单级倒立摆系统的极点配置与状态观测器设计
演示文稿一阶倒立摆系统模型分析状态反馈与观测器设计
的。为了应用线性系统理论,可在倒立摆平衡位
置附近对系统进行线性化,取 - ,令
• sin , cos 1 并忽略高次项,可得如下方程:
•
x
u mgl
J
c J
ml J
u
第7页,共33页。
• 可以用线性系统理论对倒立摆系统进行控制,选
择状态变量x。
x1 x
x2
x
x3 x4
第15页,共33页。
4.极点配置
• 假设系统要求超调量不超过10%,调整时间为2s,根据公
式
e( / 1 2 ) 10%
ts
4
wn
2
经计算取 0.7, wn 3
可得系统特征方程为
主导极s点2 为 2wns wn2 s2 4.2s 9 0
s1,2 2.1 j2.1424
第16页,共33页。
• 降维观测器状态跟踪误差仿真结果:
第33页,共33页。
21.4174 1 3.9281
0
•
计算
A
28.3480 6.3224
0 0
78.5615 27.9079
0
1
122.1830 0 152.8225 0.6747
第22页,共33页。
• 带状态观测器的状态反馈系统为
v
u
+ x
b
+
A
y c
+ b
xˆ G
xˆ
+
A-GC
K
第23页,共33页。
T
A22
T
A12
K)
a(s)
•得
30 0
K
0
29.3253
直线一级倒立摆系统的状态空间极点配置控制设计详细实验报告
一、直线一级倒立摆建模根据自控原理实验书上相关资料,直线一级倒立摆在建模时,一般忽略掉系统中的一些次要因素.例如空气阻力、伺服电机的静摩擦力、系统连接处的松弛程度等,之后可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示:倒立摆系统是典型的机电一体化系统,其机械部分遵循牛顿的力学定律,其电气部分遵守电磁学的基本定理.因此,可以通过机理建模方法得到较为准确的系统数学模型,通过实际测量和实验来获取系统模型参数.无论哪种类型的倒立摆系统,都具有3个特性,即:不确定性、耦合性、开环不稳定性. 直线型倒立摆系统,是由沿直线导轨运动的小车以及一端固定于小车上的匀质长杆组成的系统. 小车可以通过传动装置由交流伺服电机驱动. 小车导轨一般有固定的行程,因而小车的运动范围是受到限制的。
虽然倒立摆的形式和结构各异,但所有的倒立摆都具有以下的特性:1) 非线性倒立摆是一个典型的非线性复杂系统,实际中可以通过线性化得到系统的近似模型,线性化处理后再进行控制。
也可以利用非线性控制理论对其进行控制。
倒立摆的非线性控制正成为一个研究的热点。
2) 不确定性主要是模型误差以及机械传动间隙,各种阻力等,实际控制中一般通过减少各种误差来降低不确定性,如通过施加预紧力减少皮带或齿轮的传动误差,利用滚珠轴承减少摩擦阻力等不确定因素。
3) 耦合性倒立摆的各级摆杆之间,以及和运动模块之间都有很强的耦合关系,在倒立摆的控制中一般都在平衡点附近进行解耦计算,忽略一些次要的耦合量。
4) 开环不稳定性倒立摆的平衡状态只有两个,即在垂直向上的状态和垂直向下的状态,其中垂直向上为绝对不稳定的平衡点,垂直向下为稳定的平衡点。
由于机构的限制,如运动模块行程限制,电机力矩限制等。
为了制造方便和降低成本,倒立摆的结构尺寸和电机功率都尽量要求最小,行程限制对倒立摆的摆起影响尤为突出,容易出现小车的撞边现象。
由此,约束限制直线型一级倒立摆系统的实际控制要求可归结为3点:(1)倒立摆小车控制过程的最大位移量不能超过小车轨道的长度;(2)为保证倒立摆能顺利起立,要求初始偏角小于20°;(3)为保证倒立摆保持倒立的平衡态,要求控制系统响应速度足够快。
倒立摆状态空间极点配置控制实验实验报告
倒立摆状态空间极点配置控制实验实验报告《现代控制理论》实验报告状态空间极点配置控制实验一、实验原理经典控制理论的研究对象主要是单输入单输出的系统,控制器设计时一般需要有关被控对象的较精确模型,现代控制理论主要是依据现代数学工具,将经典控制理论的概念扩展到多输入多输出系统。
极点配置法通过设计状态反馈控制器将多变量系统的闭环系统极点配置在期望的位置上,从而使系统满足瞬态和稳态性能指标。
1.状态空间分析对于控制系统X = AX + Bu选择控制信号为:u = ?KX式中:X 为状态向量( n 维)u 控制向量(纯量)A n × n维常数矩阵B n ×1维常数矩阵求解上式,得到 x(t) = (A ? BK)x(t)方程的解为: x(t) = e( A?BK )t x(0)状态反馈闭环控制原理图如下所示:从图中可以看出,如果系统状态完全可控,K 选择适当,对于任意的初始状态,当t趋于无穷时,都可以使x(t)趋于0。
2.极点配置的设计步骤1) 检验系统的可控性条件。
2) 从矩阵 A 的特征多项式来确定a1, a2,……,an的值。
3) 确定使状态方程变为可控标准型的变换矩阵 T:T = MW其中 M 为可控性矩阵,4) 利用所期望的特征值,写出期望的多项式5) 需要的状态反馈增益矩阵 K 由以下方程确定:二、实验内容针对直线型一级倒立摆系统应用极点配置法设计控制器,进行极点配置并用Matlab进行仿真实验。
三、实验步骤及结果1.根据直线一级倒立摆的状态空间模型,以小车加速度作为输入的系统状态方程为:可以取1l 。
