3.1.3导数的几何意义教案

合集下载

高中数学 3.1.3 导数的几何意义教案 新人教A版选修11

高中数学 3.1.3 导数的几何意义教案 新人教A版选修11

3.1.3 导数的几何意义(教师用书独具)●三维目标1.知识与技能理解导数的几何意义,初步体会“以直代曲”的辩证思想;掌握求曲线上一点出的切线的斜率的方法.2.过程与方法培养学生的观察、动手动脑、归纳总结的能力;培养学生合作学习、创新能力.3.情感、态度与价值观经过FLASH动画演示割线“逼近”成切线过程,让学生感受函数图象的切线“形成”过程,获得函数图象的切线的意义;增强学生问题应用意识教育,让学生获得学习数学的兴趣与信心.●重点、难点重点:导数的几何意义,求曲线上过一点处的切线方程.难点:“以直代曲”的数学思想方法;以及切线定义的理解——在每处“附近”变化率与瞬时变化率的近似关系的理解.(教师用书独具)●教学建议为了更好的完成本节课的教学目标,帮助学生理解本节课内容,突出重点,突破难点,宜设计了如下的教法和学法:(1)教学设计:探讨教学法,即教师通过问题→诱导→演示→讨论→探索结果→归纳总结.(2)学法设计:自主思考,参与探究、合作交流、形成共识.(3)教学手段:以“多媒体辅助教学手段”为辅,以“问题的探讨,学生发言、演板,老师黑板板书”为主.●教学流程创设问题情境,引出问题:导数是否有一定的几何意义呢?⇒引导学生结合切、割线知识,用“逼近”思想探究出导数的几何意义.⇒通过引导学生回答所提问题进一步理解导数的几何意义.⇒通过例1及其变式训练,使学生对导数的几何意义加深理解,为应用埋下伏笔.⇒通过例2及其变式训练,使学生掌握求曲线的切线方程的方法.⇒在深入理解导数几何意义的基础上完成例3及其变式训练,学会其几何意义的综合应用.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.(对应学生用书第49页)1.我们知道,导数f′(x0)表示函数f(x)在x0处的瞬时变化率,反映了函数f(x)在x =x0附近的变化情况,那么,导数f′(x0)是否有一定的几何意义呢?【提示】f′(x0)有几何意义.2.如图,当点P n(x n,f(x n))(n=1,2,3,4),沿着曲线f(x)趋近于点P(x0,f(x0))时,割线PP n的变化趋势是什么?【提示】 点P n 趋近于点P 时,割线PP n 趋近于过点P 的切线PT . 3.第2题图中割线PP n 的斜率k n =f x n -f x 0x n -x 0,当点P n 无限趋近于点P 时,此斜率与切线PT 的斜率有何大小关系?【提示】 k n 无限趋近于切线PT 的斜率.1.设点P (x 0,f (x 0)),P n (x n ,f (x n ))是曲线y =f (x )上不同的点,当点P n (x n ,f (x n ))(n =1,2,3,4…)沿着曲线f (x )趋近于点P (x 0,f (x 0))时,割线PP n 趋近于确定的位置,这个确定位置的直线PT 称为过点P 的切线,且PT 的斜率k =li m x n →x 0f x n -f x 0x n -x 0=f ′(x 0).2.函数y =f (x )在点x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点P (x 0,f (x 0))处切线的斜率,在点P 的切线方程为y -f (x 0)=f ′(x 0)(x -x 0).导函数的概念000是一个确定的数;当x 变化时,f ′(x )是x 的一个函数,称为f (x )的导函数,即f ′(x )=y ′=lim Δx →0 f x +Δx -f xΔx.【问题导思】导函数f (x )与函数在x =x 0处的导数f ′(x 0)相同吗?它们有什么区别与联系? 【提示】 不相同.(1)两者的区别:由导数的定义知,f ′(x 0)是一个具体的值,f ′(x )是由于f(x)在某区间I上每一点都存在导数而定义在I上的一个新函数,所以两者的区别是:前者是数值,后者是函数.(2)两者的联系:在x=x0处的导数f′(x0)是导函数f′(x)在x=x0处的函数值,因此求函数在某一点处的导数.(对应学生用书第49页)若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在区间[a,b]上的图象可能是( )【思路探究】(1)导数的几何意义是什么?(2)y=f(x)的导函数在区间[a,b]上是增函数,说明y=f(x)图象的切线有什么特点?【自主解答】因为函数y=f(x)的导函数y=f′(x)在[a,b]上是增函数,由导数的几何意义可知,在区间[a,b]上各点处的切线斜率是逐渐增大的,只有A选项符合.【答案】 A1.f′(x0)即为过曲线y=f(x)上点P(x0,f(x0))切线的斜率.2.若曲线y=f(x)在(a,b)上任一点处的导数值都大于零,可以判断曲线y=f(x)在(a,b)上图象呈上升趋势,则函数y=f(x)在(a,b)上单调递增.而若y=f(x)在(a,b)上任一点处的导数都小于零,则函数y=f(x)的图象在(a,b)上呈下降趋势,y=f(x)在(a,b)单调递减.当函数y=f(x)在(a,b)上的导数值都等于零时,函数y=f(x)的图象应为垂直于y轴的直线的一部分.已知y=f(x)的图象如图3-1-1所示,则f′(x A)与f′(x B)的大小关系是( )图3-1-1A.f′(x A)>f′(x B)B.f′(x A)=f′(x B)C.f′(x A)<f′(x B)D.f′(x A)与f′(x B)大小不能确定【解析】由y=f(x)的图象可知,k A>k B,根据导数的几何意义有:f′(x A)>f′(x B).【答案】 A(1)求曲线y=x2+x+1在点(1,3)处的切线方程.(2)求过点(-1,0)与曲线y=x2+x+1相切的直线方程.【思路探究】(1)所给点是切点吗?(2)若是切点,该如何求切线方程?若不是切点该怎么办?【自主解答】(1)y′=limΔx→0x+Δx2+x+Δx+1-x2+x+1Δx=2x+1,∵(1,3)在曲线上,∴切线斜率k=y′|x=1=2×1+1=3.∴所求切线方程为y-3=3(x-1),即3x-y=0.(2)y′=2x+1,∵点(-1,0)不在曲线上,设切点坐标为(x0,y0),则切线斜率为k=2x0+1=y0x0+1.∵y0=x20+x0+1,∴x0=0或x0=-2.当x0=0时,切线斜率k=1,过(-1,0)的切线方程为y-0=x+1,即x-y+1=0,当x0=-2时,切线斜率k=-3,过(-1,0)的切线方程为y-0=-3(x+1),即3x+y +3=0,故所求切线方程为x-y+1=0或3x+y+3=0.1.如果所给点P (x 0,y 0)就是切点,一般叙述为“在点P 处的切线”,此时只要求函数f (x )在点x 0处的导数f ′(x 0),即得切线的斜率k =f ′(x 0),再根据点斜式得出切线方程.2.如果所给点P 不是切点,应先设出切点M (x 0,y 0),再求切线方程.要特别注意“过点P 的切线”这一叙述,点P 不一定是切点,也不一定在曲线上.求曲线y =1x 在点A (12,2)处的切线的斜率,并写出切线方程.【解】 ∵Δy =f (12+Δx )-f (12)=21+2Δx -2=-4Δx1+2Δx ,∴Δy Δx =-41+2Δx, ∴切线的斜率k =y ′|x =12=lim Δx →0 -41+2Δx =-4.∴切线方程为y -2=-4(x -12),即4x +y -4=0.导数几何意义的综合应用抛物线y =x 2在点P 处的切线与直线4x -y +2=0平行,求P 点的坐标及切线方程.【思路探究】 设切点Px 0,y 0→求导数y ′=f ′x →由k =4,求x 0→确定切点P x 0,y 0→求切线方程【自主解答】 设P 点坐标为(x 0,y 0), y ′=lim Δx →0 Δy Δx =lim Δx →0 x +Δx 2-x2Δx =lim Δx →0 2x ·Δx +Δx 2Δx=lim Δx →0 (2x +Δx )=2x . ∴y ′|x =x 0=2x 0,又由切线与直线4x -y +2=0平行, ∴2x 0=4,∴x 0=2,∵P (2,y 0)在抛物线y =x 2上,∴y 0=4, ∴点P 的坐标为(2,4),∴切线方程为y -4=4(x -2),即4x -y -4=0.1.导数的几何意义是曲线的切线的斜率,已知切点可以求斜率,反过来,已知斜率也可以求切点.2.导数几何意义的综合应用题的解题关键是对函数进行求导,注意灵活利用题目提供的诸如斜率的线性关系、斜率的最值、斜率的范围等关系求解相应问题.已知曲线C:y=x3.求:(1)曲线C上横坐标为1的点处的切线方程;(2)(1)中的切线与曲线C是否还有其他的公共点?【解】(1)将x=1代入曲线C的方程,得y=1,∴切点为P(1,1).∵y′=limΔx→0ΔyΔx=limΔx→0x+Δx3-x3Δx=lim Δx →0 3x 2Δx +3x Δx 2+Δx3Δx=lim Δx →0[3x 2+3x Δx +(Δx )2]=3x 2, ∴y ′|x =1=3.∴过P 点的切线方程为y -1=3(x -1), 即3x -y -2=0.(2)由⎩⎪⎨⎪⎧3x -y -2=0,y =x 3,可得(x -1)2(x +2)=0,解得x 1=1,x 2=-2.从而求得公共点为P (1,1)或P (-2,-8).说明切线与曲线C 的公共点除了切点外,还有另外的点(-2,-8).(对应学生用书第51页)错把所给点当作切点致误已知曲线y=2x2-7,求曲线过点P(3,9)的切线方程.【错解】f′(3)=limΔx→0Δy Δx=limΔx→0[23+Δx2-7]-2×32-7Δx=limΔx→0(12+2Δx)=12.故切线斜率为12.由直线的点斜式方程,得切线方程为y-9=12(x-3),即12x-y-27=0.【错因分析】点P不是切点,故切线斜率不是在x=3处的导数.【防范措施】求曲线的切线方程时,一定要判断所给点是否为切点,否则极易出错.【正解】f′(x0)=limΔx→0Δy Δx=limΔx→0[2x0+Δx2-7]-2×x20-7Δx=limΔx→0(4x0+2Δx)=4x0.由于2×32-7=11≠9,故点P(3,9)不在曲线上.设所求切线的切点为A(x0,y0),则切线的斜率k=4x0,故所求的切线方程为y-y0=4x0(x-x0).将P(3,9)及y0=2x20-7代入上式,得9-(2x20-7)=4x0(3-x0).解得x0=2,或x0=4.所以切点为(2,1)或(4,25).从而所求切线方程为8x-y-15=0,或16x-y-39=0.1.函数y=f(x)在点x0处的导数的几何意义是曲线y=f(x)在点P(x0,f(x0))处切线的斜率.也就是说,曲线y=f(x)在点P(x0,f(x0))处的切线的斜率是f′(x0),相应地,切线的方程为y-f(x0)=f′(x0)(x-x0).2.导数f′(x),是针对某一区间内任意点x而言的,函数f(x)在区间(a,b)内每一点都可导,是指对于区间(a,b)内的每一个确定的值x0,都对应着一个确定的导数f′(x0),根据函数的定义,在区间(a,b)内就构成了一个新的函数,就是函数f(x)的导函数f′(x).(对应学生用书第51页)1.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( ) A .不存在 B .与x 轴平行或重合 C .与x 轴垂直 D .与x 轴斜交【答案】 B2.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( ) A .f ′(x 0)>0 B .f ′(x 0)<0 C .f ′(x 0)=0D .f ′(x 0)不存在【解析】 由x +2y -3=0知斜率k =-12,∴f ′(x 0)=-12<0.【答案】 B3.抛物线y =2x 2在点P (1,2)处的切线l 的斜率为____. 【解析】 k =f ′(1)=4 【答案】 44.已知函数y =f (x )的图象在点M (1,f (1))处的切线方程为y =12x +2.求f (1)与f ′(1)的值.【解】 由题意f (1)=12×1+2=52.由导数的几何意义得f ′(1)=k =12.(对应学生用书第105页)一、选择题1.(2013·临沂高二检测)设函数f (x )满足lim Δx →0f 1-f 1-ΔxΔx=-1,则曲线y=f (x )在点(1,f (1))处的切线的斜率是( )A .2B .-1 C.12 D .-2【解析】 ∵lim Δx →0f 1-f 1-ΔxΔx=f ′(1)=k =-1,∴y =f (x )在点(1,f (1))处的切线的斜率是-1. 【答案】 B2.过点(-1,0)作抛物线y =x 2+x +1的切线,则其中一条切线为( ) A .2x +y +3=0 B .3x -y +5=0 C .2x +y +1=0D .x -y +1=0【解析】 ∵点(-1,0)不在抛物线y =x 2+x +1上,故点(-1,0)不是切点,但此点在切线上,应满足切线方程,经验证,只有D 符合.【答案】 D3.函数y=f(x)的导函数f′(x)的图象如图3-1-2所示,则在y=f(x)的图象上A,B的对应点附近,有( )图3-1-2A.A处下降,B处上升B.A处上升,B处下降C.A处下降,B处下降D.A处上升,B处上升【解析】∵所给图象的导函数的图象,且A点处y<0,B点处y>0,故原函数图象上A处下降,B处上升.【答案】 A4.(2013·鹤壁高二检测)如图3-1-3所示,函数y=f(x)的图象在点P处的切线方程是y=-x+8,则f(5)+f′(5)=( )图3-1-3A.12B .1C .2【解析】 由图象知f (5)=-5+8=3. 由导数几何意义知f ′(5)=-1. ∴f (5)+f ′(5)=3-1=2. 【答案】 C5.(2013·黄冈高二检测)已知曲线y =4x在点P (1,4)处的切线与直线l 平行且距离为17,则直线l 的方程为( ) A .4x -y +9=0B .4x -y +9=0或4x -y +25=0C .4x +y +9=0或4x +y -25=0D .以上均不对【解析】 y ′=lim Δx →0 ΔyΔx=-4,∴k =-4,∴切线方程为y -4=-4(x -1),即4x +y -8=0,设l :4x +y +c =0,由题意17=|c +8|42+12,∴c =9或-25,应选C.【答案】 C 二、填空题6.已知y =ax 2+b 在点(1,3)处的切线斜率为2,则ba=________. 【解析】 由题意lim Δx →0a 1+Δx2+b -a -bΔx=lim Δx →0(a Δx +2a )=2a =2,∴a =1,又3=a ×12+b ,∴b =2,∴b a=2.【答案】 27.(2013·杭州高二检测)曲线f (x )=3x +x 2在点(1,f (1))处的切线方程为__________. 【解析】 k =lim Δx →0 31+Δx +1+Δx2-3-12Δx=5.∵f (1)=4.由点斜式得y -4=5(x -1),即y =5x -1. 【答案】 y =5x -18.y =f (x ),y =g (x ),y =α(x )的图象如图3-1-4所示:图3-1-4而下图是其对应导数的图象:则y=f(x)对应________;y=g(x)对应________;y=α(x)对应________.【解析】由导数的几何意义,y=f(x)上任一点处的切线斜率均小于零且保持不变,则y=f(x)对应B.y=g(x)上任一点处的切线斜率均小于零,且在起始部分斜率值趋近负无限,故y=g(x)对应C.y=α(x)图象上任一点处的切线斜率都大于零,且先小后大,故y=α(x)对应A.【答案】 B C A三、解答题9.已知函数f(x)=x2+2.(1)求f′(x);(2)求f(x)在x=2处的导数.【解】(1)∵Δy=f(x+Δx)-f(x)=(x +Δx )2+2-(x 2+2)=(Δx )2+2x ·Δx , ∴Δy Δx =2x +Δx . ∴f ′(x )=lim Δx →0 Δy Δx =2x .(2)f ′(2)=f ′(x )|x =2=2×2=4.10.已知曲线y =13x 3上一点P (2,83),求:(1)点P 处的切线的斜率;(2)点P 处的切线方程.【解】 (1)由y =13x 3,得y ′=lim Δx →0 ΔyΔx=lim Δx →0 13x +Δx 3-13x 3Δx=13lim Δx →0 3x 2Δx +3x Δx 2+Δx 3Δx=13lim Δx →0[3x 2+3x Δx +(Δx )2]=x 2,y ′|x =2=22=4.所以点p 处的切线的斜率等于4.(2)在点p 处的切线方程为y -83=4(x -2),即12x -3y -16=0.11.已知f (x )=x 2,g (x )=x 3.(1)求f ′(x ),g ′(x ),并判断f ′(x )和g ′(x )的奇偶性;(2)若对于所有的实数x ,f ′(x )-2<ag ′(x )恒成立,试求实数a 的取值范围.【解】 (1)由导数的定义知,f ′(x )=lim Δx →0 x +Δx 2-x 2Δx =2x ;g ′(x )=lim Δx →0 x +Δx 3-x 3Δx =lim Δx →0[3x 2+3x ·Δx +(Δx )2]=3x 2.f ′(x )和g ′(x )的定义域为R ,故定义域关于原点对称,∵f ′(-x )=-2x =-f ′(x ),∴f ′(x )为奇函数.∵g ′(-x )=3(-x )2=3x 2=g ′(x ),∴g ′(x )为偶函数. (2)由f ′(x )-2<ag ′(x ),得3ax 2-2x +2>0对任意实数x 恒成立, ①当a =0时,转化为-2x +2>0恒成立,即x <1,不合题意; ②当a ≠0时,由3ax 2-2x +2>0对所有实数x 都成立得,⎩⎪⎨⎪⎧ a >0,Δ=-22-4×2×3a <0,解得a >16.综上,a 的取值范围是(16,+∞).(教师用书独具)在曲线y =x 2上过哪一点的切线,(1)平行于直线y =4x -5;(2)垂直于直线2x -6y +5=0;(3)与x 轴成135°的倾斜角.【解】 f ′(x )=lim Δx →0 f x +Δx -f x Δx =lim Δx →0 x +Δx 2-x 2Δx =2x ,设P (x 0,y 0)是满足条件的点.(1)因为切线与直线y =4x -5平行,所以2x 0=4,x 0=2,y 0=4,即P (2,4).(2)因为切线与直线2x -6y +5=0垂直,所以2x 0·13=-1,得x 0=-32,y 0=94,即P (-32,94). (3)因为切线与x 轴成135°的倾斜角,所以其斜率为-1. 即2x 0=-1,得x 0=-12,y 0=14,即P (-12,14).直线l :y =x +a (a ≠0)和曲线C :y =x 3-x 2+1相切.(1)求a 的值;(2)求切点的坐标.【解】 设直线l 与曲线C 相切于P (x 0,y 0)点. f ′(x )=lim Δx →0 f x +Δx -f xΔx=lim Δx →0 x +Δx 3-x +Δx 2+1-x 3-x 2+1Δx =3x 2-2x .由题意知,k =1,即3x 20-2x 0=1,解得x 0=-13或x 0=1.于是切点的坐标为(-13,2327)或(1,1). 当切点为(-13,2327)时,2327=-13+a ,a =3227.当切点为(1,1)时,1=1+a ,a =0(舍去). 所以a 的值为3227,切点坐标为(-13,2327).。

