线性、非线性电路元件的测试与分析

合集下载

非线性电路及其分析方法

非线性电路及其分析方法
第4章非线性电路及其分析方法-12
3.非线性器件频率变换作用的分析
这部分的内容,主要介绍当给定一个非线性器件的伏安 特性幂级数多项式和输入信号的频率成分,来判断输出量中 会产生哪些频率分量。
假设某非线性器件在工作点VQ 附近的伏安特性曲线为
i a0 a1 (v VQ ) a2 (v VQ )2 a3 (v VQ )3
线性电路:输出与输入波形相似,频率成分相同 非线性电路:输出与输入波形失真,基频相同, 频率成分不同
第4章非线性电路及其分析方法-9
下面,我们定量分析频率变换
设 i av2 vi V1m cos1t V2m cos2t
i aV12m cos2 1t aV22m cos2 2t 2aV1mV2m cos1t cos2t
其中,0 为直流项;1(V1m cos1t V2m cos2t) 为线性项,
包含频率分量1 和2 ;平方项包含的频率分量有直流 21 、 22 、1 2 和1 2 ;
第4章非线性电路及其分析方法-14
i 利用三角公式 将三次项展开整理后, 中的频率成分如下
3 (V1m cos1t V2m cos2t)3 3 (V13m cos3 1t 3V12mV2m cos2 1t cos2t 3V1mV22m cos1t cos2 2t V23m cos3 2t)
静态电感:
LQ IQ
动态电感: L(i) d di
第4章非线性电路及其分析方法-6
4.2.2 非线性电路特点
由线性元件组成的电路叫做线性电路,如无源滤波器,低频和高频小 信号放大器等;由非线性元件组成的电路叫做非线性电路,如本课程中 之后要讲的功率放大器,振荡器,及各种调制解调电路等。非线性电路 的实质是输出产生了新的频率。

电路分析实验报告(电阻元件伏安特性的测量)

电路分析实验报告(电阻元件伏安特性的测量)

一、实验目的:
(1)学习线性电阻元件和非线性电阻元件伏安特性的测试方式。

(2)学习直流稳压电源、万用表、电压表的使用方法。

二、实验原理及说明
(1)元件的伏安特性。

如果把电阻元件的电压取为横坐标,电流取为纵坐标,画出电压与电流的关系曲线,这条曲线称为该电阻元件的伏安特性。

(2)线性电阻元件的伏安特性在u-i平面上是通过坐标原点的直线,与元件电压和电流方向无关,是双向性的元件。

元件的电阻值可由下式确定:R=u/i=(m u/m i)tgα,期中m u和m i分别是电压和电流在u-i平面坐标上的比例。

三、实验原件
U s是接电源端口,R1=120Ω,R2=51Ω,二极管D3为IN5404,电位器Rw
四、实验内容
(1)线性电阻元件的正向特性测量。

(2)反向特性测量。

(3)计算阻值,将结果记入表中
(4)测试非线性电阻元件D3的伏安特性
(5)测试非线性电阻元件的反向特性。

表1-1 线性电阻元件正(反)向特性测量
表1-5 二极管IN4007正(反)向特性测量
五、实验心得
(1)每次测量或测量后都要将稳压电源的输出电压跳回到零值(2)接线时一定要考虑正确使用导线。

实验1线性和非线性元件伏安特性测定

实验1线性和非线性元件伏安特性测定

2. 实验内容和步骤
3.接线图
实验13.异步电动机继电控制的基本电路
2.实验内容和步骤 3.接线图
2. 实验内容和步骤
3.接线图
1.实验原理
测量电容两端电压随时间变化的曲线 (P.22图6-4取消,电路中的电阻用电阻箱)
用示波器只能测电压,不能测电流。
用示波器测量电流曲线的方法:从电阻 上测电压,再换算成电流。
实验7.研究LC元件在直流电路和交流电 路中的特性
1.实验原理 2.实验内容和步骤 3.接线图
1. 实验原理
线性电感元件上的电压、电流关系为 线性电容元件上的电压和电流关系为
解放电过程的微分方程
U c(t)

U e (t t0)/ 0
观测方法:用函数信号发生器输入连续 的方波(包括正负阶跃),通过示波器 观测波形,测量时间常数
实验内容:四个电路,每个电路两组参 数,在坐标纸上绘制8张输出波形图;用 示波器测量第一个电路第一组参数的时 间常数(从充电曲线和放电曲线中任选 一条曲线测量)
(a)含源一端口网络
(b)用戴维南定理等效替代 图3-1等效电源定理
(c)用诺顿定理等效替代
2. 实验内容和步骤
3.接线图
实验4.电压源与电流源的等效变换
1.实验原理 2.实验内容和步骤 3.接线图
1. 实验原理
电流源是除电压源以外的另一种形式的电源,它可以给外电路提供电 流。电流源可分为理想电流源和实际电流源(实际电流源通常简称电流 源),理想电流源可以向外电路提供一个恒值电流,不论外电路电阻的大 小如何。理想电流源具有两个基本性质:第一,它的电流是恒值的,而与 其端电压的大小无关;第二,理想电流源的端电压并不能由它本身决定, 而是由与之相联接的外电路确定的。理想电流源的伏安特性曲线如图4-1所 示。

线性与非线性元件伏安特性的测定

线性与非线性元件伏安特性的测定

1.线性与非线性元件伏安特性的测定一.实验目的1.学习直读式仪表和直流稳压电源等仪器的使用方法2.掌握线性电阻元件、非线性电阻元件的伏安特性的测试技能3.加深对线性电阻元件、非线性电阻元件伏安特性的理解.验证欧姆定律二.实验原理电阻元件是一种对电流呈现阻力的元件,有阻碍电流流动的性能。

