的周长最小,求点E的坐标;(3)如图(2),F为直线AC上的动点,在抛物线上是否存在点P,使得△AFP为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.【解答】解:(1)当y=﹣x2﹣2x+3中y=0时,有﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,∵A在B的左侧,∴A(﹣3,0),B(1,0).当y=﹣x2﹣2x+3中x=0时,则y=3,∴C(0,3).∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点D(﹣1,4).(2)作点C关于x轴对称的点C′,连接C′D交x轴于点E,此时△CDE的周长最小,如图1所示.∵C(0,3),∴C′(0,﹣3).设直线C′D的解析式为y=kx+b,则有,解得:,∴直线C′D的解析式为y=﹣7x﹣3,当y=﹣7x﹣3中y=0时,x=﹣,∴当△CDE的周长最小,点E的坐标为(﹣,0).(3)设直线AC的解析式为y=ax+c,则有,解得:,∴直线AC的解析式为y=x+3.假设存在,设点F(m,m+3),△AFP为等腰直角三角形分三种情况(如图2所示):①当∠PAF=90°时,P(m,﹣m﹣3),∵点P在抛物线y=﹣x2﹣2x+3上,∴﹣m﹣3=﹣m2﹣2m+3,解得:m1=﹣3(舍去),m2=2,此时点P的坐标为(2,﹣5);②当∠AFP=90°时,P(2m+3,0)∵点P在抛物线y=﹣x2﹣2x+3上,∴0=﹣(2m+3)2﹣2×(2m+3)+3,解得:m3=﹣3(舍去),m4=﹣1,此时点P的坐标为(1,0);③当∠APF=90°时,P(m,0),∵点P在抛物线y=﹣x2﹣2x+3上,∴0=﹣m2﹣2m+3,解得:m5=﹣3(舍去),m6=1,此时点P的坐标为(1,0).综上可知:在抛物线上存在点P,使得△AFP为等腰直角三角形,点P的坐标为(2,﹣5)或(1,0).。
二次函数练习题及答案
![二次函数练习题及答案](https://img.taocdn.com/s3/m/2e65b20450e2524de4187e5c.png)
三、解答题
18.已知二次函数 .
(1)求二次函数 的图象与两个坐标轴的交点坐标;
(2)在坐标平面上,横坐标与纵坐标都是整数的点 称为整点. 直接写出二次函数 的图象与 轴所围成的封闭图形内部及边界上的整点的个数.
(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1)、(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得最大的年利润?
25.(12分)已知抛物线 经过A(﹣1,0),B(3,0)两点,与y轴相交于点C,该抛物线的顶点为点D.
(1)求该抛物线的解析式及点D的坐标;
(2)连接AC,CD,BD,BC,设△AOC,△BOC,△BCD的面积分别为 , 和 ,用等式表示 , 、 之间的数量关系,并说明理由;
(3)点M是线段AB上一动点(不包括点A和点B),过点M作MN∥BC交AC于点N,连接MC,是否存在点M使∠AMN=∠ACM?若存在,求出点M的坐标和此时刻直线MN的解析式;若不存在,请说明理由.
∵12>5>-4,
∴12+m>5+m>-4+m,
∴y1>y2>y3.
按从小到大依次排列为y3<y2<y1.
故答案为y3<y2<y1.
13.③,④
【解析】找到二次项的系数不是2的函数即可.
解:二次项的系数不是2的函数有③④.
故答案为③,④.
本题考查二次函数的变换问题.用到的知识点为:二次函数的平移,不改变二次函数的比例系数.
投入市场后当年能全部售出,且在甲、乙两地每吨的售价p甲、p乙(万元)均与x满足一次函数关系.(注:年利润=年销售额-全部费用)
二次函数练习题及答案
![二次函数练习题及答案](https://img.taocdn.com/s3/m/6f5ec09b59f5f61fb7360b4c2e3f5727a4e92441.png)
二次函数练习题及答案1. 已知二次函数的顶点为(2, 3),且经过点(1, 5),求该二次函数的解析式。
2. 抛物线y=ax^2+bx+c与x轴交于点A(-1, 0)和B(3, 0),求抛物线的对称轴方程。
3. 函数f(x)=2x^2-4x+m在区间[0, 2]上的最大值为8,求m的值。
4. 已知二次函数y=ax^2+bx+c的图象经过点(-1, 2)和(2, 2),且在x=1处取得最小值,求a、b、c的值。
5. 抛物线y=ax^2+bx+c的图象开口向上,且经过点(0, 1)和(2, 5),求a的取值范围。
6. 函数y=x^2-2x+3的图象与x轴的交点坐标为多少?7. 抛物线y=-2x^2+4x+1的顶点坐标是什么?8. 已知二次函数y=ax^2+bx+c的图象与y轴交于点(0, 2),且在x=-1处取得最大值,求a、b、c的值。
9. 函数f(x)=x^2-6x+8在区间[1, 4]上的最大值和最小值分别是多少?10. 抛物线y=3x^2-6x+2与x轴的交点坐标是什么?11. 已知二次函数y=ax^2+bx+c的图象经过点(1, 0)和(-2, 0),且在x=0处取得最小值,求a、b、c的值。
12. 函数y=2x^2-4x+1在区间[0, 3]上的最大值和最小值分别是多少?13. 抛物线y=-x^2+2x+3的图象开口向下,求抛物线的顶点坐标。
14. 已知二次函数y=ax^2+bx+c的图象经过点(-3, -2)和(1, -2),求a、b、c的值。
15. 函数y=x^2-4x+5的图象与x轴的交点坐标为多少?16. 抛物线y=4x^2-12x+9的顶点坐标是什么?17. 已知二次函数y=ax^2+bx+c的图象与y轴交于点(0, -1),且在x=2处取得最大值,求a、b、c的值。
18. 函数f(x)=-2x^2+8x-8在区间[0, 4]上的最大值和最小值分别是多少?19. 抛物线y=x^2-4x+5的图象开口向上,求抛物线的对称轴方程。
二次函数练习题及答案
![二次函数练习题及答案](https://img.taocdn.com/s3/m/16094c725b8102d276a20029bd64783e09127de1.png)