《3.1.3导数的几何意义》说课课件

《3.1.3导数的几何意义》说课课件
h
l0
0 t3 t4 t0
t1 t2 l2
t l1
东莞市樟木头中学 李鸿艳
教材 说明 分析 反思
教学 目标
板书 设计
教学过程 设计意图
重点与 难点 教学方法 与手段
教材分析
导数是微积分的核心概念之一,它为研究变量 和函数提供了重要的方法。《导数的几何意义》从 形的角度即割线入手,定义了切线,获得了导数的 几何意义。通过学习,可以帮助学生更好的理解导 数的概念及导数是研究函数的单调性、极值等性质 最有效的工具。与旧教材相比,新教材用形象直观 的“逼近”方法得到导数的几何意义,更有利于学 生对知识的理解和掌握。
▲问(一):平面几何中我们怎样
判断直线是否是圆切线(图1)? ▲问(二):如图直线l1是曲线C的 切线吗? l2能叫做过点P的曲2 l1
y=f(x)
o
x
图2
固旧引新, 为引入“导 数的几何意 义”奠定基 础.
▲问(三)求导数f′(x0)的步 骤有哪几步? ▲问(四):平均变化率
教法 分析
(1)本节课采用的教法有:多媒体教学法、探究 发现法、分组讨论法。理论依据:利用多媒体 展示导数就是切线斜率的过程,让学生体会逼 近的思想方法,使问题变得直观,易于突破难 点。通过“动手探索、讨论验证、实践应用”, 让学生体验动手乐趣,增强参与意识,使他们 真正成为教学主体。 (2) 教具:多媒体、几何画板、小制作.
根据导数的定义总结出这个新函数的求解方法
吗?
1、动手实践,探 究发现,培养学 生知识迁移提炼 能力; 2、分组讨论,锻 炼学生的团队意 识; 3、知识点展示, 提醒同学们重点 关注.
1、导数的几何意义:函数f(x)在
x=x0处的导数f′(x)的几何意义 就是函数f(x)的图像在x=x0处的 切线的斜率。即:

高中数学新人教版B版精品教案《人教版B高中数学选修1-1 3.1.3 导数的几何意义》2

高中数学新人教版B版精品教案《人教版B高中数学选修1-1 3.1.3 导数的几何意义》2

导数的概念与几何意义(复习课)教学设计2、根据本节课的特点也为了给学生的数学探究与数学思维提供支持,在整个教学中以实现学生学习目标为核心,启发引导学生观察思考、分析,并沿着积极的思维方向,逐步达到即定的学习目标,发展并培养学生的逻辑思维能力,使学生在教师营造的"可探索"的环境里,积极参与,主动地获取知识。

教学过程教学环节教学内容师生互动及教师设计意图高考大纲说明1了解导数概念的实际背景;2理解导数的几何意义;教师用课件展示问题,学生观看.让学生深知本节课在高考的地位、作用,帮助学生学习本节课有目的性知识回顾一.知识回顾——导数结构图温故而知新,让学生重新回顾本章所学内容,了解本节课所学内容在课标和高考中的地位及体现二、出示2021年考题及考纲说明新课讲授知识解析:1.导数的概念2导数的几何意义任务一教师针对课标及学生的实际认知水平,为本节课精选例题,帮助学生巩固知识针对例题给出变式练习题,新课讲授变式:直线=与曲线=n相切,求值。

任务二(一)求切线方程(二)求切点(三)求参数帮助学生巩固例题所学内容,形成能力教师应注意在学生书写时纠正学生的书写错误,让学生将会做的题变成得针对问题让学生多上黑板处理,既方便教师及时了解学生的问题,暴露学生在这部分内容的知识缺陷,同时也给学生一个展示自己的机会课堂小结学生畅谈本节课的收获,老师引导梳理,总结本节课的知识点.梳理总结也可针对学生薄弱或易错处进行强调和总结.反思归纳 1.注意区分曲线在某点处的切线和曲线过某点的切线。

曲线y=f(x)在点P(x0,f(x0))处的切线方程是y-f(x0)=f′(x0)(x-x0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解。