当电流通过电阻元件时,电阻元件将电能转换成其它形式的能量.并沿着电流流动的方向产生电压降。

电压降的大小等于电流的大小与电阻的乘积。

电压降和电流及电阻的这一关系称为欧姆定律。

U=IR上式的前提条件是电压U和电流I的参考方向相关联.亦即参考方向一致。

如果参考方向相反.则欧姆定律的形式应为U=-IR电阻上的电压和流过它的电流是同时并存的.也就是说,任何时刻电阻两端的电压降只由该时刻流过电阻的电流所确定,与该时刻前的电流的大小无关,因此,电阻元件又被称为“无记忆”元件。

当电阻元件R的值不随电压或电流大小的变化而改变时,则电阻R两端的电压与流过它的电流成正比例。

我们把符合这种条件的元件称为线性电阻元件。

反之.不符合上述条件的电阻元件被叫做非线性电阻元件。

电阻元件的特性除了用电压和电流的方程式表示外,还可以用其电流和电压的关系图形来表示,该图形称为此元件的伏安特性曲线。

线性电阻的伏安特性曲线为一条通过坐标原点的直线,该直线的斜率即为电阻值,它是一个常数。

如图1-1所示。

半导体二极管是一种非线性电阻元件。

它的电阻值随着流过它的电流的大小而变化。

半导体二极管的电路符号用表示.其伏安特性如图1-2所示。

由此可见半导体二极管的伏安特性为非对称曲线。

图1-1线性电阻的伏安特性图l-2半导体二极管伏安特性对比图1-l和图1-2可以发现,线性电阻的伏安特性对称于坐标原点。

这种性质称为双向性,为所有线性电阻元件所具备。

半导体二极管的伏安特性不但是非线性的.而且对于坐标原点来说是非对称性的,又称非双向性。

这种性质为多数非线性电阻元件所具备。

半导体二极管的电阻随着其端电压的大小和极性的不同而不同,当外加电压的极性和二极管的极性相同时,其电阻值很小,反之二极管的电阻很大。

电路元件伏安特性的测量

电路元件伏安特性的测量

实验一:电路元件伏安特性的测量一、实验目的1. 掌握线性、非线性电阻元件及电源的概念。

2.学习线性电阻和非线性电阻伏安特性的测试方法。

3.学习直流电压表、直流电流表及直流稳压电源等设备的使用方法。

二、实验仪器电路分析实验箱、数字万用表、直流电流表、直流电压表、二极管、稳压二极管、电阻三、实验原理1、数字万用表的构成及使用方法数字万用表一般由二部分构成,一部分是被测量电路转换为直流电压信号,我们称为转换器,另一部分是直流数字电压表。

直流数字电压表构成了万用表的核心部分,主要由模-数转换器和显示器组成。

可用于测量交直流电压和电流、电阻、电容、二极管正向压降及电路通断,具有数据保持和睡眠功能。

2、整体结构1)交直流电压测量(1)将红表笔插入VQ插孔,黑表笔插入COM插孔。

(2)将功能开关置于V量程档。

将测试表笔并联在被测元件两端2)交直流电流测量(1)将红表笔插入mA或A插孔,黑表笔插入COM插孔。

(2)将功能开关置A量程。

(3)表笔串联接入到待测负载回路里。

3)电阻测量(1)将红表笔插入VQ插孔,黑表笔插入COM插孔。

(2)将功能开关置于Q量程。

(3)将测试表笔并接到待测电阻.上4)二极管和蜂鸣通断测量(1)将红表笔插入VQ插孔,黑色表笔插入”COM”插孔。

(2)将功能开关置于二极管和蜂鸣通断测量档位。

(3)如将红表笔连接到待测-二极管的正极,黑表笔连接到待测二极管的负极,则LCD.上的读数为二极管正向压降的近似值。

将表笔连接到待测线路的两端,若被测线路两端之间的电阻大于700,认为电路断路;被测线路两端之间的电阻≤100,认为电路良.好导通,蜂鸣器连续声响;如被测两端之间的电阻在10~700之间,蜂鸣器可能响,也可能不响。

