山东省德州市2019中考数学复习 第一章 数与式 第一节 实数及其运算检测
2019山东省德州市中考数学试卷(Word版,含解析).docx
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】2019年山东省德州市中考数学试卷一、选择题(本大题共12小题,共48.0分)1.-12的倒数是()A. −2B. 12C. 2D. 12.下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.3.据国家统计局统计,我国2018年国民生产总值(GDP)为900300亿元.用科学记数法表示900300亿是()A. 9.003×1012B. 90.03×1012C. 0.9003×1014D. 9.003×10134.下列运算正确的是()A. (−2a)2=−4a2B. (a+b)2=a2+b2C. (a5)2=a7D. (−a+2)(−a−2)=a2−45.若函数y=kx与y=ax2+bx+c的图象如图所示,则函数y=kx+b的大致图象为()A. B.C. D.6.不等式组{5x+2>3(x−1)12x−1≤7−32x的所有非负整数解的和是()A. 10B. 7C. 6D. 07.下列命题是真命题的是()A. 两边及其中一边的对角分别相等的两个三角形全等B. 平分弦的直径垂直于8. 《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为( )A. {y −x =4.5y −12x =1B. {x −y =4.5y −12x =1C. {x −y =4.512x −y =1D. {y −x =4.512x −y =19. 如图,点O 为线段BC 的中点,点A ,C ,D 到点O 的距离相等,若∠ABC =40°,则∠ADC 的度数是( )A. 130∘B. 140∘C. 150∘D. 160∘10. 甲、乙是两个不透明的纸箱,甲中有三张标有数字14,12,1的卡片,乙中有三张标有数字1,2,3的卡片,卡片除所标数字外无其他差别,现制定一个游戏规则:从甲中任取一张卡片,将其数字记为a ,从乙中任取一张卡片,将其数字记为b .若a ,b 能使关于x 的一元二次方程ax 2+bx +1=0有两个不相等的实数根,则甲获胜;否则乙获胜.则乙获胜的概率为( )A. 23B. 59C. 49D. 1311. 在下列函数图象上任取不同两点P 1(x 1,y 1)、P 2(x 2,y 2),一定能使y 2−y 1x 2−x 1<0成立的是( )A. y =3x −1(x <0)B. y =−x 2+2x −1(x >0)C. y =−√3x(x >0) D. y =x 2−4x −1(x <0)12. 如图,正方形ABCD ,点F 在边AB 上,且AF :FB =1:2,CE ⊥DF ,垂足为M ,且交AD 于点E ,AC 与DF 交于点N ,延长CB 至G ,使BG =12BC ,连接CM .有如下结论:①DE =AF ;②AN =√24AB ;③∠ADF =∠GMF ;④S △ANF :S 四边形CNFB =1:8.上述结论中,所有正确结论的序号是( )A. ①②B. ①③C. ①②③D. ②③④二、填空题(本大题共6小题,共24.0分) 13. |x -3|=3-x ,则x 的取值范围是______. 14. 方程6(x+1)(x−1)-3x−1=1的解为______.15. 如图,一架长为6米的梯子AB 斜靠在一竖直的墙AO 上,这时测得∠ABO =70°,如果梯子的底端B 外移到D ,则梯子顶______米.(sin70°≈0.94,sin50°≈0.77,cos70°≈0.34,cos50°≈0.64)16.17.18.19.已知:[x]表示不超过x的最大整数.例:[4.8]=4,[-0.8]=-1.现定义:{x}=x-[x],例:{1.5}=1.5-[1.5]=0.5,则{3.9}+{-1.8}-{1}=______.20.如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,AB⏜=BF⏜,CE=1,AB=6,则弦AF的长度为______.21.22.23.24.