2.已知斜率k,求切点A(x0,f(x0)),即解方程f′(x0)=k。

3.根据导数的几何意义求参数的值时,一般是利用切点P(x0,y0)既在曲线上又在切线上构造方程组求解。

高中数学选修1-1教案-3.1.3 导数的几何意义(6)-人教A版

高中数学选修1-1教案-3.1.3 导数的几何意义(6)-人教A版

《导数的几何意义》教学设计教材: 人教A版·普通高中课程标准实验教科书·数学·选修1-1一、教学内容解析1、教材分析《导数的几何意义》是人教A版选修1-1第一章《导数及其应用》的内容,本节课为第一课时。

导数的几何意义是学生掌握了上位知识——平均变化率、瞬时变化率以及导数的概念的基础上进一步从几何意义的角度理解导数的含义与价值,体会逼近,以直代曲和数形结合的数学思想方法。

2、教学重点与难点教学重点:理解导数的几何意义及其应用。

教学难点:逼近思想,以直代曲的思想。

二、教学目标设置(一)知识与技能:(1)会描述一般曲线的切线定义;(2)会根据导数的几何意义求切线斜率,并会用其分析描述“曲线在某点附近的变化情况”。

(二)过程与方法:(1)通过观察类比,合作探究,概括出一般曲线的切线定义;(2)经历发现导数的几何意义的过程,体会逼近、类比、数形结合的思想方法。

(三)情感态度与价值观:感受人类理性思维的作用。

三、学生学情分析从知识储备上看,学生通过了对实例的分析,经历了由平均变化率过渡到瞬时变化率的过程,了解了导数概念的实际背景,知道瞬时变化率就是导数,从数上体会了“逼近”的思想;同时,学生已经学习了直线的斜率与直线方程的相关知识。

从学习能力上看,教学对象是高二理科班的学生,思维活跃,具有一定的想象能力和研究问题的能力。

经过半年多的训练,学生逐步形成小组合作探究,代表上台解释概括总结的学习模式。

从学习心理上看,学生已经从实际意义,数值意义这些“数”的角度理解了导数,学生也渴求从几何意义,即“形”的角度来理解导数,但学生对切线认识存在一定的思维定势——“与曲线仅有一个公共点的直线是曲线的切线”。

教师需创设问题情境,采用类比的方法,引导学生在概念上上升一个层次,由割线的逼近来定义一般曲线的切线,从而突破教学难点:“逼近”思想。

四、教学策略分析1、教法分析:“启发探究式”教学法,教学中遵循教师主导、学生主体、探究主线,教师更多的是启发引导学生的思维。

高中数学_3.1.3 导数的几何意义教学设计学情分析教材分析课后反思

高中数学_3.1.3 导数的几何意义教学设计学情分析教材分析课后反思

3.1.3导数的几何意义高二数学人教B版教材(选修1-1)一、教材分析本节课选自人教B版选修1-1第三章3.1.3导数的几何意义。

教材通过数形结合的方法,演示了割线斜率到切线斜率的变化过程,用形象直观的逼近方法定义了切线,引出了导数的几何意义,适合学生的认知规律,在学生学习中有着明确的学习方法指引,通过本节课的学习,学生们进一步认识了“逼近思想”在数学中的应用。

例题设计难度适中,既有简单求解切线斜率、切点的题目,又有求切线方程题型。

例题设计了“在一点处”型和“过一点”型的切线方程,可以培养学生思维全面严谨、分类讨论的能力。

二、教学目标知识与技能:理解导数的几何意义、熟练掌握求切点及函数“在一点处”型、“过一点”型的切线斜率的求法。

过程与方法:让学生体会割线斜率到切线斜率的过程,熟练掌握数形结合、分类讨论等数学思想方法。

情感态度与价值观:能够从生活中抽象出数学问题,在学习中养成积极探究,合作分享的学习态度。

通过认真训练,达到举一反三、融会贯通的目的。

三、重点、难点导数几何意义的理解与应用,“过一点”型的切线斜率的求解过程。

突出重点方法:“抓三线、突重点”,即(一)知识技能线:实例引入→抽象为数学问题→动态演示→形成概念;(二)过程与方法线:具体到抽象、数形结合、分类讨论的应用;(三)能力线:观察能力→数学思想解决问题能力→灵活运用能力及严谨态度.教学难点:导数的几何意义,从学生认知水平来看,学生的探究能力和用数学语言交流的能力还有待提高。

从知识本身特点来看,导数的几何意义是在平均变化率、瞬时速度与导数的基础上结合切线斜率再生成的一个知识点。

特别是在求“在一点处”型、“过一点”型的切线斜率,这是学生的难点,刚开始接触,好多学生可能不理解。

突破难点手段:“抓两点,破难点”,即一抓学生情感和思维的兴奋点,激发他们的兴趣,鼓励学生大胆猜想、积极探索,及时地给以鼓励,使他们知难而进;二抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给予适当的提示和指导。

人教版高中数学优质教案:3.1.3 导数的几何意义 教学设计

人教版高中数学优质教案:3.1.3 导数的几何意义 教学设计

3.1.3 导数的几何意义【教学目标】 知识与技能目标:本节的中心任务是研究导数的几何意义及其应用,概念的形成分为三个层次:(1) 通过复习旧知“求导数的两个步骤”以及“平均变化率与割线斜率的关系”,解决了平均变化率的几何意义后,明确探究导数的几何意义可以依据导数概念的形成寻求解决问题的途径.(2) 借助两个类比的动画,从圆中割线和切线的变化联系,推广到一般曲线中用割线逼近的方法直观定义切线.(3) 依据割线与切线的变化联系,数形结合探究函数)(x f 在0x x =处的导数0()f x '的几何意义,使学生认识到导数0()f x '就是函数)(x f 的图象在0x x =处的切线的斜率.即:()()xx f x x f x f x ∆-∆+=→∆)(lim0000/=曲线在0x x =处切线的斜率在此基础上,通过例题和练习使学生学会利用导数的几何意义解释实际生活问题,加深对导数内涵的理解.在学习过程中感受逼近的思想方法,了解“以直代曲”的数学思想方法.过程与方法目标:(1) 学生通过观察感知、动手探究,培养学生的动手和感知发现的能力.(2) 学生通过对圆的切线和割线联系的认识,再类比探索一般曲线的情况,完善对切线的认知,感受逼近的思想,体会相切是种局部性质的本质,有助于数学思维能力的提高.(3) 结合分层的探究问题和分层练习,期望各种层次的学生都可以凭借自己的能力尽力走在教师的前面,独立解决问题和发现新知、应用新知.情感、态度、价值观:(1) 通过在探究过程中渗透逼近和以直代曲思想,使学生了解近似与精确间的辨证关系;通过有限来认识无限,体验数学中转化思想的意义和价值;(2) 在教学中向他们提供充分的从事数学活动的机会,如:探究活动,让学生自主探究新知,例题则采用练在讲之前,讲在关键处.在活动中激发学生的学习潜能,促进他们真正理解和掌握基本的数学知识技能、数学思想方法,获得广泛的数学活动经验,提高综合能力,学会学习,进一步在意志力、自信心、理性精神等情感与态度方面得到良好的发展.【教学重点与难点】重点:理解和掌握切线的新定义、导数的几何意义及应用于解决实际问题,体会数形结合、以直代曲的思想方法.难点:发现、理解及应用导数的几何意义.【学法指导】通过设计环环相扣的思考问题,引导学生主动地参与探究活动,体验学习的乐趣,教师在这个过程中不打断学生的思路,学生可以根据学案超前完成活动,期望有能力的学生走在老师的前面,同时,学生也可以根据需要寻求老师和同学的帮助,以更好地在课堂上完成学习任务.使学生充分经历“探索感知——讨论归纳——发现新知——应用新知解释现象”这一完整的探究活动,以获得理智和情感体验,让学生感受到数学知识的产生是水到渠成的.学生自主探索、动手实践、合作交流的学习方式,体现在整个教学过程中.【数学知识线索】【教学流程】【教学过程】生:平均变化率表示的是割线nPP的斜率.师:这就是平均变化率.....(.y x∆∆).的几何意义.....,那么瞬时变化率(limxyx∆→∆∆)在图中又表示什么呢?今天我们就来探究导数的几何意义.教师引导学生观察割线与切线是否有某种内在联系呢?生:先感知后发现,当0x ∆→,随着点B 沿着圆逼近点A ,割线AB 无限趋近于点A 处的切线.◆把割线逼近切线的结论从圆推广到一般曲线,可得:多媒体显示【动画2】:动态演示教材上点00(,())n P x x f x x +∆+∆沿着曲线()f x 趋近于点00(,())P x f x 时,割线n PP 的变化趋势图.师:类比【动画1】,当点00(,())n P x x f x x +∆+∆沿着曲线()f x 趋近于点00(,())P x f x 时,即0x ∆→,研究割线n PP 的变化趋势.学生观察【动画2】,类比得出一般曲线的切线定义:当点00(,())n P x x f x x +∆+∆沿着曲线()f x 逼近点00(,())P x f x 时,即0x ∆→,割线n PP 趋近于确定的位置,这个确定位置上的直线PT 称为点P 处的切线.突破研究的难点:0x ∆→,割线n PP →点P 处的切线 那么:0x ∆→,割线的斜率→?与导数0()f x '又有何关系呢?学生自选A 或B 组题目进行下面的探究活动.2.数形结合,探究导数的几何意义结合【动画2】的变化过程,学生思考下面的问题,探究导数的几何意义.分层自选(A)、(B)中的一组.【探究一(A)】1.已知曲线上两点0000(,()),(,())n x x P x f x P x f x +∆+∆: (1)根据切线定义可知:0x ∆→,割线n PP 趋近于切线PT .那么割线n PP 的斜率n k 与切线PT 的斜率k 又有何关系?纳和总结并深入体会知识间的联系.三、探索小结、重点讲评1.获得导数的几何意义◆学生快速探究活动后,展示研究成果,教师重点讲评: 割线n PP 的斜率是0000()()()n f x x f x k x x x +∆-=+∆-,当点n P 沿着曲线无限接近点P 时,n k 无限趋近于切线PT 的斜率k ,即0000()()lim ()x f x x f x k f x x∆→+∆-'==∆切线PT 的斜率k 即为函数在0x x =处的导数. 导数的几何意义:00000()()()lim x f x x f x f x x x k x∆→+∆-'===∆曲线在处的切线的斜率师:由导数的几何意义,我们可以解决哪些问题? 生:已知某点处的导数或者切线的斜率可以求另外一个量. 问:切线y kx b =+中,如果0k >,则切线有怎样的变化趋势?如果0k <呢?反之,由切线的变化趋势,能否确定斜率的情况?生:0k >,则切线呈上升趋势;0k <,则切线呈下降趋势.由切线的变化趋势可以得出切线的斜率情况,也即该点处的导数情况.2.了解以直代曲思想把点P 附近函数的图象放大,引导学生理解以直代曲思想是指某点附近一个很小的研究区域内,曲线与切线的变化趋势基本一致,故可由曲线上某点处的切线近似代替这一点附近的曲线.借助实物投影仪,展示学习成果,学生经历了完整的探究过程后,教师的讲评就可以有针对性和详略,学生也可以结合自己探究的体会更好地建构知识.突破导数的几何意义这个学习重点.复习一次函数的增减性,为后面利用导数研究函数的增减性埋下伏笔.通过将曲线一点PPP四、知识应用、巩固理解1.导数几何意义的应用例题:如图,它表示跳水运动中高度随时间变化的函数105.69.4)(2++-=ttth的图象.(1)(2)t O5.00.1h【探究二(A)】1.用图形体现3.3)1(/-=h ,6.1)5.0(/=h 的几何意义.2.导数值的正负,反应该点附近的曲线有何变化趋势? 3.请描述、比较曲线)(t h 在210,,t t t 附近增(减)以及增(减)快慢的情况.在43,t t 附近呢?分析:附近:瞬时..,增减:变化率...,即研究函数在该点处的瞬时变化率,也就是导数.可借助切线的变化趋势得到导数的情况.生:作出曲线在这些点处的切线,在0t 处切线平行于x 轴,即0()0h t '=,说明在0t 时刻附近变化率为0,函数几乎没有增减;在12,t t 作出切线,切线呈下降趋势,即12()0,()0h t h t ''<<,函数在点附近单调递减.曲线在2t 附近比在1t 附近下降得更快,则是因为12|()||()|h t h t ''<.【探究二(B)】htO3t4t 0t1t 2t【探究二(B)】1.运用导数的几何意义,描述)(t h 在210,,t t t 附近增(减)以及增(减)快慢的情况.在43,t t 附近呢?2. 如何用导数研究函数的增减?小结:附近:瞬时..,增减:变化率...,即研究函数在该点处的瞬时变化率,也就是导数.导数的正负即对应函数的增减.作出该点处的切线,可由切线的升降趋势,得切线斜率的正负即导数的正负,就可以判断函数的增减性,体会导数是研究函数增减、变化快慢的有效工具.同时,结合以直代曲的思想,在某点附近的切线的变化情况与曲线的变化情况一样,也可以判断函数的增减性.都反应了导数是研究函数增减、变化快慢的有效工具.例题变式1:函数32y x =+上有一点00(,)x y ,求该点处的导数0()f x ',并由此解释函数的增减情况.0000000()()()lim3()2(32)lim 3x x f x f x x f x x x x x x∆→∆→'=+∆-∆+∆+-+==∆Q 解:函数在定义域上任意点处的瞬时变化率都是3,函数在定义域内单调递增.(此时任意点处的切线就是直线本身,斜率就是变化率)例题变式2:下图是函数()y f x =的图象,请回答下面的问题:【探究三(A)】1.请指出函数的单调区间,并用导数的几何意义说明. 生:单调区间有:[52),[2,1),[1,3),[3,5]---,作出区间内一系列的曲线的切线,发现切线呈现一致的上升或下降的趋势,即切线的斜率一致为正或负,所以导数值在单调区间内恒正或恒负,对应函数单调递增或递减. 【探究三(B)】1.请指出函数的单调区间,并用导数的几何意义说明. [答案]同上2.根据上题的结论,研究某点处的导数值、切线的斜率和函数的单调性之间有何关系?生:从数的角度:导数正负对应函数的增减,。