同时LCD显示被测线路两端的电阻值。

3)线性电阻元件的伏安特性曲线是- -条通过坐标原点的直线。

如图1.1.1所示;非线性电阻元件,如半导体二极管,其伏安特性如图1.1.2所示,电压、电流关系不服从欧姆定律。

电路基础原理理解电路中的线性与非线性元件

电路基础原理理解电路中的线性与非线性元件

电路基础原理理解电路中的线性与非线性元件电路基础原理:理解电路中的线性与非线性元件在我们日常生活中,电路无处不在。

电路是电子设备中的核心组成部分,也是现代科技发展的基石之一。

在电路中,有线性元件和非线性元件两种不同类型的元件,它们在电路中发挥着不同的作用。

本文将以电路基础原理为主题,来探讨电路中的线性与非线性元件的特性和应用。

首先,我们来了解线性元件。

线性元件是指其电压-电流特性符合线性关系的元件。

这意味着当通过线性元件的电流变化时,电压也会按照相同的比例变化。

常见的线性元件有电阻和电感。

电阻是一种最基础的线性元件,它阻碍电流的流动。

它根据欧姆定律的基本原理,即电流与电压成正比关系,来实现对电流的控制。

在电路中,电阻常常被用来限制电流的大小,调整电压和电流的比例关系。

电感则是另一种常见的线性元件,它具有存储和释放能量的作用。

电感的特性是根据法拉第电磁感应定律进行描述的,即电压变化率与电流变化率成正比。

电感的应用十分广泛,在许多电子设备中用于滤波、调节电流和延迟信号等。

除了线性元件外,非线性元件也是电路中不可或缺的一部分。

与线性元件不同,非线性元件的电压-电流特性不符合简单的线性关系。

它们在电路中引入了非线性的行为,常常用于信号处理和放大。

二极管是最基本的非线性元件之一。

它有一个特殊的电流-电压关系,即正向导通电流非常大,而反向导通电流几乎为零。

这使得二极管在电路中常被用作整流器、开关和信号处理器。

另一个重要的非线性元件是晶体管。

晶体管是一种三端元件,可以实现电流和电压的放大功能。

通过控制输入端电流,晶体管可以控制输出端的电流和电压信号。

因此,晶体管被广泛用于放大电路、开关电路和逻辑电路等。

除了二极管和晶体管,还有一些其他的非线性元件,如场效应管和压敏电阻等。

它们在电路中发挥着重要的作用,丰富了电子设备的功能和可行性。

总之,电路作为电子设备的核心部分,是电子技术的基石。

在电路中,线性元件和非线性元件扮演着不同的角色和功能。

线性与非线性元件讲解

线性与非线性元件讲解

(a)含源一端口网络
(b)用戴维南定理等效替代 图3-1等效电源定理
(c)用诺顿定理等效替代
2. 实验内容和步骤
3.接线图
实验4.电压源与电流源的等效变换
1.实验原理 2.实验内容和步骤 3.接线图
1. 实验原理
电流源是除电压源以外的另一种形式的电源,它可以给外电路提供电 流。电流源可分为理想电流源和实际电流源(实际电流源通常简称电流 源),理想电流源可以向外电路提供一个恒值电流,不论外电路电阻的大 小如何。理想电流源具有两个基本性质:第一,它的电流是恒值的,而与 其端电压的大小无关;第二,理想电流源的端电压并不能由它本身决定, 而是由与之相联接的外电路确定的。理想电流源的伏安特性曲线如图4-1所 示。
星形电路:
三角形电路:
2.实验步骤:
1)线电压、相电压测量,用MC1098直接测量, 测量结果填表. 2)星形电路:按图连接电路,测量对称负载有中 线、对称负载无中线、不对称负载有中线、不 对称负载无中线电路的参数。用二瓦计法测量 三相功率的测量电路. 3)三角形电路:测量对称负载、不对称负载电路 的参数,按连接电路. 4)相序测量
( t t0)/
)
解放电过程的微分方程
Uc( t) U0e
( t t0)/
观测方法:用函数信号发生器输入连续 的方波(包括正负阶跃),通过示波器 观测波形,测量时间常数 实验内容:四个电路,每个电路两组参 数,在坐标纸上绘制8张输出波形图;用 示波器测量第一个电路第一组参数的时 间常数(从充电曲线和放电曲线中任选 一条曲线测量)
实验6 二阶电路过渡过程实验
实验电路 由电阻、电容和电感串联组成的电路 该电路可以用二阶微分方程描述,改变 电路参数,电路响应会出现过阻尼、临 界阻尼和欠阻尼三种情况 实验内容 观测并绘制过阻尼、临界阻尼和欠阻尼 三种情况下的6条曲线:电容两端电压随 时间变化的曲线、电流随时间变化的曲 线,按讲义上的要求计算参数

实验七 线性和非线性电学元件伏安特性的测量

实验七 线性和非线性电学元件伏安特性的测量

实验七线性电阻和非线性电阻的伏安特性曲线电阻是电学中常用的物理量。

利用欧姆定律求导体电阻的方法称为伏安法,它是测量电阻的基本方法之一。

为了研究材料的导电性,通常作出其伏安特性曲线,了解它的电压与电流的关系。

伏安特性曲线是直线的元件称为线性元件,伏安特性曲线不是直线的元件称为非线性元件。

这两种元件的电阻都可用伏安法测量。

但由于测量时电表被引入测量线路,电表内阻必然会影响测量结果,因而应考虑对测量结果进行必要的修正,以减少系统误差。

【实验目的】1.通过对线性电阻伏安特性的测量,学习正确选择和使用伏安法测电阻的两种线路。

2.通过对二极管伏安特性的测量,了解非线性电学元件的导电特性。

3.习按电路图正确地接线,掌握限流电路和分压电路的主要特点。

4.学会用作图法处理实验数据。

【实验仪器】欧姆定律实验盒直流稳压电源滑线变阻器(2个)单刀开关数字电流表数字电压表保护电阻【实验原理】当一个元件两端加上电压,元件内有电流通过时,电压与电流之比称为该元件的电阻。