如图,点A1、A3、A5…在反比例函数y=kx(x>0)的图象上,点A2、A4、A6……在反比例函数y=−kx(x>0)的图象上,∠OA1A2=∠A1A2A3=∠A2A3A4=…=∠α=60°,且OA1=2,则A n(n为正整数)的纵坐标为______.(用含n的式子表示)三、计算题(本大题共1小题,共10.0分)25.习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末累计进馆608人次,若进馆人次的月平均增长率相同.26.(1)求进馆人次的月平均增长率;27.(2)因条件限制,学校图书馆每月接纳能力不超过500人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接纳第四个月的进馆人次,并说明理由.28.29.30.31.32.33.34.四、解答题(本大题共6小题,共68.0分)35.先化简,再求值:(2m -1n)÷(m2+n2mn-5nm)•(m2n+2nm+2),其中√m+1+(n-3)2=0.38.39.40.41.42.43.《中学生体质健康标准》规定的等级标准为:90分及以上为优秀,80~89分为良好,60~79分为及格,59分及以下为不及格.某校为了解七、八年级学生的体质健康情况,现从两年级中各随机抽取10名同学进行体质健康检测,并对成绩进行分析.成绩如下:七年级80748363909174618262八年级74618391608546847482(1)根据上述数据,补充完成下列表格.整理数据:优秀良好及格不及格七年级2350八年级14______ 1分析数据:年级平均数众数中位数七年级767477八年级______ 74______(2)该校目前七年级有200人,八年级有300人,试估计两个年级体质健康等级达到优秀的学生共有多少人?(3)结合上述数据信息,你认为哪个年级学生的体质健康情况更好,并说明理由.44.如图,∠BPD=120°,点A、C分别在射线PB、PD上,∠PAC=30°,AC=2√3.45.(1)用尺规在图中作一段劣弧,使得它在A、C两点分别与射线PB和PD相切.要求:写出作法,并保留作图痕迹;46.(2)根据(1)的作法,结合已有条件,请写出已知和求证,并证明;47.(3)求所得的劣弧与线段PA、PC围成的封闭图形的面积.48.下表中给出A,B,C三种手机通话的收费方式.收费方式月通话费/元包时通话时间/h超时费/(元/min)A30250.1B50500.1C100不限时()设月通话时间为小时,则方案,,的收费金额1,2,3都是的函数,请分别求出这三个函数解析式.(2)填空:若选择方式A最省钱,则月通话时间x的取值范围为______;若选择方式B最省钱,则月通话时间x的取值范围为______;若选择方式C最省钱,则月通话时间x的取值范围为______;(3)小王、小张今年5月份通话费均为80元,但小王比小张通话时间长,求小王该月的通话时间.49.(1)如图1,菱形AEGH的顶点E、H在菱形ABCD的边上,且∠BAD=60°,请直接写出HD:GC:EB的结果(不必写计算过程)50.(2)将图1中的菱形AEGH绕点A旋转一定角度,如图2,求HD:GC:EB;51.(3)把图2中的菱形都换成矩形,如图3,且AD:AB=AH:AE=1:2,此时HD:GC:EB的结果与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程);若无变化,请说明理由.52.mx-4与x轴交于A(x1,0),B(x2,53.如图,抛物线y=mx2-520)两点,与y轴交于点C,且x2-x1=11.254.(1)求抛物线的解析式;55.(2)若P(x1,y1),Q(x2,y2)是抛物线上的两点,当a≤x1≤a+2,x2≥9时,均有y1≤y2,求a的取值范围;256.(3)抛物线上一点D(1,-5),直线BD与y轴交于点E,动点M在线段BD上,当∠BDC=∠MCE时,求点M的坐标.57.58.答案和解析1.【答案】A【解析】解:-的到数是-2,故选:A.根据倒数的定义求解即可.