则得到系统的状态方程为:于是有:直线一级倒立摆的极点配置转化为:对于如上所述的系统,设计控制器,要求系统具有较短的调整时间(约 3 秒)和合适的阻尼(阻尼比? = 0.5)。
2.采用四种不同的方法计算反馈矩阵 K。
方法一:按极点配置步骤进行计算。
1) 检验系统可控性,由系统可控性分析可以得到,系统的状态完全可控性矩阵的秩等于系统的状态维数(4),系统的输出完全可控性矩阵的秩等于系统输出向量y 的维数(2),所以系统可控。
一阶倒立摆系统模型分析状态反馈与观测器设计
一阶倒立摆系统模型分析状态反馈与观测器设计一阶倒立摆系统是控制工程中常见的一个具有非线性特点的系统,它由一个摆杆和一个质点组成,质点在摆杆上下移动,而摆杆会受到重力的作用而产生摆动,需要通过控制来实现倒立的功能。
以下是一阶倒立摆系统的模型分析、状态反馈与观测器设计的详细介绍。
一、系统模型分析:一阶倒立摆系统是一个非线性动力学系统,可以通过线性化的方式来进行模型分析。
在进行线性化之前,首先需要确定系统的状态变量和输入变量。
对于一阶倒立摆系统,可以将摆杆角度和质点位置作为状态变量,将水平推力作为输入变量。
在对系统进行线性化之后,可以得到系统的状态空间表达式:x_dot = A*x + B*uy=C*x+D*u其中,x是状态向量,u是输入向量,y是输出向量。
A、B、C和D是系统的矩阵参数。
二、状态反馈设计:状态反馈是一种常用的控制方法,通过测量系统状态的反馈信号,计算出控制输入信号。
在设计状态反馈控制器之前,首先需要确定系统的可控性。
对于一阶倒立摆系统,可以通过可控性矩阵的秩来判断系统是否是可控的。
如果可控性矩阵的秩等于系统的状态数量,则系统是可控的。
在确定系统可控性之后,可以通过状态反馈控制器来实现控制。
状态反馈控制器的设计可以通过选择适当的反馈增益矩阵K来实现。
具体的设计方法是,根据系统的状态空间表达式,将状态反馈控制器加入到系统模型中。
状态反馈控制器的输入是状态变量,输出是控制输入变量。
然后,通过调节反馈增益矩阵K的值,可以实现对系统的控制。
三、观测器设计:观测器是一种常用的状态估计方法,通过测量系统的输出信号,估计系统的状态。
在设计观测器之前,首先需要确定系统的可观性。
对于一阶倒立摆系统,可以通过可观性矩阵的秩来判断系统是否是可观的。
如果可观性矩阵的秩等于系统的状态数量,则系统是可观的。
在确定系统可观性之后,可以通过观测器来实现状态估计。
观测器的设计可以通过选择适当的观测增益矩阵L来实现。
具体的设计方法是,根据系统的状态空间表达式,将观测器加入到系统模型中。
单级倒立摆系统的分析与设计
单级倒立摆系统的分析与设计小组成员:武锦张东瀛杨姣李邦志胡友辉一.倒立摆系统简介倒立摆系统是一个典型的高阶次、多变量、不稳定和强耦合的非线性系统。
由于它的行为与火箭飞行以及两足机器人行走有很大的相似性,因而对其研究具有重大的理论和实践意义。
由于倒立摆系统本身所具有的上述特点,使它成为人们深入学习、研究和证实各种控制理论有效性的实验系统。
单级倒立摆系统(Simple Inverted Pendulum System)是一种广泛应用的物理模型,其结构和飞机着陆、火箭飞行及机器人的关节运动等有很多相似之处,因而对倒立摆系统平衡的控制方法在航空及机器人等领域有着广泛的用途,倒立摆控制理论产生的方法和技术将在半导体及精密仪器加工、机器入技术、导弹拦截控制系统、航空器对接控制技术等方面具有广阔的开发利用前景。
倒立摆仿真或实物控制实验是控制领域中用来检验某种控制理论或方法的典型方案。
最初研究开始于二十世纪50年代,单级倒立摆可以看作是一个火箭模型,相比之下二阶倒立摆就复杂得多。
1972年,Sturgen等采用线性模拟电路实现了对二级倒立摆的控制。
目前,一级倒立摆控制的仿真或实物系统已广泛用于教学。
二.系统建模1.单级倒立摆系统的物理模型图1:单级倒立摆系统的物理模型单级倒立摆系统是如下的物理模型:在惯性参考系下的光滑水平平面上,放置一个可以在平行于纸面方向左右自由移动的小车(cart ),一根刚性的摆杆(pendulum leg )通过其末端的一个不计摩擦的固定连接点(flex Joint )与小车相连构成一个倒立摆。
倒立摆和小车共同构成了单级倒立摆系统。
倒立摆可以在平行于纸面180°的范围内自由摆动。
倒立摆控制系统的目的是使倒立摆在外力的摄动下摆杆仍然保持竖直向上状态。
在小车静止的状态下,由于受到重力的作用,倒立摆的稳定性在摆杆受到微小的摄动时就会发生不可逆转的破坏而使倒立摆无法复位,这时必须使小车在平行于纸面的方向通过位移产生相应的加速度。
一级倒立摆实验报告
一级直线倒立摆极点配置控制实验一、实验目的1.运用经典控制理论控制直线一级倒立摆,包括实际系统模型的建立、根轨迹分析和控制器设计、PID 控制分析等内容。
2.熟悉利用极点配置方法来进行倒立摆实验的原理方法。
3.学习MATLAB工具软件在控制工程中的应用。
3.掌握对实际系统进行建模的方法,熟悉利用MATLAB 对系统模型进行仿真,利用学习的控制理论对系统进行控制器的设计,并对系统进行实际控制实验,对实验结果进行观察和分析,非常直观的感受控制器的控制作用。