若一个元件两端的电压与通过它的电流成比例,则伏安特性曲线为一条直线,这类元件称为线性元件。

若元件两端的电压与通过它的电流不成比例,则伏安特性曲线不再是直线,而是一条曲线,这类元件称为非线性元件。

一般金属导体的电阻是线性电阻,它与外加电压的大小和方向无关,其伏安特性是一条直线(见图1),从图上看出,直线通过一、三象限。

它表明,当调换电阻两端电压的极性时,电流也换向,而电阻始终为一定值,等于直线斜率的倒数R =V/I。

常用的半导体二极管是非线性电阻,其电阻值不仅与外加电压的大小有关,而且还与方向有关。

为了了解半导体二极管的导电特性,下面对它的结构和电学性能作一简单介绍。

图1 线性电阻的伏安特性图2 半导体二极管的p-n结和表示符号半导体二极管又叫晶体二极管。

半导体的导电性能介于导体和绝缘体之间。

如果在纯净的半导体中适当地掺入极微量的杂质,则半导体的导电能力就会有上百万倍的增加。

线性与非线性元件伏安特性的测定

线性与非线性元件伏安特性的测定
7 标准型短接桥 若干
8 九孔实验方板 1块200mm×300mm
9 交直流电压电流表 2块 MC1102,MC1108
五.分析与讨论
1.按报告单上所列项日认真填写实验报告。
2.根据实验中所得数据,在坐标纸上绘制两个线性电阻、半导体二极管、小灯泡灯丝的伏安特性曲线。
3.分析实验结果,并得出相应结论。
基尔霍夫回路电压定律;电路中任意时刻.沿任一闭合回路,电压的代数和为零。其数
学表达式为
∑U=0。
此定阐明了任一闭合回路中各电压间的约束关系。这种关系仅与电路的结构有关.而
与构成回路的各元件的性质无关。不论这些元件是线性的或非线性的,含源的或无源的,时
变的或时不变的。
参考方向:
KCL和KVI表达式中的电流和电压都是代数量。它们除具有大小之外,还有其方向,其方向是以它量值的正、负表示的。为研究问题方便,人们通常在电路中假定一个方向为参考.称为参考方向。当电路中的电流(或电压)的实际方向与参考方向相同时取正值,其实际方向与参考方向相反时取负值。
2k
2.5k
开路
I(mA)
U(V)
2 验证戴维南定理
(1) 分别用直接测量法和补偿法测量C、D端口网络的开路电压UOC;
(2) 用补偿法(或直接测量法)所测得的开路电压UOC和步骤1中测得的短路电流(RL=0)ISC,计算C、D端入端等效电阻
(3)按图3一l(b)构成戴维南等效电路,其中电压源用直流稳压电源代替,调节电源输出电压,使之等于UOC,Ri用电阻箱代替,在C、D端接入负载电阻RL,如图3-5所示。按表3一l中相同的电阻值,测取电流和电压,填入表3—2。
用等效电路替代一端口含源网络的等效性,在于保持外电路中的电流和电压不变,即替

1实验一线性与非线性元件伏安特性

1实验一线性与非线性元件伏安特性

实验一 线性与非线性元件伏安特性一、实验目的1. 学会识别常用电路元件的方法。

2. 掌握线性电阻、非线性电阻元件伏安特性的测绘。

3. 掌握实验台上直流电工仪表和设备的使用方法。

二、原理说明任何一个二端元件的特性可用该元件上的端电压U 与通过该元件的电流I 之间的函数关系I =f(U)来表示,即用I-U 平面上的一条曲线来表征,这条曲线称为该元件的伏安特性曲线。

1. 线性电阻器的伏安特性曲线是一条 通过坐标原点的直线,如图1-1中a 所示, 该直线的斜率等于该电阻器的电阻值。

2. 一般的白炽灯在工作时灯丝处于 高温状态, 其灯丝电阻随着温度的升高 而增大,通过白炽灯的电流越大,其温度 越高,阻值也越大,一般灯泡的“冷电阻” 与“热电阻”的阻值可相差几倍至十几倍, 所以它的伏安特性如图1-1中b 曲线所示。

3. 一般的半导体二极管是一个非线性电阻元件,其伏安特性如图1-1中 c 所示。

图1-1 正向压降很小(一般的锗管约为0.2~0.3V ,硅管约为0.5~0.7V ),正向电流随正向压降的升高而急骤上升,而反向电压从零一直增加到十多至几十伏时,其反向电流增加很小,粗略地可视为零。

可见,二极管具有单向导电性,但反向电压加得过高,超过管子的极限值,则会导致管子击穿损坏。

注意:流过二极管的电流不能超过管子的极限值,否则管子会被烧坏。

三、 实验设备四、实验内容1. 测定线性电阻器的伏安特性U(V)( )图 1-2 图 1-3按图1-2接线,调节稳压电源的输出电压U ,从0 伏开始缓慢地增加,一直到10V ,记下相应的电压表和电流表的读数U R 、I 。

2. 测定非线性白炽灯泡的伏安特性3. 测定半导体二极管的伏安特性按图1-3接线,R 为限流电阻器。

测二极管的正向特性时,其正向电流不得超过35mA ,二极管D 的正向施压U D+可在0~0.75V 之间取值。

在0.5~0.75V 之间应多取几个测量点。

线性与非线性元件的伏安特性测量

线性与非线性元件的伏安特性测量

线性与非线性元件的伏安特性测量一、实验目的⒈掌握线性元件和非线性元件的伏安特性及测量方法。

2. 掌握万用表、直流电流表、直流稳压稳流电源的使用方法。

二、实验预习要求1.正确理解线性和非线性元件的概念。

2.认真阅读直流稳压稳流电源、万用表、直流数字电流表的使用说明。

三、原理与说明一个二端元件的伏安特性是指该元件的端电压U与流经它的电流I之间的函数关系。

通过实验的方法可测量该元件的伏安特性,并可用U-I直角坐标平面内的一条曲线(伏安特性曲线)来表示。

电阻元件可分为线性电阻和非线性电阻两大类。

⒈线性电阻是指电阻值不随其两端的电压或流经它的电流的改变而变化的电阻,线性电阻的阻值是一个常数。

线性电阻的伏安特性满足欧姆定律。

它的伏安特性曲线是一条通过u-i平面原点的直线,直线的斜率与电阻元件阻值的大小有关,1tgRθ=,如图3-1(a)所示。

该特性与元件电压、电流的大小和方向无关,故线性电阻也称为双向性元件。

⒉非线性电阻的阻值R不是一个常量,所以其端电压与电流之间的关系不满足欧姆定律,其伏安特性是曲线不是直线。

非线性电阻的种类很多,如半导体二极管、光敏电阻、压敏电阻等都是非线性电阻,如图4-1(b)所示为钨丝灯泡的伏安特性曲线。

图3-1 伏安特性曲线四、实验内容与步骤1.测定线性元件电阻器的伏安特性1.打开稳压稳流电源,将电压源调制为独立输出模式,选择一路通道并将输出电压调为0V,关闭通道开关,待连接导线。

2.在电阻器实验板上选取阻值为1KΩ的电阻R L,按图3-2所示电路连接导线,调节稳压稳流电源的输出电压,从0V开始缓慢地增加,一直加到10V,使电路输入电压SU按表4-1中的给定值进行变化,观察直流数字电流表,读取电路中的电流值I,用数字万用表的直流电压档测量电阻R两端的电压RU。

