清华大学光学量子力学试题
量子力学真题和答案解析
![量子力学真题和答案解析](https://img.taocdn.com/s3/m/ea204d40a36925c52cc58bd63186bceb19e8ed8c.png)
量子力学真题和答案解析是物理学中的一个重要分支,研究微观领域的宇宙现象和微观粒子的行为规律。
具有复杂的数学理论基础,因此在学习和研究过程中常常会遇到各种难题和问题。
为了更好地理解和应用,解析真题和答案是非常重要的一步。
首先,解析真题前,我们需要了解一些基本概念和原理。
描述了微观粒子的行为,其中最基本的概念是量子态和波函数。
量子态描述了粒子的所有性质,而波函数则是的核心数学工具,用于描述粒子的状态和演化规律。
在研究真题时,我们需要仔细分析题目中给出的信息和条件。
通常,题目会给出一些实验或者观测结果,然后要求利用所学知识来推断和解释这些结果。
这就需要我们从题目中提取关键信息,并应用的原理进行分析。
解析真题时,我们可以采用逐步推导的方法。
首先,根据题目中给定的信息,我们可以确定所研究系统的量子态。
然后,根据波函数的演化规律,我们可以利用薛定谔方程或者时间演化算符来推导出系统的时间演化。
最后,我们可以根据所给条件和结果来验证和解释我们的推导和计算结果。
在解析真题时,我们还需要注意一些常见的问题和误区。
首先,是一种概率性理论,因此我们无法准确预测每一次实验的结果。
我们只能给出在大量重复实验中的平均结果。
其次,波函数的坍缩现象是的核心特征之一。
在测量时,波函数会坍缩到某一特定的量子态,从而给出确定的结果。
最后,量子纠缠是中的一个重要现象。
它描述了在某些情况下,两个或多个微观粒子之间存在着密切的关联,无论它们之间的距离有多远。
总结一下,解析真题和答案是学习和研究的重要一步。
我们需要了解的基本概念和原理,并且可以采用逐步推导的方法来分析和解决问题。
我们还需要注意中的一些常见问题和误区,以便更好地理解和应用的原理和概念。
通过解析真题和答案,我们可以提高对的理解,并且能够更好地应用于实际问题和研究中。
清华大学《大学物理》习题库试题及答案----10-量子力学习题解读
![清华大学《大学物理》习题库试题及答案----10-量子力学习题解读](https://img.taocdn.com/s3/m/0fcd34eba98271fe900ef94e.png)
清华大学《大学物理》习题库试题及答案----10-量子力学习题解读一、选择题1.4185:已知一单色光照射在钠表面上,测得光电子的最大动能是1.2 eV ,而钠的红限波长是5400 Å,那么入射光的波长是(A) 5350 Å (B) 5000 Å (C)4350 Å (D) 3550 Å [ ]2.4244:在均匀磁场B 内放置一极薄的金属片,其红限波长为λ0。
今用单色光照射,发现有电子放出,有些放出的电子(质量为m ,电荷的绝对值为e )在垂直于磁场的平面内作半径为R 的圆周运动,那末此照射光光子的能量是:(A)(B) (C) (D)[ ]3.4383:用频率为ν 的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用频率为2ν 的单色光照射此种金属时,则逸出光电子的最大动能为:(A) 2 E K (B) 2h ν - E K (C)h ν - E K (D) h ν + E K [ ]4.4737: 在康普顿效应实验中,若散射光波长是入射光波长的1.2倍,则散射光光子能量ε与反冲电子动能E K 之比ε / E K 为(A) 2 (B) 3 (C) 4(D) 5 [ ] 0λhc0λhc m eRB 2)(2+0λhc m eRB +0λhc eRB2+5.4190:要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是(A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV []6.4197:由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出:(A) 一种波长的光(B) 两种波长的光(C) 三种波长的光(D) 连续光谱[]7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV,当氢原子从能量为-0.85 eV的状态跃迁到上述定态时,所发射的光子的能量为(A) 2.56 eV (B) 3.41 eV (C)4.25 eV (D) 9.95 eV []8.4750:在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是(A) 12.1 eV (B) 10.2 eV (C) 12.1 eV,10.2 eV和1.9 eV(D) 12.1 eV,10.2 eV和 3.4 eV []9.4241:若 粒子(电荷为2e)在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨道运动,则α粒子的德布罗意波长是(A) (B) (C)(D) [ ]10.4770:如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的(A) 动量相同 (B) 能量相同 (C) 速度相同 (D) 动能相同 [ ]11.4428:已知粒子在一维矩形无限深势阱中运动,其波函数为: ( - a ≤x ≤a ),那么粒子在x = 5a /6处出现的概率密度为(A) 1/(2a ) (B) 1/a (C)(D) [ ]12.4778:设粒子运动的波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其中确定粒子动量的精确度最高的波函数是哪个图? [ ]13.5619:波长λ =5000 Å的光沿x 轴正向)2/(eRB h )/(eRB h )2/(1eRBh )/(1eRBh a x a x 23cos 1)(π⋅=ψa 2/1a /1x (A)x (C) x (B) x(D)传播,若光的波长的不确定量∆λ =10-3Å,则利用不确定关系式可得光子的x 坐标的不确定量至少为:(A) 25 cm (B) 50 cm (C) 250cm (D) 500 cm [ ]14.8020:将波函数在空间各点的振幅同时增大D 倍,则粒子在空间的分布概率将(A) 增大D 2倍 (B) 增大2D 倍 (C)增大D 倍 (D) 不变 [ ]15.4965:下列各组量子数中,哪一组可以描述原子中电子的状态? (A) n = 2,l = 2,m l = 0,(B) n =3,l = 1,m l =-1, (C) n = 1,l = 2,m l = 1, (D) n = 1,l = 0,m l = 1, [ ]16.8022:氢原子中处于3d 量子态的电子,描述其量子态的四个量子数(n ,l ,m l ,m s )可能取的值为(A) (3,0,1,) (B) (1,1,1,)(C) (2,1,2,) (D) (3,2,0,) [ ]17.4785:在氢原子的K 壳层中,电子可h x p x ≥∆∆21=s m 21-=s m 21=s m 21-=s m 21-21-2121能具有的量子数(n ,l ,m l ,m s )是(A) (1,0,0,) (B) (1,0,-1,)(C) (1,1,0,) (D) (2,1,0,)[ ]18.4222:与绝缘体相比较,半导体能带结构的特点是(A) 导带也是空带 (B) 满带与导带重合(C) 满带中总是有空穴,导带中总是有电子(D) 禁带宽度较窄 [ ]19.4789:p 型半导体中杂质原子所形成的局部能级(也称受主能级),在能带结构中应处于(A) 满带中 (B) 导带中 (C) 禁带中,但接近满带顶(D) 禁带中,但接近导带底 [ ]20.8032:按照原子的量子理论,原子可以通过自发辐射和受激辐射的方式发光,它们所产生的光的特点是:(A) 两个原子自发辐射的同频率的光是相干的,原子受激辐射的光与入射光是不相干的(B) 两个原子自发辐射的同频率的光是不相干的,原子受激辐射的光与入射光是相干的(C) 两个原子自发辐射的同频率的光是不相干的,原子受激辐射的光与入射光是不相干的(D) 两个原子自发辐射的同频率的光是相212121-21-干的,原子受激辐射的光与入射光是相干的21.9900:与的互易关系[]等于(A) (B) (C) (D) [ ]22.9901:厄米算符满足以下哪一等式(、是任意的态函数)(A) (B)(C) (D)[ ]二、填空题1.4179:光子波长为λ,则其能量=_____;动量的大小 =______;质量=_______。
清华大学物理试题库所有习题
![清华大学物理试题库所有习题](https://img.taocdn.com/s3/m/06fe087390c69ec3d5bb75bf.png)
P S 1 S 2 r 1 n 1 n 2 t 2 r 2 t 1 06光学一、选择题1.3165:在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中(A) 传播的路程相等,走过的光程相等(B) 传播的路程相等,走过的光程不相等(C) 传播的路程不相等,走过的光程相等(D) 传播的路程不相等,走过的光程不相等2.3611:如图,S 1、S 2是两个相干光源,它们到P 点的距离分别为r 1和r 2。
路径S 1P 垂直穿过一块厚度为t 1,折射率为n 1的介质板,路径S 2P 垂直穿过厚度为t 2,折射率为n 2的另一介质板,其余部分可看作真空,这两条路径的光程差等于 (A) (B) (C) (D) 3.3664:如图所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且n 1<n 2>n 3,λ1为入射光在折射率为n 1 的媒质中的波长,则两束反射光在相遇点的相位差为(A) 2πn 2e / ( n 1 λ1)(B)[4πn 1e / ( n 2 λ1)] + π (C) [4πn 2e / ( n 1 λ1) ]+ π (D) 4πn 2e / ( n 1 λ1)4.3169:用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则:(A) 干涉条纹的宽度将发生改变 (B) 产生红光和蓝光的两套彩色干涉条纹(C) 干涉条纹的亮度将发生改变 (D) 不产生干涉条纹5.3171:在双缝干涉实验中,两条缝的宽度原来是相等的。
若其中一缝的宽度略变窄(缝中心位置不变),则(A) 干涉条纹的间距变宽 (B) 干涉条纹的间距变窄(C) 干涉条纹的间距不变,但原极小处的强度不再为零 (D) 不再发生干涉现象6.3172:在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A) 使屏靠近双缝 (B) 使两缝的间距变小 (C) 把两个缝的宽度稍微调窄(D) 改用波长较小的单色光源7.3498:在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5 λ,则屏上原来的明纹处 (A) 仍为明条纹 (B) 变为暗条纹 (C) 既非明纹也非暗纹; (D) 无法确定是明纹,还是暗纹 8.3612:在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离 相等,则观察屏上中央明条纹位于图中O 处。
【试题】量子力学期末考试题库含答案22套
![【试题】量子力学期末考试题库含答案22套](https://img.taocdn.com/s3/m/24544fa11711cc7930b7161f.png)
【关键字】试题量子力学自测题(1)一、简答与证明:(共25分)1、什么是德布罗意波?并写出德布罗意波的表达式。
(4分)2、什么样的状态是定态,其性质是什么?(6分)3、全同费米子的波函数有什么特点?并写出两个费米子组成的全同粒子体系的波函数。
(4分)4、证明是厄密算符(5分)5、简述测不准关系的主要内容,并写出坐标和动量之间的测不准关系。
(6分)2、(15分)已知厄密算符,满足,且,求1、在A表象中算符、的矩阵表示;2、在B表象中算符的本征值和本征函数;3、从A表象到B表象的幺正变换矩阵S。
三、(15分)设氢原子在时处于状态,求1、时氢原子的、和的取值几率和平均值;2、时体系的波函数,并给出此时体系的、和的取值几率和平均值。
四、(15分)考虑一个三维状态空间的问题,在取定的一组正交基下哈密顿算符由下面的矩阵给出这里,,是一个常数,,用微扰公式求能量至二级修正值,并与精确解相比较。
五、(10分)令,,分别求和作用于的本征态和的结果,并根据所得的结果说明和的重要性是什么?量子力学自测题(1)参考答案一、1、描写自由粒子的平面波称为德布罗意波;其表达式:2、定态:定态是能量取确定值的状态。
性质:定态之下不显含时间的力学量的取值几率和平均值不随时间改变。
3、全同费米子的波函数是反对称波函数。
两个费米子组成的全同粒子体系的波函数为:。
4、=,因为是厄密算符,所以是厄密算符。
5、设和的对易关系,是一个算符或普通的数。
以、和依次表示、和在态中的平均值,令,,则有,这个关系式称为测不准关系。
坐标和动量之间的测不准关系为:2、解1、由于,所以算符的本征值是,因为在A表象中,算符的矩阵是对角矩阵,所以,在A表象中算符的矩阵是:设在A 表象中算符的矩阵是,利用得:;由于,所以,;由于是厄密算符,, 令,其中为任意实常数,得在A 表象中的矩阵表示式为: 2、类似地,可求出在B 表象中算符的矩阵表示为:在B 表象中算符的本征方程为:,即 和不同时为零的条件是上述方程的系数行列式为零,即 对有:,对有:所以,在B 表象中算符的本征值是,本征函数为和 3、类似地,在A 表象中算符的本征值是,本征函数为和从A 表象到B 表象的幺正变换矩阵就是将算符在A 表象中的本征函数按列排成的矩阵,即 三、解: 已知氢原子的本征解为: ,将向氢原子的本征态展开, 1、=,不为零的展开系数只有三个,即,,,显然,题中所给的状态并未归一化,容易求出归一化常数为:,于是归一化的展开系数为: ,,(1)能量的取值几率,, 平均值为:(2)取值几率只有:,平均值 (3)的取值几率为: ,,平均值 2、时体系的波函数为:=由于、和皆为守恒量,所以它们的取值几率和平均值均不随时间改变,与时的结果是一样的。
推荐学习 精品-清华大学《大学物理》分类经典练习题及解析 量子基外
![推荐学习 精品-清华大学《大学物理》分类经典练习题及解析 量子基外](https://img.taocdn.com/s3/m/ada98ebd0b4c2e3f56276344.png)