二、实验设备计算机及MATLAB相关软件元创兴倒立摆系统的软件元创兴一级直线倒立摆系统,包括运动卡和倒立摆实物倒立摆相关安装工具三、倒立摆系统介绍倒立摆是进行控制理论研究的典型实验平台。
由于倒立摆系统的控制策略和杂技运动员顶杆平衡表演的技巧有异曲同工之处,极富趣味性,而且许多抽象的控制理论概念如系统稳定性、可控性和系统抗干扰能力等等,都可以通过倒立摆系统实验直观的表现出来。
学习自动控制理论的学生通过倒立摆系统实验来验证所学的控制理论和算法,非常的直观、简便,在轻松的实验中对所学课程加深了理解。
倒立摆不仅仅是一种优秀的教学实验仪器,同时也是进行控制理论研究的理想实验平台。
由于倒立摆系统本身所具有的高阶次、不稳定、多变量、非线性和强耦合特性,许多现代控制理论的研究人员一直将它视为典型的研究对象,不断从中发掘出新的控制策略和控制方法,相关的科研成果在航天科技和机器人学方面获得了广阔的应用。
四、倒立摆工作原理和物理模型以及数学模型(简述)1、工作原理:数据采集卡(也称运动控制卡,安装于计算机机箱的PCI插槽上)采集到旋转编码器数据和电机尾部编码器数据,旋转编码器与摆杆同轴,电机与小车通过皮带连接,所以通过计算就可以得到摆杆的角位移以及小车位移,角位移差分得角速度,位移差分可得速度,然后根据自动控制中的各种理论转化的算法计算出控制量。
控制量由计算机通过运动控制卡下发给伺服驱动器,由驱动器实现对电机控制,电机尾部编码器连接到驱动器形成闭环,从而可以实现闭环控制。
直线型一级倒立摆系统的控制器设计
直线型一级倒立摆系统的控制器设计引言1. 设计目的(1)熟悉直线型一级倒立摆系统(2)掌握极点配置算法(3)掌握MATLAB/simulink动态仿真技术2. 设计要求基于极点配置算法完成对于直线型一级倒立摆系统的控制器设计3. 系统说明倒立摆控制系统是一个复杂的、不稳定的、非线性系统,对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。
通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。
同时,其控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的垂直度控制和卫星飞行中的姿态控制等。
4. 设计任务(1)建立直线型一级倒立摆系统的状态空间表达式。
(2)对该系统的稳定性、能观性、能控性进行分析。
(3)应用极点配置法对该直线型一级倒立摆系统进行控制器设计。
(4)使用MATLAB/simulink软件验证设计结果目录设计目的........................................................................................... 2-4设计要求:. (4)系统说明:....................................................................................... 4-5设计任务........................................................................................... 5-8运行结果......................................................................................... 8-11收获与体会.. (10)参考文献 (12)1. 设计目的(1)熟悉直线型一级倒立摆系统倒立摆控制系统是一个复杂的、不稳定的、非线性系统,对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。
单级倒立摆系统的建模与控制器设计
单级倒立摆系统的建模与控制器设计摘要:本文主要研究的是单级倒立摆的建模、控制与仿真问题。
倒立摆是一类典型的快速、多变量、非线性、强耦合、自然不稳定系统。
由于在实际中有很多这样的系统,因此对它的研究在理论上和方法论上均有深远的意义。
本文首先建立了单级倒立摆的数学模型,对其进行了近似线性化处理,得到了它的状态空间描述,并对系统的开环特性进行了仿真和分析。
然后,基于极点配置方法设计了单级倒立摆系统的控制器。
最后,用Matlab对系统进行了数值仿真,验证了所设计的控制算法的有效性。
关键词:单级倒立摆;极点配置;建模与控制目录1 绪论 (3)2 单级倒立摆系统的建模与分析 (4)2.1单级倒立摆系统的建模 (4)2.2单级倒立摆系统的模型分析 (8)3 单级倒立摆系统的极点配置控制器设计 (13)3.1单级倒立摆系统控制器设计的目标 (13)3.2单级倒立摆系统的能控性分析 (13)3.3单级倒立摆系统的极点配置控制器设计 (14)3.4闭环系统仿真分析 (16)4 结论 (20)致谢 (21)参考文献 (22)1 绪论倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。
对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。