图3-2 线性元件伏安特性测量电路表3-1 线性电阻伏安特性的测量2. 测定非线性元件(发光二极管)的伏安特性R换成一支发光二极管,用示波器观测伏安特性曲线。

线性电阻和非线性电阻实验报告

线性电阻和非线性电阻实验报告

线性电阻和非线性电阻实验报告线性电阻和非线性电阻实验报告引言:电阻是电路中常见的元件之一,它的作用是限制电流的流动。

在实际应用中,电阻可以分为线性电阻和非线性电阻两种类型。

本实验旨在通过实际测量和分析,探讨线性电阻和非线性电阻的特性和应用。

实验一:线性电阻特性测量1. 实验目的本实验旨在测量线性电阻的电流-电压特性曲线,并分析其特性。

2. 实验步骤(1)搭建线性电阻电路,将电流表和电压表连接到电路中。

(2)通过改变电源电压,记录不同电压下的电流值。

(3)根据测得的电流和电压值,绘制电流-电压特性曲线。

3. 实验结果与分析根据实验测量结果,我们绘制了线性电阻的电流-电压特性曲线。

从曲线可以看出,电流和电压之间呈现线性关系,符合欧姆定律。

线性电阻的电阻值可以通过曲线的斜率计算得出。

实验二:非线性电阻特性测量1. 实验目的本实验旨在测量非线性电阻的电流-电压特性曲线,并分析其特性。

2. 实验步骤(1)搭建非线性电阻电路,将电流表和电压表连接到电路中。

(2)通过改变电源电压,记录不同电压下的电流值。

(3)根据测得的电流和电压值,绘制电流-电压特性曲线。

3. 实验结果与分析根据实验测量结果,我们绘制了非线性电阻的电流-电压特性曲线。

与线性电阻不同,非线性电阻的电流-电压关系不是简单的线性关系。

在低电压范围内,电流随电压的增加而迅速增加,但随后增长速度逐渐减慢,形成曲线的饱和区域。

这是由于非线性电阻的电阻值随电压的改变而变化,导致电流-电压关系不再是线性的。

结论:通过本实验的测量和分析,我们深入了解了线性电阻和非线性电阻的特性和应用。

线性电阻的电流-电压关系呈现线性,符合欧姆定律;而非线性电阻的电流-电压关系则不是简单的线性关系,其电阻值随电压的改变而变化。

这些特性使得非线性电阻在电路设计和电子器件中具有广泛的应用,如温度传感器、光敏电阻等。

总结:通过本实验,我们不仅学习了线性电阻和非线性电阻的特性,还掌握了测量和分析电流-电压特性曲线的方法。

实验七 线性和非线性电学元件伏安特性的测量

实验七 线性和非线性电学元件伏安特性的测量

实验七线性和非线性电学元件伏安特性的测量本实验主要通过测量不同电学元件的伏安特性,了解电流-电压关系及其特点,并对线性与非线性元件进行区分。

同时,通过实验掌握伏安表和示波器的使用方法。

一、实验器材1. 直流电源2. 电阻箱3. 伏安表4. 示波器5. 切换开关6. 电路板7. 线性电阻、电流表等二、实验原理1. 线性电阻的伏安特性线性电阻是最基本的电阻元件,其伏安特性的特点是与电流成正比,即Ohm定律: U = IR其中,U为电压,I为电流,R为电阻值。

在实验中,通过调整电源输出电压,改变电路中的电流值,并通过伏安表测量电阻两端的电压,然后求解电阻的电压-电流关系,并绘制成伏安特性曲线。

除了线性电阻外,还有一些电学元件,如二极管、三极管、电容、电感等,它们的伏安特性不是线性的,即非线性元件。

其中最常见的是二极管。

其伏安特性的特点是在正向偏置情况下,电压很小时电流几乎不流动;但当电压超过一定值时,电流急剧增加。

而在反向偏置情况下,电流很小,电压增加时,电流也几乎不发生变化,称为反向饱和区。

三、实验步骤1. 准备实验器材并接线。

将直流电源连接到电路板上的正负极,将电阻箱、伏安表、电阻与电路板连接,并用切换开关选择要测量的电路。

选取二极管作为样品,通过调整直流电源输出电压来改变二极管的正向偏置电压,记录电流与电压数据。

描绘二极管的伏安特性曲线。

4. 数据处理与分析以伏安特性曲线为依据,对线性电阻和非线性元件进行分类,并分析非线性元件的工作原理。

四、实验注意事项1. 操作时注意电路的连接情况,避免拧错导致损坏实验器材。

2. 正确选择伏安表的测量范围,以避免仪器烧毁。

3. 电阻、二极管等元件的选取应合适,避免输出电压超过测量范围。

4. 实验完毕后,应及时关闭电源及伏安表电源,避免电路出现短路等危险。

电路实验报告

电路实验报告

实验一 元件特性的示波测量法一、实验目的1、学习用示波器测量正弦信号的相位差。

2、学习用示波器测量电压、电流、磁链、电荷等电路的基本变量3、掌握元件特性的示波测量法,加深对元件特性的理解。

二、实验任务1、 用直接测量法和李萨如图形法测量RC 移相器的相移ϕ∆即uC u sϕϕ-实验原理图如图5-6示。

2、 图5-3接线,测量下列电阻元件的电流、电压波形及相应的伏安特性曲线(电源频率在100Hz~1000Hz 内): (1)线性电阻元件(阻值自选)(2)给定非线性电阻元件(测量电压范围由指导教师给定)电路如图5-7 3、按图5-4接线,测量电容元件的库伏特性曲线。

4、测量线性电感线圈的韦安特性曲线,电路如图5-55、测量非线性电感线圈的韦安特性曲线,电源通过电源变压器供给,电路如图5-8所示。

图 5-7 图 5-8这里,电源变压器的副边没有保护接地,示波器的公共点可以选图示接地点,以减少误差。

三、思考题1、元件的特性曲线在示波器荧光屏上是如何形成的,试以线性电阻为例加以说明。

答:利用示波器的X-Y方式,此时锯齿波信号被切断,X轴输入电阻的电流信号,经放大后加至水平偏转板。

Y轴输入电阻两端的电压信号经放大后加至垂直偏转板,荧屏上呈现的是u x,u Y的合成的图形。

即电流电压的伏安特性曲线。

3、为什么用示波器测量电路中电流要加取样电阻r,说明对r的阻值有何要求?答:因为示波器不识别电流信号,只识别电压信号。

所以要把电流信号转化为电压信号,而电阻上的电流、电压信号是同相的,只相差r倍。

r的阻值尽可能小,减少对电路的影响。

一般取1-9Ω。

四、实验结果1.电阻元件输入输出波形及伏安特性2.二极管元件输入输出波形及伏安特性实验二 基尔霍夫定律、叠加定理的验证 和线性有源一端口网络等效参数的测定一、实验目的1、加深对基尔霍夫定律、叠加定理和戴维南定理的内容和使用范围的理解。