一 选择题 (共48分)1. (本题 3分)(1817) 所谓“黑体”是指的这样的一种物体,即 (A) 不能反射任何可见光的物体. (B) 不能发射任何电磁辐射的物体.(C) 能够全部吸收外来的任何电磁辐射的物体.(D) 完全不透明的物体. [ ]2. (本题 3分)(4403) 绝对黑体是这样一种物体,它(A) 不能吸收也不能发射任何电磁幅射. (B) 不能反射也不能发射任何电磁辐射. (C) 不能发射但能全部吸收任何电磁辐射.(D) 不能反射但可以全部吸收任何电磁辐射. [ ]3. (本题 3分)(4404) 下面四个图中,哪一个正确反映黑体单色辐出度M B λ(T )随λ 和T 的变化关系,已知T 2> T 1.[ ]4. (本题 3分)(5810) 把表面洁净的紫铜块、黑铁块和铝块放入同一恒温炉膛中达到热平衡.炉中这三块金属对红光的辐出度(单色辐射本领)和吸收比(单色吸收率)之比依次用M 1 / a 1、M 2 / a 2和M 3 / a 3表示,则有(A) 11a M > 22a M > 33a M . (B) 22a M > 11a M> 33a M .(C) 33a M > 22a M > 11a M . (D) 11a M = 22a M= 33a M . [ ]5. (本题 3分)(1821) 黑体的温度T 升高一倍,它的辐射出射度(总发射本领)增加(A) 1倍. (B) 3倍.(C) 7倍. (D) 15倍. [ ]6. (本题 3分)(4406) 在加热黑体过程中,其最大单色辐出度(单色辐射本领)对应的波长由0.8 μm 变到0.4 μm ,则其辐射出射度(总辐射本领)增大为原来的 (A) 2倍. (B) 4倍.(C) 8倍. (D) 16倍. [ ]在加热黑体过程中,其最大单色辐出度(单色辐射本领)对应的波长由0.8 μm 变到0.4 μm ,则其辐射出射度(总辐射本领)增大为原来的 (A) 2倍. (B) 4倍.(C) 8倍. (D) 16倍. [ ]8. (本题 3分)(4985) 普朗克量子假说是为解释(A) 光电效应实验规律而提出来的. (B) X 射线散射的实验规律而提出来的. (C) 黑体辐射的实验规律而提出来的.(D) 原子光谱的规律性而提出来的. [ ]9. (本题 3分)(4528) 一维无限深方势阱中,已知势阱宽度为a .应用测不准关系估计势阱中质量为m 的粒子的零点能量为 (A) )/(2ma =. (B) )2/(22ma =.(C) )2/(2ma =. (D) )2/(2ma =. [ ]10. (本题 3分)(4205) 粒子在一维无限深方势阱中运动.下图为粒子处于某一能态上的波函数ψ(x )的曲线.粒子出现概率最大的位置为(A) a / 2.(B) a / 6,5 a / 6.(C) a / 6,a / 2,5 a / 6.(D) 0,a / 3,2 a / 3,a . [ ]xaa31a 32ψ(x )O11. (本题 3分)(1903) 一矩形势垒如图所示,设U 0和d 都不很大.在Ⅰ区中向右运动的能量为E 的微观粒子,(A) 如果E > U 0,可全部穿透势垒Ⅱ进入Ⅲ区(B) 如果E < U 0,都将受到x = 0处势垒壁的反射,不可能进入Ⅱ区.(C) 如果E < U 0,都不可能穿透势垒Ⅱ进入Ⅲ区.(D) 如果E ﹤U 0,有一定概率穿透势垒Ⅱ进入Ⅲ区. []粒子在外力场中沿x 轴运动,如果它在力场中的势能分布如附图所示,则对于能量为 E > U 0 向右运动的粒子, (A) 在x < 0区域,只有粒子沿x 轴正向运动的波函数;在x > 0区域,波函数为零.(B) 在x < 0和x > 0区域都只有粒子沿x 轴正向运动的 波函数.(C) 在x <0区域既有粒子沿x 轴正向运动的波函数,也有沿x 轴负方向运 动的波函数;在x >0区域只有粒子沿x 轴正向运动的波函数.(D) 在x <0和x >0两个区域内都有粒子沿x 轴正向和负向运动的波函数. [ ]x OU (x )U 013. (本题 3分)(5815) 粒子在外力场中沿x 轴运动,如果它在力场中的势能分布如附图所示,对于能量为 E < U 0从左向右运动的粒子,若用 ρ1、ρ2、ρ3分别表示在x < 0,0 < x <a ,x > a 三个区域发现粒子的概率,则有(A) ρ1 ≠ 0,ρ2 = ρ3 = 0. (B) ρ1 ≠ 0,ρ2 ≠ 0,ρ3 = 0. (C) ρ1 ≠ 0,ρ2 ≠ 0,ρ3 ≠ 0.(D) ρ1 = 0,ρ2 ≠ 0,ρ3 ≠ 0. [ ]x OU (x )Ua14. (本题 3分)(4993) 量子力学得出,频率为ν 的线性谐振子,其能量只能为 (A) E = h ν.(B) E = nh ν, (n = 0,1,2,3……). (C) E = n 21h ν,( n = 0,1,2,3……).(D) νh n E )21(+=, (n = 0,1,2,3……). [ ]15. (本题 3分)(4216) 根据量子力学原理,氢原子中,电子绕核运动的动量矩L 的最小值为(A) 0. (B) =. (C) 2/=. (D) =2. [ ]16. (本题 3分)(5710) 若氢原子中的电子处于主量子数n = 3的能级,则电子轨道角动量L 和轨道角动量在外磁场方向的分量L z 可能取的值分别为(A) ==L ,=2,=3; ===32,,0±±±=,z L . (B) 0=L ,=2,=6; ==2,,0±±=z L . (C) 0=L ,=,=2; ==2,,0±±=z L .(D) =2=L ,=6,=12;===32,,0±±±=,z L . [ ]二填空题 (共98分)17. (本题 3分)(1818)用文字叙述热辐射的基尔霍夫定律的内容是:__________________________ ___________________________________________________________.18. (本题 3分)(1822)用文字叙述黑体辐射的斯特藩─玻尔兹曼定律的内容是:______________ ______________________________________________________________.19. (本题 3分)(1823)用文字叙述黑体辐射的维恩位移定律的内容是:_____________________ ________________________________________________________________.20. (本题 3分)(1824)一100 W的白炽灯泡的灯丝表面积为5.3×10-5 m2.若将点燃的灯丝看成是黑体,可估算出它的工作温度为___________________ .(斯特藩─玻尔兹曼定律常数σ = 5.67×10-8 W/m2·K4)21. (本题 3分)(1826)天狼星辐射波谱的峰值波长为0.29 μm,若将它看成是黑体,则由维恩位移定律可以估算出它的表面温度为_________________.(维恩位移定律常数b = 2.897×10-3 m·K)22. (本题 3分)(4407)测量星球表面温度的方法之一,是把星球看作绝对黑体而测定其最大单色辐出度的波长λm,现测得太阳的λm1 = 0.55 μm,北极星的λm2 = 0.35 μm,则太阳表面温度T1与北极星表面温度T2之比T1:T2=__________________________.23. (本题 3分)(4408)当绝对黑体的温度从27℃升到 327℃时,其辐射出射度(总辐射本领)增加为原来的____________________________________倍.24. (本题 3分)(4507)某一恒星的表面温度为6000 K,若视作绝对黑体,则其单色辐出度为最大值的波长为_____________________ .(维恩定律常数b = 2.897×10-3 m·K )地球卫星测得太阳单色辐出度的峰值在0.565µm 处,若把太阳看作是绝对黑体,则太阳表面的温度约为____________________K .(维恩位移定律常数b = 2.897×10-3m ·K )26. (本题 3分)(5368) 若太阳(看成黑体)的半径由R 增为2 R ,温度由T 增为2 T ,则其总辐射功率为原来的____________倍.27. (本题 5分)(4986) 普朗克的量子假说是为了解释_______________________的实验规律而提出来的.它的基本思想是______________________________________________________________________________________________________________________________________________________________________________________.28. (本题 3分)(4988) 普朗克公式 1)]/(exp[2)(52−π=−T k hc hc T M B λλλ中,)(T M B λ[也可写作),(0T e λ]的物理意义是:________________________________________________________________________________________________________________________________________________________________________________________________.29. (本题 5分)(5235) 波长为0.400μm 的平面光波朝x 轴正向传播.若波长的相对不确定量Δλ / λ=10-6,则光子动量数值的不确定量 Δp x =_________________________________,而光子坐标的最小不确定量 Δx =__________________________. (普朗克常量 h ≈ 6.63×10-34 J ·s )30. (本题 5分)(4204) 粒子在一维无限深方势阱中运动(势阱宽度为a ),其波函数为a x a x π=3sin 2)(ψ ( 0 < x < a ), 粒子出现的概率最大的各个位置是x = ___________________.量子力学中的隧道效应是指_________________________________________________________________________________________________________.这种效应是微观粒子_____________________________的表现.32. (本题 4分)(4991) 根据量子力学,粒子能透入势能大于其总能量的势垒,当势垒加宽时,贯穿系数__________;当势垒变高时,贯穿系数____________.(填入:变大、变小或不变)33. (本题 4分)(4992) 隧道效应是微观粒子具有______________性的必然表现,已被大量实验所证实.原子核的______________衰变,就是隧道效应的典型例证.34. (本题 4分)(1904) 频率为ν 的一维线性谐振子的量子力学解,其能量由下式给出:____________________________________,其中最低的量子态能量为__________________,称为“零点能”.35. (本题 4分)(4994) 按照普朗克能量子假说,频率为ν 的谐振子的能量只能为____________;而从量子力学得出,谐振子的能量只能为__________________________.36. (本题 4分)(5816) 按照量子力学,一维线性谐振子的能量是量子化的,能级公式是__________________________________________________,量子力学的结果与普朗克引入量子化概念时关于谐振子的能量假设的不同点是______________________________________________________.37. (本题 3分)(4217) 根据量子力学原理,当氢原子中电子的动量矩=6=L 时,L 在外磁场方向上的投影L z 可取的值分别为___________________________.量子力学得出:若氢原子处于主量子数n = 4的状态,则其轨道角动量(动量矩)可能取的值(用ћ表示)分别为_______________________________;对应于l = 3的状态,氢原子的角动量在外磁场方向的投影可能取的值分别为____________________________________.39. (本题 4分)(5817)按照量子力学计算:(1)氢原子中处于主量子数n = 3能级的电子,轨道动量矩可能取的值分别为______________________________________=.(2) 若氢原子中电子的轨道动量矩为=12,则其在外磁场方向的投影可能取的值分别为__________________________________________=.40. (本题 4分)(1907)原子序数Z = 6的碳原子,它在基态的电子组态为__________________;原子序数Z = 14的硅原子,它在基态的电子组态为______________________.41. (本题 4分)(4999)当原子(包括多电子原子)受激发发光时,它们发射的原子光谱中光学光谱对应于______________电子的跃迁,X光谱对应于__________电子的跃迁.42. (本题 3分)(8038)为了表征原子的电子结构,常把电子所分布的壳层符号及壳层上电子的数目组合起来称为电子组态.那么,对于原子序数Z = 20的钙原子,当它处于基态时其电子组态应表示为______________________________________.43. (本题 3分)(8039)有一种原子,在基态时n = 1和n = 2的主壳层都填满电子,3s次壳层也填满电子,而3p壳层只填充一半.这种原子的原子序数是________.三计算题 (共143分)44. (本题 5分)(1828)某黑体在加热过程中,其单色辐出度的峰值波长由0.69 μm变化到0.50 μm,问其辐射出射度增加为多少倍?恒星表面可看作黑体.测得北极星辐射波谱的峰值波长λm =350nm(1nm=10−9m),试估算它的表面温度及单位面积的辐射功率.(b = 2.897×10-3 m·K,σ = 5.67×10-8 W/(m2·K4))46. (本题 5分)(1830)一黑体在某一温度时的辐射出射度为 5.7×104 W/m2,试求该温度下辐射波谱的峰值波长λ.m(b = 2.897×10-3 m·K, σ = 5.67×10-8 W/(m2·K4))47. (本题 5分)(1831)已知垂直射到地球表面每单位面积的日光功率(称太阳常数)等于1.37×103 W/m2.(1) 求太阳辐射的总功率.(2) 把太阳看作黑体,试计算太阳表面的温度.(地球与太阳的平均距离为1.5×108 km,太阳的半径为6.76×105 km,σ= 5.67×10-8 W/(m2·K4))48. (本题 5分)(1831)已知垂直射到地球表面每单位面积的日光功率(称太阳常数)等于1.37×103 W/m2.(1) 求太阳辐射的总功率.(2) 把太阳看作黑体,试计算太阳表面的温度.(地球与太阳的平均距离为1.5×108 km,太阳的半径为6.76×105 km,σ= 5.67×10-8 W/(m2·K4))49. (本题 5分)(4409)用辐射高温计测得炼钢炉口的辐射出射度为22.8 W·cm-2,试求炉内温度.(斯特藩常量σ = 5.67×10-8 W/(m2·K4))50. (本题 5分)(5707)若一空腔辐射器的小孔的单位面积上辐射出的功率为M = 20 W/cm2求空腔内的温度T和单色辐出度极大值所对应的波长λm.(斯特藩──玻尔兹曼常数σ = 5.67×10-8 W/(m2·K4),维恩位移定律中的常量b = 2.897×10-3 m·K )51. (本题 5分)(1832)对于动能是1 KeV的电子,要确定其某一时刻的位置和动量,如果位置限制在10-10 m范围内,试估算其动量不确定量的百分比.= 9.11×10-31 kg )( h = 6.63×10-34 J·s,me52. (本题 5分)(1832)对于动能是1 KeV的电子,要确定其某一时刻的位置和动量,如果位置限制在10-10 m范围内,试估算其动量不确定量的百分比.= 9.11×10-31 kg )( h = 6.63×10-34 J·s,me对于动能是1 KeV 的电子,要确定其某一时刻的位置和动量,如果位置限制在10-10 m 范围内,试估算其动量不确定量的百分比. ( h = 6.63×10-34 J ·s ,m e = 9.11×10-31 kg )54. (本题 5分)(1833) 一质量为m 的微观粒子被约束在长度为L 的一维线段上,试根据不确定关系式估算该粒子所具有的最小能量值,并由此计算在直径为10-14m 的核内质子或中子的最小能量.(h = 6.63×10-34 J ·s ,m p = 1.67×10-27kg)55. (本题10分)(1834) 一电子处于原子某能态的时间为10-8s ,计算该能态的能量的最小不确定量.设电子从上述能态跃迁到基态所对应的光子能量为3.39 eV ,试确定所辐射的光子的波长及此波长的最小不确定量.( h = 6.63×10-34J ·s )56. (本题 5分)(4989) 利用不确定关系式 Δx Δp x ≥h ,估算在直径为d = 10-14m 的核内的质子最小动能的数量级.(质子的质量m =1.67×10-27 kg ,普朗克常量h =6.63×10-34J ·s )57. (本题10分)(5709) 动量为p K的原子射线垂直通过一个缝宽可以调节的狭缝S ,与狭缝相距D 处有一接收屏C ,如图.试根据不确定关系式求狭缝宽度a 等于多大时接收屏上的痕迹宽度可达到最小.58. (本题 5分)(1901) 试求出一维无限深方势阱中粒子运动的波函数x an A x n π=sin )(ψ ( n = 1, 2, 3, …)的归一化形式.式中a 为势阱宽度.59. (本题 5分)(1902) 已知粒子处于宽度为a 的一维无限深方势阱中运动的波函数为a x n a x n π=sin 2)(ψ , n = 1, 2, 3, … 试计算n = 1时,在 x 1 = a /4 →x 2 = 3a /4 区间找到粒子的概率.60. (本题 8分)(4775) 一维无限深方势阱中的粒子,其波函数在边界处为零,这种定态物质波相当于两端固定的弦中的驻波,因而势阱的宽度a 必须等于德布罗意波半波长的整数倍。