通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。
通过对它的研究不仅可以解决控制中的理论和技术实现问题,还能将控制理论涉及的主要基础学科:力学,数学和计算机科学进行有机的综合应用。
其控制方法和思路无论对理论或实际的过程控制都有很好的启迪,是检验各种控制理论和方法的有效的“试金石”。
倒立摆的研究不仅有其深刻的理论意义,还有重要的工程背景。
在多种控制理论与方法的研究与应用中,特别是在工程实践中,也存在一种可行性的实验问题,使其理论与方法得到有效检验,倒立摆就能为此提供一个从理论通往实践的桥梁,目前,对倒立摆的研究已经引起国内外学者的广泛关注,是控制领域研究的热门课题之一。
一级倒立摆MATLAB仿真 能控能观性分析 数学模型 极点配置
题目一:考虑如图所示的倒立摆系统。
图中,倒立摆安装在一个小车上。
这里仅考虑倒立摆在图面内运动的二维问题。
倒立摆系统的参数包括:摆杆的质量(摆杆的质量在摆杆中心)、摆杆的长度、小车的质量、摆杆惯量等。
图 倒立摆系统 设计一个控制系统,使得当给定任意初始条件(由干扰引起)时,最大超调量? %≤10%,调节时间ts ≤4s ,使摆返回至垂直位置,并使小车返回至参考位置(x=0)。
要求:1、建立倒立摆系统的数学模型2、分析系统的性能指标——能控性、能观性、稳定性3、设计状态反馈阵,使闭环极点能够达到期望的极点,这里所说的期望的极点确定是把系统设计成具有两个主导极点,两个非主导极点,这样就可以用二阶系统的分析方法进行参数的确定4、用MATLAB 进行程序设计,得到设计后系统的脉冲响应、阶跃响应,绘出相应状态变量的时间响应图。
解:1 建立一级倒立摆系统的数学模型 1.1 系统的物理模型如图1所示,在惯性参考系下,设小车的质量为M ,摆杆的质量为m ,摆杆长度为l ,在某一瞬间时刻摆角(即摆杆与竖直线的夹角)为θ,作用在小车上的水平控制力为u 。
这样,整个倒立摆系统就受到重力,水平控制力和摩擦力的3外力的共同作用。
图1 一级倒立摆物理模型1.2 建立系统状态空间表达式为简单起见,本文首先假设:(1)摆杆为刚体 ;(2)忽略摆杆与支点之间的摩擦;( 3) 忽略小车与导轨之间的摩擦。
在如图一所示的坐标下,小车的水平位置是y,摆杆的偏离位置的角度是θ,摆球的水平位置为y+lsin θ。
这样,作为整个倒立摆系统来说,在说平方方向上,根据牛顿第二定律,得到u l y dtd m dt d M =++)sin (y 2222θ (1)对于摆球来说,在垂直于摆杆方向,由牛顿第二运动定律,得到θθsin )sin y (m 22mg l dtd =+ (2)方程(1),(2)是非线性方程,由于控制的目的是保持倒立摆直立,在施加合适的外力条件下,假定θ很小,接近于零是合理的。
单级倒立摆系统
x1 x y = [1 0 0 0] 2 x3 x4
首先,使用 首先,使用MATLAB,判断系统的能控性矩阵是否为满秩。 ,判断系统的能控性矩阵是否为满秩。 输入以下程序 计算结 果为
根据判别系统能控性的定理,该系统的能控性矩阵满秩, 根据判别系统能控性的定理,该系统的能控性矩阵满秩,所以 该系统是能控的。因为系统是能控的,所以,可以通过状态反馈来 该系统是能控的。因为系统是能控的,所以, 任意配置极点。 任意配置极点。 不失一般性,不妨将极点配置在 不失一般性, s1 = −6 s 2 = −6.5 s3 = −7 在MATLAB中输入命令 中输入命令
3. 状态观测器实现状态反馈极点配置及其仿真 首先,使用 首先,使用MATLAB,判断系统的能观性矩阵是否为满秩。输 ,判断系统的能观性矩阵是否为满秩。 入以下程序
计算结果为 因为该系统的能观测性矩阵满秩,所以该系统是能观测的。 因为该系统的能观测性矩阵满秩,所以该系统是能观测的。因 为系统是能观测的,所以,可以设计状态观测器。 为系统是能观测的,所以,可以设计状态观测器。而系统又是能控 因此可以通过状态观测器实现状态反馈。 的,因此可以通过状态观测器实现状态反馈。
求解得: 求解得:
&& = − y
& & & x x & 选择状态变量 x1 = y , 2 = x1 = y , 3 = θ ,x4 = x3 = θ
u
& x1 0 x 0 & 2 = x3 0 & & x4 0
状态图为
为系统输入, 为系统输入, y 为系统输出
设计状态观测器矩阵,使的特征值的实部均为负, 设计状态观测器矩阵,使的特征值的实部均为负,且其绝对值 要大于状态反馈所配置极点的绝对值。通过仿真发现, 要大于状态反馈所配置极点的绝对值。通过仿真发现,这样才能保 证状态观测器有足够快的收敛速度, 证状态观测器有足够快的收敛速度,才能够保证使用状态观测器所 观测到的状态与原系统的状态充分接近。 观测到的状态与原系统的状态充分接近。不妨取状态观测器的特征 s3 = −22 s4 = −23 值为: 值为: s1 = −20 s2 = −21 输入以下命令 计算结果为
基于MATLAB的单级倒立摆控制系统设计
基于MATLAB的单级倒立摆控制系统设计单级倒立摆是一种常见的控制系统,其结构简单,但具有较强的动态控制性能。
本文基于MATLAB对单级倒立摆控制系统进行设计,并详细介绍了设计过程和结果。
首先,我们需要了解单级倒立摆的结构和动力学模型。