2、学习线性有源一端口网络等效电路参数的测量方法3、学习自拟实验方案,合理设计电路和正确选用元件、设备、提高分析问题和解决问题的能力 二、实验原理 1、基尔霍夫定律:基尔霍夫定律是电路普遍适用的基本定律。

非线性元件的测量原理

非线性元件的测量原理

非线性元件的测量原理非线性元件是指电子电路中工作时其特性不符合线性关系的元件,例如二极管、三极管、MOS管等。

与线性元件不同,非线性元件的电流-电压特性曲线不是一条直线,而是曲线或者曲线段。

因此,测量非线性元件的特性需要采用特殊的方法和仪器。

非线性元件的测量原理主要包括以下几个方面:1. 电流-电压特性的测量非线性元件的电流-电压特性曲线通常是非线性的,因此需要采用适当的方法进行测量。

常用的方法之一是采用伏安法进行测量。

伏安法利用伏安特性仪测量非线性元件的电流和电压之间的关系,从而得到其电流-电压特性曲线。

2. 静态工作点的确定非线性元件的工作点是指在特定的电压和电流条件下,元件的电流和电压取值。

对于非线性元件,其工作点通常是在伏安特性曲线上的一个具体位置。

确定非线性元件的工作点需要利用伏安特性仪进行测量,并根据实际电路条件和元件特性进行计算。

3. 功率特性的测量非线性元件的功率特性描述了元件在不同电压和电流下的功率消耗情况。

功率特性的测量常常需要测量非线性元件的电流和电压波形,并进行计算得到相应的功率值。

常用的方法之一是利用示波器测量电流和电压波形,并根据功率计算公式计算得到功率值。

4. 非线性特性的分析非线性元件的非线性特性主要包括非线性失真和非线性增益。

非线性失真是指非线性元件在输入信号过大或者过小时产生的失真现象,表现为输出信号的形状与输入信号不同。

非线性增益是指非线性元件的输出信号与输入信号之间的增益关系是非线性的,即增益不是固定的数值。

测量非线性元件的非线性特性通常需要采用信号发生器和示波器等仪器进行。

总之,测量非线性元件的特性需要采用适当的方法和仪器,如伏安特性仪、示波器、信号发生器等。

通过测量非线性元件的电流-电压特性、静态工作点、功率特性和非线性特性,可以深入了解非线性元件的工作原理和性能特点,为电子电路设计和分析提供有力的支持。

线性与非线性元件的伏安特性

线性与非线性元件的伏安特性

线性与非线性元件的伏安特性一、实验目的1、掌握线性与非线性元件伏安特性的测试方法。

2、加深对线性与非线性元件的理解。

3、掌握常用电工仪表和设备的使用方法。

二、实验原理电路元件的特性一般可用该元件上的端电压U 与通过该元件的电流I之间的函数关系I =f(U)来表示,即用I-U平面上的一条曲线来表征,这条曲线称为该元件的伏安特性曲线。

电阻元件是电路中最常见的元件,有线性电阻和非线性电阻之分。

实际电路中很少是仅由电源和线性电阻构成的“电平移动”电路,而非线性器件却常常有着广泛的使用,例如非线性元件二极管具有单向导电性,可以把交流信号变换成直流量,在电路中起着整流作用。

万用表的欧姆档只能在某一特定的U和I下测出对应的电阻值,因而不能测出非线性电阻的伏安特性。

一般是用含源电路“在线”状态下测量元件的端电压和对应的电流值,进而由公式R=U/I求测电阻值。

1.线性电阻元件的电阻值,在其额定电流以内电流作用下,其阻值基本上保持不变(温度影响可忽略)且符合欧姆定律:U=IR 其伏安特性为一过原点的直线。

如图2-1-1(a)。

2.非线性电阻的阻值在其额定电流以内电流作用下,会随着通过的电流变化而变化。

钨丝灯泡在工作时灯丝处于高温状态,其灯丝电阻随着温度(即电流)的改变而改变,并且具有一定的惯性,因此其伏安特性为一条曲线,如图2-1-1(b)。

可以看出,电流越大温度越高,对应的电阻也越大。

3.一般半导体二极管的伏安特性如图2-1-1(c),正向压降很小(锗管约为0.2-0.3V,硅管约为0.5-0.7V),正向电流随正向压降的升高而急速上升,反向压降则从0一直增加到十几---几十伏时,反向电流增加很小。

所以,二极管具有单向导电性。

4.稳压二极管是一种特殊的半导体二极管,其正向特性与普通二极管类似,但其反向特性较特殊,如图2-1-1(d)所示。

给稳压二极管加反向电压时,其反向电流几乎为零,但当电压增加到某一数值时,电流将突然增加,以后它的端电压将维持恒定,不再随外加反向电压的升高而增大,这便是稳压二极管的反向稳压特性。