清华大学光学量子力学试题
![清华大学光学量子力学试题](https://img.taocdn.com/s3/m/8faf3ee2f021dd36a32d7375a417866fb84ac0b8.png)
折射率为 n 旳玻璃 , 这光线与 SoF 旳光程
差 = (n-1) l 。 2
透镜不引起附加光程差
δ = SbF- l + nl - SoF
2、将波长为600nm旳单色光垂直均匀照射在等间距旳平行 四缝上,在衍射角正弦 sin=0.03处应出现旳第三级干 涉明条纹恰好缺级。由此可知这四缝中每条通光旳缝
得:x=0 或 x=L 或 x=L/2
取 x=L/2
L
L
3:
3
3
= Y2dx = A2 x2 (L x)2 dx
0
0
= A2 (1 L5 1 1 L5 1 1 L5 1 )
3 27 2 81 5 243
= A2 L5 ( 90 45 6 ) = 51 = 17
30 243 243 243 243 81
S1 = T14
lm2
=b T2
=
lm1T1
T2
=
3000 2500
lm1
S2
=
T24
=
( T1 )4 1.2
S2 = 1.24 S1
7、简要阐明光电效应试验中旳其中两个特点:
(1)___________红__限_____________________;
(用2爱)因__斯___坦__光__电瞬___效时__应_性_方__程___:_________h_______=_____12____m___。v__2___A_____就能得到很好旳解
Y2dx = A2 x2 (L x)2 dx = 1
0
0
L
( A2 x2L2 2LA2 x3 A2 x4 )dx = 1
量子力学期末考试试卷及答案集
![量子力学期末考试试卷及答案集](https://img.taocdn.com/s3/m/cd88049ab9f3f90f76c61bd2.png)
量子力学期末考试试卷及答案集量子力学期末试题及答案(A)选择题(每题3分共36分)1.黑体辐射中的紫外灾难表明:CA. 黑体在紫外线部分辐射无限大的能量;B. 黑体在紫外线部分不辐射能量;C.经典电磁场理论不适用于黑体辐射公式;D.黑体辐射在紫外线部分才适用于经典电磁场理论. 2.关于波函数Ψ 的含义,正确的是:B A. Ψ 代表微观粒子的几率密度;B. Ψ归一化后,ψψ* 代表微观粒子出现的几率密度;C. Ψ一定是实数;D. Ψ一定不连续.3.对于偏振光通过偏振片,量子论的解释是:D A. 偏振光子的一部分通过偏振片;B.偏振光子先改变偏振方向,再通过偏振片;C.偏振光子通过偏振片的几率是不可知的;D.每个光子以一定的几率通过偏振片.4.对于一维的薛定谔方程,如果 Ψ是该方程的一个解,则:AA. *ψ 一定也是该方程的一个解;B. *ψ一定不是该方程的解;C. Ψ 与*ψ 一定等价;D.无任何结论.5.对于一维方势垒的穿透问题,关于粒子的运动,正确的是:C A. 粒子在势垒中有确定的轨迹; B.粒子在势垒中有负的动能; C.粒子以一定的几率穿过势垒; D 粒子不能穿过势垒.6.如果以∧l 表示角动量算符,则对易运算],[y x l l 为:BA. ih ∧zlB. ih∧z lC.i∧xl D.h∧xl7.如果算符∧A 、∧B 对易,且∧A ψ=Aψ,则:BA. ψ 一定不是∧B 的本征态;B. ψ一定是 ∧B 的本征态;C.*ψ一定是∧B 的本征态;D. ∣Ψ∣一定是∧B 的本征态.8.如果一个力学量 ∧A 与H∧对易,则意味着∧A :C A. 一定处于其本征态; B.一定不处于本征态; C.一定守恒;D.其本征值出现的几率会变化.9.与空间平移对称性相对应的是:B A. 能量守恒; B.动量守恒; C.角动量守恒; D.宇称守恒.10.如果已知氢原子的 n=2能级的能量值为-3.4ev ,则 n=5能级能量为:D A. -1.51ev; B.-0.85ev; C.-0.378ev; D. -0.544ev11.三维各向同性谐振子,其波函数可以写为nlm ψ,且 l=N-2n ,则在一确定的能量 (N+23)h ω下,简并度为:BA. )1(21+N N ; B. )2)(1(21++N N ;C.N(N+1);D.(N+1)(n+2)12.判断自旋波函数 )]1()2()2()1([21βαβαψ+=s 是什么性质:CA. 自旋单态;B.自旋反对称态;C.自旋三态;D. z σ本征值为1.二 填空题(每题4分共24分)1.如果已知氢原子的电子能量为eV n E n 26.13-= ,则电子由n=5 跃迁到n=4 能级时,发出的光子能量为:———————————,光的波长为———— ————————.2.如果已知初始三维波函数)0,(r →ψ ,不考虑波的归一化,则粒子的动量分布函数为 )(p ϕ =——————————————,任意时刻的波函数为),(t r →ψ————————————.3.在一维势阱(或势垒) 中,在x=x 0 点波函数ψ————————(连续或不连续),它的导数'ψ————————————(连续或不连续). 4.如果选用的函数空间基矢为n,则某波函数ψ处于n态的几率用 Dirac 符号表示为——————————,某算符∧A 在 ψ态中的平均值的表示为——————————.5.在量子力学中,波函数ψ 在算符∧Ω操作下具有对称性,含义是——————————————————————————,与 ∧Ω对应的守恒量 ∧F 一定是——————————算符.6.金属钠光谱的双线结构是————————————————————,产生的原因是————————————————————. 三计算题(40分)1.设粒子在一维无限深势阱中,该势阱为:V(x)=0,当0≤x ≤a ,V(x)=∞,当x<0或x>0, 求粒子的能量和波函数.(10分)2.设一维粒子的初态为)/()0,(0h x ip Exp x =ψ,求),(t x ψ.(10分)3.计算z σ表象变换到x σ表象的变换矩阵.(10分)4 .4个玻色子占据3个单态1ϕ ,2ϕ,3ϕ,把所有满足对称性要求的态写出来.(10分)B 卷一、(共25分)1、厄密算符的本征值和本征矢有什么特点?(4分)2、什么样的状态是束缚态、简并态和偶宇称态?(6分)3、全同玻色子的波函数有什么特点?并写出两个玻色子组成的全同粒子体系的波函数.(4分)4、在一维情况下,求宇称算符Pˆ和坐标x 的共同本征函数.(6分) 5、简述测不准关系的主要内容,并写出时间t 和能量E 的测不准关系.(5分) 二、(15分)已知厄密算符B A ˆ,ˆ,满足1ˆˆ22==B A,且0ˆˆˆˆ=+A B B A ,求 1、在A 表象中算符Aˆ、B ˆ的矩阵表示; 2、在A 表象中算符Bˆ的本征值和本征函数; 3、从A 表象到B 表象的幺正变换矩阵S. 三、(15分)线性谐振子在0=t时处于状态)21exp(3231)0,(22x x x ααπαψ-⎥⎦⎤⎢⎣⎡-=,其中ημωα=,求1、在0=t时体系能量的取值几率和平均值.2、0>t 时体系波函数和体系能量的取值几率及平均值四、(15分)当λ为一小量时,利用微扰论求矩阵⎪⎪⎪⎭⎫⎝⎛++λλλλλλ2330322021的本征值至λ的二次项,本征矢至λ的一次项. 五、(10分)一体系由三个全同的玻色子组成, 玻色子之间无相互作用. 玻色子只有两个可能的单粒子态. 问体系可能的状态有几个? 它们的波函数怎样用单粒子波函数构成?一、1、厄密算符的本征值是实数,本征矢是正交、归一和完备的.2、在无穷远处为零的状态为束缚态;简并态是指一个本征值对应一个以上本征函数的情况;将波函数中坐标变量改变符号,若得到的新函数与原来的波函数相同,则称该波函数具有偶宇称.3、全同玻色子的波函数是对称波函数.两个玻色子组成的全同粒子体系的波函数为:[])()()()(2112212211q q q q S ϕϕϕϕφ+=4、宇称算符P ˆ和坐标x 的对易关系是:P x x P ˆ2],ˆ[-=,将其代入测不准关系知,只有当0ˆ=P x 时的状态才可能使Pˆ和x 同时具有确定值,由)()(x x -=δδ知,波函数)(x δ满足上述要求,所以)(x δ是算符P ˆ和x 的共同本征函数. 5、设Fˆ和G ˆ的对易关系kˆi F ˆG ˆG ˆF ˆ=-,k 是一个算符或普通的数.以F 、G 和k 依次表示Fˆ、G ˆ和k 在态ψ中的平均值,令 F FˆFˆ-=∆,G G ˆG ˆ-=∆, 则有4222k )G ˆ()F ˆ(≥⋅∆∆,这个关系式称为测不准关系.时间t 和能量E 之间的测不准关系为:2η≥∆⋅∆E t二、1、由于1ˆ2=A,所以算符A ˆ的本征值是1±,因为在A 表象中,算符A ˆ的矩阵是对角矩阵,所以,在A 表象中算符Aˆ的矩阵是:⎪⎪⎭⎫ ⎝⎛-=1001)(ˆA A 设在A 表象中算符Bˆ的矩阵是⎪⎪⎭⎫ ⎝⎛=22211211)(ˆb b b b A B ,利用0ˆˆˆˆ=+A B B A 得:02211==b b ;由于1ˆ2=B ,所以⎪⎪⎭⎫ ⎝⎛002112b b ⎪⎪⎭⎫ ⎝⎛002112b b 10012212112=⎪⎪⎭⎫ ⎝⎛=b b b b ,21121b b =∴;由于B ˆ是厄密算符,B B ˆˆ=+,∴⎪⎪⎪⎭⎫⎝⎛0101212b b ⎪⎪⎪⎭⎫ ⎝⎛=010*12*12b b *12121b b =∴令δi e b =12,(δ为任意实常数)得B ˆ在A 表象中的矩阵表示式为:⎪⎪⎭⎫⎝⎛=-00)(ˆδδi i e e A B2、在A 表象中算符Bˆ的本征方程为:⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-βαλβαδδ00i i e e即⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-βαλαβδδi i e e ⇒ ⎩⎨⎧=-=+--00λβαβλαδδi i e e α和β不同时为零的条件是上述方程的系数行列式为零,即=---λλδδi i e e ⇒ 012=-λ 1±=∴λ对1=λ有:⎪⎪⎭⎫ ⎝⎛=+121δϕi Be ,对1-=λ有:⎪⎪⎭⎫ ⎝⎛-=-121δϕi B e所以,在A 表象中算符Bˆ的本征值是1±,本征函数为⎪⎪⎭⎫ ⎝⎛121δi e 和⎪⎪⎭⎫⎝⎛-121δi e3、从A 表象到B 表象的幺正变换矩阵就是将算符Bˆ在A 表象中的本征函数按列排成的矩阵,即⎪⎪⎭⎫⎝⎛-=-1121δδi i e e S三、解:1、0=t的情况:已知线谐振子的能量本征解为:ωη)21(+=n E n )2,1,0(Λ=n , )()exp(!2)(22x H x n x n nn ααπαϕ-=当1,0=n时有:)exp()(220x x απαϕ-=,)exp()(2)(221x x x ααπαϕ-=于是0=t 时的波函数可写成:)(32)(31)0,(10x x x ϕϕψ-=,容易验证它是归一化的波函数,于是0=t 时的能量取值几率为:31)0,21(0==ωηE W ,32)0,23(1==ωηE W ,能量取其他值的几率皆为零.能量的平均值为:ωη67323110=+=E E E2、 0>t 时体系波函数)23exp()(32)2exp()(31),(10t ix t i x t x ωϕωϕψ---=显然,哈密顿量为守恒量,它的取值几率和平均值不随时间改变,故0>t 时体系能量的取值几率和平均值与0=t 的结果完全相同.四、解:将矩阵改写成:='+=H H H ˆˆˆ0⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛λλλλλλ23032020300020001能量的零级近似为:1)0(1=E ,2)0(2=E ,3)0(3=E 能量的一级修正为:0)1(1=E ,λ=)1(2E ,λ2)1(3=E 能量的二级修正为:2)0(3)0(1213)0(2)0(1212)2(14λ-=-'+-'=EEH EEH E ,222)0(3)0(2223)0(1)0(2221)2(2594λλλ-=-=-'+-'=EEH EEH E ,2)0(2)0(3232)0(1)0(3231)2(39λ=-'+-'=EEH EEH E所以体系近似到二级的能量为:2141λ-≈E ,2252λλ-+≈E ,23923λλ++≈E先求出0ˆH 属于本征值1、2和3的本征函数分别为:⎪⎪⎪⎭⎫ ⎝⎛=001)0(1ϕ,⎪⎪⎪⎭⎫ ⎝⎛=010)0(2ϕ,⎪⎪⎪⎭⎫⎝⎛=100)0(3ϕ,利用波函数的一级修正公式)0()0()0()1(ii k ik ki k E E H ϕϕ-'=∑≠,可求出波函数的一级修正为:⎪⎪⎪⎭⎫ ⎝⎛-=0102)1(1λϕ,⎪⎪⎪⎭⎫ ⎝⎛-=302)1(2λϕ,⎪⎪⎪⎭⎫ ⎝⎛=0103)1(3λϕ近似到一级的波函数为:⎪⎪⎪⎭⎫⎝⎛-≈0211λϕ,⎪⎪⎪⎭⎫⎝⎛-≈λλϕ3122,⎪⎪⎪⎭⎫ ⎝⎛≈1303λϕ 五、解:由玻色子组成的全同粒子体系,体系的波函数应是对称函数.以i q 表示第i )3,2,1(=i 个粒子的坐标,根据题设,体系可能的状态有以下四个:(1))()()(312111)1(q q q s φφφϕ=;(2))()()(322212)2(q q q s φφφϕ= (3)[)()()()()()()()()(311221312211322111)3(q q q q q q q q q C s φφφφφφφφφϕ++=; (4)=)4(s ϕ])()()()()()()()()([113222322112312212q q q q q q q q q C φφφφφφφφφ++一、(20分)已知氢原子在0=t 时处于状态21310112(,,0)()()()010333x x x x ψϕϕ⎛⎫⎛⎫⎛⎫=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 其中,)(x nϕ为该氢原子的第n 个能量本征态.求能量及自旋z 分量的取值概率与平均值,写出0>t 时的波函数.解 已知氢原子的本征值为42212n e E n μ=-h ,Λ,3,2,1=n (1)将0=t时的波函数写成矩阵形式()()()23113(,0)23x x x x ϕψϕ⎛⎫ ⎪ ⎪= ⎪- ⎪⎝⎭ (2) 利用归一化条件()()()()()()232***23112211233d 3332312479999x x c x x x x x c cϕϕϕϕ∞-∞⎛⎫+ ⎪⎛⎫ ⎪+-⋅ ⎪ ⎪ ⎪⎝⎭- ⎪⎝⎭⎛⎫=++= ⎪⎝⎭⎰ (3)于是,归一化后的波函数为()()()()()()23231113(,0)23x x x x x x x ϕψϕ⎫⎫+⎪+⎪⎪⎪==⎪⎪- ⎪⎪⎝⎭⎝⎭ (4)能量的可能取值为123,,E E E ,相应的取值几率为()()()123412,0;,0;,0777W E W E W E ===(5) 能量平均值为()123442241207774111211612717479504E E E E e e μμ=++=⎡⎤-⨯+⨯+⨯=-⎢⎥⎣⎦h h (6)自旋z 分量的可能取值为,22-h h,相应的取值几率为1234,0;,0277727z z W s W s ⎛⎫⎛⎫==+==-=⎪ ⎪⎝⎭⎝⎭h h (7) 自旋z 分量的平均值为()340727214z s ⎛⎫=⨯+⨯-=-⎪⎝⎭h h h(8)0>t时的波函数()()()223311i i exp exp (,)i exp x E t x E t x t x E t ψ⎫⎡⎤⎡⎤-+-⎪⎢⎥⎢⎥⎣⎦⎣⎦⎪= ⎪⎡⎤ ⎪- ⎪⎢⎥⎣⎦⎝⎭h h h (9)二. (20分) 质量为m的粒子在如下一维势阱中运动()00>V()⎪⎩⎪⎨⎧>≤≤-<∞=a x ax V x x V ,00 ,0.0若已知该粒子在此势阱中有一个能量2V E -=的状态,试确定此势阱的宽度a .