本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.【答案】B【解析】解:A、是轴对称图形,不是中心对称图形,故本选项错误,B、是中心对称图形但不是轴对称图形,故本选项正确,C、不是轴对称图形,也不是中心对称图形,故本选项错误,D、是轴对称图形,也是中心对称图形,故本选项错误.故选:B.根据轴对称图形的概念先求出图形中轴对称图形,再根据中心对称图形的概念得出其中不是中心对称的图形.题考查了中心对称图形与轴对称图形的概念,轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,难度适中.3.【答案】D【解析】解:将900300亿元用科学记数法表示为:9.003×1013.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】D【解析】解:(-2a)2=4a2,故选项A不合题意;(a+b)2=a2+2ab+b2,故选项B不合题意;(a5)2=a10,故选项C不合题意;(-a+2)(-a-2)=a2-4,故选项D符合题意.故选:D.按照积的乘方运算、完全平方公式、幂的乘方、平方差公式分别计算,再选择.此题考查整式的运算,掌握各运算法则是关键,还要注意符号的处理.5.【答案】C【解析】解:根据反比例函数的图象位于二、四象限知k<0,根据二次函数的图象确知a>0,b<0,∴函数y=kx+b的大致图象经过二、三、四象限,故选:C.首先根据二次函数及反比例函数的图象确定k、b的符号,然后根据一次函数的性质确定答案即可.本题考查了函数的图象的知识,解题的关键是了解三种函数的图象的性质,难度不大.6.【答案】A【解析】解不等式①得:x>-2.5,解不等式②得:x≤4,∴不等式组的解集为:-2.5<x≤4,∴不等式组的所有非负整数解是:0,1,2,3,4,∴不等式组的所有非负整数解的和是0+1+2+3+4=10,故选:A.分别求出每一个不等式的解集,即可确定不等式组的解集,继而可得知不等式组的非负整数解.本题主要考查解一元一次不等式组的基本技能,准确求出每个不等式的解集是解题的根本,确定不等式组得解集及其非负整数解是关键.7.【答案】C【解析】解:A、由两边及其中一边的对角分别相等无法证明两个三角形全等,故A错误,是假命题;B、平分弦(非直径)的直径垂直于弦,故B错误,是假命题;C、一组对边平行且一组对角相等的四边形是平行四边形,故C正确,是真命题;D、两条平行线被第三条直线所截,内错角相等,故D错误,是假命题;故选:C.A、根据全等三角形的判定方法,判断即可.B、根据垂径定理的推理对B进行判断;C、根据平行四边形的判定进行判断;D、根据平行线的判定进行判断.本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,有些命题的正确性是用推理证实的,这样的真命题叫做定理.【解析】解:设绳长x尺,长木为y尺,依题意得,故选:B.本题的等量关系是:绳长-木长=4.5;木长-绳长=1,据此可列方程组求解.此题考查二元一次方程组问题,关键是弄清题意,找准等量关系,列对方程组,求准解.9.【答案】B【解析】解:由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故选:B.根据题意得到四边形ABCD共圆,利用圆内接四边形对角互补即可求出所求角的度数.此题考查了圆内接四边形的性质,熟练掌握圆内接四边形的性质是解本题的关键.10.【答案】C【解析】解:(1)画树状图如下:由图可知,共有9种等可能的结果,其中能使乙获胜的有4种结果数,故选:C.首先根据题意画出树状图,然后由树状图求得所有等可能的结果,利用一元二次方程根的判别式,即可判定各种情况下根的情况,然后利用概率公式求解即可求得乙获胜的概率本题考查的是用树状图法求概率,树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.11.