单级倒立摆由轴、电机和旋转杆组成,电机通过轴和旋转杆相连。
倒立摆的目标是使旋转杆竖直,即使旋转杆的角度保持为0°。
为了实现倒立摆的控制,我们借助PID(Proportional-Integral-Derivative)控制器。
PID控制器是一种常用的线性控制系统,其中,比例系数(P)、积分系数(I)和微分系数(D)能够根据系统的需求进行调整。
接下来,我们需要确定系统的控制目标。
倒立摆的目标是使旋转杆的角度保持为0°。
因此,我们需要设计一个控制器,使得当旋转杆角度发生偏差时,控制器能够迅速响应,并产生相应的控制信号。
首先,我们需要获取倒立摆的角度信息。
我们可以通过连接传感器获取角度信息,并将其输入到MATLAB中进行处理。
然后,我们需要设计PID控制器来控制倒立摆。
在MATLAB中,可以使用pid函数来创建PID控制器对象,然后使用tune函数来调整PID控制器对象的参数。
调整PID控制器参数的过程通常可以通过试验和观察实现。
我们可以将倒立摆设置为初始状态,并控制器输出控制信号,然后观察倒立摆的响应。
根据实际观察,我们可以逐步调整PID控制器的参数,以达到系统的稳定性和响应速度的要求。
在完成PID控制器的参数调整后,我们可以进行仿真实验。
在MATLAB中,可以使用sim函数来进行仿真实验。
通过仿真实验,我们可以观察倒立摆的控制效果,并根据需要进行进一步的调整。
通过在MATLAB中进行控制器设计和仿真实验,我们可以对单级倒立摆进行控制系统设计。
该设计可以帮助我们理解控制系统的工作原理,并为实际应用提供参考。
同时,我们还可以根据具体需求对设计进行进一步调整和优化。
倒立摆系统的状态空间极点配置控制设计
摘要:为实现多输入、多输出、高度非线不稳定的倒立摆系统平衡稳定控制,将倒立摆系统的非线性模型进行近似线性化处理,获得系统在平衡点附近的线性化模型。
利用牛顿—欧拉方法建立直线型一级倒立摆系统的数学模型。
在分析的基础上,基于状态反馈控制中极点配置法对直线型倒立摆系统设计控制器。
由MATLAB仿真表明采用的控制策略是有效的,设计的控制器对直线型一级倒立摆系统的平衡稳定性效果好,提高了系统的干扰能力。
关键词:倒立摆、极点配置、MATLAB仿真引言:倒立摆是进行控制理论研究的典型试验平台,由于倒立摆本身所具有的高阶次、不稳定、非线性和强耦合性,许多现代控制理论的研究人员一直将他视为典型的研究对象,不断从中发掘出新的控制策略和控制方法。
控制器的设计是倒立摆系统的核心内容,因为倒立摆是一个绝对不稳定的系统,为使其保持稳定并且可以承受一定的干扰,基于极点配置法给直线型一级倒立摆系统设计控制器1.数学模型的建立倒立摆系统其本身是自不稳定的系统,实验建模存在着一定的困难.在忽略掉一些次要的因素之后,倒立摆系统就是一典型的运动的刚体系统,可以在惯性坐标系中应用经典力学理论建立系统动力学方程。
下面采用牛顿—欧拉方法建立直线型一级倒立摆系统的数学模型。
1。
1微分方程的数学模型在忽略了空气阻力和各种摩擦力之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如图1所示:图1:直线一级倒立摆模型设系统的相关参数定义如下:M:小车质量m:摆杆质量b:小车摩擦系数l:摆杆转动轴心到杆质心的长度I:摆杆质量F:加在小车上的力x:小车位置Φ:摆杆与垂直方向上方向的夹角θ:摆杆与垂直方向下方向的夹角(摆杆的初始位置为竖直向下)如下图2所示为小车和摆杆的受力分析图。
其中,N和P为小车与摆杆相互作用力的水平和垂直方向的分量。
图2:小车和摆杆受力分析图应用牛顿方法来建立系统的动力学方程过程如下: 分析小车水平方向所受的合力,可以得到以下的方程:M x F b x N ••=--由摆杆水平方向的受力进行分析可以得到下面的等式:22(sin )d N m x l dtθ=+将此等式代入上述等式中,可以得到系统的第一个运动方程:2()cos sin M m x b x ml ml F θθθθ••••••+++-=为了推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得到下面的方程:22(cos )d P mg m l dtθ-=-力矩平衡方程如下:sin cos Pl Nl I θθθ••--=注意:此方程中力矩的方向,由于cos cos sin sin θπφφθφθ=+=-=- 故等式前面有负号。
单级倒立摆
单倒置摆控制系统的状态空间设计摘要:倒置摆控制系统是一个复杂的、不稳定的、非线性系统,对倒置摆系统的研究能有效的反映控制中的许多典型问题,倒置摆的最初研究开始于二十世纪50年代,近年来,由于新的控制方法不断出现,人们试图通过倒置摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从加大了对这方面的研究。
本文主要采用状态反馈的控制方法,通过设计降维观测器和全维观测器对状态变量的重构,Matlab仿真进行了研究。
关键词:状态反馈、能控性、能观性、状态观测、极点配置、仿真一、引言倒置摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。