解 对于0<<-E V 的情况,三个区域中的波函数分别为()()()()()⎪⎩⎪⎨⎧-=+==x B x kx A x x αψδψψexp sin 0321 (1)其中,ηηE m V E m k 2 ;)(20=+=α (2)利用波函数再0=x处的连接条件知,πδn =,Λ,2,1,0=n .在a x=处,利用波函数及其一阶导数连续的条件()()()()a a a a '3'232ψψψψ== (3) 得到()()()()a B n ka Ak a B n ka A ααπαπ--=+-=+ex p cos ex p sin (4)于是有()αkka -=tan (5)此即能量满足的超越方程.当12E V =-时,由于1tan 000-=-=⎪⎪⎭⎫ ⎝⎛ηηηmV mV a mV (6)故4ππ-=n a mV η()Λ,3,2,1=n (7)最后得到势阱的宽度0 41mV n a ηπ⎪⎭⎫ ⎝⎛-= (8)三、(20分) 证明如下关系式(1)任意角动量算符ˆj r 满足 ˆˆˆi j j j ⨯=r r r h .证明 对x 分量有()ˆˆˆˆˆˆˆ=i y z z y xxj j j j j j j ⨯=-r r h同理可知,对y 与z 分量亦有相应的结果,故欲证之式成立.投影算符ˆn pn n =是一个厄米算符,其中,{}n 是任意正交归一的完备本征函数系.证明在任意的两个状态ψ与ϕ之下,投影算符ˆn p的矩阵元为ˆn pn n ψϕψϕ=而投影算符ˆn p的共軛算符ˆnp+的矩阵元为±{*****ˆˆˆn n n p p p n n n n n n ψϕψϕϕψϕψϕψψϕ+⎡⎤===⎣⎦=⎡⎤⎡⎤=⎣⎦⎣⎦显然,两者的矩阵元是相同的,由ψ与ϕ的任意性可知投影算符ˆn p是厄米算符. 利用()()()*''kkkx x x x ψψδ=-∑证明()()ˆˆx mk x mn kn kxpx p =∑,其中,(){}kx ψ为任意正交归一完备本征函数系. 证明()()()()()()()()()()()()()()()()()()'''**''*'''*'*''*'*''ˆˆd ˆd d ˆd d ˆd d ˆd d ˆx m x n mn mx n mn x m k k n x kmkknxkmkxknkxp x x xpx x x x x x x px x x x x x x px x x x x x x px x x x x x x px x pψψψδψψδψψψψψψψψψ∞-∞∞∞-∞-∞∞∞-∞-∞∞∞-∞-∞∞∞-∞-∞==-=-===⎰⎰⎰⎰⎰∑⎰⎰∑⎰⎰∑四、(20分) 在2L 与z L表象中,在轨道角动量量子数1l=的子空间中,分别计算算符ˆx L 、ˆy L 与ˆz L 的矩阵元,进而求出它们的本征值与相应的本征矢.解 在2L 与z L 表象下,当轨道角动量量子数1l =时,1,0,1m =-,显然,算符ˆx L 、ˆy L 与ˆz L 皆为三维矩阵.由于在自身表象中,故ˆzL是对角矩阵,且其对角元为相应的本征值,于是有100ˆ000001z L ⎛⎫⎪= ⎪⎪-⎝⎭ (1) 相应的本征解为1011; 0000; 100; 01z z z L L L ψψψ-⎛⎫⎪== ⎪⎪⎝⎭⎛⎫ ⎪== ⎪⎪⎝⎭⎛⎫ ⎪=-= ⎪⎪⎝⎭h h (2)对于算符ˆx L 、ˆy L 而言,需要用到升降算符,即()()1ˆˆˆ21ˆˆˆ2i x y L L L L L L +-+-=+=- (3)而ˆ,1L lm m ±=± (4)当1,1,0,1l m ==-时,显然,算符ˆx L 、ˆy L 的对角元皆为零,并且,ˆˆ1,11,11,11,10ˆˆ1,11,11,11,10x yx yL L L L -=-=-=-= (5)只有当量子数m 相差1±时矩阵元才不为零,即ˆˆˆˆ1,11,01,01,11,01,11,11,0ˆˆ1,01,11,11,0ˆˆ1,11,01,01,1x x x xy yy yL L L L L L L L -=-===-==-== (6)于是得到算符ˆx L、ˆyL 的矩阵形式如下0100i 0ˆˆ101; i 0i 0100i 0x y L L -⎛⎫⎛⎫⎪⎪==-⎪⎪⎪⎪⎭⎭ (7) yL ˆ满足的本征方程为⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--321321 0ii 0i 0i 02c c c c c c λη (8)相应的久期方程为2i 02i 2i 02i =-----λλληηηη (9)将其化为023=-λλη(10)得到三个本征值分别为ηη-===321;0 ;λλλ (11)将它们分别代回本征方程,得到相应的本征矢为⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=i 2i 21 ;10121 ;i 2i 21321ψψψ (12) ˆx L 满足的本征方程为112233010101 010c c c c c c λ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (13)相应的久期方程为0λ-= (14)将其化为023=-λλη (15) 得到三个本征值分别为ηη-===321;0 ;λλλ (16)将它们分别代回本征方程,得到相应的本征矢为12311111; 0; 22111ψψψ⎛⎫⎛⎫⎛⎫⎪=== ⎪⎪ ⎪ ⎪-⎭⎝⎭⎝⎭ (17) 五、(20分) 由两个质量皆为μ、角频率皆为ω的线谐振子构成的体系,加上微扰项21 ˆx x W λ-=(21,xx 分别为两个线谐振子的坐标)后,用微扰论求体系基态能量至二级修正、第二激发态能量至一级修正. 提示: 线谐振子基底之下坐标算符的矩阵元为⎥⎦⎤⎢⎣⎡++=+-1,1,2121n m n m n n n x m δδα式中,ημωα=. 解 体系的哈密顿算符为W H H ˆˆˆ0+= (1)其中()()212221222210 ˆ21ˆˆ21ˆx x Wx x p p H λμωμ-=+++= (2)已知0ˆH 的解为()()()()2121021,1x x x x n E n n n n ϕϕψωα=+=η (3)其中n fn n n ,,3,2,1,2,1,0,,21ΛΛ==α (4)将前三个能量与波函数具体写出来()()()()()()()()()()()()00001020111011212110202212102220122231112; 2, 3, E x x E x x x x E x x x x x x ωψϕϕωψϕϕψϕϕωψϕϕψϕϕψϕϕ=========h h h (5)对于基态而言,021===n n n ,10=f ,体系无简并.利用公式⎥⎦⎤⎢⎣⎡++=+-1,1,2121n m n m n m n n x δδαϕϕ (6)可知()0ˆ0010==ψψW E()∑∑≠=-=01000020ˆˆn f nn n nE E W W E αααψψψψ (7)显然,求和号中不为零的矩阵元只有2232302ˆˆαλψψψψ-==W W (8)于是得到基态能量的二级修正为()32242020020841ωμλαλη-=-=E E E (9)第二激发态为三度简并,能量一级修正满足的久期方程为()()()123332312312222113121211=---E W W W W E W W W WE W (10)其中1122331221133123320W W W W W W W W W =========(11)将上式代入(10)式得到()()121200E E --= (12)整理之,()12E 满足()()()23112240E E λα-+= (13)于是得到第二激发态能量的一级修正为()()()21231222121 ;0 ;αλαλ==-=E E E (14)1. 微观粒子具有 波粒 二象性.2.德布罗意关系是粒子能量E 、动量P 与频率ν、波长λ之间的关系,其表达式为: E=hν, p=/h λ . 3.根据波函数的统计解释,dxt x 2),(ψ的物理意义为:粒子在x —dx 范围内的几率 .4.量子力学中力学量用 厄米 算符表示.5.坐标的x 分量算符和动量的x 分量算符xp 的对易关系为:[],x p i =h .6.量子力学关于测量的假设认为:当体系处于波函数ψ(x)所描写的状态时,测量某力学量F 所得的数值,必定是算符F ˆ的本征值 .7.定态波函数的形式为: t E i n n ex t x η-=)(),(ϕψ.8.一个力学量A 为守恒量的条件是:A 不显含时间,且与哈密顿算符对易 .9.根据全同性原理,全同粒子体系的波函数具有一定的交换对称性,费米子体系的波函数是_反对称的_____________,玻色子体系的波函数是_对称的_______ _.10.每个电子具有自旋角动量S ρ,它在空间任何方向上的投影只能取两个数值为: 2η±.1、(10分)利用坐标和动量算符的对易关系,证明轨道角动量算符的对易关系: 证明:zy x L i L L ˆ]ˆ,ˆ[η=]ˆˆ,ˆˆ[]ˆ,ˆ[z x y z yx p x p z p z p y L L --=]ˆˆ,ˆ[]ˆˆ,ˆ[z x y z x z p x p z p z p x p z py ---=]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[z y x y z z x z p x p z p z p z p x p y p z py +--=]ˆ,ˆ[]ˆ,ˆ[z y x z p x p z p z py +=y z z y z x x z p p x z p x p z p p z y p z py ˆ]ˆ,[]ˆ,ˆ[ˆ]ˆ,[]ˆ,ˆ[+++=y z x z p p x z p z py ˆ]ˆ,[]ˆ,ˆ[+=y z y z x z x z p p x z p p z x p z p y p pyz ˆˆ],[ˆ]ˆ,[ˆ],ˆ[]ˆ,ˆ[+++=y x p i x pi y ˆ)(ˆ)(ηη+-=ˆˆ2、(10分)由Schr ödinger 方程证明几率守恒:其中几率密度 几率流密度证明:考虑 Schr ödinger 方程及其共轭式:在空间闭区域τ中将上式积分,则有:1、(10分)设氢原子处于状态),()(23),()(21),,(11211021ϕθϕθϕθψ--=Y r R Y r R r求氢原子能量E 、角动量平方L 2、角动量Z 分量L Z 的可能值及这些可能值出现的几率.解:在此状态中,氢原子能量有确定值22222282ηηs s e n e E μμ-=-=)2(=n ,几率为1角动量平方有确定值为2222)1(ηηλλ=+=L)1(=λ,几率为1角动量Z 分量的可能值为2|),(|),(),(),(t r t r t r t r ρρρρψ=ψψ=*ω22(,)[()](,)2i r t V r r t t μ∂ψ=-∇+ψ∂h r r rh 0=•∇+∂∂J tρω][2ψ∇ψ-ψ∇ψ=**μηρi J 22[](1)2i V t μ∂ψ=-∇+ψ∂h h 22[](2)2i V t μ**∂-ψ=-∇+ψ∂h h (1)(2)*ψ⨯-ψ⨯将式得:][2222****ψ∇ψ-ψ∇ψ-=ψ∂∂ψ+ψ∂∂ψμηηηt i t i ][22ψ∇ψ-ψ∇ψ•∇=ψψ∂∂***μηη)(t i τμτττd d dt d i ][22ψ∇ψ-ψ∇ψ•∇=ψψ***⎰⎰ηη)(τμτττd i d dt d ][2ψ∇ψ-ψ∇ψ•∇-=ψψ***⎰⎰η)(ττωττd J d t r dtdρρ•∇-=⎰⎰),(0=•∇+∂∂J tρω01=Z L η-=2Z L其相应的几率分别为41, 432、(10分)求角动量z 分量 的本征值和本征函数.解:波函数单值条件,要求当φ 转过 2π角回到原位时波函数值相等,即:求归一化系数最后,得 L z 的本征函数3、(20分)某量子体系Hamilton量的矩阵形式为:设c << 1,应用微扰论求H 本征值到二级近似.解:c << 1,可取 0 级和微扰 Hamilton 量分别为:H 0 是对角矩阵,是Hamilton H 0在自身表象中的形式.所以能量的 0 级近似为:E 1(0)= 1 E 2(0)= 3⎪⎪⎪⎭⎫ ⎝⎛='⎪⎪⎪⎭⎫ ⎝⎛-=c c c H H 0000002000300010⎪⎪⎪⎭⎫ ⎝⎛-=2000301c c cH ˆzd L i d φ=-h ππφφψππ2112||2202220=→===⎰⎰c c d c d Λη,2,1,021)(±±=⎪⎩⎪⎨⎧==m e m l im m z φπφψ归一化系数。
推荐学习 精品-清华大学《大学物理》分类经典练习题及解析 量子1
![推荐学习 精品-清华大学《大学物理》分类经典练习题及解析 量子1](https://img.taocdn.com/s3/m/beaa52527f1922791788e838.png)
一 选择题 (共75分)1. (本题 3分)(4181) 用频率为ν1的单色光照射某一种金属时,测得光电子的最大动能为E K 1;用频率为ν2的单色光照射另一种金属时,测得光电子的最大动能为E K 2.如果E K 1>E K 2,那么(A)ν1一定大于ν2. (B) ν1一定小于ν2. (C) ν1一定等于ν2. (D)ν1可能大于也可能小于ν2. [ ]2. (本题 3分)(4182) 用频率为ν1的单色光照射某种金属时,测得饱和电流为I 1,以频率为ν2的单色光照射该金属时,测得饱和电流为I 2,若I 1> I 2,则 (A) ν1 >ν2. (B) ν1 <ν2.(C) ν1 =ν2. (D) ν1与ν2的关系还不能确定. [ ]3. (本题 3分)(4183) 已知某单色光照射到一金属表面产生了光电效应,若此金属的逸出电势是U 0(使电子从金属逸出需作功eU 0),则此单色光的波长λ 必须满足: (A) λ ≤)/(0eU hc . (B) λ ≥)/(0eU hc .(C) λ ≤)/(0hc eU . (D) λ ≥)/(0hc eU . [ ]4. (本题 3分)(4181) 用频率为ν1的单色光照射某一种金属时,测得光电子的最大动能为E K 1;用频率为ν2的单色光照射另一种金属时,测得光电子的最大动能为E K 2.如果E K 1>E K 2,那么(A)ν1一定大于ν2. (B) ν1一定小于ν2. (C) ν1一定等于ν2. (D)ν1可能大于也可能小于ν2. [ ]5. (本题 3分)(4182) 用频率为ν1的单色光照射某种金属时,测得饱和电流为I 1,以频率为ν2的单色光照射该金属时,测得饱和电流为I 2,若I 1> I 2,则(A) ν1 >ν2. (B) ν1 <ν2.(C) ν1 =ν2. (D) ν1与ν2的关系还不能确定. [ ]6. (本题 3分)(4183) 已知某单色光照射到一金属表面产生了光电效应,若此金属的逸出电势是U 0(使电子从金属逸出需作功eU 0),则此单色光的波长λ 必须满足: (A) λ ≤)/(0eU hc . (B) λ ≥)/(0eU hc .(C) λ ≤)/(0hc eU . (D) λ ≥)/(0hc eU . [ ]7. (本题 3分)(4185) 已知一单色光照射在钠表面上,测得光电子的最大动能是 1.2 eV ,而钠的红限波长是5400 Å ,那么入射光的波长是 (A) 5350 Å. (B) 5000 Å. (C) 4350 Å. (D) 3550 Å. [ ]在均匀磁场B 内放置一极薄的金属片,其红限波长为λ0.