线性与非线性数字电路的特性与分析

线性与非线性数字电路的特性与分析

线性与非线性数字电路的特性与分析线性和非线性数字电路是电子工程领域中非常重要的概念。

本文将讨论线性与非线性数字电路的特性和分析方法,并对它们的应用进行简要的介绍。

一、线性数字电路的特性与分析线性数字电路是指输入与输出之间存在线性关系的电路。

其特点是当输入信号发生变化时,输出信号的变化与输入信号的变化成比例关系。

1.1 线性数字电路的概念线性数字电路是基于线性电路理论发展起来的一种特殊电路。

它使用线性元件(如电阻、电容和电感等)和线性变换器(如放大器和滤波器等)来实现对输入信号的线性处理。

1.2 线性数字电路的特性线性数字电路具有以下特性:(1)输入与输出之间存在线性关系;(2)满足叠加原理,即输入信号可以分解为多个独立分量,每个分量在线性电路中处理后再合成为输出;(3)具有线性增益,即输出信号的幅度与输入信号的幅度成正比;(4)具有相位不变性,即输入信号的相位和频率不会影响输出信号的相位和频率。

1.3 线性数字电路的分析方法线性数字电路的分析方法可分为两种:时域分析和频域分析。

(1)时域分析:时域分析是通过对输入和输出信号在时域上的波形进行分析,来研究电路的动态性能和响应特性。

常用的时域分析方法有响应函数法、微分方程法和复数法等。

(2)频域分析:频域分析是通过将输入和输出信号变换到频域上进行分析,来研究电路的频率响应和频率特性。

常用的频域分析方法有傅里叶变换、拉普拉斯变换和z变换等。

二、非线性数字电路的特性与分析非线性数字电路是指输入与输出之间不存在线性关系的电路。

其特点是当输入信号发生变化时,输出信号的变化与输入信号的变化呈非线性关系。

2.1 非线性数字电路的概念非线性数字电路是指使用非线性元件(如二极管、三极管和场效应管等)和非线性变换器(如比较器和非线性滤波器等)构成的电路。

它能实现对输入信号的非线性处理和处理非线性系统。

2.2 非线性数字电路的特性非线性数字电路具有以下特性:(1)输入与输出之间不存在线性关系;(2)不满足叠加原理,即输入信号无法分解为多个独立分量,每个分量在非线性电路中处理后再合成为输出;(3)具有非线性增益,即输出信号的幅度与输入信号的幅度不成比例;(4)由于存在非线性元件,可能会产生谐波失真等非线性失真。

线性与非线性元件伏安特性的测定实验报告

线性与非线性元件伏安特性的测定实验报告

线性与非线性元件伏安特性的测定实验报告线性与非线性元件伏安特性的测定实验报告引言:伏安特性是电子元器件的重要参数之一,它描述了电流与电压之间的关系。

在实际应用中,线性和非线性元件的伏安特性测定对于电路设计和性能评估非常重要。

本实验旨在通过测定不同元件的伏安特性曲线,探究线性和非线性元件的特性及其应用。

实验目的:1. 通过测定线性元件的伏安特性曲线,研究其电阻特性;2. 通过测定非线性元件的伏安特性曲线,研究其电流与电压的非线性关系;3. 探讨线性和非线性元件在电路中的应用。

实验器材:1. 直流电源;2. 电压表和电流表;3. 不同电阻值的电阻器;4. 二极管和晶体管。

实验步骤:1. 线性元件的伏安特性测定:a. 将电阻器连接到直流电源的正负极,并在电路中串联一个电流表,测量电流表的读数;b. 在电路中并联一个电压表,测量电压表的读数;c. 通过改变直流电源的电压,记录不同电压下的电流和电压值;d. 绘制电流与电压之间的伏安特性曲线。

2. 非线性元件的伏安特性测定:a. 将二极管连接到直流电源的正负极,并在电路中串联一个电流表,测量电流表的读数;b. 在电路中并联一个电压表,测量电压表的读数;c. 通过改变直流电源的电压,记录不同电压下的电流和电压值;d. 绘制电流与电压之间的伏安特性曲线。

3. 晶体管的伏安特性测定:a. 将晶体管连接到直流电源的正负极,并在电路中串联一个电流表,测量电流表的读数;b. 在电路中并联一个电压表,测量电压表的读数;c. 通过改变直流电源的电压,记录不同电压下的电流和电压值;d. 绘制电流与电压之间的伏安特性曲线。