3.1.3导数的几何意义

3.1.3导数的几何意义

3.1.3导数的几何意义(文科)学习目标1.了解平均变化率与割线斜率之间的关系;2.理解曲线的切线的概念;3.通过函数的图像直观地理解导数的几何意义,并能运用导数的几何意义解决相关问题一、复习引入1.平均变化率2. 导数的概念、求导数的步骤二、自学探究(探究任务:导数的几何意义)我们知道,导数表示函数)(x f y =在0x x =处的瞬时变化率,反映了函数)(x f y =在0x x =附近的变化情况,导数0()f x '的几何意义是什么呢?如图 3.1-2,观察当(,())(1,2,3,4)n n n P x f x n =沿着曲线()f x 趋近于点00(,())P x f x 时,割线n PP 的变化趋势是什么?新知:(1)当割线P n P 无限地趋近于某一极限位置PT 我们就把极限位置上的直线PT ,叫做曲线C 在点P 处的切线割线的斜率是:n k =当点n P 无限趋近于点P 时,n k 无限趋近于切线PT 的斜率. 因此,函数()f x 在0x x =处的导数就是切线PT 的斜率k ,即0000()()lim ()x f x x f x k f x x∆→+∆-'==∆(2)函数()y f x =在0x 处的导数的几何意义是曲线()y f x =在00(,())P x f x 处切线的斜率. 即k =000()()()lim x f x x f x f x x∆→+∆-'=∆ 典型例题例1 (课本P77例题) 图3.1-2例2 (1)若曲线)(x f y =在点))(,(00x f x 处的切线方程为,012=++y x 则=')(0x f(2)求曲线1)(2+=x x f 在点)2,1(P 处的切线方程.例3. 求双曲线1y x =在点1(,2)2处的切线的斜率,并写出切线方程.【归纳小结】函数()y f x =在0x 处的导数的几何意义是曲线()y f x =在00(,())P x f x 处切线的斜率.即k =000()()()lim x f x x f x f x x∆→+∆-'=∆ 变式练习1.曲线21-62y x =在点(1,--211)处的切线的斜率为 2.已知曲线22+4y x x =在点p 处的切线的斜率为16,则p 点的坐标为__3.曲线3=(x)=++1y f x x 在点(1,3)p 处的切线方程为__4.f '(x)的符号反映了函数的变化情况,若f '(x 0)>0,则说明f(x)在x= x 0在处附近呈 趋势;若f '(x 0)<0,则说明f(x)在x= x 0在处附近呈 趋势5.求曲线3=(x)=+2-1y f x x 在点(1,2)p 处的切线方程6.抛物线2=y x 在点p 处的切线与直线4-+2=0x y 平行,求p 点的坐标及切线方程 当堂检测1. 已知曲线22y x =上一点,则点(2,8)A 处的切线斜率为( )A. 4B. 16C. 8D. 22. 曲线221y x =+在点(1,3)P -处的切线方程为( )A .41y x =--B .47y x =--C .41y x =-D .47y x =+ 3. ()f x 在0x x =可导,则000()()lim h f x h f x h→+-( ) A .与0x 、h 都有关 B .仅与0x 有关而与h 无关C .仅与h 有关而与0x 无关D .与0x 、h 都无关4. 若函数()f x 在0x 处的导数存在,则它所对应的曲线在点00(,())x f x 的切线方程为5. 已知函数()y f x =在0x x =处的导数为11,则000()()lim x f x x f x x∆→-∆-∆= 6.曲线3+11y x =在点(1,12)p 处的切线与y 轴交点的纵坐标为( )A .-9B .-3C .9D .157.已知曲线y=x 2的切线l 与直线2x-y+4=0平行,则直线l 的方程为8.若曲线y=x 3在x=2处的导数f '(2)=12,则过曲线上该点处的切线的方程为9.若曲线4=y x 的一条切线l 与直线+4-8=0x y 垂直,则l 的方程为_10.求抛物线21=4y x 过点744(,)的切线方程。