今用单色光照射,发现有电子放出,有些放出的电子(质量为m ,电荷的绝对值为e )在垂直于磁场的平面内作半径为R 的圆周运动,那末此照射光光子的能量是:(A) 0λhc . (B) 0λhc m eRB 2)(2+. (C) 0λhc m eRB +. (D) 0λhceRB 2+. [ ]9. (本题 3分)(4382) 一定频率的单色光照射在某种金属上,测出其光电流的曲线如图中实线所示.然后在光强度不变的条件下增大照射光的频率,测出其光电流的曲线如图中虚线所示.满足题意的图是:[ ]10. (本题 3分)(4383) 用频率为ν 的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用频率为2ν 的单色光照射此种金属时,则逸出光电子的最大动能为: (A) 2 E K . . (B) 2h ν - E K .(C) h ν - E K . (D) h ν + E K . [ ]11. (本题 3分)(4384) 关于光电效应有下列说法:(1) 任何波长的可见光照射到任何金属表面都能产生光电效应;(2) 若入射光的频率均大于一给定金属的红限,则该金属分别受到不同频率的光照射时,释出的光电子的最大初动能也不同;(3) 若入射光的频率均大于一给定金属的红限,则该金属分别受到不同频率、强度相等的光照射时,单位时间释出的光电子数一定相等;(4) 若入射光的频率均大于一给定金属的红限,则当入射光频率不变而强度增大一倍时,该金属的饱和光电流也增大一倍. 其中正确的是(A) (1),(2),(3). (B) (2),(3),(4). (C) (2),(3).(D) (2),(4). [ ]设用频率为ν1和ν2的两种单色光,先后照射同一种金属均能产生光电效应.已知金属的红限频率为ν0,测得两次照射时的遏止电压|U a 2| = 2|U a 1|,则这两种单色光的频率有如下关系:(A) ν2 = ν1 - ν0. (B) ν2 = ν1 + ν0.(C) ν2 = 2ν1 - ν0. (D) ν2 = ν1 - 2ν0. [ ]13. (本题 3分)(4386) 以一定频率的单色光照射在某种金属上,测出其光电流曲线在图中用实线表示,然后保持光的频率不变,增大照射光的强度,测出其光电流曲线在图中用虚线表示.满足题意的图是 [ ]14. (本题 3分)(4387) 光电效应中发射的光电子最大初动能随入射光频率ν 的变化关系如图所示.由图中的(A) OQ (B) OP (C) OP /OQ (D) QS /OS 可以直接求出普朗克常量. [ ]15. (本题 3分)(4503) 在康普顿散射中,如果设反冲电子的速度为光速的60%,则因散射使电子获得的能量是其静止能量的(A) 2倍. (B) 1.5倍. (C) 0.5倍. (D) 0.25倍. [ ]16. (本题 3分)(4607) 当照射光的波长从4000 Å变到3000 Å时,对同一金属,在光电效应实验中测得的遏止电压将:(A) 减小0.56 V . (B) 减小0.34 V .(C) 增大0.165 V . (D) 增大1.035 V . [ ](普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19C)17. (本题 3分)(4736) 保持光电管上电势差不变,若入射的单色光光强增大,则从阴极逸出的光电子的最大初动能E 0和飞到阳极的电子的最大动能E K 的变化分别是 (A) E 0增大,E K 增大. (B) E 0不变,E K 变小.(C) E 0增大,E K 不变. (D) E 0不变,E K 不变. [ ]在康普顿效应实验中,若散射光波长是入射光波长的 1.2倍,则散射光光子能量ε与反冲电子动能E K 之比ε / E K 为(A) 2. (B) 3. (C) 4. (D) 5. [ ]19. (本题 3分)(4739) 光子能量为 0.5 MeV 的X 射线,入射到某种物质上而发生康普顿散射.若反冲电子的能量为 0.1 MeV ,则散射光波长的改变量Δλ与入射光波长λ0之比值为 (A) 0.20. (B) 0.25. (C) 0.30. (D) 0.35. [ ]20. (本题 3分)(5232) 用强度为I ,波长为λ 的X 射线(伦琴射线)分别照射锂(Z = 3)和铁(Z = 26).若在同一散射角下测得康普顿散射的X 射线波长分别为λLi 和λFe (λLi ,λFe >λ),它们对应的强度分别为I Li 和I Fe ,则(A) λLi >λFe ,I Li < I Fe (B) λLi =λFe ,I Li = I Fe(C) λLi =λFe ,I Li .>I Fe (D) λLi <λFe ,I Li .>I Fe [ ]21. (本题 3分)(5363) 以下一些材料的逸出功为铍 3.9 eV 钯 5.0eV 铯 1.9 eV 钨 4.5 eV今要制造能在可见光(频率范围为3.9×1014 Hz —7.5×1014Hz)下工作的光电管,在这些材料中应选(A) 钨. (B) 钯. (C) 铯. (D) 铍. [ ]22. (本题 3分)(5364) 某金属产生光电效应的红限波长为λ0,今以波长为λ (λ <λ0)的单色光照射该金属,金属释放出的电子(质量为m e )的动量大小为(A) λ/h . (B) 0/λh . (C)λλλλ00)(2+hc m e (D)2λhcm e (E)λλλλ00)(2−hc m e [ ]23. (本题 3分)(5365) 康普顿效应的主要特点是(A) 散射光的波长均比入射光的波长短,且随散射角增大而减小,但与散射体的性质无关.(B) 散射光的波长均与入射光的波长相同,与散射角、散射体性质无关. (C) 散射光中既有与入射光波长相同的,也有比入射光波长长的和比入射光波长短的.这与散射体性质有关.(D) 散射光中有些波长比入射光的波长长,且随散射角增大而增大,有些散射光波长与入射光波长相同.这都与散射体的性质无关. [ ]光电效应和康普顿效应都包含有电子与光子的相互作用过程.对此,在以下几种理解中,正确的是(A) 两种效应中电子与光子两者组成的系统都服从动量守恒定律和能量守恒定律.(B) 两种效应都相当于电子与光子的弹性碰撞过程.(C) 两种效应都属于电子吸收光子的过程.(D) 光电效应是吸收光子的过程,而康普顿效应则相当于光子和电子的弹性碰撞过程.(E) 康普顿效应是吸收光子的过程,而光电效应则相当于光子和电子的弹性碰撞过程.[]25. (本题 3分)(5617)用X射线照射物质时,可以观察到康普顿效应,即在偏离入射光的各个方向上观察到散射光,这种散射光中(A) 只包含有与入射光波长相同的成分.(B) 既有与入射光波长相同的成分,也有波长变长的成分,波长的变化只与散射方向有关,与散射物质无关.(C) 既有与入射光相同的成分,也有波长变长的成分和波长变短的成分,波长的变化既与散射方向有关,也与散射物质有关.(D) 只包含着波长变长的成分,其波长的变化只与散射物质有关与散射方向无关.[]二填空题 (共76分)26. (本题 3分)(0475)某光电管阴极, 对于λ= 4910 Å的入射光,其发射光电子的遏止电压为0.71 V.当入射光的波长为__________________Å时,其遏止电压变为1.43 V.( e =1.60×10-19 C,h =6.63×10-34 J·s )27. (本题 5分)(4179)光子波长为λ,则其能量=____________;动量的大小 =_____________;质量=_________________ .28. (本题 4分)(4180)当波长为3000 Å的光照射在某金属表面时,光电子的能量范围从0到 4.0| =____________V;此金属的×10-19 J.在作上述光电效应实验时遏止电压为|Ua红限频率ν0 =__________________Hz.(普朗克常量h =6.63×10-34 J·s;基本电荷e =1.60×10-19 C)光子波长为λ,则其能量=____________;动量的大小 =_____________;质量=_________________ .30. (本题 4分)(4180)当波长为3000 Å的光照射在某金属表面时,光电子的能量范围从0到 4.0×10-19 J.在作上述光电效应实验时遏止电压为|Ua| =____________V;此金属的红限频率ν0 =__________________Hz.(普朗克常量h =6.63×10-34 J·s;基本电荷e =1.60×10-19 C)31. (本题 4分)(4184)已知钾的逸出功为 2.0 eV,如果用波长为3.60×10-7 m的光照射在钾上,则光电效应的遏止电压的绝对值|Ua| =___________________.从钾表面发射出电子的最大速度v max =_______________________.(h =6.63×10-34 J·s,1eV =1.60×10-19 J,me=9.11×10-31 kg)32. (本题 4分)(4187)康普顿散射中,当散射光子与入射光子方向成夹角φ = _____________时,散射光子的频率小得最多;当φ = ______________ 时,散射光子的频率与入射光子相同.33. (本题 3分)(4250)波长为λ =1 Å的X光光子的质量为_____________kg.(h =6.63×10-34 J·s)34. (本题 3分)(4388)以波长为λ= 0.207 μm的紫外光照射金属钯表面产生光电效应,已知钯的红限频率ν0=1.21×1015赫兹,则其遏止电压|Ua| =_______________________V.(普朗克常量h =6.63×10-34 J·s,基本电荷e =1.60×10-19 C)在光电效应实验中,测得某金属的遏止电压|Ua|与入射光频率ν的关系曲线如图所示,由此可知该金属的红限频率ν=___________Hz;逸出功A =____________eV.|1014 Hz) -36. (本题 4分)(4390)已知某金属的逸出功为A,用频率为ν1的光照射该金属能产生光电效应,则该金属的红限频率ν0 =_____________________________,ν1> ν,且遏止电势差|Ua| =______________________________.37. (本题 4分)(4391)当波长为300 nm (1 nm = 10-9 m)的光照射在某金属表面时,光电子的动能范围为0~ 4.0×10-19 J.此时遏止电压为|Ua| =__________________V;红限频率ν=_______________________ Hz.(普朗克常量h =6.63×10-34 J·s,基本电荷e =1.60×10-19 C)38. (本题 3分)(4546)若一无线电接收机接收到频率为108 Hz的电磁波的功率为1微瓦,则每秒接收到的光子数为__________________________.(普朗克常量h =6.63×10-34 J·s)39. (本题 3分)(4608)钨的红限波长是230 nm (1 nm = 10-9 m),用波长为180 nm的紫外光照射时,从表面逸出的电子的最大动能为___________________eV.(普朗克常量h =6.63×10-34 J·s,基本电荷e =1.60×10-19 C)40. (本题 4分)(4609)频率为 100 MHz的一个光子的能量是_______________________,动量的大小是______________________.(普朗克常量h =6.63×10-34 J·s)41. (本题 3分)(4611)某一波长的X光经物质散射后,其散射光中包含波长________和波长__________的两种成分,其中___________的散射成分称为康普顿散射.如图所示,一频率为ν 的入射光子与起始静止的自由电子发生碰撞和散射.如果散射光子的频率为ν′,反冲电子的动量为p,则在与入射光子平行的方向上的动量守恒定律的分量形式为___________________.43. (本题 3分)(4740)在X射线散射实验中,散射角为φ1= 45°和φ2=60°的散射光波长改变量之比Δλ1:Δλ2=_________________.44. (本题 4分)(4741)分别以频率为ν1和ν2的单色光照射某一光电管.若ν1 >ν2 (均大于红限频率ν0),则当两种频率的入射光的光强相同时,所产生的光电子的最大初动能E1____E2;所产生的饱和光电流I s1____ I s2.(用>或=或<填入)45. (本题 3分)(4742)某金属产生光电效应的红限为ν0,当用频率为ν (ν >ν)的单色光照射该金属时,从金属中逸出的光电子(质量为m)的德布罗意波长为________________.46. (本题 3分)(5618)在康普顿散射中,若入射光子与散射光子的波长分别为λ和λ′,则反冲电子获得的动能EK=______________________________.三计算题 (共114分)47. (本题10分)(0640)频率为ν的一束光以入射角i照射在平面镜上并完全反射,设光束单位体积中的光子数为n,求:(1) 每一光子的能量、动量和质量.(2) 光束对平面镜的光压(压强).48. (本题10分)(0640)频率为ν的一束光以入射角i照射在平面镜上并完全反射,设光束单位体积中的光子数为n,求:(1) 每一光子的能量、动量和质量.(2) 光束对平面镜的光压(压强).图中所示为在一次光电效应实验中得出的曲线(1) 求证:对不同材料的金属,AB 线的斜率相同. (2) 由图上数据求出普朗克恒量h . (基本电荷e =1.60×10-19 C) |14Hz)50. (本题 8分)(4246) 波长为λ的单色光照射某金属M 表面发生光电效应,发射的光电子(电荷绝对值为e ,质量为m )经狭缝S 后垂直进入磁感应强度为B K的均匀磁场(如图示),今已测出电子在该磁场中作圆运动的最大半径为R .求(1) 金属材料的逸出功A ; (2) 遏止电势差U a .B K× × × × ×51. (本题 5分)(4392) 用单色光照射某一金属产生光电效应,如果入射光的波长从λ1 = 400 nm 减到λ2 = 360 nm (1 nm = 10-9m),遏止电压改变多少?数值加大还是减小?(普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19C)52. (本题 5分)(4393) 以波长λ = 410 nm (1 nm = 10-9m)的单色光照射某一金属,产生的光电子的最大动能E K = 1.0 eV ,求能使该金属产生光电效应的单色光的最大波长是多少?(普朗克常量h =6.63×10-34J ·s)53. (本题 5分)(4502) 功率为P 的点光源,发出波长为λ的单色光,在距光源为d 处,每秒钟落在垂直于光线的单位面积上的光子数为多少?若λ =6630 Å,则光子的质量为多少?(普朗克常量h =6.63×10-34J ·s)54. (本题 5分)(4502) 功率为P 的点光源,发出波长为λ的单色光,在距光源为d 处,每秒钟落在垂直于光线的单位面积上的光子数为多少?若λ =6630 Å,则光子的质量为多少? (普朗克常量h =6.63×10-34J ·s)55. (本题 5分)(4504) 已知X 射线光子的能量为0.60 MeV ,若在康普顿散射中散射光子的波长为入射光子的1.2倍,试求反冲电子的动能.56. (本题 8分)(4505) 用波长λ0 =1 Å的光子做康普顿实验.(1) 散射角φ=90°的康普顿散射波长是多少? (2) 反冲电子获得的动能有多大?(普朗克常量h =6.63×10-34 J ·s ,电子静止质量m e =9.11×10-31kg)红限波长为λ=0.15 Å的金属箔片置于B =30×10-4 T的均匀磁场中.今用单色γ射线照射而释放出电子,且电子在垂直于磁场的平面内作R = 0.1 m的圆周运动.求γ射线的波长.(普朗克常量h =6.63×10-34 J·s,基本电荷e =1.60×10-19 C,电子质量me=9.11×10-31 kg)58. (本题 5分)(4743)光电管的阴极用逸出功为A = 2.2 eV的金属制成,今用一单色光照射此光电管,阴极发射出光电子,测得遏止电势差为| Ua| = 5.0 V,试求:(1) 光电管阴极金属的光电效应红限波长;(2) 入射光波长.