倒置摆的最初研究开始于二十世纪50年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级倒置摆实验设备。
倒置摆系统稳定效果非常明了,可以通过摆动角度、位移和稳定时间直接度量、控制好坏一目了然。
近年来,新的控制方法不断出现,人们试图通过倒置摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。
由于单级倒置摆的控制方法在军工,航天和机器人领域有广泛的用途,另外其控制方法和思路在处理一般工业过程中亦有广泛的应用。
机器人行走类似倒置摆系统,而机器人的关键技术至今仍未很好解决,单级倒置摆系统的稳定与空间飞行器控制和各类伺服平台的稳定有很大相似性,也是日常生活中所见到的任何重心在上、支点在下的控制问题的抽象。
因此,单级倒置摆机理的研究具有重要的应用价值,成为控制理论中很重要的研究课题。
二、单级倒置摆系统建模及分析2.1单级倒置摆系统模型单倒置摆系统的原理图,如图1所示。
设摆的长度为L、质量为m,用铰链安装在质量为M的小车上。
小车由一台直流电动机拖动,在水平方向对小车施加控制力u相对参考系产生位移z。
若不给小车施加控制力,则倒置摆会向左或向右倾倒,因此它是一个不稳定系统。
一级倒立摆控制系统状态方程的建模及全维观测器设计
一级倒立摆控制系统状态方程的建模及全维观测器设计作者:罗力铭来源:《科学与财富》2016年第10期摘要:本文对一级倒立摆系统的状态方程建模及观测器设计进行了研究,对于系统建立了数学模型并进行了分析,调整其极点配置后设计出一种稳定的系统结构,同时利用MATLAB完成仿真。
最后基于先前的结果设计了一种全维观测器并进行了仿真,结果表明,仿真得到稳定的响应。
关键词:倒立摆;数学建模;全维观测器中图分类号:TP273 文献标志码:AAbstract: The system state equations and design of full-dimensional observer for first-order inverted pendulum is probed in this paper while analyzing its mathematics model for this system. Then designed a stable system structure after adjusting the pole assignment of this system and used MATLAB to complete the simulation. Finally, based on previous results designed a full-order observer and simulated to obtain stable response.Keywords: first-order inverted pendulum; mathematics modeling;full-dimensional observer倒立摆是一个经典的多变量、非线性、不稳定的系统,又具有强耦合、自然不稳定等特点。
因此常常出现在控制理论课程教学中和各种控制策略的验证里。
其目标就是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。
状态观测器的倒立摆
系统建模可以分为两种:机理建模和实验建模。 实验建模就是通过在研究对象上加上一系列的研究者事先确定的输入信号,激励研究对象并通过传感器检测其可观测的输出,应用数学手段建立起系统的输入-输出关系。这里面包括输入信号的设计选取,输出信号的精确检测,数学算法的研究等等内容。 机理建模就是在了解研究对象的运动规律基础上,通过物理、化学的知识和数学手段建立起系统内部的输入-状态关系。
渐近状态观测器 : 状态观测器的状态方程为: 状态观测器的设计: 状态逼近的速度取决于G的选择和(A-GC)的配置,通过对误差反馈阵G的设计,调节 渐近于x的速度。
带状态观测器的状态反馈系统 闭环系统的基本特性: 闭环极点设计的分离性 传递函数矩阵的不变性 观测器反馈与直接状态反馈的等效性
输出反馈的仿真结果:
倒摆的角度 小车的位置
3、状态反馈设计:
具体设计步骤如下:
系统可控性判别。应用可控性判别矩阵CM=ctrb(A,B) 判别. 闭环系统的极点配置。根据系统的动态性能,确定闭环系统期望极点clp。 确定反馈增益。应用MATLAB的place函数Ks=place(A,B,clp),确定反馈增益Ks 。
1、建立倒立摆的数学模型
动力学数学模型 (非线性微分方程形式)
状态空间表达式(非线性)
状态空间表达式(线性)
状态空间表达式(线性)
2、倒立摆的状态空间分析法设计
采用状态反馈进行极点配置
基于全维观测器,用状态反馈进行极点配置
3、基于MATLAB的倒立摆系统仿真设计 (MATLAB语言程序设计和SIMULINK模型建立)
Simulink结构图:
仿真结果:
状态反馈下状态变量的时间曲线
具体设计步骤如下:
系统的可观性判别。应用可观性判别矩阵OM=obsv(A,C)判别可观性。 闭环极点配置。适当选择观测器的极点,使观测器的动态速度是系统的两倍以上,所观测器的极点op=2*clp。 指定极点的观测器增益G。同样应用place函数:G=place(A’,C’,op),G=G’。