高中数学第3章导数及其应用3.13.1.3导数的几何意义教师用书教案新人教A版选修1

高中数学第3章导数及其应用3.13.1.3导数的几何意义教师用书教案新人教A版选修1

3.1.3 导数的几何意义学习目标核心素养1.理解导数的几何意义,会求曲线上某点处的切线方程.(重点)2.理解导函数的概念,会求简单函数的导函数.(重点)3.理解在某点处与过某点的切线方程的区别.(难点、易混点) 1.通过学习导数的几何意义,培养学生数学抽象的素养.2.借助导数的几何意义解题,培养学生的数学运算素养.1.导数的几何意义(1)切线的概念:如图,对于割线PP n,当点P n趋近于点P时,割线PP n趋近于确定的位置,这个确定位置的直线PT称为点P处的切线.(1)(2)(3)(4)(2)导数的几何意义:函数f(x)在x=x0处的导数就是切线PT的斜率k,则k=limΔx→0 f(x0+Δx)-f(x0)Δx=f′(x0).(3)切线方程:曲线y=f(x)在点(x0,f(x0))处的切线方程为y-f(x0)=f′(x0)(x-x0).思考:曲线的切线是不是一定和曲线只有一个交点?[提示]不一定.曲线的切线和曲线不一定只有一个交点,和曲线只有一个交点的直线和曲线也不一定相切.如图,曲线的切线是通过逼近将割线趋于确定位置的直线.2.导函数的概念(1)定义:当x变化时,f′(x)便是x的一个函数,我们称它为f(x)的导函数(简称导数).(2)记法:f′(x)或y′,即f′(x)=y′=limΔx→0f(x+Δx)-f(x)Δx.1.已知曲线y=f(x)在点(1,f(1))处的切线方程为2x-y+2=0,则f′(1)=()A.4 B.-4C.-2 D.2D[由导数的几何意义知f′(1)=2,故选D.]2.已知函数f(x)在x0处的导数为f′(x0)=1,则函数f(x)在x0处切线的倾斜角为________.45°[设切线的倾斜角为α,则tan α=f′(x0)=1,又α∈[0°,180°),∴α=45°.]3.若函数f(x)在点A(1,2)处的导数是-1,那么过点A的切线方程是________.x+y-3=0[切线的斜率为k=-1.∴点A(1,2)处的切线方程为y-2=-(x-1),即x+y-3=0.]导数的几何意义A BA.f′(x A)>f′(x B)B.f′(x A)<f′(x B)C.f′(x A)=f′(x B)D.不能确定(2)若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则()A.a=1,b=1B.a=-1,b=1C.a=1,b=-1 D.a=-1,b=-1(1)B(2)A[(1)由导数的几何意义,f′(x A),f′(x B)分别是切线在点A,B处切线的斜率,由图象可知f ′(x A )<f ′(x B ).(2)由题意,知k =y ′|x =0=lim Δx →(0+Δx )2+a (0+Δx )+b -bΔx =1,∴a =1.又(0,b )在切线上,∴b =1,故选A .]1.本例(2)中主要涉及了两点:①f ′(0)=1,②f (0)=b . 2.解答此类问题的关键是理解导数的几何意义.3.与导数的几何意义相关的题目往往涉及解析几何的相关知识,如直线的方程、直线间的位置关系等,因此要综合应用所学知识解题.[跟进训练]1.(1)设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( ) A .1 B .12C .-12D .-1(2)如图所示,函数y =f (x )的图象在点P (2,y )处的切线是l ,则f (2)+f ′(2)等于( )A .-4B .3C .-2D .1(1)A (2)D [(1)由题意可知,f ′(1)=2. 又lim Δx →0f (1+Δx )-f (1)Δx =lim Δx →a (1+Δx )2-aΔx=lim Δx →0(a Δx +2a )=2a .故由2a =2得a =1.(2)直线l 的方程为x 4+y4=1,即x +y -4=0.又由题意可知f (2)=2,f ′(2)=-1, ∴f (2)+f ′(2)=2-1=1.]求切点坐标(1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)倾斜角为135°.分别求出满足上述条件的点的坐标.[思路点拨] 先求出函数的导函数f ′(x ),再设切点(x 0,y 0),由导数的几何意义知切点(x 0,y 0)处的切线的斜率为f ′(x 0),然后根据题意列方程,解关于x 0的方程即可求出x 0,又点(x 0,y 0)在曲线y =x 2上,易得y 0.[解] 设y =f (x ),则f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )2-x 2Δx =lim Δx →(2x +Δx )=2x .设P (x 0,y 0)是满足条件的点.(1)因为切线与直线y =4x -5平行,所以2x 0=4,解得x 0=2,所以y 0=4,即P (2,4). (2)因为切线与直线2x -6y +5=0垂直,且直线2x -6y +5=0的斜率为13,所以2x 0·13=-1,解得x 0=-32,所以y 0=94,即P ⎝⎛⎭⎫-32,94. (3)因为切线的倾斜角为135°,所以切线的斜率为-1,即2x 0=-1,解得x 0=-12,所以y 0=14,即P ⎝⎛⎭⎫-12,14.解答此类题目时,所给直线的倾斜角或斜率是解题的关键,由这些信息得知函数在某点处的导数,进而可求此点的横坐标.解题时要注意解析几何知识的应用,如直线的倾斜角与斜率的关系,平行,垂直等.[跟进训练]2.已知抛物线y =2x 2+1,求(1)抛物线上哪一点的切线平行于直线4x -y -2=0? (2)抛物线上哪一点的切线垂直于直线x +8y -3=0?[解]设切点坐标为(x0,y0),则Δy=2(x0+Δx)2+1-2x20-1=4x0·Δx+2(Δx)2,∴ΔyΔx=4x0+2Δx,∴y′|x=x0=limΔx→0ΔyΔx=limΔx→0(4x0+2Δx)=4x0.(1)∵抛物线的切线平行于直线4x-y-2=0,∴斜率为4,即f′(x0)=4x0=4,得x0=1,该点为(1,3).(2)∵抛物线的切线与直线x+8y-3=0垂直,∴斜率为8,即f′(x0)=4x0=8,得x0=2,该点为(2,9).求曲线的切线方程1.如何求曲线f(x)在点(x0,f(x0))处的切线方程?提示:根据导数的几何意义,求出函数y=f(x)在点(x0,f(x0))处的导数,即曲线在该点处的切线的斜率,再由直线方程的点斜式求出切线方程.2.曲线f(x)在点(x0,f(x0))处的切线与曲线过点(x0,y0)的切线有什么不同?提示:曲线f(x)在点(x0,f(x0))处的切线,点(x0,f(x0))一定是切点,只要求出k=f′(x0),利用点斜式写出切线方程即可;而曲线f(x)过某点(x0,y0)的切线,给出的点(x0,y0)不一定在曲线上,即使在曲线上也不一定是切点.【例3】已知曲线C:y=x3.(1)求曲线C在横坐标为x=1的点处的切线方程;(2)求曲线C过点(1,1)的切线方程.[思路点拨](1)求y′|x=1―→求切点―→点斜式方程求切线(2)设切点(x 0,y 0)―→求y ′|x =x 0―→由y ′|x =x 0=y 0-1x 0-1求(x 0,y 0)―→写切线方程[解] (1)将x =1代入曲线C 的方程得y =1, ∴切点P (1,1).y ′|x =1=lim Δx →0ΔyΔx =lim Δx →(1+Δx )3-1Δx=lim Δx →0[3+3Δx +(Δx )2]=3.∴k =y ′|x =1=3.∴曲线在点P (1,1)处的切线方程为y -1=3(x -1),即3x -y -2=0.(2)设切点为Q (x 0,y 0),由(1)可知y ′|x =x 0=3x 20,由题意可知k PQ =y ′|x =x 0,即y 0-1x 0-1=3x 20,又y 0=x 30,所以x 30-1x 0-1=3x 20,即2x 20-x 0-1=0,解得x 0=1或x 0=-12. ①当x 0=1时,切点坐标为(1,1),相应的切线方程为3x -y -2=0.②当x 0=-12时,切点坐标为⎝⎛⎭⎫-12,-18,相应的切线方程为y +18=34⎝⎛⎭⎫x +12,即3x -4y +1=0.(变结论)本例第(1)小题中的切线与曲线C 是否还有其他的公共点?[解] 由⎩⎪⎨⎪⎧y =3x -2,y =x 3,解得⎩⎪⎨⎪⎧ x =1,y =1,或⎩⎪⎨⎪⎧x =-2,y =-8,从而求得公共点为P (1,1)或M (-2,-8),即切线与曲线C 的公共点除了切点外,还有另一公共点(-2,-8).1.求曲线在某点处的切线方程的步骤2.求过点(x1,y1)的曲线y=f(x)的切线方程的步骤(1)设切点(x0,y0);(2)求f′(x0),写出切线方程y-y0=f′(x0)(x-x0);(3)将点(x1,y1)代入切线方程,解出x0,y0及f′(x0);(4)写出切线方程.1.导数f′(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处的切线的斜率,即k=limΔx→0 f(x0+Δx)-f(x0)Δx=f′(x0),物理意义是运动物体在某一时刻的瞬时速度.2.“函数f(x)在点x0处的导数”是一个数值,不是变数,“导函数”是一个函数,二者有本质的区别,但又有密切关系,f′(x0)是其导数y=f′(x)在x=x0处的一个函数值.3.利用导数求曲线的切线方程,要注意已知点是否在曲线上.如果已知点在曲线上,则以该点为切点的切线方程为y-f(x0)=f′(x0)(x-x0);若已知点不在切线上,则设出切点(x0,f(x0)),表示出切线方程,然后求出切点.1.判断正误(1)函数y=f(x)在x=x0处的导数f′(x0)的几何意义是曲线y=f(x)在点x=x0处切线的斜率.()(2)若曲线y=f(x)在点(x0,f(x0))处有切线,则f′(x0)必存在.()(3)f′(x0)(或y′|x=x0)是函数f′(x)在点x=x0处的函数值.()(4)直线与曲线相切,则直线与已知曲线只有一个公共点.()[答案](1)√(2)×(3)√(4)×2.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( ) A .f ′(x 0)>0 B .f ′(x 0)<0 C .f ′(x 0)=0D .f ′(x 0)不存在B [由x +2y -3=0知,斜率k =-12,∴f ′(x 0)=-12<0.]3.曲线f (x )=2x 在点(-2,-1)处的切线方程为________.x +2y +4=0 [f ′(-2)=lim Δx →f (-2+Δx )-f (-2)Δx=lim Δx →02-2+Δx +1Δx =lim Δx →1-2+Δx =-12,∴切线方程为y +1=-12(x +2),即x +2y +4=0.]4.已知直线y =4x +a 和曲线y =x 3-2x 2+3相切,求切点坐标及a 的值. [解] 设直线l 与曲线相切于点P (x 0,y 0),则f ′(x )=lim Δx →(x +Δx )3-2(x +Δx )2+3-(x 3-2x 2+3)Δx =3x 2-4x .由导数的几何意义,得k =f ′(x 0)=3x 20-4x 0=4, 解得x 0=-23或x 0=2,∴切点坐标为⎝⎛⎭⎫-23,4927或(2,3). 当切点为⎝⎛⎭⎫-23,4927时,有4927=4×⎝⎛⎭⎫-23+a , ∴a =12127.当切点为(2,3)时,有3=4×2+a , ∴a =-5,因此切点坐标为⎝⎛⎭⎫-23,4927或(2,3),a 的值为12127或-5.。

2019-2020学年高中数学 3.1.3导数的几何意义教案 新人教版选修1-1.doc

2019-2020学年高中数学 3.1.3导数的几何意义教案 新人教版选修1-1.doc

2019-2020学年高中数学 3.1.3导数的几何意义教案新人教版选修1-1
【学情分析】:
上一节课已经学习了导数定义,以及运用导数的定义来求导数。

【教学目标】:
1.了解曲线的切线的概念
2.掌握用割线的极限位置上的直线来定义切线的方法.
3.并会求一曲线在具体一点处的切线的斜率与切线方程
【教学重点】:
理解曲线在一点处的切线的定义,以及曲线在一点处的切线的斜率的定义.光滑曲线的切线斜率是了解导数概念的实际背景.导数的几何意义及“数形结合,以直代曲”的思想方法.
【教学难点】:
发现、理解及应用导数的几何意义,会求一条具体的曲线在某一点处的切线斜率.
【教学过程设计】:
t0.2 0.4 0.6 0.8
药物浓度的
瞬时变化率
(说明:要求学生动脑(审题),动手(画切线),动口(说出如何估计切线斜率),进一步体会利用导数的几何意义解释实际问题,渗透“数形结合”、“以直代曲”的思想方法。


(以上几题可以让学生在课堂上完成)
6. 求下列曲线在指定点处的切线斜率.
1。

3.1.3导数的几何意义教学设计

3.1.3导数的几何意义教学设计

(1) 新课的引入:通过课件的展示,提出问题,激发学生的求知欲。
(2) 探索导数的几何意义:数形结合,让学生在观察,思考,发现中学习。
(3) 例题处理:始终从问题出发,引导学生在探索中获得答案。
(4) 随堂演练:深化对导数几何意义的理解与应用,巩固新知。
2
课堂教学过程结构设计(教学流程图)
开始
课件
复习回顾
课件
引导探究、获得 新知
课件
知识应用、巩固 理解
课件
思考总结,做好 笔记
思考变式 1
课件 完成例 2,例 3 学生板演变式 2,3
复习检测
讨论探究 完成例 1
教师评价
学生小结
教师补充
教学 环节
教学内容
结束
教师引领
学生活动 设计意图、依据
(1)
复 习 回 顾
<1>复习基本初等函数 的导数公式
(1) C ' ____ (C 为常 数); (2) (xn)' ________ , n ∈ N+;
2、学情分析 通过对函数平均变化率和导数定义的学习,学生对有关导数的问题已经有了初
步的认识,但是由于导数定义的抽象性,学生理解起来仍具有一定的困难。选修 1-1
是文科学生学习的内容,学生的学习能力在年级里属中等程度。虽然学生学习兴趣
较高,但独立探索,解决问题的能力稍差,数学语言的表达及数形结合的能力、对
知识灵活运用的能力仍有不足.根据上述教材结构与内容分析,立足学生的认知水
平,制定如下教学目标和重点、难点。
二、
1、知识与技能:

理解导数的几何意义,掌握应用导数几何意义求解曲线切线方程的方法。

《3.1.3导数的几何意义》教学案1

《3.1.3导数的几何意义》教学案1

《3.1.3导数的几何意义》教学案教学目标:1知识与技能:通过实验探求和理解导数的几何意义,理解导数在研究函数性质中的作用,培养学生分析、抽象、概括等思维能力.2过程与方法:在寻找切线新定义的过程中,使学生通过有限认识无限,发现数学的美;通过“以直代曲”思想的具体运用,使学生达到思维方式的迁移,了解科学的思维方法.3情感、态度与价值观:在导数几何意义的推导过程中,渗透逼近和以直代曲的思想,使学生了解近似与精确间的辨证关系,激发学生勇于探索、勤于思考的精神.教学重点:运用导数的几何意义研究函数教学难点:导数几何意义的推导思路教学过程:一复习回顾1.平均变化率2.瞬时变化率3.导数的定义4.点斜式直线方程二新课讲授1、导数的几何意义:我们发现,当点Q沿着曲线无限接近点P,即Δx→0时,割线PQ如果有一个极限位置PT.则我们把直线PT 称为曲线在点P 处的切线.那么当Δx →0时,割线PQ 的斜率趋向于过点P 的切线PT 的斜率2、例题讲解例1 求抛物线y =x 2在点P (1,1)处的切线的斜率.解:在点(1,1)切线的斜率是即:'00000()()()lim limx x f x x f x yk f x x x∆→∆→+∆-∆===∆∆切线()()()()'000,.y f x x f x f x =由导数意义可知,曲线过点的切线的斜率等于'02020(1)(1)(1)lim(1)1lim 2()lim 2.x x x f x f f k x x xx x x∆→∆→∆→+∆-=∆+∆-=∆∆+∆==∆ 因此,抛物线y =x 2在点(1,1)切线的斜率为2.例2.求双曲线1y x =过点1(2,)2的切线方程. 解:因为00(2)(2)lim1122lim 11lim ,2(2)4x x x f x f xx xx ∆→∆→∆→+∆-∆-+∆=∆==-+∆ 所以,这条双曲线在点1(2,)2的切线的斜率为1.4- 由直线方程的点斜式,得切线方程为111(2), 1.244y x y x -=--=-+即例3 求抛物线y =x 2过点5(,6)2的切线方程.解:设此切线经过抛物线上的点200(,).x x 由例1及导数的意义知此切线的斜率为2x 0.又因为此切线过点5(,6)2和点200(,).x x 其斜率应满足200062,52x x x -=-由此x 0应满足200560.x x -+=解得x 0=2,3.即切线过抛物线上的点(2,4),(3,9).所以切线方程分别为 y -4=4(x -2) , y -9=6(x -3) . 化简得y =4x -4, y =6x -9. 此即所求的切线方程.小结:求过某点P曲线的切线方程的一般步骤:(1)判断点P是否在曲线上.(2)若点P在曲线上,3)若点P不在曲线上,设出切点坐标,利用切线的斜率,求出切点的坐标.代入点斜式,求出切线的方程.。