(普朗克常量h = 6.63×10-34 J·s,基本电荷e = 1.6×10-19 C)59. (本题 5分)(4744)以波长为λ = 0.200 μm的单色光照射一铜球,铜球能放出电子.现将此铜球充电,试求铜球的电势达到多高时不再放出电子?(铜的逸出功为A = 4.10 eV,普朗克常量h =6.63×10-34 J·s,1 eV =1.60×10-19 J)60. (本题 5分)(4745)波长为λ0 = 0.500 Å的X射线被静止的自由电子所散射,若散射线的波长变为λ = 0.522 Å,试求反冲电子的动能EK.(普朗克常量h =6.63×10-34 J·s)61. (本题10分)(5233)设康普顿效应中入射X射线(伦琴射线)的波长λ =0.700 Å,散射的X射线与入射的X射线垂直,求:(1) 反冲电子的动能EK.(2) 反冲电子运动的方向与入射的X射线之间的夹角θ.(普朗克常量h =6.63×10-34 J·s,电子静止质量me=9.11×10-31 kg)62. (本题 5分)(5366)假定在康普顿散射实验中,入射光的波长λ= 0.0030 nm,反冲电子的速度v = 0.6 c,求散射光的波长λ.(电子的静止质量me=9.11×10-31 kg ,普朗克常量h =6.63×10-34 J·s,1 nm = 10-9 m,c表示真空中的光速)63. (本题 8分)(5380)如图所示,某金属M的红限波长λ= 260 nm (1 nm =10-9 m)今用单色紫外线照射该金属,发现有光电子放出,其中速度最大的光电子可以匀速直线地穿过互相垂直的均匀电场(场强E = 5×103 V/m)和均匀磁场(磁感应强度为B = 0.005 T)区域,求:(1) 光电子的最大速度v.(2) 单色紫外线的波长λ.(电子静止质量me =9.11×10-31 kg,普朗克常量h =6.63×10-34 J·s)四 理论推导与证明题 (共49分)64. (本题 5分)(0486) 证明在康普顿散射实验中,反冲电子的动能K 和入射光子的能量E 之间的关系为: λλλ0−=E K .65. (本题12分)(0504) 证明在康普顿散射实验中,波长为λ0的一个光子与质量为m 0的静止电子碰撞后,电子的反冲角θ与光子散射角φ之间的关系为:100)]2tg()1[(tg −+=φλθc m h66. (本题 5分)(0486) 证明在康普顿散射实验中,反冲电子的动能K 和入射光子的能量E 之间的关系为: λλλ0−=E K .67. (本题12分)(0504) 证明在康普顿散射实验中,波长为λ0的一个光子与质量为m 0的静止电子碰撞后,电子的反冲角θ与光子散射角φ之间的关系为:100)]2tg()1[(tg −+=φλθc m h68. (本题 5分)(4394) 在光电效应实验中,测得光电子最大初动能E K 与入射光频率ν 的关系曲线如图所示.试证:普朗克常量)/(QS RS h =.(即直线的斜率)69. (本题10分)(4443) 如图示,能量为h ν0的光子流与静止质量为m e 的静止自由电子作弹性碰撞,若散射的光子的能量为h ν,试证明散射角φ 满足下式ννννφ00222)(2sin h c m e −=.五 回答问题 (共25分)70. (本题 5分)(4395) 已知从铝金属逸出一个电子至少需要A = 4.2 eV 的能量,若用可见光投射到铝的表面,能否产生光电效应?为什么?(普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19 C)71. (本题 5分)(4396) 已知铂的逸出电势为8 V ,今用波长为 300 nm (1 nm = 10-9m)的紫外光照射,问能否产生光电效应?为什么?(普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19 C)72. (本题 5分)(4398)红外线是否适宜于用来观察康普顿效应,为什么?=9.11×10-31 kg,(红外线波长的数量级为105 Å,电子静止质量me普朗克常量h =6.63×10-34 J·s)73. (本题10分)(4402)处于静止状态的自由电子是否能吸收光子,并把全部能量用来增加自己的动能?为什么?。
量子物理试题
![量子物理试题](https://img.taocdn.com/s3/m/22cd88c3d1d233d4b14e852458fb770bf78a3bf5.png)
量子物理试题题一:量子力学中的双缝干涉实验是一项经典的实验,下列关于该实验的描述哪项是正确的?A. 当实验中只有一个光子通过双缝时,它会以粒子的形式通过其中一个缝隙,并通过干涉现象在接收屏上形成干涉条纹。
B. 当实验中只有一个光子通过双缝时,它会以波动的形式通过两个缝隙,并通过干涉现象在接收屏上形成干涉条纹。
C. 当实验中只有一个光子通过双缝时,它会同时以粒子和波动的形式通过两个缝隙,并在接收屏上形成干涉条纹。
D. 当实验中只有一个光子通过双缝时,它会产生量子喷泉效应,随机地在接收屏上出现。
题二:根据观察结果,量子力学提出了波粒二象性的理论,下列关于波粒二象性的说法哪项是正确的?A. 波动力学描述了粒子在空间中的运动,粒子的位置和动量可以同时被确定。
B. 粒子力学描述了波动的特性,粒子的位置和动量无法同时被确定。
C. 在双缝干涉实验中,当光通过两个缝隙时,光的质量呈现出粒子的特性。
D. 在双缝干涉实验中,当光通过两个缝隙时,光的能量呈现出波动的特性。
题三:量子力学中的Schrodinger方程描述了量子体系的演化,下列关于Schrodinger方程的描述哪项是正确的?A. Schrodinger方程是一个偏微分方程,描述了量子态随时间的演化。
B. Schrodinger方程是一个线性方程,只能描述单个粒子的运动。
C. Schrodinger方程可以用来精确求解包括氢原子在内的多电子体系。
D. Schrodinger方程只适用于微观量子体系,无法描述宏观物体的运动。
题四:量子纠缠是量子力学中的基本概念,下列关于量子纠缠的说法哪项是正确的?A. 量子纠缠是指两个或多个粒子之间存在一种特殊的量子态,它们的状态无法独立地被描述。
B. 量子纠缠是指两个或多个粒子之间通过经典信息联系在一起,可以实现超光速通信。
C. 量子纠缠是指两个或多个粒子之间通过随机过程产生的无关联状态。
D. 量子纠缠只存在于量子力学理论中的数学概念,无法在实验中观察到。
清华大学《大学物理》习题库试题及答案 06 光学习题答案
![清华大学《大学物理》习题库试题及答案 06 光学习题答案](https://img.taocdn.com/s3/m/8aa211323968011ca3009196.png)
P S 1 S 2 r 1 n 1 n 2 t 2 r 2 t 1 一、选择题1.3165:在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中(A) 传播的路程相等,走过的光程相等(B) 传播的路程相等,走过的光程不相等(C) 传播的路程不相等,走过的光程相等(D) 传播的路程不相等,走过的光程不相等 [ ]2.3611:如图,S 1、S 2是两个相干光源,它们到P 点的距离分别为r 1和r 2。
路径S 1P垂直穿过一块厚度为t 1,折射率为n 1的介质板,路径S 2P 垂直穿过厚度为t 2,折射率为n 2的另一介质板,其余部分可看作真空,这两条路径的光程差等于 (A) (B)(C) (D)[ ]3.3664:如图所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且n 1<n 2>n 3,λ1为入射光在折射率为n 1 的媒质中的波长,则两束反射光在相遇点的相位差为(A) 2πn 2e / ( n 1 λ1) (B)[4πn 1e / ( n 2 λ1)] + π(C) [4πn 2e / ( n 1 λ1) ]+ π (D) 4πn 2e / ( n 1 λ1) [ ]4.3169蓝色的滤光片遮盖另一条缝,则:(A) 干涉条纹的宽度将发生改变 (B) 产生红光和蓝光的两套彩色干涉条纹(C) 干涉条纹的亮度将发生改变 (D) 不产生干涉条纹[ ]5.3171:在双缝干涉实验中,两条缝的宽度原来是相等的。
若其中一缝的宽度略变窄(缝中心位置不变),则(A) 干涉条纹的间距变宽 (B) 干涉条纹的间距变窄(C) 干涉条纹的间距不变,但原极小处的强度不再为零 (D) 不再发生干涉现象[ ]6.3172:在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A) 使屏靠近双缝 (B) 使两缝的间距变小 (C) 把两个缝的宽度稍微调窄(D) 改用波长较小的单色光源 [ ]7.3498:在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5 λ,则屏上原来的明纹处 (A) 仍为明条纹 (B) 变为暗条纹 (C) 既非明纹也非暗纹; (D) 无法确定是明纹,还是暗纹 [ ] 8.3612:在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离 相等,则观察屏上中央明条纹位于图中O 处。
量子力学简答100题及答案
![量子力学简答100题及答案](https://img.taocdn.com/s3/m/bdc7ce059b89680202d82545.png)
1、简述波函数的统计解释;2、对“轨道”和“电子云”的概念,量子力学的解释是什么?3、力学量Gˆ在自身表象中的矩阵表示有何特点? 4、简述能量的测不准关系;5、电子在位置和自旋z S ˆ表象下,波函数⎪⎪⎭⎫⎝⎛=ψ),,(),,(21z y x z y x ψψ如何归一化?解释各项的几率意义。
6、何为束缚态?7、当体系处于归一化波函数ψ(,) r t 所描述的状态时,简述在ψ(,)r t 状态中测量力学量F 的可能值及其几率的方法。
8、设粒子在位置表象中处于态),(t r ψ,采用Dirac 符号时,若将ψ(,) r t 改写为ψ(,)r t 有何不妥?采用Dirac 符号时,位置表象中的波函数应如何表示? 9、简述定态微扰理论。
10、Stern —Gerlach 实验证实了什么? 11、一个物理体系存在束缚态的条件是什么? 12、两个对易的力学量是否一定同时确定?为什么? 13、测不准关系是否与表象有关?14、在简并定态微扰论中,如 ()H0的某一能级)0(n E ,对应f 个正交归一本征函数i φ(i =1,2,…,f ),为什么一般地i φ不能直接作为()H HH'+=ˆˆˆ0的零级近似波函数? 15、在自旋态χ12()s z 中, S x 和 S y的测不准关系( )( )∆∆S S x y 22•是多少? 16、在定态问题中,不同能量所对应的态的迭加是否为定态Schrodinger 方程的解?同一能量对应的各简并态的迭加是否仍为定态Schrodinger 方程的解?17、两个不对易的算符所表示的力学量是否一定不能同时确定?举例说明。
18说明厄米矩阵的对角元素是实的,关于对角线对称的元素互相共轭。
19何谓选择定则。
20、能否由Schrodinger 方程直接导出自旋?21、叙述量子力学的态迭加原理。
22、厄米算符是如何定义的?23、据[aˆ,+a ˆ]=1,a a Nˆˆˆ+=,n n n N =ˆ,证明:1ˆ-=n n n a 。
推荐学习 精品-清华大学《大学物理》分类经典练习题及解析 量子2
![推荐学习 精品-清华大学《大学物理》分类经典练习题及解析 量子2](https://img.taocdn.com/s3/m/6ca8fc5150e2524de4187e44.png)
一 选择题 (共48分)1. (本题 3分)(0507) 已知用光照的办法将氢原子基态的电子电离,可用的最长波长的光是 913 Å的紫外光,那么氢原子从各受激态跃迁至基态的赖曼系光谱的波长可表示为:(A) 11913+−=n n λ Å. (B) 11913−+=n n λ Å. (C) 1191322−+=n n λ Å. (D) 191322−=n n λ Å. [ ]2. (本题 3分)(4190) 要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是(A) 1.5 eV . (B) 3.4 eV .(C) 10.2 eV . (D) 13.6 eV . [ ]3. (本题 3分)(4194) 根据玻尔的理论,氢原子在n =5轨道上的动量矩与在第一激发态的轨道动量矩之比为(A) 5/4. (B) 5/3.(C) 5/2. (D) 5. [ ]4. (本题 3分)(4195) 氢原子光谱的巴耳末线系中谱线最小波长与最大波长之比为(A) 7/9. (B) 5/9.(C) 4/9. (D) 2/9. [ ]5. (本题 3分)(4195) 氢原子光谱的巴耳末线系中谱线最小波长与最大波长之比为(A) 7/9. (B) 5/9.(C) 4/9. (D) 2/9. [ ]6. (本题 3分)(4197) 由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出:(A) 一种波长的光. (B) 两种波长的光.(C) 三种波长的光. (D) 连续光谱. [ ]7. (本题 3分)(4198) 根据玻尔理论,氢原子中的电子在n =4的轨道上运动的动能与在基态的轨道上运动的动能之比为(A) 1/4. (B) 1/8.(C) 1/16. (D) 1/32. [ ]8. (本题 3分)(4199) 根据玻尔氢原子理论,氢原子中的电子在第一和第三轨道上运动时速度大小之比v 1/ v 3是(A) 1/9. (B) 1/3.(C) 3. (D) 9. [ ]9. (本题 3分)(4239)假定氢原子原是静止的,则氢原子从n = 3 的激发状态直接通过辐射跃迁到基态时的反冲速度大约是(A) 4 m/s.(B) 10 m/s .(C) 100 m/s . (D) 400 m/s .[](氢原子的质量m =1.67×10-27 kg)10. (本题 3分)(4411)氢原子光谱的巴耳末系中波长最大的谱线用λ1表示,其次波长用λ2表示,则它们的比值λ1/λ2为:(A) 20/27.(B) 9/8.(C) 27/20.(D) 16/9.[]11. (本题 3分)(4619)按照玻尔理论,电子绕核作圆周运动时,电子的动量矩L的可能值为(A) 任意值.(B) nh,n = 1,2,3,…(C) 2π nh,n = 1,2,3,…(D) nh/(2π),n = 1,2,3,…[]12. (本题 3分)(4622)具有下列哪一能量的光子,能被处在n = 2的能级的氢原子吸收?(A) 1.51 eV.(B) 1.89 eV.(C) 2.16 eV.(D) 2.40 eV.[]13. (本题 3分)(4747)若用里德伯常量R表示氢原子光谱的最短波长,则可写成(A) λmin =1 / R.(B) λmin =2 / R.(C) λmin =3 / R.(D) λmin =4 / R.[]14. (本题 3分)(4748)已知氢原子从基态激发到某一定态所需能量为 10.19 eV,当氢原子从能量为-0.85 eV的状态跃迁到上述定态时,所发射的光子的能量为(A) 2.56 eV.(B) 3.41 eV.(C) 4.25 eV.(D) 9.95 eV.[]15. (本题 3分)(4749)要使处于基态的氢原子受激后可辐射出可见光谱线,最少应供给氢原子的能量为(A) 12.09 eV. (B) 10.20 eV.(C) 1.89 eV.(D) 1.51 eV.[]16. (本题 3分)(4750)在气体放电管中,用能量为12.1 eV的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是(A) 12.1 eV. (B) 10.2 eV.(C) 12.1 eV,10.2 eV和 1.9 eV. (D) 12.1 eV,10.2 eV和 3.4 eV.