单级倒立摆系统的极点配置与状态观测器设计
单级倒立摆系统的极点配置与状态观测器设计14122156杨郁佳(1)倒立摆的运动方程并将其线性化选取小车白^位移 z ,及其速度 z 、摆的角位置及其角速度 作为状态变量,即g T 则系统的状态空间模型为2 2,2设M=2kg ,m =0.2kg, g=9.81m/s ,则单级倒立摆系统的状态方程为x1x4x1x2 0 x3 x4 (2)状态反馈系统的极点配置。
首先,使用MATLAB,判断系统的能控性矩阵是否为满秩。
A=[0 1 0 0; 0 0 -1 0; 0 0 0 1; 0 0 11 0];B=[0; 0.5; 0; -0.5];C=[1 0 0 0];0 0 0 mg 0 1 M x M 0 1 0 (M m)g 11u 0MlMl x1x1x2 x3x3 0.5 u 011 x4 0.5D=0;rct=rank(ctrb(A,B)) [z,p,k]=ss2zp(A,B,C,D)MATLAB程序执行结果如下:»上二。
100:00-]C':0[)01. 0DIL01.B=[0; a. 5; t -0.o]c-ti D 0 Qi ;D=Crct-r Mr; nrt ।;j■ 1 0 Q 0 fl -] C, C T Q 1 0 D 11 0]Mo; o,«; a -0.5:C-[l 0 0 Q]:D-0rct-Yfln)! ctib Ll, E )let> r,z. p, k]-Ts2 sp CA, B- C. D'63. 3班-3.31S?系统能控,系统的极点为1=0 2=0 3=3.3166 4 =-3.3166可以通过状态反馈来任意配置极点,将极点配置在MATLAB程序如下:A=[0 1 0 0; 0 0 -1 0; 0 0 0 1; 0 0 11 0];B=[0; 0.5; 0; -0.5];P=[-3 -4 -5 -6];K=place(A,B,P)MATLAB程序执行结果如下:»A=[Q 1 0 D; 0 0 -1 0; 0 0 0 1; 0 Q H C:;B-[0l- O.a 0 -0-5::-4 -a -6];E=place (A. P)E --72. 0000 -691 4000 332. 0000 -104. 4000因此,求出状态反馈矩阵为K=[-72.0 -68.4 -332.0 -104.4]采用MATLAB/Simulink构造单级倒立摆状态反馈控制系统的仿真模型。
直线一级倒立摆极点配置
基于直线一级倒立摆模型的基点配置算法1. 极点配置方法介绍开环系统通过选择反馈增益矩阵(状态反馈阵K )将闭环系统的极点配置在根平面上所期望的位置,以获得所希望的动态性能。
极点配置的冲要条件是开环系统完全可控。
闭环系统的稳定性和响应品质同闭环极点密切相关,控制系统的各种特性及其各种品质指标很大程度上由其闭环系统的零点和极点的位置决定。
经典控制理论中通常用调整开环增益及引入串、并联校正装置来配置闭环极点。
在现代控制理论中,广泛采用状态变量反馈来配置极点。
就是通过对状态反馈矩阵的选择,使闭环系统的极点配置在所希望的位置上,从而达到期望的性能指标要求。
对于完全能控和完全能观的系统,设其状态方程为:.X AX Bu =+,Y CX =。
X 为n 维状态向量, u 为控制向量,A 为n*n 维常数矩阵,B 为n*1维常数矩阵。
控制规律选择为线性状态反馈: U=u-KX ;K=[k 1,k 2,k 3…k n ]将U 带入原方程,可得闭环系统状态方程为:.()X A BK X BU =-+,Y CX =,显然,闭环系统特征多项式为:det (SI-A+BK )=0。
因此通过改变K 阵使闭环系统有所需要的极点配置,达到期望的性能指标要求。
图4.1加入状态反馈后系统结构图单输入单输出系统确定满足极点配置要求的状态反馈矩阵K 的算法主要有系统匹配法、Ackermann 配置法、Gura-Bass 算法等几种方法。
假定期望的闭环极点为λi (i=1……n ),则原系统的开环特征方程为:()S α=()011.....det ααα++++=---S S S A SI n n n 闭环系统特征方程为:()()∏=--++++=-=ni n n n S S S i S S 1011......βββλβ(1)系统匹配法是计算反馈阵的一个最直接的方法,它主要通过比较系统特 征方程的系数来求解,即上两式的对应系数相等。
此方法较为简单,但只适合于低阶系统。
任务1-一级倒立摆系统的状态反馈极点配置设计
西安建筑科技大学课程设计(论文)任务书专业班级:学生姓名:指导教师(签名):一、课程设计(论文)题目一级倒立摆系统的状态反馈极点配置设计二、本次课程设计(论文)应达到的目的(1)复习、巩固和加深所学专业基础课和专业课的理论知识,综合运用经典控制理论与现代控制理论的知识,弄清楚其相互关系,使理论知识系统化、实用化。
(2)增强学生的工程意识,联系实际问题设计,使理论与实践相结合。
(3)掌握基于状态空间分析法进行控制系统分析与综合的方法。
(4)训练利用计算机进行控制系统辅助分析与仿真的能力。