学案4:3.1.3 导数的几何意义

学案4:3.1.3 导数的几何意义

3.1.3 导数的几何意义学习目标:1.了解平均变化率与割线斜率之间的关系.2.理解曲线的切线的概念.3.通过函数的图像直观地理解导数的几何意义,并会用导数的几何意义解题. 学习重点:曲线的切线的概念、切线的斜率、导数的几何意义学习难点:导数的几何意义问题导学回顾:1.什么是函数y =f (x )在x =x 0处的导数?并求导数的步骤?2.导数的几何意义:函数y =f (x )在x =x 0处的导数等于在该点处的切线的斜率, 即0000()()()lim x f x x f x f x k x ∆→+∆-'==∆实践演练例1:求曲线y =在点(2,)处的切线的方程.例2:在平面直角坐标系xOy 中,点P 在曲线C :y =x 3﹣10x +13上,且在第一象限内,已知曲线C 在点P 处的切线的斜率为2,求点P 的坐标.基础练习1.设函数f (x )满足lim Δx →0f (1)-f (1-Δx )Δx=-1,则曲线y =f (x )在点(1,f (1))处的切线的斜率是( )A .2B .-1 C.12D .-2 2.过点(-1,0)作抛物线y =x 2+x +1的切线,则其中一条切线为( )A .2x +y +3=0B .3x -y +5=0C .2x +y +1=0D .x -y +1=03.函数y =f (x )的导函数f ′(x )的图象如图所示,则在y =f (x )的图象上A ,B 的对应点附近,有( ) 00(,())x f xA.A处下降,B处上升B.A处上升,B处下降C.A处下降,B处下降D.A处上升,B处上升4.y=f(x),y=g(x),y=α(x)的图象如图所示:而下图是其对应导数的图象:则y=f(x)对应________;y=g(x)对应________;y=α(x)对应________.参考答案:实践演练例1:解:y=的导数为y′=﹣,则在点(2,)处的切线的斜率为k=﹣,即有在点(2,)处的切线的方程为y﹣=﹣(x﹣2),即为x+4y﹣4=0.例2:解:设点P(m,n),(m>0,n>0),y=x3﹣10x+13的导数为y′=3x2﹣10,由曲线C在点P处的切线的斜率为2,即有3m2﹣10=2,解得m=2(﹣2舍去),即有n=23﹣20+13=1,则点P的坐标为(2,1).基础练习1.【解析】∵limΔx→0f(1)-f(1-Δx)Δx=f′(1)=k=-1,∴y=f(x)在点(1,f(1))处的切线的斜率是-1.【答案】B2.【解析】∵点(-1,0)不在抛物线y=x2+x+1上,故点(-1,0)不是切点,但此点在切线上,应满足切线方程,经验证,只有D符合.【答案】D3.【解析】∵所给图象的导函数的图象,且A点处y<0,B点处y>0,故原函数图象上A处下降,B处上升.【答案】A4.【解析】由导数的几何意义,y=f(x)上任一点处的切线斜率均小于零且保持不变,则y=f(x)对应B.y=g(x)上任一点处的切线斜率均小于零,且在起始部分斜率值趋近负无限,故y=g(x)对应C.y=α(x)图象上任一点处的切线斜率都大于零,且先小后大,故y=α(x)对应A.【答案】B C A。

学案5:3.1.3 导数的几何意义

学案5:3.1.3 导数的几何意义

3.1.3 导数的几何意义一、学习目标1.通过作函数)(x f 图象上过点))(,(00x f x P 的割线和切线,直观感受由割线过渡到切线的变化过程.2.掌握函数在某一处的导数的几何意义,进一步理解导数的定义.3.会利用导数求函数曲线上某一点的切线方程.二、例题精讲例1:已知曲线y =,求曲线在点P (1,1)处的切线方程,求满足斜率为﹣的曲线的切线方程.例2:已知曲线y =上一点,求:(1)点P 处切线的斜率;(2)点P 处的切线方程.变式:已知函数f (x )=x 2+2.(1)求f ′(x );(2)求f (x )在x =2处的导数.三、随堂练习1.如图所示,函数y =f (x )的图象在点P 处的切线方程是y =-x +8,则f (5)+f ′(5)=( )A.12B .1C .2D .0 2.已知曲线y =4x在点P (1,4)处的切线与直线l 平行且距离为17,则直线l 的方程为( )A .4x -y +9=0B .4x -y +9=0或4x -y +25=0C .4x +y +9=0或4x +y -25=0D .以上均不对3.已知y =ax 2+b 在点(1,3)处的切线斜率为2,则b a=________. 4.曲线f (x )=3x +x 2在点(1,f (1))处的切线方程为__________.参考答案:二、例题精讲例1:解:y=的导数为y′=﹣,则曲线在点P(1,1)处的切线斜率为﹣1,即有曲线在点P(1,1)处的切线方程为y﹣1=﹣(x﹣1),即为y=2﹣x;令y′=﹣=﹣,则求得切点的横坐标x=,即有切点为(,2),(﹣,﹣2).则所求的切线方程为y﹣2=﹣(x﹣)或y+2=﹣(x+),即为y=﹣x+或y=﹣x﹣.例2:解:(1)y=的导数y′=x2,则点处的切线的斜率为y′|x=2=4;(2)由点斜式方程得,在点P处的切线方程:y﹣=4(x﹣2),即12x﹣3y﹣16=0.变式:解:(1)∵Δy=f(x+Δx)-f(x)=(x+Δx)2+2-(x2+2)=(Δx)2+2x·Δx,∴ΔyΔx=2x+Δx.∴f′(x)=limΔx→0ΔyΔx=2x.(2)f′(2)=f′(x)|x=2=2×2=4.三、随堂练习1.【解析】由图象知f(5)=-5+8=3.由导数几何意义知f′(5)=-1.∴f(5)+f′(5)=3-1=2.【答案】C2.【解析】y ′=lim Δx →0 Δy Δx=-4,∴k =-4, ∴切线方程为y -4=-4(x -1),即4x +y -8=0, 设l :4x +y +c =0,由题意17=|c +8|42+12, ∴c =9或-25,应选C.【答案】C3.【解析】 由题意lim Δx →0a (1+Δx )2+b -a -b Δx=lim Δx →0 (a Δx +2a )=2a =2, ∴a =1,又3=a ×12+b ,∴b =2,∴b a=2. 【答案】 24.【解析】k =lim Δx →03(1+Δx )+(1+Δx )2-3-12Δx=5. ∵f (1)=4.由点斜式得y -4=5(x -1),即y =5x -1.【答案】y =5x -1。

《3.1.3导数的几何意义》教学案1

《3.1.3导数的几何意义》教学案1

《导数的几何意义》教学案教学目标:1.知识与技能:了解平均变化率与割线斜率之间的关系;2.过程与方法:理解曲线的切线的概念;3.情态与价值:通过函数的图像直观地理解导数的几何意义并会用导数的几何意义解题.教学重点:曲线的切线的概念、切线的斜率、导数的几何意义.教学难点:导数的几何意义.教学过程:创设情景(一)平均变化率、割线的斜率 (二)瞬时速度、导数我们知道,导数表示函数y =f (x )在x =x 0处的瞬时变化率,反映了函数y =f (x )在x =x 0附近的变化情况,导数0()f x '的几何意义是什么呢?新课讲授(一)曲线的切线及切线的斜率:如图3.1-2,当(,())(1,2,3,4)n n n P x f x n =沿着曲线()f x 趋近于点00(,())P x f x 时,割线n PP 的变化趋势是什么?我们发现,当点n P 沿着曲线无限接近点P 即Δx →0时,割线n PP 趋近于确定的位置,这个确定位置的直线PT 称为曲线在点P 处的切线.图3.1-2问题:⑴割线n PP 的斜率n k 与切线PT 的斜率k 有什么关系? ⑵切线PT 的斜率k 为多少? 容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 沿着曲线无限接近点P 时,n k 无限趋近于切线PT 的斜率k ,即0000()()lim()x f x x f x k f x x∆→+∆-'==∆说明:(1)设切线的倾斜角为α,那么当Δx →0时,割线PQ 的斜率,称为曲线在点P 处的切线的斜率.这个概念: ①提供了求曲线上某点切线的斜率的一种方法; ②切线斜率的本质—函数在0x x =处的导数.(2)曲线在某点处的切线:1)与该点的位置有关;2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的;如不存在,则在此点处无切线;3)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多个.(二)导数的几何意义:函数y =f (x )在x =x 0处的导数等于在该点00(,())x f x 处的切线的斜率, 即 0000()()()limx f x x f x f x k x∆→+∆-'==∆说明:求曲线在某点处的切线方程的基本步骤: ①求出P 点的坐标;②求出函数在点0x 处的变化率0000()()()limx f x x f x f x k x∆→+∆-'==∆,得到曲线在点00(,())x f x 的切线的斜率;③利用点斜式求切线方程. (三)导函数:由函数f (x )在x =x 0处求导数的过程可以看到,当时,0()f x '是一个确定的数,那么,当x 变化时,便是x 的一个函数,我们叫它为f (x )的导函数.记作:()f x '或y ',即:0()()()limx f x x f x f x y x∆→+∆-''==∆注:在不致发生混淆时,导函数也简称导数.(四)函数()f x 在点0x 处的导数0()f x '、导函数()f x '、导数 之间的区别与联系. 1)函数在一点处的导数0()f x ',就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数.2)函数的导数,是指某一区间内任意点x 而言的, 就是函数f (x )的导函数3)函数()f x 在点0x 处的导数'0()f x 就是导函数()f x '在0x x =处的函数值,这也是求函数在点0x 处的导数的方法之一.典例分析例1:(1)求曲线y =f (x )=x 2+1在点P (1,2)处的切线方程. (2)求函数y =3x 2在点(1,3)处的导数.解:(1)222100[(1)1](11)2|lim lim 2x x x x x x y x x=∆→∆→+∆+-+∆+∆'===∆∆,所以,所求切线的斜率为2,因此,所求的切线方程为22(1)y x -=-即20x y -=(2)因为222211113313(1)|lim lim lim3(1)611x x x x x x y x x x =→→→-⋅-'===+=--所以,所求切线的斜率为6,因此,所求的切线方程为36(1)y x -=-即630x y --= (2)求函数f (x )=x x +-2在1x =-附近的平均变化率,并求出在该点处的导数.解:x xx x x y ∆-=∆-∆+-+∆+--=∆∆32)1()1(2200(1)(1)2(1)lim lim (3)3x x y x x f x x x→→∆--+∆+-+∆-'-===-∆=∆∆V V例2.(课本例2)如图3.1-3,它表示跳水运动中高度随时间变化的函数2() 4.9 6.510h x x x =-++,根据图像,请描述、比较曲线()h t 在0t 、1t 、2t 附近的变化情况.解:我们用曲线()h t 在0t 、1t 、2t 处的切线,刻画曲线()h t 在上述三个时刻附近的变化情况.(1) 当0t t =时,曲线()h t 在0t 处的切线0l 平行于x 轴,所以,在0t t =附近曲线比较平坦,几乎没有升降.(2) 当1t t =时,曲线()h t 在1t 处的切线1l 的斜率1()0h t '<,所以,在1t t =附近曲线下降,即函数2() 4.9 6.510h x x x =-++在1t t =附近单调递减.(3) 当2t t =时,曲线()h t 在2t 处的切线2l 的斜率2()0h t '<,所以,在2t t =附近曲线下降,即函数2() 4.9 6.510h x x x =-++在2t t =附近单调递减.从图3.1-3可以看出,直线1l 的倾斜程度小于直线2l 的倾斜程度,这说明曲线在1t 附近比在2t 附近下降的缓慢.例3.(课本例3)如图3.1-4,它表示人体血管中药物浓度()c f t =(单位:/mg mL )随时间t (单位:min )变化的图象.根据图像,估计0.2,0.4,0.6,0.8t =时,血管中药物浓度的瞬时变化率(精确到0.1).解:血管中某一时刻药物浓度的瞬时变化率,就是药物浓度()f t 在此时刻的导数,从图像上看,它表示曲线()f t 在此点处的切线的斜率.如图3.1-4,画出曲线上某点处的切线,利用网格估计这条切线的斜率,可以得到此时刻药物浓度瞬时变化率的近似值.作0.8t =处的切线,并在切线上去两点,如(0.7,0.91),(1.0,0.48),则它的斜率为:0.480.911.41.00.7k -=≈--所以(0.8) 1.4f '≈-下表给出了药物浓度瞬时变化率的估计值:1.求曲线y =f (x )=x 3在点(1,1)处的切线;2.求曲线y =(4,2)处的切线.回顾总结:1.曲线的切线及切线的斜率; 2.导数的几何意义.。