二次函数练习题及答案一、选择题1.下列函数中,是二次函数的是()A. y=3x+2B. y=x^3+2xC. y=x^2-5x+6D. y=2^x2.二次函数y=ax^2+bx+c的图象是()A. 一条直线B. 一个抛物线C. 一个圆D. 一个双曲线3.已知二次函数f(x)=ax^2+bx+c的对称轴方程为x=2,则a、b和c 的值分别是()A. a=1, b=0, c=-4B. a=0, b=1, c=-4C. a=1, b=0, c=4D. a=0, b=1, c=4二、填空题1. 已知二次函数f(x)=2x^2+4x+1,求其对称轴的方程:________2. 二次函数y=x^2-4x+3的顶点坐标为:________3. 已知二次函数f(x)=ax^2+12x+3的图象与y轴交于点(0, -3),则a 的值为:________三、解答题1. 某商品的生产成本y(万元)与产量x(万件)之间的关系为二次函数y=2x^2-8x+20。
求:a) 生产2000件商品时的生产成本;b) 使生产成本最小的产量。
2. 已知二次函数y=ax^2+bx+c的图象顶点坐标为(-3, 4),且经过点(2, -2)。
求a、b和c的值。
答案及解析:一、选择题1. 答案:C解析:二次函数的标准形式为y=ax^2+bx+c,其中a不等于0。
只有选项C满足二次函数的形式。
2. 答案:B解析:二次函数的图象为一个抛物线。
3. 答案:A解析:对称轴方程的一般形式为x=-b/2a。
根据题目中对称轴方程为x=2,可以得出-b/2a=2,解得b=0和a=1。
由于对称轴方程不包含c,因此c的值可以是任意实数。
二、填空题1. 答案:x= -b/2a = -4/(2*2) = -1解析:对称轴方程的一般形式为x=-b/2a。
2. 答案:(-2, 7)解析:二次函数的顶点坐标为(-b/2a, f(-b/2a))。
3. 答案:a=-3解析:由题意可得,当x=0时,f(x)=y=-3。
高中二次函数练习题
![高中二次函数练习题](https://img.taocdn.com/s3/m/1417494058eef8c75fbfc77da26925c52cc59180.png)
高中二次函数练习题1. 已知二次函数的图像经过点(2, 5)和(-1, 10),求该二次函数的解析式。
2. 给定二次函数y = ax^2 + bx + c,其中a ≠ 0,若该函数的图像与x轴有两个交点,求b^2 - 4ac的值。
3. 已知二次函数y = ax^2 + bx + c的顶点坐标为(-2, 3),且经过点(1, 8),求a、b、c的值。
4. 一个抛物线的顶点在原点,且经过点(3, 9),求该抛物线的方程。
5. 某二次函数的图像与x轴交于点A(-2, 0)和点B(4, 0),求该二次函数的对称轴方程。
6. 给定二次函数y = ax^2 + bx + c,其中a > 0,若该函数的图像在x轴上方,求b^2 - 4ac与0的关系。
7. 已知二次函数y = ax^2 + bx + c的图像在x轴下方,且顶点坐标为(1, -4),求a、b、c的值。
8. 一个二次函数的图像经过点(0, 5)和(2, -3),求该二次函数的顶点坐标。
9. 给定二次函数y = ax^2 + bx + c,其中a ≠ 0,若该函数的图像与y轴交于点(0, 3),求c的值。
10. 一个抛物线的焦点坐标为(0, 2),且经过点(1, 3),求该抛物线的方程。
11. 已知二次函数y = ax^2 + bx + c的图像与x轴交于点A和点B,且|AB| = 4,求a的取值范围。
12. 一个二次函数的图像经过点(-1, 0)和(0, -3),求该二次函数的对称轴方程。
13. 给定二次函数y = ax^2 + bx + c,其中a < 0,若该函数的图像在x轴下方,求b^2 - 4ac与0的关系。
14. 已知二次函数y = ax^2 + bx + c的图像在x轴上方,且顶点坐标为(-3, 2),求a、b、c的值。
15. 一个抛物线的顶点在原点,且经过点(-2, 4),求该抛物线的方程。
16. 给定二次函数y = ax^2 + bx + c,其中a ≠ 0,若该函数的图像与x轴交于点(0, 4),求c的值。
二次函数的练习题及答案
![二次函数的练习题及答案](https://img.taocdn.com/s3/m/569541b2988fcc22bcd126fff705cc1754275f5e.png)
二次函数的练习题及答案一、选择题:1. 若二次函数y=ax^2+bx+c的图像开口向上,且与x轴有交点,则a 和b应满足的条件是()。
A. a>0, b>0B. a<0, b<0C. a>0, b^2>4acD. a<0, b^2>4ac2. 二次函数y=-x^2+4x-1的顶点坐标是()。
A. (1,4)B. (2,3)C. (-2,3)D. (2,-3)3. 对于二次函数y=ax^2+bx+c,当x=-1时,函数值最大,那么a的取值范围是()。
A. a>0B. a<0C. a=0D. 无法确定二、填空题:1. 已知二次函数y=2x^2-8x+3,当x=______时,函数值最小。
2. 若二次函数y=-3x^2-6x+5的图像与x轴的交点坐标为(x1,0),(x2,0),则x1+x2=______。
三、解答题:1. 已知二次函数y=-2x^2+4x+1,求出当x取何值时,函数值y最大,并求出最大值。
2. 已知二次函数y=3x^2-6x+2,求出函数与x轴的交点坐标。
四、应用题:1. 某工厂生产一种产品,其生产成本与产品数量的关系可以近似为二次函数:C(x)=0.5x^2-100x+3000,其中x代表产品数量,C(x)代表成本。
求出当生产多少件产品时,成本最低,并求出最低成本。
2. 某公司计划在一块长为60米的空地上建一个矩形花园,花园的长和宽之和为30米。
设花园的长为x米,求出花园的面积最大时的长和宽,并求出最大面积。
答案:一、选择题:1. C2. B3. B二、填空题:1. 22. -2三、解答题:1. 当x=1时,函数值y最大,最大值为3。