实验结果与分析:通过实验测定得到的伏安特性曲线可以清晰地反映出线性和非线性元件的特性。

在线性元件的伏安特性曲线中,电流与电压成正比,呈线性关系。

而在非线性元件的伏安特性曲线中,电流与电压之间存在非线性关系,通常表现为一个阈值电压,当电压小于该值时,电流几乎为零;当电压大于该值时,电流迅速增加。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
①测定线性电阻器的伏安特性
实验现象:电流表的数值随着加在电阻两端电压改变而改变
实验数据:
UR(V)
0.004
2.009
4.007
5.996
8.000
10.00
I(mA)
0
2.012
4.031
6.036
8.054
10.06
将表格内容制成图为:
②测定非线性白炽灯泡的伏安特性
实验现象:电流表的数值随着所加在的白炽灯泡电压改变而改变,当电压越来越高时,电流变化的幅度越变越大,而白炽灯泡在实验过程中没有发光
正向特性实验数据:
UD+ (V)
0.098
0.307
0.505
0.553
0.600
0.650
0.700
0.750
I(mA)
-0.003
0.000
0.185
0.508
1.310
3.604
10.11
30.86
将表格内容制成图如下所示:
反向特性实验数据:
UD-(V)
0.004
-5.012
-10.00
-15.01
⑴本次实验成败之处及其原因分析:
本次试验成败之处在于电路的接通是否是正确的,以及各电路元件是否是可以正常工作的。成功之处在于各小组成员能够团结一致,携手合作,完成电路的接通、电路的检验、电路现象的记录,失败之处在于我们没有提前准备实验,导致试验时手忙脚乱,以致后来时间不够,而导致我们组还有两位成员最后一项实验没有完成。
②在测定非线性白炽灯泡的伏安特性中,由于所加电压是始终低于其额定电压,故在整个实验中都没有看到灯泡发光的现象,在仅有的几个数据中,可以看出灯泡两端的伏安特性并非线性的,这与灯泡自己本身的特性也是有关的,灯泡的内的电阻是随着通过它的电流大小变化而变化。当电流通过它时,由于自身的发光发热,改变了决定电阻的参数从而改变了电阻的大小,因此对于灯泡来说,它并非线性元件。
0.751
I(mA)
-0.000
-0.000
-0.000
0.007
0.040
0.139
0.589
3.266
将实验数据绘制成伏安特性曲线图:
反向数据实验数据:
UO(V)
0.0
2
4
6
8
10
12
14
16
18
20
UZ-(V)ቤተ መጻሕፍቲ ባይዱ
-0.004
-1.861
-2.516
-2.804
-2.987
-3.116
-3.215
⑵本实验的关键环节及改进措施:
做好本实验需要把握的关键环节:
电路元件是否完好无损;
电路接通是否准确无误;
小组成员是否能够合作完成试验;
数据的记录是否准确;
数据的处理是否合理。
若重做本实验,为实现预期效果,仪器操作和实验步骤应如何改善:
在仪器操作方面:为减少实验元件带来的误差,可以使用更为精准的实验器件;
指导老师评语及得分:
成绩:指导教师签名:
批阅日期:
3、实验思路(实验内容、数据处理方法及实验步骤等):
实验内容:
①测定线性电阻器的伏安特性
②测定非线性白炽灯泡的伏安特性
③测定半导体二极管的伏安特性
④测定稳压二极管的伏安特性
数据处理方法:将实验所得的数据绘制成表格,并绘制成曲线图以减少实验误差。
实验步骤:
⑴准备好连通电路所需要的器材,比如说长导线和短导线;
本科学生综合性实验报告
一、实验设计方案
实验名称:线性、非线性电路元件伏安特性的测试与分析
实验时间:2014年11月12日
小组合作:是⊙否○
小组成员:
1、实验目的:1.学会识别常用电路元件的基本方法;
2.掌握线性电阻和非线性电阻元件伏安特性的测绘;
3.掌握半导体二极管和稳压二极管伏安特性的测绘;
3.掌握直流电工仪器仪表和设备的正确使用方法。
⑵按照线性电阻电路相应的电路图连接好电路;
⑶连接好电路后,自己检查电路是否连接完整,自己确定无误后,让同组队员检查电路是否有问题;
⑷打开各器件电源,进行试验;
⑸按照所给数值进行试验并记下相应的数值。
二、实验结果与分析
1、实验目的、场地及仪器、设备和材料、实验思路等见实验设计方案
2、实验现象、数据及结果
③在测定半导体二极管的伏安特性实验中,在正向电压很小时,通过二极管两端的电流很小,几乎没有什么变化,而在电压达到一定的值后,通过二极管的电流发生显著的变化。而在加反向电压时,所加反向电压增加时,电流变化很小,几乎为零。由此可以看出,二极管具有单向导电性,并且是非线性元件。
④在测定稳压二极管的伏安特性的实验中,正向电压很小时,电流变化很小,几乎为零,在电压增加都一定的数值后,电流迅速增加,反向电压与正向电压类似,这一点是与半导体二极管有所区别的,同样的,稳压二极管是非线性元件。
2、实验场地及仪器、设备和材料:试验场地:枫林园物华楼二楼电路基础实验室;
仪器:若干导线、一个0~30V可调直流稳压源、一个0~200mA直流数字毫安表、一个0~200V直流数字电压表、一个200 ,1K /8W线性电阻器、一个12V,0.1A白炽灯、一个2CW51稳压二极管、一个IN4007半导体二极管、一个万用表。
-3.296
-3.367
-3.426
-3.474
I(mA)
0.001
0.191
1.520
3.237
5.087
6.941
8.778
10.67
12.65
14.61
16.49
将两组数据绘在一张图上为:
3、对实验现象、数据及观察结果的分析与讨论:
①在测定线性电阻元件的伏安特性实验中,通过电阻的电流与其两端的电压呈线性变化,这与电阻本身的特性相关。从电阻的伏安特性曲线可以很直观的发现电阻是线性元件。
-19.99
-25.00
-30.01
I(mA)
-0.002
0.000
0.000
0.003
0.005
0.008
0.011
将表格内容制成图如下图所示:
将两次测量数据绘制成一个图:
④测定稳压二极管的伏安特性
正向特性实验数据:
UZ+(V)
0.099
0.303
0.506
0.548
0.606
0.650
0.699
在实验步骤方面:由于在测量元器件两端的电压和通过它的电流时,电流表的外接会导致其测量值比真实值大,这是由于电压表的分流;而电流表的内接会导致电压表的测量值会比真实值大,如果在实验时能够知道电压表的电阻和电流表的电阻之间的大致关系,
可以适当的选择内接法或者外接法来减少实验误差。
⑶对实验的自我评价:
这次实验虽然数据的测量完成了,小组成员之间的配合也是很好的。是我们的实验本来是可以更快更有效的完成;这是由于我们之前没有对实验做任何的预习和准备,希望借着这次的教训,下次实验能够更快更好地完成。
实验数据:
UL(V)
0.100
0.508
1.007
2.004
3.010
4.009
5.005
I(mA)
7.873
19.62
26.42
37.90
48.18
57.39
65.48
将表格内容制成下图:
③测定半导体二极管的伏安特性
实验现象:二极管在电压很小的时候,电流几乎没有什么变化,而当电压达到一定之值后,电流急剧增加,而反向工作时,电流则很小,虽然有一些变化,但变化不大
4、结论:①线性电阻器的伏安特性曲线是一条过原点的直线。
②白炽灯是非线性电阻元件,它的伏安特性曲线随着电压的增大而趋于平稳。
③半导体二极管是非线性电阻元件,它具有单向导电性,正向电流随正向压降的升高而急骤的上升。
④稳压二极管是特殊的半导体二极管,他的正向特性与普通半导体类似,反向性质有所不同。
5、实验总结
相关文档
最新文档