高中数学新人教版B版精品教案《3.1.3 导数的几何意义》

高中数学新人教版B版精品教案《3.1.3 导数的几何意义》
应用举例
30’02”- 33’43”
已知=f在点P0,f0处的切线方程,可以列两个式子。
=2+a+b在点0,b处的切线方程是
-+1=0,求a和b的值。
思考例题,书写解题步骤,听老师讲授并回答问题。
展示例题和解题步骤
应用举例
33’44”-44 ’22”
利用导数的几何意义判断分段函数,图像不光滑的函数的导数是否存在,更进一步的理解导数的定义,并灵活应用导数的几何意义。
五、教学设计
教学环节
起止时间(’”-’”)
环节目标
教学内容
学生活动
媒体作用及分析
复习引入
0’12”- 1’38”
复习
平均变化率和导数的定义表达式
复习回顾口头回答问题
演示公式
提出问题
1’39”- 9’45”
掌握“切线”的定义,并引入新课:“导数的几何意义”
割线的极限位置是切线,重新理解切线的定义
思考并回答老师的提问
《导数的几何意义》教学设计
一、基本信息
学校
内蒙古师范大学附属中学
课名
《导数的几何意义》
教师姓名
王智娟
学科(版本)
人教B版 选修1-1
章节
第三章 313
学时
1学时
年级
高二年级
二、教学目标
1、知识与技能:理解导数的几何意义, 并会用求导数的方法求切线的斜率和切线方程;能利用导数的几何意义判断导数是否存在。
3、学生已经学习了导数的定义,掌握了利用定义表达式求简单函数导数的方法,并认识到平均变化率就是割线的斜率。
四、教学重难点分析及解决措施
教学重点:理解导数的几何意义;
教学难点:理解函数的导数就是在某点处的切线的斜率。解决措施:通过动画让学生体会从割线到切线的变化过程,从而理解从平均变化率到瞬时变化率(导数)的变化过程,并理解导数的几何意义;

高中数学 第三章3.1.3 导数的几何意义学案 新人教A版选修1-1

高中数学 第三章3.1.3 导数的几何意义学案 新人教A版选修1-1

亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……学习资料专题3.1.3 导数的几何意义学习目标:1.理解导数的几何意义,会求曲线上某点处的切线方程.(重点)2.理解导函数的概念、会求简单函数的导函数.(重点)3.理解在某点处与过某点的切线方程的区别.(难点、易混点)[自主预习·探新知]1.导数的几何意义(1)切线的定义设点P(x0,f(x0)),P n(x n,f(x n))是曲线y=f(x)上不同的点,当点P n(x n,f(x n))(n=1,2,3,4…)沿着曲线f(x)趋近于点P(x0,f(x0))时,割线PP n趋近于确定的位置,这个确定位置的直线PT称为过点P的切线,且PT的斜率k=limΔx→0f x n-f x0x n-x0=f′(x0).(2)导数的几何意义函数y=f(x)在点x0处的导数f′(x0)的几何意义是曲线y=f(x)在点P(x0,f(x0))处切线的斜率,在点P处的切线方程为y-f(x0)=f′(x0)(x-x0).思考:曲线的切线是不是一定和曲线只有一个交点?[提示] 不一定.曲线的切线和曲线不一定只有一个交点,和曲线只有一个交点的直线和曲线也不一定相切.如图,曲线的切线是通过逼近将割线趋于确定位置的直线.2.导函数的概念从求函数f(x)在x=x0处导数的过程看到,当x=x0时,f′(x0)是一个确定的数;当x 变化时,f′(x)是x的一个函数,称为f(x)的导函数(简称导数),y=f(x)的导函数有时也记作y′,即f′(x)=y′=limΔx→0f x+Δx-f xΔx.[基础自测]1.思考辨析(1)直线与曲线相切则直线与已知曲线只有一个公共点.( )(2)过曲线上的一点作曲线的切线,这点一定是切点.( )(3)若f′(x0)不存在,则曲线y=f(x)在点(x0,f(x0))处无切线.( )(4)函数f(x)在点x0处的导数f′(x0)与导函数f′(x)之间是有区别的.( )[答案] (1)× (2)× (3)× (4)√2.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( ) A .不存在 B .与x 轴平行或重合 C .与x 轴垂直D .与x 轴斜交B [由f ′(x 0)=0知,曲线y =f (x )在点(x 0,f (x 0))处的切线斜率为0,所以切线与x 轴平行或重合.]3.如图3­1­5所示,函数y =f (x )的图象在点P 处的切线方程是y =-x +8,则f (5)+f ′(5)=( )【导学号:97792127】图3­1­5A .12B .1C .2D .0C [由题意知f ′(5)=-1,f (5)=-5+8=3,则f (5)+f ′(5)=2.][合 作 探 究·攻 重 难](1)y =-x 在点⎝ ⎛⎭⎪⎫2,-2处的切线方程是( ) A .y =x -2 B .y =x -12C .y =4x -4D .y =4x -2(2)已知曲线y =x 3-x +2,则曲线过点P (1,2)的切线方程为__________. [思路探究] (1)先求y ′|x =12,即切线的斜率,然后写出切线方程.(2)设出切点坐标,求切线斜率,写出切线方程,利用点P (1,2)在切线上,求出切点坐标,从而求出切线方程.[解析] (1)先求y =-1x 在x =12处的导数:Δy =-112+Δx +112=4Δx1+2Δx.y ′|x =12=lim Δx →0Δy Δx =lim Δx →0 41+2Δx=4.所以切线方程是y +2=4⎝ ⎛⎭⎪⎫x -12,即y =4x -4. (2)设切点为(x 0,x 30-x 0+2),则得y ′|x =x 0 =lim Δx →0x 0+Δx3-x 0+Δx +2]-x 30-x 0+Δx=lim Δx →0((Δx )2+3x 0Δx +3x 20-1)=3x 20-1.所以切线方程为y -(x 30-x 0+2)=(3x 20-1)(x -x 0). 将点P (1,2)代入得:2-(x 30-x 0+2)=(3x 20-1)(1-x 0),即(x 0-1)2(2x 0+1)=0,所以x 0=1或x 0=-12,所以切点坐标为(1,2)或⎝ ⎛⎭⎪⎫-12,198,所以当切点为(1,2)时,切线方程为y -2=2(x -1),即2x -y =0,当切点为⎝⎛⎭⎪⎫-12,198时,切线方程为y -198=-14x +12, 即x +4y -9=0,所以切线方程为2x -y =0或x +4y -9=0. [答案] (1)C (2)2x -y =0或x +4y -9=02.求过点(x 1,y 1)的曲线y =f (x )的切线方程的步骤(1)设切点(x 0,y 0)(2)求f ′(x 0),写出切线方程y -y 0=f ′(x 0)(x (3)将点(x 1,y 1)代入切线方程,解出x 0,y 0及f (4)写出切线方程. 1.(1)曲线y =f (x )=2x在点(-2,-1)处的切线方程为__________.x +2y +4=0 [y ′=lim Δx →0fx +Δx -f xΔx =lim Δx →02x +Δx -2x Δx=lim Δx →0-2·Δxx x +Δx Δx =-2x 2,因此曲线f (x )在点(-2,-1)处的切线的斜率k =-2-2=-12.由点斜式可得切线方程为y +1=-12(x +2),即x +2y +4=0.](2)试求过点P (3,5)且与曲线y =x 2相切的直线方程.【导学号:97792128】[解] 设所求切线的切点为A (x 0,y 0). ∵点A 在曲线y =x 2上, ∴y 0=x 20,又∵A 是切点,y ′=lim Δx →0 Δy Δx =lim Δx →0 x +Δx 2-x2Δx =2x .∴过点A 的切线的斜率y ′|x =x 0=2x 0. ∵所求切线过P (3,5)和A (x 0,y 0)两点,∴其斜率为y 0-5x 0-3=x 20-5x 0-3.∴2x 0=x 20-5x 0-3,解得x 0=1或x 0=5.从而切点A 的坐标为(1,1)或(5,25). 当切点为(1,1)时,切线的斜率为k 1=2x 0=2; 当切点为(5,25)时,切线的斜率为k 2=2x 0=10.∴所求的切线有两条,方程分别为y -1=2(x -1)和y -25=10(x -5),即y =2x -1和y =10x -25.(1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)倾斜角为135°.分别求出满足上述条件的点的坐标.[思路探究] 先求出函数的导函数f ′(x ),再设切点(x 0,y 0),由导数的几何意义知切点(x 0,y 0)处的切线的斜率为f ′(x 0),然后根据题意列方程,解关于x 0的方程即可求出x 0,又点(x 0,y 0)在曲线y =x 2上,易得y 0.[解] 设y =f (x ),则f ′(x )=lim Δx →0 f x +Δx -f x Δx =lim Δx →0 x +Δx 2-x 2Δx =lim Δx →0(2x +Δx )=2x .设P (x 0,y 0)是满足条件的点.(1)因为切线与直线y =4x -5平行,所以2x 0=4,解得x 0=2,所以y 0=4,即P (2,4). (2)因为切线与直线2x -6y +5=0垂直,且直线2x -6y +5=0的斜率为13,所以2x 0·13=-1,解得x 0=-32,所以y 0=94,即P ⎝ ⎛⎭⎪⎫-32,94.(3)因为切线的倾斜角为135°,所以切线的斜率为-1,即2x 0=-1,解得x 0=-12,所以y 0=14,即P ⎝ ⎛⎭⎪⎫-12,14.2.已知抛物线y =2x 2+1,求(1)抛物线上哪一点的切线平行于直线4x -y -2=0? (2)抛物线上哪一点的切线垂直于直线x +8y -3=0? [解] 设切点坐标为(x 0,y 0),则Δy =2(x 0+Δx )2+1-2x 20-1=4x 0·Δx +2(Δx )2∴ΔyΔx=4x 0+2Δx ∴y ′|x =x 0=lim Δx →0ΔyΔx =lim Δx →0(4x 0+2Δx )=4x 0. (1)∵抛物线的切线平行于直线4x -y -2=0, ∴斜率为4,即f ′(x 0)=4x 0=4,得x 0=1, 该点为(1,3).(2)∵抛物线的切线与直线x +8y -3=0垂直, ∴斜率为8,即f ′(x 0)=4x 0=8,得x 0=2, 该点为(2,9).1.函数值增加的越来越快,函数图象是什么形状?函数图象上每一点的切线的斜率是如何变化的?提示:图象上升且下凸,函数图象上每一点的切线的斜率越来越大.2.函数值增加的越来越慢,函数图象是什么形状?函数图象上每一点的切线的斜率是如何变化的?提示:图象上升且上凸,函数图象上每一点的切线的斜率越来越小.如图3­1­6,点A(2,1),B(3,0),E(x,0)(x≥0),过点E作OB的垂线l.记△AOB 在直线l左侧部分的面积为S,则函数S=f(x)的图象为下图中的( )图3­1­6[思路探究] 根据面积S增加的快慢情况判断S=f(x)的图象形状.[解析]函数的定义域为(0,+∞),当x∈[0,2]时,在单位长度变化量Δx内面积变化量ΔS越来越大,即斜率f′(x)在[0,2]内越来越大,因此,函数S=f(x)的图象是上升的,且图象是下凸的;当x∈(2,3)时,在单位长度变化量Δx内面积变化量ΔS越来越小,即斜率f′(x)在(2,3)内越来越小,因此,函数S=f(x)的图象是上升的,且图象是上凸的;当x∈[3,+∞)时,在单位长度变化量Δx内面积变化量ΔS为0,即斜率f′(x)在[3,+∞)内为常数0,此时,函数图象为平行于x轴的射线.故选D.[答案] D3.已知函数f(x)在区间[0,3]上的图象如图3­1­7所示,记k1=f′(1),k2=f′(2),k3=k AB,则k1,k2,k3之间的大小关系为__________.(请用“>”连接)图3­1­7k 1>k 3>k 2 [由导数的几何意义可得k 1>k 2,又k 3=f-f 2-1表示割线AB 的斜率,所以k 1>k 3>k 2.][当 堂 达 标·固 双 基]1.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( ) A .f ′(x 0)>0 B .f ′(x 0)<0 C .f ′(x 0)=0D .f ′(x 0)不存在B [由x +2y -3=0知,斜率k =-12,∴f ′(x 0)=-12<0.]2.已知曲线y =2x 3上一点A (1,2),则A 处的切线斜率等于( ) A .2B .4C .6+6Δx +2(Δx )2D .6D [∵y =2x 3,∴y ′=lim Δx →0ΔyΔx =lim Δx →0x +Δx 3-2x 3Δx=2 lim Δx →0Δx3+3x Δx2+3x 2ΔxΔx=2 lim Δx →0[(Δx )2+3x Δx +3x 2]=6x 2.∴y ′|x =1=6.∴点A (1,2)处切线的斜率为6.]3.已知曲线y =f (x )=2x 2+4x 在点P 处的切线斜率为16,则P 点坐标为________. (3,30) [设点P (x 0,2x 20+4x 0),则f ′(x 0)=lim Δx →0f x 0+Δx -f x 0Δx=lim Δx →0Δx2+4x 0·Δx +4ΔxΔx=4x 0+4,令4x 0+4=16,得x 0=3,∴P (3,30).]4.曲线y =x 2-2x +2在点(2,2)处的切线方程为________.【导学号:97792129】2x -y -2=0 [Δy =(2+Δx )2-2(2+Δx )+2-(22-2×2+2)=2Δx +(Δx )2,∴ΔyΔx=2+Δx . ∴y ′|x =2=lim Δx →0(2+Δx )=2. ∴曲线在点(2,2)处的切线斜率为2. ∴切线方程为y -2=2(x -2), 即2x -y -2=0.]5.函数f (x )的图象如图3­1­8所示,试根据函数图象判断0,f ′(1),f ′(3),f-f 2的大小关系.图3­1­8[解] 设x =1,x =3时对应曲线上的点分别为A ,B ,点A 处的切线为AT ,点B 处的切线为BQ ,如图所示.则f-f 3-1=k AB ,f ′(3)=k BQ ,f ′(1)=k AT ,由图可知切线BQ 的倾斜角小于直线AB 的倾斜角,直线AB 的倾斜角小于切线AT 的倾斜角,即k BQ <k AB <k AT ,∴0<f ′(3)<f-f 2<f ′(1).。