2. 函数与x轴的交点坐标为(1,0)和(2,0)。
四、应用题:1. 当生产200件产品时,成本最低,最低成本为2000元。
2. 花园的长为15米,宽为15米时,面积最大,最大面积为225平方米。
二次函数练习题及答案(解析版)
![二次函数练习题及答案(解析版)](https://img.taocdn.com/s3/m/e5359a6c0622192e453610661ed9ad51f01d543c.png)
二次函数练习题及答案(解析版)一、选择题:1 下列关系式中,属于二次函数的是(x为自变量)( )2 函数y=x2-2x+3的图象的顶点坐标是( )A (1,-4) B(-1,2) C (1,2) D(0,3)23 抛物线y=2(x-3)的顶点在( )A 第一象限B 第二象限C x轴上D y轴上4 抛物线的对称轴是( )A x=-2 Bx=2 C x=-4 D x=45 已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是( )A ab>0,c>0B ab>0,c<0C ab<0,c>0D ab<0,c<06 二次函数y=ax2+bx+c的图象如图所示,则点在第___象限( )A 一B 二C 三D 四7 如图所示,已知二次函数y=ax2+bx+c(a≠0) 的图象的顶点P 的横坐标是4,图象交 x 轴于点A(m,0) 和点B ,且m>4,那么AB 的长是( )A 4+mB mC 2m-8D 8-2m8 若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx的图象只可能是( )9 已知抛物线和直线在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P 1(x1,y 1) ,P 2(x2,y 2) 是抛物线上的点,P3(x3,y 3) 是直线上的点,且-1A y110 把抛物线物线的函数关系式是( ) AC 的图象向左平移2个单位,再向上平移3个单位,所得的抛B D二、填空题:11 二次函数y=x2-2x+1的对称轴方程是______________12 若将二次函数y=x2-2x+3配方为y=(x-h)2+k的形式,则y=________13 若抛物线y=x2-2x-3与x 轴分别交于A 、B 两点,则AB 的长为_________14 抛物线y=x2+bx+c,经过A(-1,0) ,B(3,0) 两点,则这条抛物线的解析式为_____________15 已知二次函数y=ax2+bx+c的图象交x 轴于A 、B 两点,交y 轴于C 点,且△ABC 是直角三角形,请写出一个符合要求的二次函数解析式________________16 在距离地面2m 高的某处把一物体以初速度v 0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:(其中g 是常数,通常取10m/s2) 若v 0=10m/s,则该物体在运动过程中最高点距地面_________m17 试写出一个开口方向向上,对称轴为直线x=2,且与y 轴的交点坐标为(0,3) 的抛物线的解析式为______________18 已知抛物线y=x2+x+b2经过点,则y 1的值是_________三、解答题:19 若二次函数的图象的对称轴方程是,并且图象过A(0,-4) 和B(4,0) ,(1)求此二次函数图象上点A 关于对称轴对称的点A ′的坐标; (2)求此二次函数的解析式;20 在直角坐标平面内,点 O 为坐标原点,二次函数y=x2+(k-5)x-(k+4) 的图象交 x 轴于点A(x1,0) 、B(x2,0) ,且(x1+1)(x2+1)=-8 (1)求二次函数解析式;(2)将上述二次函数图象沿x 轴向右平移2个单位,设平移后的图象与y 轴的交点为C ,顶点为P ,求△POC 的面积21 已知:如图,二次函数y=ax2+bx+c的图象与x 轴交于A 、B 两点,其中A 点坐标为(-1,0) ,点C(0,5) ,另抛物线经过点(1,8) ,M 为它的顶点(1)求抛物线的解析式; (2)求△MCB 的面积S △MCB22 某商店销售一种商品,每件的进价为250元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是1350元时,销售量为500件,而单价每降低1元,就可以多售出200件请你分析,销售单价多少时,可以获利最大二次函数练习题参考答案与解析一、选择题1 考点:二次函数概念选A2 考点:求二次函数的顶点坐标解析:法一,直接用二次函数顶点坐标公式求法二,将二次函数解析式由一般形式转换为顶点式,即y=a(x-h)2+k的形式,顶点坐标即为(h,k) ,y=x2-2x+3=(x-1)2+2,所以顶点坐标为(1,2) ,答案选C3 考点:二次函数的图象特点,顶点坐标解析:可以直接由顶点式形式求出顶点坐标进行判断,函数y=2(x-3)2的顶点为(3,0) ,所以顶点在x 轴上,答案选C4 考点:数形结合,二次函数y=ax2+bx+c的图象为抛物线,其对称轴为解析:抛物线,直接利用公式,其对称轴所在直线为答案选B5 考点:二次函数的`图象特征解析:由图象,抛物线开口方向向下,抛物线对称轴在y 轴右侧,抛物线与y 轴交点坐标为(0,c) 点,由图知,该点在x 轴上方,答案选C6 考点:数形结合,由抛物线的图象特征,确定二次函数解析式各项系数的符号特征解析:由图象,抛物线开口方向向下,抛物线对称轴在y 轴右侧,抛物线与y 轴交点坐标为(0,c) 点,由图知,该点在x 轴上方,在第四象限,答案选D7 考点:二次函数的图象特征解析:因为二次函数y=ax2+bx+c(a≠0) 的图象的顶点P 的横坐标是4,所以抛物线对称轴所在直线为x=4,交x 轴于点D ,所以A 、B 两点关于对称轴对称,因为点A(m,0) ,且m>4,所以AB=2AD=2(m-4)=2m-8,答案选C8 考点:数形结合,由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状解析:因为一次函数y=ax+b的图象经过第二、三、四象限,所以二次函数y=ax2+bx的图象开口方向向下,对称轴在y 