[ ]二 填空题 (共101分)17. (本题 4分)(0514) 在玻尔氢原子理论中势能为负值,而且数值比动能大,所以总能量为________值,并且只能取____________值.18. (本题 4分)(4191) 在氢原子发射光谱的巴耳末线系中有一频率为6.15×1014 Hz 的谱线,它是氢原子从能级E n =__________eV 跃迁到能级E k =__________eV 而发出的. (普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19 C)19. (本题 4分)(4192) 在氢原子光谱中,赖曼系(由各激发态跃迁到基态所发射的各谱线组成的谱线系)的最短波长的谱线所对应的光子能量为_______________eV ;巴耳末系的最短波长的谱线所对应的光子的能量为___________________eV .(里德伯常量 R =1.097×107 m -1 ,普朗克常量h =6.63×10-34 J ·s ,1 eV =1.60×10-19 J ,真空中光速 c =3×108 m ·s -1 )20. (本题 4分)(4196) 氢原子基态的电离能是 _______________eV .电离能为+0.544 eV 的激发态氢原子,其电子处在n =_________________ 的轨道上运动.21. (本题 4分)(4200) 设大量氢原子处于n =4的激发态,它们跃迁时发射出一簇光谱线.这簇光谱线最多可能有 ________________ 条,其中最短的波长是 _______ Å(普朗克常量h =6.63×10-34 J ·s)22. (本题 4分)(4201) 图示被激发的氢原子跃迁到低能级时(图中E 1不是基态能级),可发出波长为λ1、λ2、λ3的辐射,其频率ν1、ν2和ν3满足关系式______________________;三个波长满足关系式__________________.λ1λ2λ3E 1E 2E 3玻尔的氢原子理论中提出的关于__________________________________和____________________________________的假设在现代的量子力学理论中仍然是两个重要的基本概念.24. (本题 3分)(4424)欲使氢原子发射赖曼系(由各激发态跃迁到基态所发射的谱线构成)中波长为1216 Å的谱线,应传给基态氢原子的最小能量是_____________________eV.(普朗克常量h = 6.63×10-34 J·s,基本电荷e =1.60×10-19 C)25. (本题 5分)(4513)玻尔的氢原子理论的三个基本假设是:(1)____________________________________,(2)____________________________________,(3)____________________________________.26. (本题 3分)(4517)欲使氢原子能发射巴耳末系中波长为4861.3 Å的谱线,最少要给基态氢原子提供_______________eV的能量.(里德伯常量R =1.097×107 m-1 )27. (本题 3分)(4518)欲使氢原子能发射巴耳末系中波长为6562.8 Å的谱线,最少要给基态氢原子提供_________________eV的能量.(里德伯常量R =1.097×107 m-1 )28. (本题 3分)(4620)按照玻尔理论,移去处于基态的He+中的电子所需能量为_____________eV.29. (本题 3分)(4623)氢原子中电子从n = 3的激发态被电离出去,需要的能量为_________eV.30. (本题 3分)(4624)氢原子由定态l跃迁到定态k可发射一个光子.已知定态l的电离能为0.85 eV,又知从基态使氢原子激发到定态k所需能量为10.2 eV,则在上述跃迁中氢原子所发射的光子的能量为__________eV.玻尔氢原子理论中的定态假设的内容是:______________________________ ______________________________________________________________________ _____________________________________________________________________.32. (本题 3分)(4752)玻尔氢原子理论的基本假设之一是定态跃迁的频率条件,其内容表述如下:______________________________________________________________________ ____________________________________________________.33. (本题 3分)(4753)玻尔氢原子理论的基本假设之一是电子轨道动量矩的量子化条件,其内容可表述如下:____________________________________________________________ ______________________________________________________________________ ________________________________________________________________.34. (本题 4分)(4754)氢原子的部分能级跃迁示意如图.在这些能级跃迁中,(1) 从n =______的能级跃迁到n =_____的能级时所发射的光子的波长最短;(2) 从n =______的能级跃迁到n =______的能级时所发射的光子的频率最小.n = 1 n = 2 n = 3 n = 435. (本题 4分)(4755)被激发到n =3的状态的氢原子气体发出的辐射中,有______条可见光谱线和_________条非可见光谱线.36. (本题 4分)(4756)氢原子从能量为-0.85 eV的状态跃迁到能量为-3.4 eV的状态时,所发射的光子能量是_________eV,这是电子从n =_______的能级到n = 2的能级的跃迁.当氢原子从某初始状态跃迁到激发能(从基态到激发态所需的能量)为10.19eV 的激发态上时,发出一个波长为4860 Å的光子,则初始状态氢原子的能量是________eV .38. (本题 3分)(4758) 要使处于基态的氢原子受激发后能辐射氢原子光谱中波长最短的光谱线,最少需向氢原子提供______________eV 的能量.39. (本题 3分)(4759) 已知基态氢原子的能量为-13.6 eV ,当基态氢原子被 12.09 eV 的光子激发后,其电子的轨道半径将增加到玻尔半径的______倍.40. (本题 3分)(4760) 当一个质子俘获一个动能E K =13.6 eV 的自由电子组成一个基态氢原子时,所发出的单色光频率是______________________________.(基态氢原子的能量为-13.6 eV ,普朗克常量h =6.63×10-34 J ·s)41. (本题 3分)(4761) 使氢原子中电子从n =3的状态电离,至少需要供给的能量为_________eV(已知基态氢原子的电离能为13.6 eV).42. (本题 3分)(4762) 在氢原子光谱的巴耳末系中,波长最长的谱线和波长最短的谱线的波长比值是______________.43. (本题 3分)(4763) 在氢原子光谱的巴耳末系中,波长最长的谱线H α和相邻的谱线H β的波长比值是______________.44. (本题 4分)(4765) 处于基态的氢原子吸收了13.06 eV 的能量后,可激发到n =________的能级,当它跃迁回到基态时,可能辐射的光谱线有________条.45. (本题 4分)(5369) 根据氢原子理论,若大量氢原子处于主量子数n = 5的激发态,则跃迁辐射的谱线可以有________条,其中属于巴耳末系的谱线有______条.三计算题 (共113分)46. (本题 8分)(0316)组成某双原子气体分子的两个原子的质量均为m,间隔为一固定值d,并绕通过d的中点而垂直于d的轴旋转,假设角动量是量子化的,并符合玻尔量子化条件.试求:(1) 可能的角速度;(2) 可能的量子化的转动动能.47. (本题 5分)(0521)实验发现基态氢原子可吸收能量为 12.75 eV的光子.(1) 试问氢原子吸收该光子后将被激发到哪个能级?(2) 受激发的氢原子向低能级跃迁时,可能发出哪几条谱线?请画出能级图(定性),并将这些跃迁画在能级图上.48. (本题10分)(0532)已知氢光谱的某一线系的极限波长为3647 Å,其中有一谱线波长为6565 Å.试由玻尔氢原子理论,求与该波长相应的始态与终态能级的能量.(R =1.097×107 m-1 )49. (本题 5分)(0537)在氢原子中,电子从某能级跃迁到量子数为n的能级,这时轨道半径改变q 倍,求发射的光子的频率.50. (本题10分)(0538)根据玻尔理论(1) 计算氢原子中电子在量子数为n的轨道上作圆周运动的频率;(2) 计算当该电子跃迁到(n-1)的轨道上时所发出的光子的频率;(3) 证明当n很大时,上述(1)和(2)结果近似相等.51. (本题10分)(0570)氢原子激发态的平均寿命约为10-8s,假设氢原子处于激发态时,电子作圆轨道运动,试求出处于量子数n =5状态的电子在它跃迁到基态之前绕核转了多少圈.( me= 9.11×10-31 kg,e =1.60×10-19 C,h =6.63×10-34 J·s,ε=8.85×10-12 C2·N-1·m-2 )52. (本题12分)(4202)氢原子光谱的巴耳末线系中,有一光谱线的波长为4340 Å,试求:(1) 与这一谱线相应的光子能量为多少电子伏特?(2) 该谱线是氢原子由能级En 跃迁到能级Ek产生的,n和k各为多少?(3) 最高能级为E5的大量氢原子,最多可以发射几个线系,共几条谱线?请在氢原子能级图中表示出来,并说明波长最短的是哪一条谱线.53. (本题 5分)(4412)处于基态的氢原子被外来单色光激发后发出的光仅有三条谱线,问此外来光的频率为多少?(里德伯常量R =1.097×107 m-1)54. (本题 5分)(4413)试求氢原子线系极限的波数表达式及赖曼系(由各激发态跃迁到基态所发射的谱线构成)、巴耳末系、帕邢系(由各高能激发态跃迁到n =3的定态所发射的谱线构成)的线系极限的波数.(里德伯常量R =1.097×107 m-1 )处于第一激发态的氢原子被外来单色光激发后,发射的光谱中,仅观察到三条巴耳末系光谱线.试求这三条光谱线中波长最长的那条谱线的波长以及外来光的频率. (里德伯常量R =1.097×107 m -1)56. (本题 5分)(4519) 已知氢原子中电子的最小轨道半径为 5.3×10-11 m ,求它绕核运动的速度是多少? (普朗克常量h =6.63×10-34 J ·s ,电子静止质量m e =9.11×10-31 kg)57. (本题 5分)(4520) 试估计处于基态的氢原子被能量为 12.09 eV 的光子激发时,其电子的轨道半径增加多少倍?58. (本题 5分)(4547) 已知电子在垂直于均匀磁场B K 的平面内运动,设电子的运动满足玻尔量子化条件,求电子轨道的半径r n =?59. (本题 8分)(4767) 当氢原子从某初始状态跃迁到激发能(从基态到激发态所需的能量)为ΔE =10.19 eV 的状态时,发射出光子的波长是λ=4860 Å,试求该初始状态的能量和主量子数.(普朗克常量h =6.63×10-34 J ·s ,1 eV =1.60×10-19 J)60. (本题 5分)(4768) 用某频率的单色光照射基态氢原子气体,使气体发射出三种频率的谱线,试求原照射单色光的频率.(普朗克常量h =6.63×10-34 J ·s ,1 eV =1.60×10-19 J)61. (本题 5分)(5238) 已知氢原子光谱中有一条谱线的波长是λ=1025.7 Å,氢原子的里德伯常量R=109677 cm -1.问:跃迁发生在哪两个能级之间?62. (本题 5分)(5370) 若处于基态的氢原子吸收了一个能量为h ν =15 eV 的光子后其电子成为自由电子(电子的质量m e =9.11×10-31 kg),求该自由电子的速度v .四 理论推导与证明题 (共35分)63. (本题10分)(4193) 设氢原子光谱的巴耳末系中第一条谱线(H α)的波长为λα,第二条谱线(H β)的波长为λβ,试证明:帕邢系(由各高能态跃迁到主量子数为3的定态所发射的各谱线组成的谱线系)中的第一条谱线的波长为βαβαλλλλλ−=64. (本题 5分)(4417) 测得氢原子光谱中的某一谱线系的极限波长为λk =364.7 nm .(1 nm = 10-9m)试推证此谱线系为巴耳末系. (里德伯常量R =1.097×107 m -1 )试用玻尔理论推导氢原子在稳定态中的轨道半径.66. (本题 5分)(4427) 试根据玻尔关于氢原子结构的基本假说, 推导里德伯常量的理论表达式.(氢原子能级公式: 2204281he m n E e n ε⋅−=)67. (本题10分)(4444) 质量为m 的卫星,在半径为r 的轨道上环绕地球运动,线速度为v .(1) 假定玻尔氢原子理论中关于轨道角动量的条件对于地球卫星同样成立.证明地球卫星的轨道半径与量子数的平方成正比,即r = kn 2 (k 是比例常数).(2) 应用(1)的结果求卫星轨道和它的下一个“容许”轨道间的距离.由此进一步说明在宏观问题中轨道半径实际上可认为是连续变化的(利用以下数据作估算:普朗克常量s J 106.634⋅×=−h ,地球质量kg 10624×=M ,地球半径km 104.66×=R ,万有引力常数2211/kg Nm 107.6−×=G ).五 回答问题 (共15分)68. (本题 5分)(4220) 解释玻尔原子理论中的下列概念:定态;基态;激发态;量子化条件.69. (本题 5分)(4418) 氢原子发射一条波长为λ =4340 Å的光谱线.试问该谱线属于哪一谱线系?氢原子是从哪个能级跃迁到哪个能级辐射出该光谱线的?(里德伯常量R =1.097×107 m -1 )70. (本题 5分)(4769) 玻尔氢原子理论的成功和局限性是什么?。
量子力学经典题目及解答.ppt
![量子力学经典题目及解答.ppt](https://img.taocdn.com/s3/m/1a64ebdbed3a87c24028915f804d2b160b4e8699.png)
00
2 er2 d ( r 2 ) er2 0
0
2
I
,A
1
1/4
,
1
1/4
ex2 /2
<2>
2d xA 2x2 e 2xd x 1 ,(分 部 积 分 )
0
A 2 x 2e 2 xdx
A2
[ x 2e 2 x 2 xe 2 xdx ]
0
2
0 0
A2 [ 1
偶宇称解)。
解:定态schr.eq
2
2
d2 dx2
u(x)
E
(1)
u0
(x) 2(E u) 0 (1)
2
ⅠⅡ
-a
o
Ⅲ a
即,222E(u02E0), 0
xa x a
(2) (3)
令 k 2 2 2 E ,2 2 ( u 0 2 E ), 解 为 : , ( x ( ) x ) A a e e ik x x B b e e i k x x
4
f1 f
sin(
)x
2.试将以下波函数归一化:(1)Aex2/2,(2)Ax0e, xx,x00
(3)(x)Ax(ax),0xa
解:<1> 2 dx A2 ex2 dx A2I 1
2
I 2 ex2 dx e y2 dy e(x2 y2 )dxdy er2 rdrd
1khTv1c2Tv
decc2 1vv/T 3d v1c c1 2vv3/dT vc c1 2Tv2dv
----R-J公式
2.由玻尔角动量量子化条件导出氢原子能级公式E n
解: 角动量量子化条件,
ers22
Ln
量子力学十道面试题目
![量子力学十道面试题目](https://img.taocdn.com/s3/m/57d73c29da38376bae1fae98.png)
十道量子力学口试题赏析说明第一,这十道面试题,不是特意编辑和思考的结果。
而是上篇博文撰写过程中,临时回想出的一些问题。
面试过程中,对每位考生,每位老师顶多能问一次,而且最好不要重复。