21-22版:3.1.3 导数的几何意义(创新设计)

21-22版:3.1.3 导数的几何意义(创新设计)

3.1.3 导数的几何意义
7
课堂互动
题型一
题型剖析
已知过曲线上一点求切线方程
若曲线 y=x3+3ax在某点处的切线方程为y=3x+1,求a
例1
的值.

∵y=x3+3ax.
x+Δx3+3ax+Δx-x3-3ax
∴y′=lim
Δx→0
Δx
3x2Δx+3xΔx2+Δx3+3aΔx
=lim

2
1
x+ Δx=x.
=lim
=lim
2
Δx→0
Δx
Δx→0
∴y′|x=1=1.∴点

3

P1,-2处切线的斜率为


1,则切线的倾斜角
为 45°.
答案
B
3.1.3 导数的几何意义
29
1 2 3 4
4.已知曲线y=f(x)=2x2+4x在点P处的切线斜率为16.则P点坐标
(3,30)
即P(2,4)是满足条件的点.
3.1.3 导数的几何意义
18
(2)垂直于直线2x-6y+5=0;

因为切线与直线2x-6y+5=0垂直,
1
3
9
所以 2x0·3=-1,得 x0=-2,y0=4,

3 9
P-2,4是满足条件的点.


3.1.3 导数的几何意义
19
(3)倾斜角为135°.
若题中所给点(x0 ,y0)不在曲线上,首先应设出切
点坐标,然后根据导数的几何意义列出等式,求出切点坐标,
进而求出切线方程.
3.1.3 导数的几何意义
15
跟踪演练2
1
求过点A(2,0)且与曲线y= 相切的直线方程.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1.3导数的几何意义
教学三维目标:
1.知识与技能:了解平均变化率与割线斜率之间的关系;
2.过程与方法:理解曲线的切线的概念;
3.情态与价值:通过函数的图像直观地理解导数的几何意义并会用导数的几何意义解题; 教学重点:曲线的切线的概念、切线的斜率、导数的几何意义;
教学难点:导数的几何意义.
教学方法:讨论法
教学工具:多媒体
教学课时:1课时
教学过程:
创设情景
(一)平均变化率、割线的斜率
(二)瞬时速度、导数
我们知道,导数表示函数y =f (x )在x =x 0处的瞬时变化率,反映了函数y =f (x )在x =x 0附近的变化情况,导数0()f x '的几何意义是什么呢?
新课讲授
(一)曲线的切线及切线的斜率:如图3.1-2,当(,())(1,2,3,4)n n n P x f x n =沿着曲线()f x 趋近于点00(,())P x f x 时,割线n PP 的变化趋势是什么?
我们发现,当点n P 沿着曲线无限接近点P 即Δx →0时,割线n PP 趋近于确定的位置,这个确定位置的直线PT 称为曲线在点P 处的切线.
问题:⑴割线n PP 的斜率n k 与切线PT 的斜率k 有什么关系?
⑵切线PT 的斜率k 为多少?
图3.1-2
容易知道,割线n PP 的斜率是00
()()n n n f x f x k x x -=-,当点n P 沿着曲线无限接近点P 时,n k 无限趋近于切线PT 的斜率k ,即0000()()lim ()x f x x f x k f x x
∆→+∆-'==∆ 说明:(1)设切线的倾斜角为α,那么当Δx →0时,割线PQ 的斜率,称为曲线在点P 处的切线的斜率.
这个概念: ①提供了求曲线上某点切线的斜率的一种方法;
②切线斜率的本质—函数在0x x =处的导数.
(2)曲线在某点处的切线:1)与该点的位置有关;2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的;如不存在,则在此点处无切线;3)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多个.
(二)导数的几何意义:
函数y =f (x )在x =x 0处的导数等于在该点00(,())x f x 处的切线的斜率,
即 0000()()()lim x f x x f x f x k x
∆→+∆-'==∆ 说明:求曲线在某点处的切线方程的基本步骤:
①求出P 点的坐标;
②求出函数在点0x 处的变化率0000()()()lim x f x x f x f x k x
∆→+∆-'==∆ ,得到曲线在点00(,())x f x 的切线的斜率;
③利用点斜式求切线方程.
(二)导函数:
由函数f (x )在x =x 0处求导数的过程可以看到,当时,0()f x ' 是一个确定的数,那么,当x 变化时,便是x 的一个函数,我们叫它为f (x )的导函数.记作:()f x '或y ',
即: 0()()()lim x f x x f x f x y x
∆→+∆-''==∆ 注:在不致发生混淆时,导函数也简称导数.
(三)函数()f x 在点0x 处的导数0()f x '、导函数()f x '、导数 之间的区别与联系。

1)函数在一点处的导数0()f x ',就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数。

2)函数的导数,是指某一区间内任意点x 而言的, 就是函数f(x)的导函数
3)函数()f x 在点0x 处的导数'0()f x 就是导函数()f x '在0x x =处的函数值,这也是 求函数
在点0x 处的导数的方法之一。

典例分析
例1:(1)求曲线y =f (x )=x 2+1在点P (1,2)处的切线方程.
(2)求函数y =3x 2在点(1,3)处的导数.
解:(1)222
100[(1)1](11)2|lim lim 2x x x x x x y x x
=∆→∆→+∆+-+∆+∆'===∆∆, 所以,所求切线的斜率为2,因此,所求的切线方程为22(1)y x -=-即20x y -=
(2)因为222211113313(1)|lim lim lim3(1)611
x x x x x x y x x x =→→→-⋅-'===+=-- 所以,所求切线的斜率为6,因此,所求的切线方程为36(1)y x -=-即630x y --=
(2)求函数f (x )=x x +-2
在1x =-附近的平均变化率,并求出在该点处的导数. 解:x x
x x x y ∆-=∆-∆+-+∆+--=∆∆32)1()1(2 200(1)(1)2(1)lim lim (3)3x x y x x f x x x
→→∆--+∆+-+∆-'-===-∆=∆∆ 例2.(课本例2)如图3.1-3,它表示跳水运动中高度随时间变化的函数
2() 4.9 6.510h x x x =-++,根据图像,请描述、比
较曲线()h t 在0t 、1t 、2t 附近的变化情况.
解:我们用曲线()h t 在0t 、1t 、2t 处的切线,刻画曲
线()h t 在上述三个时刻附近的变化情况.
(1) 当0t t =时,曲线()h t 在0t 处的切线0l 平行于
x 轴,所以,在0t t =附近曲线比较平坦,几
乎没有升降.
(2) 当1t t =时,曲线()h t 在1t 处的切线1l 的斜率1()0h t '<,所以,在1t t =附近曲线下降,
即函数2
() 4.9 6.510h x x x =-++在1t t =附近单调递减.
(3) 当2t t =时,曲线()h t 在2t 处的切线2l 的斜率2()0h t '<,所以,在2t t =附近曲线下降,
即函数2() 4.9 6.510h x x x =-++在2t t =附近单调递减.
从图3.1-3可以看出,直线1l 的倾斜程度小于直线2l 的倾斜程度,这说明曲线在1t 附近比在2t 附近下降的缓慢.
例3.(课本例3)如图3.1-4,它表示人体血管中药物浓度()c f t =(单位:/mg mL )随时间t (单位:min )变化的图象.根据图像,估计0.2,0.4,0.6,0.8t =时,血管中药物浓度的瞬时变化率(精确到0.1).
解:血管中某一时刻药物浓度的瞬时变化率,就是药物浓度()f t 在此时刻的导数,从图像上看,它表示曲线()f t 在此点处的切线的斜率.
如图3.1-4,画出曲线上某点处的切线,利用网格估计这条切线的斜率,可以得到此时刻药物浓度瞬时变化率的近似值.
作0.8t =处的切线,并在切线上去两点,如(0.7,0.91),(1.0,0.48),则它的斜率为:
0.480.91 1.41.00.7
k -=≈-- 所以 (0.8) 1.4f '≈-
1.求曲线y =f (x )=x 3
在点(1,1)处的切线;
2.求曲线y =(4,2)处的切线.
回顾总结:
1.曲线的切线及切线的斜率;
2.导数的几何意义
布置作业:
课本P79 A 组2、3
板书设计:
主板 副板
1、
曲线的切线 2、
切线的斜率 举例 3、 导数的几何意义。

相关文档
最新文档