轴左侧,交坐标轴于(0,0) 点答案选C9 考点:一次函数、二次函数概念图象及性质解析:因为抛物线的对称轴为直线x=-1,且-1-1时,由图象知,y 随x 的增大而减小,所以y 210 考点:二次函数图象的变化抛物线平移2个单位得到,再向上平移3个单位得到的图象向左答案选C二、填空题11 考点:二次函数性质解析:二次函数y=x2-2x+1,所以对称轴所在直线方程答案x=112 考点:利用配方法变形二次函数解析式解析:y=x2-2x+3=(x2-2x+1)+2=(x-1)2+2答案y=(x-1)2+213 考点:二次函数与一元二次方程关系解析:二次函数y=x2-2x-3与x 轴交点A 、B 的横坐标为一元二次方程x 2-2x-3=0的两个根,求得x 1=-1,x 2=3,则AB=|x2-x 1|=4答案为414 考点:求二次函数解析式解析:因为抛物线经过A(-1,0) ,B(3,0) 两点,解得b=-2,c=-3,答案为y=x2-2x-315 考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一解析:需满足抛物线与x 轴交于两点,与y 轴有交点,及△ABC 是直角三角形,但没有确定哪个角为直角,答案不唯一,如:y=x2-116 考点:二次函数的性质,求最大值解析:直接代入公式,答案:717 考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一解析:如:y=x2-4x+318 考点:二次函数的概念性质,求值三、解答题19 考点:二次函数的概念、性质、图象,求解析式解析:(1)A′(3,-4)(2)由题设知:∴y=x2-3x-4为所求(3)20 考点:二次函数的概念、性质、图象,求解析式解析:(1)由已知x 1,x 2是x 2+(k-5)x-(k+4)=0的两根又∵(x1+1)(x2+1)=-8 ∴x 1x 2+(x1+x2)+9=0 ∴-(k+4)-(k-5)+9=0 ∴k=5 ∴y=x2-9为所求 (2)由已知平移后的函数解析式为: y=(x-2)2-9 且x=0时y=-5 ∴C(0,-5) ,P(2,-9)21 解: (1)依题意:(2)令y=0,得(x-5)(x+1)=0,x 1=5,x 2=-1 ∴B(5,0)由,得M(2,9)作ME ⊥y 轴于点E ,则可得S △MCB =1522 思路点拨:通过阅读,我们可以知道,商品的利润和售价、销售量有关系,它们之间呈现如下关系式:总利润=单个商品的利润×销售量要想获得最大利润,并不是单独提高单个商品的利润或仅大幅提高销售量就可以的,这两个量之间应达到某种平衡,才能保证利润最大因为已知中给出了商品降价与商品销售量之间的关系,所以,我们完全可以找出总利润与商品的价格之间的关系,利用这个等式寻找出所求的问题,这里我们不妨设每件商品降价x 元,商品的售价就是(135-x)元了单个的商品的利润是(135-x-25)这时商品的销售量是(500+200x)总利润可设为y 元利用上面的等量关式,可得到y 与x 的关系式了,若是二次函数,即可利用二次函数的知识,找到最大利润解:设销售单价为降价x 元顶点坐标为(425,91125)即当每件商品降价425元,即售价为135-425=925时,可取得最大利润91125元数学速算的技巧1、“凑整”先算1.计算:(1)24+44+56 (2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124因为44+56=100是个整百的数,所以先把它们的和算出来。
二次函数典型题练习
![二次函数典型题练习](https://img.taocdn.com/s3/m/0b193eecb9d528ea81c779be.png)
二次函数典型题练习(一)1、二次函数y=ax +bx+c有最小值-1,当且仅当x 2时,y随x的增大而减小,且图像过点(1、1),求此函数的解析式。
2、已知抛物线y=ax +bx+c过点A(-3、0),对称轴为x=-1,顶点C到x轴的距离为2 ,求此抛物线的解析式。
3、若抛物线过点(1、-3)和点(0、-8),且与x轴的两个交点的距离为2,求此抛物线的解析式。
4、抛物线y=x x+m与x轴交于(x 、0)(x 、0)两点。
(1)若x + x =3,求m;(2)若x x =3,求m。
5、(1)某涵洞截面是抛物线如右图所示。
现测得水面宽AB=2米,洞顶点O到水面距离为2.4米。
请在直角坐标系内求涵洞所示抛物线的解析式。
(2)如右图所示,若桥拱是抛物线,其函数解析式为y= ,当水面离桥顶的高度是2米时,问水面宽AB为多少。
(3) 如右图所示有一抛物线拱桥,当水位线在AB位置时,拱桥顶离水面2米,水面宽4米。
①当水面下降1米后,水面宽为多少?②当水面宽为1米时,问水面上升或下降了多少米?③问一艘宽1.4米,高1.6米的船是否能通过此桥?若不能过,此船最多能装多高?6、(1)如图,已知二次函数y=ax +bx+c的图像过点(-1、0)和(0、-1)两点,试确定a的取值范围。
(2)已知:直线y=x+b与双曲线y= 在第一象限内交于A点,交x轴于B点(B点在O点的左侧)。
AC x轴于C,且点C的坐标为(b、0)。
若S ABC=8.求直线与双曲线的另一个交点坐标。
7、如图:抛物线与直线y=k(x-4)都经过坐标轴的正半轴上的A、B两点,该抛物线的对称轴x=-1与x轴交于点C。
且ABC=90°。
求(1)直线的解析式。
(2)抛物线的解析式。
8、已知抛物线y=x -(a+2)x+9的顶点在坐标轴上,求a的值。
9、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销量就减少10千克,针对以上情况,(1)当销售单价定为每千克55元时,计算月销量与月销售利润。
二次函数练习题(含答案)
![二次函数练习题(含答案)](https://img.taocdn.com/s3/m/85df26d008a1284ac8504325.png)