(5)掌握参数变化对系统性能影响的规律,培养灵活运用所学理论解决控制系统中各种实际问题的能力。
(6)培养分析问题、解决问题的独立工作能力,学习实验数据的分析与处理方法,学习撰写设计说明书。
三、本次课程设计(论文)任务的主要内容和要求(包括原始数据、技术参数、设计要求等)系统参数:本课程设计的被控对象采用固高公司生产的GIP-100-L型一阶倒立摆系统,系统内部各相关参数为:小车质量0.5 Kg ;摆杆质量0.2 Kg ;小车摩擦系数0.1 N/m/sec ;摆杆转动轴心到杆质心的长度0.3 m ;摆杆惯量0.006 kg*m*m ;采样时间0.005秒。
设计要求:设计状态反馈控制器,使得当在小车上施加1N的脉冲信号时,闭环系统的响应指标为:(1)稳定时间小于5秒(2)稳态时摆杆与垂直方向的夹角变化小于0.1 弧度设计主要内容:(1)参照相关资料,推导出系统的传递函数和状态空间方程。
(2)定量、定性分析系统的性能。
(3)设计状态反馈控制器,使得当在小车上施加1N的脉冲信号时,闭环系统的响应满足性能指标要求。
(4)对设计的系统进行仿真研究、校验与分析。
(5)设计状态观测器,讨论带有状态观测器的状态反馈系统的性能。
成果要求:书写课程设计说明书一份(6000-10000字)。
内容应包括数学模型建立,控制器设计,系统仿真过程、结果分析及结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单级倒立摆系统的极点配置与状态观测器设计
14122156 杨郁佳
(1)倒立摆的运动方程并将其线性化
选取小车的位移z ,及其速度z g 、摆的角位置θ及其角速度θg
作为状态变量,即T x z z θθ⎡⎤=⎢⎥⎣
⎦g g 则系统的状态空间模型为 01000100000010()1000mg M M x u M m g Ml
Ml x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥+-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦g []1000y x
= 设M=2kg ,m=0.2kg ,g=9.81m/2
s ,则单级倒立摆系统的状态方程为 (1010)
01010
01020.500013030
011040.54x x x x u x x x x ⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦ []12100034x x y x x ⎡⎤⎢⎥
⎢⎥=⎢⎥⎢⎥⎣⎦
(2)状态反馈系统的极点配置。
首先,使用MATLAB ,判断系统的能控性矩阵是否为满秩。
MATLAB 程序如下:
A=[0 1 0 0; 0 0 -1 0; 0 0 0 1; 0 0 11 0]; B=[0; 0.5; 0; -0.5];
C=[1 0 0 0];
D=0;
rct=rank(ctrb(A,B))
[z,p,k]=ss2zp(A,B,C,D)
MATLAB程序执行结果如下:
系统能控,系统的极点为
1=0
λ
2=0
λ
3=3.3166
λ
4=-3.3166
λ
可以通过状态反馈来任意配置极点,将极点配置在
1=-3
λ*
2=-4
λ*
3=-5
λ*
4=-6
λ*
MATLAB程序如下:
A=[0 1 0 0; 0 0 -1 0; 0 0 0 1; 0 0 11 0];
B=[0; 0.5; 0; -0.5];
P=[-3 -4 -5 -6];
K=place(A,B,P)
MATLAB程序执行结果如下:
因此,求出状态反馈矩阵为
K=[-72.0 -68.4 -332.0 -104.4]
采用MATLAB/Simulink构造单级倒立摆状态反馈控制系统的仿真模型。
首先,在MATLAB的Command Window中输入各个矩阵的值,并且在模型中的积分器中设置非零初值:2。
运行仿真程序,显示仿真曲线,如下。
o处。
仿真结果表明倒立摆的杆子与数值方向的偏角从初值2,经过控制稳定在=0
(3)状态观测器实现状态反馈极点配置。
MATLAB程序如下:
A=[0 1 0 0; 0 0 -1 0; 0 0 0 1; 0 0 11 0];
B=[0; 0.5; 0; -0.5];
C=[1 0 0 0];
rob=rank(obsv(A,C))
MATLAB程序执行结果如下:
Rob=4说明系统能观,可以设计状态观测器。
取状态观测器的特征值为-3,-4,-5,-6 MATLAB程序如下:
A=[0 1 0 0; 0 0 -1 0; 0 0 0 1; 0 0 11 0];
A1=A’;
C=[1 0 0 0];
C1=C’;
P=[-3 -4 -5 -6];
H1=place(A1,C1,P);
H=H1’
MATLAB 程序执行结果如下:
状态观测器矩阵[]18 130 540 1790T
H =--
采用MATLAB/Simulink 构造具有状态观测器的单级倒立摆状态反馈控制系统的仿真模型。
首先,在MATLAB的Command Window中输入各个矩阵的值,并且在模型中的积分器中设置非零初值:2。
运行仿真程序,显示仿真曲线,如下。
对比两个仿真图,可以发现加上状态观测器对单级倒立摆的控制效果基本上无影响。