【答案】D【解析】解:A、∵k=3>0∴y随x的增大而增大,即当x1>x2时,必有y1>y2∴当x<0时,>0,故A选项不符合;B、∵对称轴为直线x=1,∴当0<x<1时y随x的增大而增大,当x>1时y随x的增大而减小,∴当0<x<1时:当x1>x2时,必有y1>y2此时>0,故B选项不符合;C、当x>0时,y随x的增大而增大,即当x1>x2时,必有y1>y2此时>0,故C选项不符合;D、∵对称轴为直线x=2,∴当x<0时y随x的增大而减小,即当x1>x2时,必有y1<y2此时<0,故D选项符合;故选:D.根据各函数的增减性依次进行判断即可.本题主要考查了一次函数、反比例函数和二次函数的图象和性质,需要结合图象去一一分析,有点难度.12.【答案】C【解析】解:∵四边形ABCD是正方形,∴AD=AB=CD=BC,∠CDE=∠DAF=90°,∵CE⊥DF,∴∠DCE+∠CDF=∠ADF+∠CDF=90°,∴∠ADF=∠DCE,在△ADF与△DCE中,,∴△ADF≌△DCE(ASA),∴DE=AF;故①正确;∵AB∥CD,∴=,∵AF:FB=1:2,∴AF:AB=AF:CD=1:3,∴=,∴=,∵AC=AB,∴=,∴AN=AB;故②正确;作GH⊥CE于H,设AF=DE=a,BF=2a,则AB=CD=BC=3a,EC=a,由△CMD∽△CDE,可得CM=a,由△GHC∽△CDE,可得CH=a,∴CH=MH=CM,∵GH⊥CM,∴GM=GC,∴∠GMH=∠GCH,∵∠FMG+∠GMH=90°,∠DCE+∠GCM=90°,∴∠FEG=∠DCE,∵∠ADF=∠DCE,∴∠ADF=∠GMF;故③正确,设△ANF的面积为m,∵AF∥CD,∴==,△AFN∽△CDN,∴△ADN的面积为3m,△DCN的面积为9m,∴△ADC的面积=△ABC的面积=12m,∴S△ANF:S四边形CNFB=1:11,故④错误,故选:C.①正确.证明△ADF≌△DCE(ASA),即可判断.②正确.利用平行线分线段成比例定理,等腰直角三角形的性质解决问题即可.③正确.作GH⊥CE于H,设AF=DE=a,BF=2a,则AB=CD=BC=3a,EC= a,通过计算证明MH=CH即可解决问题.④错误.设△ANF的面积为m,由AF∥CD,推出==,△AFN∽△CDN,推出△ADN的面积为3m,△DCN的面积为9m,推出△ADC 的面积=△ABC的面积=12m,由此即可判断.本题考查正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会利用参数解决问题,属于中考选择题中的压轴题.13.【答案】x≤3【解析】解:3-x≥0,∴x≤3;故答案为x≤3;根据绝对值的意义,绝对值表示距离,所以3-x≥0,即可求解;本题考查绝对值的意义;理解绝对值的意义是解题的关键.14.【答案】x=-4【解析】解:-=1,=1,=1,=1,x+1=-3,x=-4,经检验x=-4是原方程的根;故答案为x=-4;根据分式方程的解法,先将式子通分化简为=1,最后验证根的情况,进而求解;本题考查分式方程的解法;熟练掌握分式方程的解法,勿遗漏验根环节是解题的关键.15.【答案】1.02【解析】解:由题意可得:∵∠ABO=70°,AB=6m,∴sin70°==≈0.94,解得:AO=5.64(m),∵∠CDO=50°,DC=6m,∴sin50°=≈0.77,解得:CO=4.62(m),则AC=5.64-4.62=1.02(m),答:AC的长度约为1.02米.故答案为:1.02.直接利用锐角三角函数关系得出AO,CO的长,进而得出答案.此题主要考查了解直角三角形的应用,正确得出AO,CO的长是解题关键.16.【答案】0.7【解析】解;根据题意可得:{3.9}+{-1.8}-{1}=3.9-3-1.8+2-1+1=0.7,故答案为:0.7根据题意列出代数式解答即可.此题考查解一元一次不等式,关键是根据题意列出代数式解答.17.【答案】485【解析】解:连接OA、OB,OB交AF于G,如图,∵AB⊥CD,∴AE=BE=AB=3,设⊙O的半径为r,则OE=r-1,OA=r,在Rt△OAE中,32+(r-1)2=r2,解得r=5,∵=,∴OB⊥AF,AG=FG,在Rt△OAG中,AG2+OG2=52,①在Rt△ABG中,AG2+(5-OG)2=62,②解由①②组成的方程组得到AG=,∴AF=2AG=.故答案为.