二次函数练习题 (一)1.抛物线y=x 2+3x 的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限 2.抛物线y=-3x 2+2x-1的图象与x 轴、y 轴交点的个数是( ) A.没有交点 B.只有一个交点 C.有两个交点 D.有三个交点3.已知抛物线y=ax 2+bx+c(a≠0)在平面直角坐标系中的位置如图1所示,则有( ) A.a>0,b>0 B.a>0,c>0 C.b>0,c>0 D.a 、b 、c 都小于0(1) (2) 4.若抛物线y=ax 2-6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( )5.如图2所示,二次函数y=x 2-4x+3的图象交x 轴于A 、B 两点, 交y 轴于点C, 则△ABC 的面积为( )A.6B.4C.3D.16.(2010年北京崇文区) 函数y=x 2-2x-2的图象如右图所示,根据其中提供的信息,可求得使y ≥1成立的x 的取值范围是( )A .31≤≤-xB .31<<-xC .31>-<x x 或D .31≥-≤x x 或7.二次函数y =ax 2+bx +c 的图象如图所示,反比例函数y =ax与正比例函数y =(b +c )x 在同一坐标系中的大致图象可能是( )A .B .C .D .8.(2010江苏泰州,5,3分)下列函数中,y 随x 增大而增大的是( )A.x y 3-= B. 5+-=x y C. 12y x = D. )0(212<=x x y 9.二次函数y=ax 2+bx+c 的图象如图3所示,那么abc,b 2-4ac,2a+b,a+b+c 这四个代数式中,值为正数的有( )xy OxBACy OA.4个B.3个C.2个D.1个10.如图所示,当b<0时,函数y=ax+b 与y=ax 2+bx+c 在同一坐标系内的图象可能是( )11.二次函数y=2x 2- 4x+ 3 通过配方化为顶点式为y= _________, 其对称轴是______,顶点坐标为_______,抛物线开口________,当x_______时,y 随x 的增大而增大;当x____时,y 随x 的增大而减小;当x=______时,y 最值=________.12.已知抛物线y=ax 2+bx+c(a≠0)图象的顶点为P(-2,3),且过A(-3,0), 则抛物线的关系式为___________.13.若二次函数y=ax 2+bx+c 的图象经过点(0,-1),(5,-1), 则它的对称轴方程是________. 14.在同一坐标系内,抛物线y=ax 2与直线y=2x+b 相交于A 、B 两点,若点A 的坐标是(2,4),则点B 的坐标是_________.15.将抛物线y=ax 2向右平移2个单位,再向上平移3个单位,移动后的抛物线经过点(3,-1),那么移动后的抛物线的关系式为__________.16.若抛物线y=ax 2+bx+c 经过(0,1)和(2,-3)两点,且开口向下,对称轴在y 轴左侧,则a 的取值范围是_________.17.已知抛物线y =ax 2+bx +c 的对称轴为x =2,且经过点(1,4)和点(5,0),则该抛物线的解析式为_______________.18.函数y =2x 2 – 4x – 1写成y = a (x –h)2 +k 的形式是________,抛物线y =2x 2– 4x – 1的顶点坐标是_______,对称轴是__________.19.已知函数①y =x 2+1,②y =-2x 2+x .函数____(填序号)有最小值,当x =____时,该函数的最小值是_______20.当m=_________时,函数y = (m 2-4))3(42-+--m x m mx + 3是二次函数,其解析式是__________________,图象的对称轴是_______________,顶点是________,当x =______时, y 有最____值_______.21.已知二次函数的图象开口向下,且与y 轴的正半轴相交.请你写出一个满足条件的二次函数的解析式:___________22.抛物线c bx ax y ++=2如右图所示,则它关于y析式是__________.23、(2010年宁波市)如图,已知二次函数bx x y +-=221的图象经过A (2,0)、B (0,-6)两点。
二次函数练习题及答案
![二次函数练习题及答案](https://img.taocdn.com/s3/m/692851450a1c59eef8c75fbfc77da26925c5967d.png)
一、选择题(每小题3分,共36分)1.下列函数不是二次函数的是( D )A.y=(x-1)2B.y=1-√3x2C.y=-(x+1)(x-1)D.y=2(x+3)2-2x22.在函数y=√x-1中,自变量x的取值范围是( B )1-xA.x≥1B.x>1C.x<1D.x≤13.下列函数:①y=-3x2;②y=-3(x+3)2;③y=-3x2-1;④y=-2x2+5;⑤y=-(x-1)2.其中,图象形状、开口方向相同的是( D )A.②⑤B.③④C.①③④D.①②③4.将抛物线y=2(x-3)2+2向左平移3个单位,再向下平移2个单位,得到抛物线的表达式是( C )A.y=2(x-6)2B.y=2(x-6)2+4C.y=2x2D.y=2x2+45.已知二次函数y=-x2+2x+4,则下列关于这个函数图象和性质的说法,正确的是( C )A.图象的开口向上B.图象的顶点坐标是(1,3)C.当x<1时,y随x的增大而增大D.图象与x轴有唯一交点6.一次函数y=acx+b 与二次函数y=ax 2+bx+c 在同一平面直角坐标系中的图象可能是( B )7.一只葡萄酒杯如图①所示,酒杯的上半部分是以抛物线为模型设计而成,且成轴对称图形.从正面看葡萄酒杯的上半部分是一条抛物线,以顶点C 为原点建立如图②所示的平面直角坐标系,若AB=4,CD=3,则抛物线的表达式为( A )① ②A.y=34x 2 B.y=316x 2 C.y=-34x 2 D.y=-316x 28.竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h=at 2+bt,若小球在发射后第2 s 与第6 s 时的高度相等,则下列时刻中小球的高度最高的是( B )A.