高分子材料分析测试方法剖析
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结构鉴定 傅里叶红外光谱
简单介绍FTIR的数学原理
周期性的运动可在两种域(Domain)中得到表征:一种表征域是表现 出周期性的域,例如,电(磁)场强度随时间(空间)的分布,就是在时 (空)域中表征光波的特征;另一种表征域是运动状态按某一周期性参 数(频率、波长、波数等)的分布,可统称为频域。这两种域表征同一 运动状态.可通过傅里叶变换(Fourier Transform,简称FT)相互转变 。通常所说的某种光的光谱是指该光包含的不同频率成分的强度按频 率的分布,因此光谱就是光在频率域中的表征。下图是某频率的两种 单色光分别在空间域(时域)和频域的表征。
结构鉴定 傅里叶红外光谱
红外光区的划分
红外光谱在可见光区和微波光区之间,其波长范围约为0.75~ 1000μm。根据实验技术和应用的不同,通常将红外区划分成三个区: 近红外光区(0.75~2.5μm),中红外光区(2.5~25μm)和远红外光区 (25~1000μm),如下表:其中中红外区是研究和应用最多的区域, 一般说的红外光谱就是指中红外区的红外光谱。
高分子材料分析 测试方法
结构鉴 定
流变性
高分子材 料分析主 要方向
分子量 及分布 鉴定
形态及 形貌表
征
热分析 技术
第一部分
核磁共 振法
气相色 谱法
红外光 谱法
结构 鉴定
紫外光 谱法
拉曼散 射
质谱法
分子荧 光光谱
发
结构鉴定
傅里叶红外光谱
红外光谱又称为分子振动转动光谱,它和紫外-可见光谱一 样,也是一种分子吸收光谱。当样品受到频率连续变化的红外 光照射时,分子吸收了某些频率的辐射,并由其振动或转动运 动引起偶极矩的净变化产生分子振动和转动能级从基态到激发 态的跃迁,使相应于这些吸收区城的透射光强度减弱。记录红 外光的百分透射比与波数或波长关系的曲线,就得到红外光谱。 红外光谱法不仅能进行定性和定量分析,而且从分子的特征吸 收可以鉴定化合物和分子结构。
结构鉴定 傅里叶红外光谱
C.波长准确度 波长准确度是指仪器所显示的波长值和分光系统实际输出单色光 的波长值之间相符的程度。波长准确度可用波长误差,即上述两值 之差来表示。保证波长准确度是红外光谱仪器能够准确测定样品光 谱的前提,是保证分析结果的准确度前提。红外分析结果一般是通 过用已知化学值的标准样品建立的模型来分析待测样品,如果波长 准确度不能保证,整组数据就会因波长平移而使每个数据出现偏差 ,造成分析结果的误差。波长准确度主要决定于光学系统的结构, 此外还受温度的影响。傅里叶变换红外光谱仪器一般内部有波长校 正系统,所以波长准确度很高。
我们用迈克耳孙干涉仪可以得到红外光的时域谱,通过FT就 可以得到光的频率(波数)分布。这就是傅里叶变换红外光谱 仪名称的由来。
结构鉴定 傅里叶红外光谱
分析速 度
信噪比
光谱范 围
红外光 谱仪各 项指标
分辨率
波长准 确度
光度准 确度
波长精 确度
结构鉴定 傅里叶红外光谱
红外光谱仪各项指标的含义
A.光谱范围 红外的整个谱区的波长范围根据ASTM(American Society of Testing Materials,美国材料实验协会)定义为780-2526nm。而 在一般应用中大家往往把700-2500nm或700-2600nm作为近红 外谱区,并通常把它分为2段,700-1100nm的短波近红外谱区 和1100-3600nm的长波近红外诺区。短波近红外谱区更适合做 透射分析,故又叫近红外透射区,长波近红外谱区更适合做反 射或漫反射分析,也称之为近红外反射区。 仪器的波长范围指该红外光谱仪所能记录的光谱范围,它影 响能实现分析测试的项目,主要取决于仪器的光源种类、分光 系统、检测器类型和透光材料。专用的红外仪器往往只覆盖单 一波段,如美国Zeltex的ZXl01型手持式辛烷值分析仪用700- 1100nm的短波近红外谱区,AGMED公司的土壤快速分析仪用的 1650-2650nm的长波近红外谱区;而通用型的红外仪器往往覆 盖整个红外谱区。
区域
波长μm 波数 cm-1 能级跃迁类型
近 红 外 区 0.75~2.5 13158 ~ OH 、 NH 及 CH
(泛频区)
4000
键的倍频吸收
中 红 外 区 2.5~25 4000~400 分 子 振 动 , 伴
(基本振动
随转动
结构鉴定 傅里叶红外光谱
傅立叶变换红外光谱仪的结构
傅立叶变换红外光谱仪的结构
结构鉴定wk.baidu.com傅里叶红外光谱
B.分辨率 红外光谱仪器的分辨率是指仪器对于紧密相邻的峰可分辨的最 小波长间隔,表示仪器实际分开相邻两谱线的能力,往往用仪器 的单色光带宽来表示,它是仪器最重要的性能指标之一,也是仪 器质量的综合反映。 仪器的分辨率主要取决于仪器的分光系统的性能。仪器的分辨 率主要影响光谱仪器获得测定样品光谱的质量,从而影响分析的 准确性,对于一台仪器的分辨率是否满足要求,这与待测样品的 光谱特征有关,有些物质光谱重叠、特征复杂,要得到满意的分 析结果,就要求较高的仪器分辨率。
光源发出的光被分束器分为两束,一束经反射到达动镜,另一束经 透射到达定镜。两束光分别经定镜和动镜反射再回到分束器,从而产生 干涉。动镜作直线运动,因而干涉条纹产生连续的变换。干涉光在分束 器会合后通过样品池,然后被检测器(傅立叶变换红外光谱仪的检测器 有TGS,DTGS,MCT等)接收,计算机处理数据并输出。
结构鉴定 傅里叶红外光谱
相干的复色光,在空间x处电场强度的叠加是:
E(x) 0 f ( ) cos 2 xd
其中 f ( ) 是光强度按波数 的分布函数 很明显E(x)、f ( ) 分别是光时域和频域的表征,上述关系式就是
傅立叶变换式。可以通过FT把光在时域和频域的表征相互转换:
f ( ) 0 E(x) cos 2 xdx
结构鉴定 傅里叶红外光谱
D.波长精确度 波长精确度又称波长重复性,是指对同一样品进行多次扫描,光谱谱 峰位置间的差异程度或重复性,通常用多次测量某一谱峰所得波长的标 准差来表示。波长精确度是体现仪器稳定性的—个重要指标,取决于光 学系统的结构,与波长准确度一样,也会影响分析结果的准确性。如果 仪器的光学系统全部设计成固定不动,则仪器的波长的精确度就会很高