氮化硅陶瓷制品

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题目名称:氮化硅陶瓷的制备

学院名称:材料科学与工程学院

班级:

学号:

学生姓名:

指导教师:

2014 年 4 月

氮化硅陶瓷的制备

1.简介

1.1 应用背景

作为结构陶瓷,氮化硅陶瓷材料具有优良的耐磨、耐腐蚀、耐高温性能以及良好的抗热震性能,广泛应用于航空航天、机械、电子电力、化工等领域。采用适当的烧结助剂可有效提高氮化硅陶瓷材料的热导率,增加材料断裂韧性,促进材料性能完善。

研究结果表明,以 CeO

2为烧结助剂,氮化硅的相变转换率为 100%;当CeO

2

含量

不超过 8mol%时,氮化硅晶界相的构成主要为 Ce

4.67(SiO

4

)

3

O、Si

2

ON

2

以及 Ce

2

Si

2

O

7

其结晶析出状况随烧结助剂含量增加呈规律性变化;晶粒尺寸随烧结助剂含量增加变

化微弱,长柱状晶数目增多。烧结助剂 CeO

2

通过对晶界相及微观结构的影响作用于

氮化硅陶瓷材料相对密度、强度、硬度及断裂韧性,CeO

2

含量变化对氮化硅陶瓷材料

力学性能影响显著。当 CeO

2

含量不超过7mol%时,氮化硅陶瓷材料的热扩散系数及

热导率随 CeO

2含量增加而升高,CeO

2

含量由1mol%增加至 7mol%时,氮化硅陶瓷材料

热扩散系数增加 50%,热导率增加38.7%。且氮化硅热传导导机制为声子导热,其热导率的大小依赖于氮化硅晶粒的净化程度。

1.2 研究意义

作为信息、交通、航空航天等科技领域发展基础之一的电力电子技术,应其对电力的有效控制与转换的要求,电子器件一直向小尺寸、高密度、大电流、大功率的趋势发展。伴随大功率、超大规模集成电路的发展,其所面临的热障问题愈加突出,器件设计中的热耗散问题亟待解决(在温度高于 100℃时,电路失效率会随着温度的升高成倍增长)。较玻璃、树脂等材料,电子陶瓷材料凭借其优异的绝缘性能、化学稳定性以及与芯片最为相似的热膨胀系数使其在基板材料中占据重要地位。降低基板材料热阻的主要途径有两种:减小基板厚度、提高材料热导率,为此对基板材料强度要求升高。高热导率陶瓷材料主要应用于集成电路(IC)衬底,多芯片组装(MCM)基

板、封装以及大功率器件散热支撑件等部位,其中研究较多的有 Al

2O

3

、BeO、AlN、

BN、Si

3N

4

、SiC 等陶瓷材料。其中多晶氧化铝的热导为 25~35Wm-1K-1,其单晶结构热

导为 40Wm-1K-1。而以高热导率著称的氧化铍,热导率在240 Wm-1K-1左右,但因为使用安全问题而被氮化铝替代。SiC 的介电性能远低于其它基板材料,易被击穿,故其使用受到限制。而现今性能较为优异的两种封装材料:氮化铝与氧化铍,前者造价昂贵后者具有毒性。氮化铝的热导率范围为 175~200 Wm-1K-1,但其弯曲强度在 300~350MPa 之间,远低于氮化硅陶瓷材料(600~1500MPa),且氮化硅的热膨胀系数低于以上高热导率陶瓷材料。

高热导率氮化硅陶瓷材料具有其他陶瓷材料无法比拟的高强度、高断裂韧性以及抗热震性能,其作为一种理想的结构材料可以为电子器件的热耗散设计提供一种新的材料选择。具有较高热导率的高性能氮化硅陶瓷的制备需求随着氮化硅陶瓷材料的潜

在应用范围的扩展不断增加,而烧结助剂在制备高性能氮化硅过程中对材料性能影响的相关研究较少。

1.3 制备方法

致密氮化硅陶瓷材料常用的烧结方式有以下几种:反应烧结、气压烧结、热等静压烧结以及热压烧结,近年来放电等离子烧结、无压烧结等烧结方式也因其具有的不同优势受到学者的关注。上世纪 90 年代中期研究人员多采用热等静压烧结制备具有较高热导率的氮化硅陶瓷材料,目前制备高热导率氮化硅使用最多的两种烧结方式为气压烧结和反应烧结。

a. 气压烧结

气压烧结时较高的氮气压可使氮化硅的分解温度升高,因此气压烧结氮化硅时一般采用较高的烧结温度,而烧结温度的升高有利于氮化硅晶粒的生长和完善,有利于提高烧结体的热导率。且气压烧结条件决定了烧结体微观结构的均匀性,使用气压烧结制备氮化硅陶瓷材料,可获得各向同性的烧结体。

自 1996 年 Hirosaki 等人使用气压烧结(烧结温度:2000℃,氮气压:100MPa)制备出热导率高达 120 Wm-1K-1的氮化硅陶瓷材料,气压烧结便以其节能、高效,对产品尺寸的无要求性逐渐成为制备高热导率氮化硅的主要烧结方式。Yokota等人也通过实验验证了晶种引入并不是影响材料热导率的因素,其烧结温度为 1950℃,保温时间 16 小时,获得的氮化硅烧结体热导率为 143 Wm-1K-1。Ye 等人采用气压烧结在烧结温度 2200℃条件下制备出了热导率为132.3 Wm-1K-1的氮化硅陶瓷材料。而 Zhu 等人曾以气压烧结制备出了完全致密化的氮化硅(烧结温度:1900℃,氮气压:1MPa),热导率范围为94~108 Wm-1K-1。

从上文数据易知,气压烧结时提高氮化硅烧结体热导率主要有三种方式:提高烧结温度、增加氮气压以及延长保温时间。

b. 反应烧结

反应烧结氮化硅又称为 SRBSN。用于制备高热导率氮化硅纯度最高的商业粉料氧杂质含量最低为 1wt%,SRBSN 制备氮硅陶瓷材料使用高纯硅粉作为烧结原料,替换了其他烧结方式使用的杂质含量较高的氮化硅商业粉料,减少了杂质的引入。通过对 SRBSN 制备工艺流程不断改良,Zhou 等人最终制备出了热导率高达177 Wm-1K-1的氮化硅陶瓷材料。

c. 放电等离子烧结和无压烧结

放电等离子烧结具有升温快、加热均匀以及烧结温度等特点,可完成致密烧结体的快速烧结,而这对于高热导率氮化硅烧结制备过程的影响较小,在烧结后依旧需要长时间的高温热处理获得晶粒生长较好的氮化硅陶瓷材料。国内对放电等离子烧结制备高热导率氮化硅陶瓷材料的研究较多,热导率最高可达到 100 Wm-1K-1,远低于采用相同烧结助剂使用其他烧结方式制备的氮化硅陶瓷材料。

相关文档
最新文档