第3 sB.第3.9 sC.第4.5 sD.第6.5 s9.下列关于二次函数y=ax 2-2ax+1(a>1)的图象与x 轴交点的判断,正确的是( D ) A.没有交点B.只有一个交点,且它位于y 轴右侧C.有两个交点,且它们均位于y 轴左侧D.有两个交点,且它们均位于y 轴右侧10.(2022岱岳模拟)下表给出了二次函数y=ax2+bx+c(a≠0)的自变量x与函数值y的部分对应值,那么方程ax2+bx+c=0的一个根的近似值可能是( B )A.1.08B.1.18C.1.28D.1.3811.某旅游景点的收入受季节的影响较大,有时候出现赔本的经营状况.因此,公司规定:若无利润时,该景点关闭.经跟踪测算,该景点一年中的利润W(万元)与月份x之间满足二次函数W=-x2+16x-48,则该景点一年中处于关闭状态有( A )A.5个月B.6个月C.7个月D.8个月12.二次函数y=ax2+bx+c的部分图象如图所示,则下列选项错误的是( D )A.若(-2,y1),(5,y2)是图象上的两点,则y1>y2B.3a+c=0C.方程ax2+bx+c=-2有两个不相等的实数根D.当x≥0时,y随x的增大而减小二、填空题(每小题3分,共18分)13.(2022淄博实验中学模拟)若y=(m2-1)x m2-m是二次函数,则m= 2 .14.已知抛物线y=-x2+bx+c经过点A(-4,1),B(2,1),若函数值y随x 的值的增大而减小,则x的取值范围是x≥-1 .且15.抛物线y=(k-1)x2-x+1与x轴有交点,则k的取值范围是k≤54k≠1 .16.抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,与y轴交于C(0,3),且此抛物线的顶点坐标为M(-1,4),则此抛物线的表达式为y=-x2-2x+3 .17.已知抛物线y=x2-k的顶点为P,与x轴交于点A,B,且△ABP是正三角形,则k的值是 3 .18.如图所示,抛物线y=x2经过平移得到抛物线y=x2-4x,其对称轴与两段抛物线所围成的阴影部分的面积为8 .三、解答题(共46分)19.(6分)已知抛物线y=ax2-2ax-3+2a2(a≠0).(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x轴上,求其表达式;(3)设点P(m,y1),Q(3,y2)在抛物线上,若y1<y2,求m的取值范围.解:(1)∵y=ax2-2ax-3+2a2=a(x-1)2+2a2-a-3.∴抛物线的对称轴为直线x=1.(2)∵抛物线的顶点在x轴上,∴2a 2-a-3=0, 解得a 1=32,a 2=-1.∴抛物线的表达式为y=32x 2-3x+32或y=-x 2+2x-1.(3)∵抛物线的对称轴为直线x=1,则Q(3,y 2)关于x=1对称的点的坐标为(-1,y 2), ∴当a>0,-1<m<3时,y 1<y 2. 当a<0,m<-1或m>3时,y 1<y 2.20.(8分)某快餐店销售A,B 两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A 种快餐的利润,同时提高每份B 种快餐的利润.售卖时发现,在一定范围内,每份A 种快餐利润每降1元可多卖2份,每份B 种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是多少元?解:设每份A 种快餐降价a 元,则每天卖出(40+2a)份,每份B 种快餐提高b 元,则每天卖出(80-2b)份, 由题意可得,40+2a+80-2b=40+80, 解得a=b,∴总利润W=(12-a)(40+2a)+(8+a)(80-2a) =-4a 2+48a+1 120 =-4(a-6)2+1 264. ∵-4<0,∴当a=6时,W 取得最大值1 264,即两种快餐一天的总利润最多为1 264元.21.(10分)如图所示,某农户计划用长12 m 的篱笆围成一个“日”字形的生物园饲养两种不同的家禽,生物园的一面靠墙,且墙的可利用长度最长为7 m.(1)若生物园的面积为9 m 2,则这个生物园垂直于墙的一边长为多少? (2)若要使生物园的面积最大,该怎样围? 解:设这个生物园垂直于墙的一边长为x m. (1)由题意,得x(12-3x)=9, 解得x 1=1(不符合题意,舍去),x 2=3, ∴这个生物园垂直于墙的一边长为3 m. (2)设围成生物园的面积为y m 2. 由题意,得y=x(12-3x)=-3(x-2)2+12. ∵{12-3x ≤7,12-3x >0,解得53≤x<4.∴当x=2时,y 最大=12,12-3x=6.∴生物园垂直于墙的一边长为2 m,平行于墙的一边长为6 m 时,围成生物园的面积最大,最大面积为12 m 2.22.(10分)(2022泰山模拟)有一辆宽为2 m 的货车(如图①所示),要通过一条抛物线形隧道(如图②所示).为确保车辆安全通行,规定货车车顶左右两侧离隧道内壁的垂直高度至少为0.5 m.已知隧道的跨度AB 为8 m,拱高为4 m.(1)若隧道为单车道,货车高为3.2 m,该货车能否安全通行?为什么?(2)若隧道为双车道,且两车道之间有0.4 m的隔离带,通过计算说明该货车能够通行的最大安全限高.①②解:(1)货车能安全通行.理由如下:依题意建立平面直角坐标系如图所示., 设抛物线表达式为y=ax2+4,将B(4,0)代入,得16a+4=0,解得a=-14∴抛物线表达式为y=-1x2+4.令x=1可得y=3.75.4∵3.75-0.5=3.25>3.2,∴货车能够安全通行.(2)令x=0.2+2=2.2,可得y=2.79.∵2.79-0.5=2.29,∴货车能够通行的最大安全限高为2.29 m.23.(12分)如图所示,△OAP是等腰直角三角形,∠OAP=90°,点A在第四象限,点P坐标为(8,0),抛物线y=ax2+bx+c经过原点O和A,P两点.(1)求抛物线的函数表达式.(2)点B是y轴正半轴上一点,连接AB,过点B作AB的垂线交抛物线于C,D两点,且BC=AB,求点B坐标;(3)在(2)的条件下,点M是线段BC上一点,过点M作x轴的垂线交抛物线于点N,求△CBN面积的最大值.