所以我现场提出的问题要多很多,而且不限于量子力学。
第二,周世勋先生的《量子力学教程》是我校指定的复习教材,很多学生的笔试近乎满分。
问一问就可以知道他是否尝试脱离应试的桎梏。
第三,如果不是研究理论性问题的研究人员、也不是量子类课程(含量子力学、量子场论、量子统计、固体理论等)的教师,一时想不起答案来,很正常。
————插播————复试时自傲的学生? 还是上个世纪碰到过!科学院物理所罗会仟研究员:学生会非常自傲,说把量子力学给读烂了,然后面试问题是让他在黑板上现场解氢原子的薛定谔方程。
这哥们立马挂了。
对考科学院理论物理所博士的某位硕士:“你说你的硕士论文研究的是统计物理问题,而你解决的这个问题对宇宙起源和演化的理解有所帮助。
那你讲讲都有哪些帮助?”这哥们也立马挂了。
——————————1,宽度为a的一维无限深势阱中的基态,当宽度突然变化到2a时,是否会变到新的无限深势阱中的基态?答案:在新的势阱中,要把原来的基态通过简单的添加零后就是新的势阱中的状态(以保证粒子数守恒),会发现这个态不是新势阱中的基态。
赏析:动力学立即改变时,状态不会马上变化。
不过,如果把这个问题反过来,问当宽度突然由2a变化到a时,基态如何变化,就是一个棘手的问题。
2,问一维谐振子基态波函数对位置的依赖大概是个什么函数?答案:高斯分布。
赏析:一维体系本征态有三大性质(节点定理,简并定理,宇称定理)。
高斯分布往往是对基态形式的第一个尝试。
3,粒子的能量低于势垒高度而处于势垒中时,粒子的动能是否为负?答案:学生常有这个困惑。
本质上,量子力学中没有这个问题。
周世勋《量子力学教程》P.92有专门讨论。
赏析:这是周世勋先生《量子力学教程》中唯一一个两次着墨的问题。
(完整word版)清华大学《大学物理》习题库试题及答案 06 光学习题答案(word文档良心出品)
![(完整word版)清华大学《大学物理》习题库试题及答案 06 光学习题答案(word文档良心出品)](https://img.taocdn.com/s3/m/6bd3400a0b4c2e3f5627630c.png)
P S 1 S 2 r 1 n 1 n 2 t 2 r 2 t 1 一、选择题1.3165:在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中(A) 传播的路程相等,走过的光程相等(B) 传播的路程相等,走过的光程不相等(C) 传播的路程不相等,走过的光程相等(D) 传播的路程不相等,走过的光程不相等 [ ]2.3611:如图,S 1、S 2是两个相干光源,它们到P 点的距离分别为r 1和r 2。
路径S 1P垂直穿过一块厚度为t 1,折射率为n 1的介质板,路径S 2P 垂直穿过厚度为t 2,折射率为n 2的另一介质板,其余部分可看作真空,这两条路径的光程差等于 (A) (B)(C) (D)[ ]3.3664:如图所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且n 1<n 2>n 3,λ1为入射光在折射率为n 1 的媒质中的波长,则两束反射光在相遇点的相位差为(A) 2πn 2e / ( n 1 λ1) (B)[4πn 1e / ( n 2 λ1)] + π(C) [4πn 2e / ( n 1 λ1) ]+ π (D) 4πn 2e / ( n 1 λ1) [ ]4.3169蓝色的滤光片遮盖另一条缝,则:(A) 干涉条纹的宽度将发生改变 (B) 产生红光和蓝光的两套彩色干涉条纹(C) 干涉条纹的亮度将发生改变 (D) 不产生干涉条纹[ ]5.3171:在双缝干涉实验中,两条缝的宽度原来是相等的。
若其中一缝的宽度略变窄(缝中心位置不变),则(A) 干涉条纹的间距变宽 (B) 干涉条纹的间距变窄(C) 干涉条纹的间距不变,但原极小处的强度不再为零 (D) 不再发生干涉现象[ ]6.3172:在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A) 使屏靠近双缝 (B) 使两缝的间距变小 (C) 把两个缝的宽度稍微调窄(D) 改用波长较小的单色光源 [ ]7.3498:在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5 λ,则屏上原来的明纹处 (A) 仍为明条纹 (B) 变为暗条纹 (C) 既非明纹也非暗纹; (D) 无法确定是明纹,还是暗纹 [ ] 8.3612:在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离 相等,则观察屏上中央明条纹位于图中O 处。
清华大学《大学物理》习题库试题及答案____06_光学习题答案
![清华大学《大学物理》习题库试题及答案____06_光学习题答案](https://img.taocdn.com/s3/m/45297b31a5e9856a56126029.png)
n=1.68 n=1.60 n=1.58
O
O
3507 图 k / nR (A) rk = kR (B) rk = kR / n (C) rk = knR (D) rk = 16. 5208: 在玻璃(折射率 n2=1.60)表面镀一层 MgF2 (折射率 n2=1.38)薄膜作为增透膜。 为了使波长为 500 nm(1nm=109m) 的光从空气(n1=1.00)正入射时尽可能少反射,MgF2 薄膜 的最少厚度应是 (A) 78.1 nm (B) ) 90.6 nm (C) 125 nm (D) 181 nm (E) 250nm 17.5324:把一平凸透镜放在平玻璃上,构成牛顿环装置。当平凸透镜慢慢地向上平移 时,由反射光形成的牛顿环 (A) 向中心收缩,条纹间隔变小 (B) 向中心收缩,环心呈明暗交替变化 (C) 向外扩张,环心呈明暗交替变化 (D) 向外扩张,条纹间隔变大 18.5325:两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射。若上面 的平玻璃慢慢地向上平移,则干涉条纹 (A) 向棱边方向平移,条纹间隔变小 (B) 向棱边方向平移,条纹间隔变大 (C) 向棱边方向平移,条纹间隔不变 (D) 向远离棱边的方向平移,条纹间隔不变 (E) 向远离棱边的方向平移,条纹间隔变小 19.5326:两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射。若上面 的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的 (A) 间隔变小,并向棱边方向平移 (B) 间隔变大,并向远离棱边方向平移 (C) 间隔不变,向棱边方向平移 (D) 间隔变小,并向远离棱边方向平移
20.7936:由两块玻璃片(n1=1.75)所形成的空气劈形膜,其一端厚度为零,另一端厚 度为 0.002 cm。现用波长为 700 nm (1nm = 109 m)的单色平行光,沿入射角为 30°角的方 向射在膜的上表面,则形成的干涉条纹数为 (A) 27 (B) 40 (C) 56 (D) 100 21.3200:在迈克耳孙干涉仪的一条光路中,放入一折射率为 n,厚度为 d 的透明薄片, 放入后,这条光路的光程改变了 (A) 2 ( n-1 ) d (B) 2nd (C) 2 ( n-1 ) d+ / 2 (D) nd (E) ( n-1 ) d 22.3516:在迈克耳孙干涉仪的一支光路中,放入一片折射率为 n 的透明介质薄膜后, 测出两束光的光程差的改变量为一个波长,则薄膜的厚度是 (A) / 2 (B) / (2n) (C) / n (D) 2n 1 23.3353:在单缝夫琅禾费衍射实验中,波长为的单色光垂直入射在宽度为 a=4的 单缝上,对应于衍射角为 30°的方向,单缝处波阵面可分成的半波带数目为 L (A) 2 个 (B) 4 个 (C) 6 个 (D) 8 个 单缝 屏幕 D L
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
l1 l3 l2
选C
1 = E2 E1 1 = E3 E2
l1
hc
l2
hc
1 = E3 E1
l3 hc
2、将波长为600nm的单色光垂直均匀照射在等间距的平行 四缝上,在衍射角正弦 sin=0.03处应出现的第三级干 涉明条纹正好缺级。由此可知这四缝中每条通光的缝
宽 a= 2105(m) ,不通光宽度b= 4105 (m)。试将这四
的不确定度 D x = hl / p Dl 。
l=
h p
Dl =
h Dp p2
Dx Dp = h
o
3.将波长为 6000A 平行光垂直照射在一多缝上,衍射光强分布如
图所示,由图可知这多缝的缝数 N = 6 ,每缝的宽度 b = 2×10-5 m ,缝间不通光部分的宽度b′= 4×10-5 m 如将上述多缝
1 2
Rl
2
Re
o
rk = kRl 2 Reo
2:扩展 D 减小,第 K 级条纹将向外移动
3:Drk 与 eo 无关
可近似看作劈尖一部份
tg sin = rk
l lR
R
Drk = 2 = 2rk
2、如要用衍射光栅区别氢原子第14和第15条谱线,光栅 的分辨本领应多大如光栅常数为每毫米200条的光栅, 要想在第 2 级中能分辨这两条谱线,这光栅的宽度至 少多宽?(提示:巴尔末系第14和15条谱线指的量子 数 n分别从16和17到 n为2跃迁过程中发射的光谱线)
得:x=0 或 x=L 或 x=L/2
取 x=L/2
L
L
3:
3
3
= Y2dx = A2 x2 (L x)2 dx
0
0
= A2 (1 L5 1 1 L5 1 1 L5 1 )
3 27 2 81 5 243
= A2 L5 ( 90 45 6 ) = 51 = 17
30 243 243 243 243 81
R1 R2
2
r 2 ( 1 1 ) = kl
R1 R2
rk =
(2k 1)R1R2l
2(R2 R1)
亮
rk =
R1R2kl
(R2 R1)
暗
2 L
n2 2
L2
sin
nx
L
8 2m
h2
E
2 sin nx = 0
LL
得
E
=
n2h2 8mL2
3:
h
=
E3
E1
=
9h2 8mL2
h2 8mL2
=
=
hc
l
l
moc 2h
2
sin 2
moc 2
Px
=
h
l
h cos l
=
h
l
l
h cos
2h sin 2
moc 2
动量
Py
=
h sin l
=
l
h sin
2h sin 2
moc 2
一、选择题:
2001,1 试卷
1、右图为一干涉膨胀仪示意图。上下两平行玻璃板用一对 热膨胀系数极小的石英柱支撑着,被测样品W在两玻璃 板之间,样品上表面与玻璃板下表两间形成一空气劈尖 在以波长为λ的单色光照则下,可以看到平行的等厚干 涉条纹。当W受热膨胀时,条纹将
释。而光的波动说不能解释。简要地比较这两种理论的主要区别:
_____________________________________________________________________
初动能与光强有关。 电子逸出需要累积时间。
_____________________________________________________________________
U (C)
(D)
U选 D
光强不变时,频率高,单个光子能量大,但单位时间光子数少
4、被激发的氢原子能级图中,由高能态跃迁到较低能态
时可发出的波长分别为λ1 、λ2 和λ3的辐射。此三 波长有如下关系:
(A) l1 l2 = l3
(C) 1 1 = 1
l1 l2 l3
hc
l
=
En
Ek
(B) l1 l3 = l2
缝衍射光强分布图的大致情况画在下图中。
asin = l
(a b)sin = 3l asin = l
3、一束由自然光和线偏振光组成的混合光,垂直通过偏 振片。当偏振片顺时针转动到某一位置时,出射光的
光强最小为 I;当偏振片继续顺时针转过 900时,出 射光强为最大,且为 3I;偏振片再继续转过 600 , 则出射光的光强 I3 = 1.5 I 。
的入射角不等于布儒斯特角时,反射光将为部分偏振光。试在 图上画出其反射和折射光线的偏振态。旋转图中的检偏振器,测
得反射光最大光强为最小光强的 2 倍。部分偏振光可视为一自然 光和一线偏振光强度的叠加,试求反射光中自然光光强与线偏
振光的光强之比 I :I = 2:1 。 自偏
n1 sin i = n2 sin g b
4、如图所示,考虑一波长为 l 的 x 光光子对静止电子
发生碰撞,碰撞后光子以 角散射,试求散射光子的
波长,反冲电子的动能和动量。(电子静质量为m0)
解:1 l = l Dl = l 2h sin 2
moc
2
Ek
2:电子动能 Ek = h h
2h sin 2
Ek
=
hc
l
hc
l
= hc Dl ll
中的偶数缝挡住,试将此情况下的光强分布的大致情况画在右下图上。
b取sink=
1
=
l
sin((=bb(bbblbs)bis)ni)sn=in=16=2l3=11l00k7l5 = 0.005
sinθ
5 .射自光然为光线从偏空振气光照。在该某液液体面的上折测射得率折射n 光= 线的c折tg射g 角b 为。当gb自时然,光反
n
1 Nl
=________l___。
= (r l) nl r = Nl
2 波长为 l 的单色光垂直入射到宽度为 a 的单缝上,紧
贴缝后有一焦距为 f 的凸透镜,使衍射光屏放在透镜的焦
平面上,则中央明条纹宽度
lo =
l
2f
。第一级明条
_____a______
纹位置离中央明条纹中心的距离 x1= 3 f l 。 第三
将如何变化?
⑶ 试判别在调节过程中,在
离开中心 r 处的牛顿环 相邻干涉条纹宽度△r与eo的
e
厚度有无关系?
叙述简明理由,并算出在该
处的条纹宽度。
解:1
e = r2 2R
D
=
2(e eo )
l
2
=
kl
l
(2k 1)
亮 暗
2
r2
R
l
2eo 2
=
kl
(2k 1) l
2
亮 暗
rk =
kRl
检偏器
• 2 |1
自然光 ⊙与|各一份 线偏振光 ⊙ 一份
7、简要说明光电效应实验中的其中两个特点:
(1)___________红__限_____________________;
(用2爱)因__斯___坦__光__电瞬___效时__应_性_方__程___:_________h_______=_____12____m___。v__2___A_____就能得到很好的解
,由此
2
可计算得在势阱中的能量只能取 En=
n2h2
。若 n = 3,试
8mL2
在题图 a 中大致画出几率密度的分布曲线。若该粒子不是在无限
深势阱中,而在宽度同样为L的有限深势阱中,试在题图 b中画出 相应的几率密度分布曲线。由a、b两图可知,由于___波__长__变__长___
____有__限__深__势__阱__中__粒__子__速__度__变__小__,__不__确__定__度__量__(__位__置__)__变__大_____ , 可以判别同样能级的有限深势阱比无限深势阱中粒子的能量来得
h2 mL2
l = c = mL2c h
5、在光电效应实验中,对逸出功 A不同的 1、2 两种
金属,(A2 > A1)做遏止电压 U a与光频 的比较
实验曲线,试判别下列哪张图线是正确的:
Ua
Ua
Ua
选b
12
12
1 2
(a) ν
Ua
21
(b) ν
Ua 21
(c) ν
Ua
(d) ν
(e) ν
2 1
N = R = 553 277 K2
l = 277 = 1.39(mm) 200
3、在一维无限深势阱中运动的微观粒子,势阱宽度为 L,如果粒子
状态的波数:
Y = Ax(L x)
(1)试求归一化常数 A
(2)粒子几率出现的最大位置
(3)粒子在 0 L 之间出现的几率
3
L
L
解:(1)
Y2dx = A2 x2 (L x)2 dx = 1
正好与凹透镜的凹球而接触。已知凸球面的曲率半径 R1 小于凹球面的曲率半径 R2 。现用波长为λ的单色光观 测,在反射光部分可以观测到环形的干涉条纹。求:K
级明暗干涉条纹的半径表达式
解:
r2 e1 = 2R1
与
e2
=
r2 2R2
=
2(e1
e2
)
l
2
=
Kλ
亮
(2k 1) l 暗