解:(1)△OAP是等腰直角三角形,∠OAP=90°,点P坐标为(8,0),则点A在抛物线的对称轴上,故点A(4,-4),故抛物线的表达式为y=a(x-4)2-4,将点P的坐标代入上式并解得a=1,4x2-2x.故抛物线的表达式为y=14(2)设点B(0,m),过点C作CH⊥y轴于H,过点A作AQ⊥y轴于点Q,如图所示.∵∠BAQ+∠QBA=90°,∠QBA+∠HBC=90°,∴∠HBC=∠BAQ.又∵BC=AB,∠CHB=∠BQA=90°,∴△CHB≌△BQA(AAS),∴BH=AQ=4,CH=BQ=4+m,故点C(m+4,m+4).将点C的坐标代入抛物线表达式并解得m=8,故点B(0,8).(3)由(2)知点B(0,8),点C(12,12),设直线BC 的表达式为y=kx+n. 将点B,C 的坐标代入,得 {n =8,12k +n =12,解得{k =13,n =8, ∴直线BC 的表达式为y=13x+8.设点N(x,14x 2-2x),则点M(x,13x+8),∴△CBN 的面积S=12×MN ×CH=12×(13x+8-14x 2+2x)×12=-32x 2+14x+48=-32(x-143)2+2423.∵-32<0,故S 有最大值2423.。
(完整版)高中二次函数练习题
![(完整版)高中二次函数练习题](https://img.taocdn.com/s3/m/6bdcd3a43169a4517623a316.png)
二次函数专题一、选择题1.若函数y =(x +1)(x -a )为偶函数,则a 等于( )A .-2B .-1C .1D .22.若f (x )=x 2-ax +1有负值,则实数a 的取值范围是( )A .a >2或a <-2B .-2<a <2C .a ≠±2D .1<a <33.若f (x )=x 2-x +a ,f (-m )<0,则f (m +1)的值为( )A .正数B .负数C .非负数D .与m 有关4.已知函数y =ax 2+bx +c ,如果a >b >c ,且a +b +c =0,则它的图象是( )5.已知函数f (x )=x 2+ax +b ,且f (x +2)是偶函数,则f (1),f (52),f (72)的大小关系是( )A .f (52)<f (1)<f (72)B .f (1)<f (72)<f (52)C .f (72)<f (1)<f (52)D .f (72)<f (52)<f (1)二、填空题6.已知函数f (x )=x 2-2x +2的定义域和值域均为[1,b ],则b =________.7.方程x 2-mx +1=0的两根为α、β,且α>0,1<β<2,则实数m 的取值范围是________.8.已知定义在区间[0,3]上的函数f (x )=kx 2-2kx 的最大值为3,那么实数k 的取值范围为________.三、解答题9.求下列二次函数的解析式:(1)图象顶点坐标为(2,-1),与y 轴交点坐标为(0,11);(2)已知二次函数f (x )满足f (0)=1,且f (x +1)-f (x )=2x .10.已知函数f (x )=x 2-4ax +2a +6(a ∈R ).(1)若函数的值域为[0,+∞),求a 的值;(2)若函数值为非负数,求函数f (a )=2-a |a +3|的值域.11.已知函数f (x )=ax 2+2x +c (a 、c ∈N *)满足:①f (1)=5;②6<f (2)<11.(1)求a 、c 的值;(2)若对任意的实数x ∈[12,32],都有f (x )-2mx ≤1成立,求实数m 的取值范围.。
二次函数练习题及答案
![二次函数练习题及答案](https://img.taocdn.com/s3/m/0ea39060bdd126fff705cc1755270722192e593f.png)
二次函数练习题及答案二次函数是高中数学中的重要内容,也是学生们常常遇到的难点之一。
为了帮助学生更好地理解和掌握二次函数,下面将给大家提供一些二次函数的练习题及答案。
1. 求解下列二次方程:(1) x^2 - 5x + 6 = 0(2) 2x^2 + 3x - 2 = 0解答:(1) 将方程因式分解得:(x - 2)(x - 3) = 0因此,x = 2 或 x = 3(2) 使用求根公式得:x = (-b ± √(b^2 - 4ac)) / (2a)将方程中的系数代入公式计算得:x = (-3 ± √(3^2 - 4*2*(-2))) / (2*2)化简得:x = (-3 ± √(9 + 16)) / 4= (-3 ± √25) / 4因此,x = (-3 + 5) / 4 = 1/2 或 x = (-3 - 5) / 4 = -22. 求解下列二次不等式:(1) x^2 - 4x > 3(2) 2x^2 + 5x < 3x + 2解答:(1) 将不等式移项得:x^2 - 4x - 3 > 0将不等式左边进行因式分解得:(x - 3)(x + 1) > 0因此,x > 3 或 x < -1(2) 将不等式移项得:2x^2 + 5x - 3x - 2 < 0化简得:2x^2 + 2x - 2 < 0将不等式左边进行因式分解得:2(x - 1)(x + 1) < 0因此,-1 < x < 13. 求解下列二次函数的顶点坐标和对称轴方程:(1) y = x^2 - 4x + 3(2) y = -2x^2 + 4x - 1解答:(1) 将二次函数转化为顶点形式:y = (x - 2)^2 - 1顶点坐标为 (2, -1)对称轴方程为 x = 2(2) 将二次函数转化为顶点形式:y = -2(x - 1)^2 + 3顶点坐标为 (1, 3)对称轴方程为 x = 1通过以上的练习题,我们可以更好地理解和掌握二次函数的相关概念和解题方法。
(完整版)二次函数最经典练习题
![(完整版)二次函数最经典练习题](https://img.taocdn.com/s3/m/ef29e9bc43323968001c9268.png)
一、顶点、平移1、抛物线y =-(x +2)2-3的顶点坐标是( ).(A) (2,-3); (B) (-2,3); (C) (2,3); (D) (-2,-3) 2、抛物线221y x x =-+的顶点坐标是( ) A .(1,0)B .(-1,0)C .(-2,1)D .(2,-1)3、抛物线y=x 2-2x -3的顶点坐标是 .4、下列二次函数中,图象以直线x = 2为对称轴,且经过点(0,1)的是 ( ) A .y = (x − 2)2+ 1 B .y = (x + 2)2+ 1 C .y = (x − 2)2− 3 D .y = (x + 2)2− 35、将二次函数245y x x =-+化为2()y x h k =-+的形式,则y = . 6、二次函数522-+=x x y 有( ) A . 最大值5-B . 最小值5-C . 最大值6-D . 最小值6-7、由二次函数1)3(22+-=x y ,可知( )A .其图象的开口向下B .其图象的对称轴为直线3-=xC .其最小值为1D .当3<x 时,y 随x 的增大而增大 .二、a 、b 、c 与图象的关系1、如图为抛物线2y ax bx c =++的图像,A 、B 、C 为抛物线与坐标轴的交点,且OA =OC =1,则下列关系中正确的是 ( )A .a +b =-1B . a -b =-1C . b <2aD . ac <0 2、已知抛物线y =ax 2+bx +c (a ≠0)在平面直角坐标系中的位置如图所示,则下列结论中正确的是( )A . a >0 B . b <0 C . c <0 D . a +b +c >0 3、如图所示的二次函数2y ax bx c =++的图象中,刘星同学观察得出了下面四条信息:(1)240b ac ->;(2)c >1;(3)2a -b <0;(4)a +b +c <0。
高中二次函数练习题
![高中二次函数练习题](https://img.taocdn.com/s3/m/caff32dfbdeb19e8b8f67c1cfad6195f312be8d3.png)
高中二次函数练习题一、选择题1. 函数f(x)=x^2-2x+1的图像的对称轴是:A. x=1B. x=-1C. x=0D. x=22. 抛物线y=-x^2+4x-3与x轴的交点坐标是:A. (0,-3)B. (1,0)C. (3,0)D. (4,0)3. 已知二次函数y=ax^2+bx+c的顶点坐标为(-1,-2),且开口向下,则a的值为:A. -1B. 1C. 2D. -24. 二次函数y=x^2-4x+4的最小值为:A. 0B. 4C. -4D. 85. 抛物线y=2x^2-6x+1的开口方向是:A. 向上B. 向下C. 向左D. 向右二、填空题1. 已知二次函数y=2x^2+4x+1,其顶点坐标为______。
2. 函数y=-3x^2+6x+2的图像与y轴交点的纵坐标为______。
3. 若抛物线y=4x^2-12x+9的顶点在x轴上,则其顶点坐标为______。
4. 二次函数y=-x^2+2x+3与x轴的交点坐标为______。
5. 抛物线y=x^2-2x-8与直线y=-x+1的交点坐标为______。
三、解答题1. 已知抛物线y=x^2-6x+5,求其顶点坐标,并判断其开口方向。
2. 抛物线y=-2x^2+8x-1与x轴的交点坐标是什么?并求出其与y轴的交点坐标。
3. 已知二次函数y=3x^2-6x+2,求其与x轴的交点坐标,并判断其图像的开口方向。
4. 抛物线y=4x^2-20x+50经过怎样的平移变换,可以变为抛物线y=4x^2-4x+1?5. 已知抛物线y=-x^2+bx+c与x轴交于点(-1,0)和(5,0),求b和c的值,并写出该抛物线的解析式。
四、应用题1. 某公司生产一种产品,其成本函数为C(x)=0.5x^2-100x+1000,其中x为生产数量,求该公司生产多少产品时,成本最低。
2. 某商场销售一种商品,其销售函数为S(x)=-2x^2+240x-1000,其中x为销售数量,求出该商品的销售数量在什么范围内时,销售额最高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数专题
一、选择题
1.若函数y =(x +1)(x -a )为偶函数,则a 等于( )
A .-2
B .-1
C .1
D .2
2.若f (x )=x 2-ax +1有负值,则实数a 的取值范围是( )
A .a >2或a <-2
B .-2<a <2
C .a ≠±2
D .1<a <3
3.若f (x )=x 2-x +a ,f (-m )<0,则f (m +1)的值为( )
A .正数
B .负数
C .非负数
D .与m 有关
4.已知函数y =ax 2+bx +c ,如果a >b >c ,且a +b +c =0,则它的图象是( )
5.已知函数f (x )=x 2+ax +b ,且f (x +2)是偶函数,则f (1),f (52),f (72)的大小关
系是( )
A .f (52)<f (1)<f (72)
B .f (1)<f (72)<f (52)
C .f (72)<f (1)<f (52)
D .f (72)<f (52)<f (1)
二、填空题
6.已知函数f (x )=x 2-2x +2的定义域和值域均为[1,b ],则b =________.
7.方程x 2-mx +1=0的两根为α、β,且α>0,1<β<2,则实数m 的取值范围是________.
8.已知定义在区间[0,3]上的函数f (x )=kx 2-2kx 的最大值为3,那么实数k 的取值范围为________.
三、解答题
9.求下列二次函数的解析式:
(1)图象顶点坐标为(2,-1),与y 轴交点坐标为(0,11);
(2)已知二次函数f (x )满足f (0)=1,且f (x +1)-f (x )=2x .
10.已知函数f (x )=x 2-4ax +2a +6(a ∈R ).
(1)若函数的值域为[0,+∞),求a 的值;
(2)若函数值为非负数,求函数f (a )=2-a |a +3|的值域.
11.已知函数f (x )=ax 2+2x +c (a 、c ∈N *)满足:①f (1)=5;②6<f (2)<11.
(1)求a 、c 的值;
(2)若对任意的实数x ∈[12,32],都有f (x )-2mx ≤1成立,求实数m 的取值范围.
P。