连接OA、OB,OB交AF于G,如图,利用垂径定理得到AE=BE=3,设⊙O的半径为r,则OE=r-1,OA=r,根据勾股定理得到32+(r-1)2=r2,解得r=5,再利用垂径定理得到OB⊥AF,AG=FG,则AG2+OG2=52,AG2+(5-OG)2=62,然后解方程组求出AG,从而得到AF的长.本题考查了圆周角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理.18.【答案】(-1)n+1√3(√n−√n−1)【解析】解:过A1作A1D1⊥x轴于D1,∵OA1=2,∠OA1A2=∠α=60°,∴△OA1E是等边三角形,∴A1(1,),∴k=,∴y=和y=-,过A2作A2D2⊥x轴于D2,∵∠A2EF=∠A1A2A3=60°,∴△A2EF是等边三角形,设A2(x,-),则A2D2=,Rt△EA2D2中,∠EA2D2=30°,∴ED2=,∵OD2=2+=x,解得:x1=1-(舍),x2=1+,∴EF====2(-1)=2-2,A2D2===,即A2的纵坐标为-;过A3作A3D3⊥x轴于D3,同理得:△A3FG是等边三角形,设A3(x,),则A3D3=,Rt△FA3D3中,∠FA3D3=30°,∴FD3=,∵OD3=2+2-2+=x,解得:x1=(舍),x2=+;∴GF===2(-)=2-2,A3D3===(-),即A3的纵坐标为(-);…∴A n(n为正整数)的纵坐标为:(-1)n+1();故答案为:(-1)n+1();先证明△OA1E是等边三角形,求出A1的坐标,作高线A1D1,再证明△A2EF 是等边三角形,作高线A2D2,设A2(x,-),根据OD2=2+=x,解方程可得等边三角形的边长和A2的纵坐标,同理依次得出结论,并总结规律:发现点A1、A3、A5…在x轴的上方,纵坐标为正数,点A2、A4、A6……在x轴的下方,纵坐标为负数,可以利用(-1)n+1来解决这个问题.本题考查了待定系数法求反比例函数解析式,等边三角形的性质和判定,直角三角形30度角的性质,勾股定理,反比例函数图象上点的坐标特征,并与方程相结合解决问题.19.【答案】解:(1)设进馆人次的月平均增长率为x,则由题意得:128+128(1+x)+128(1+x)2=608化简得:4x2+12x-7=0∴(2x-1)(2x+7)=0,∴x=0.5=50%或x=-3.5(舍)答:进馆人次的月平均增长率为50%.(2)∵进馆人次的月平均增长率为50%,∴第四个月的进馆人次为:128(1+50%)3=128×27=432<5008答:校图书馆能接纳第四个月的进馆人次.【解析】(1)先分别表示出第二个月和第三个月的进馆人次,再根据第一个月的进馆人次加第二和第三个月的进馆人次等于608,列方程求解;(2)根据(1)所计算出的月平均增长率,计算出第四个月的进馆人次,再与500比较大小即可.本题属于一元二次方程的应用题,列出方程是解题的关键.本题难度适中,属于中档题.20.【答案】解:(2m -1n)÷(m2+n2mn-5nm)•(m2n+2nm+2)=2n−mmn ÷m2+n2−5n2mn•m2+4n2+4mn2mn=2n−mmn •mn(m+2n)(m−2n)•(m+2n)22mn=-m+2n2mn.∵√m+1+(n-3)2=0.∴m+1=0,n-3=0,∴m=-1,n=3.∴-m+2n2mn =-−1+2×32×(−1)×3=56.∴原式的值为56.【解析】先通分,再利用因式分解,把可以分解的分解,然后统一化成乘法运算,约分化简,再将所给等式化简,得出m和n的值,最后代回化简后的分式即可.本题是分式化简求值题,需要熟练掌握通分和因式分解及分式乘除法运算.21.【答案】74 78【解析】解:(1)八年级及格的人数是4,平均数=,中位数=;故答案为:4;74;78;(2)计两个年级体质健康等级达到优秀的学生共有200×人;(3)根据以上数据可得:七年级学生的体质健康情况更好.(1)根据平均数和中位数的概念解答即可;(2)根据样本估计总体解答即可;(3)根据数据调查信息解答即可.本题考查了众数、中位数以及平均数的运用,掌握众数、中位数以及平均数的定义以及用样本估计总体是解题的关键.22.【答案】解:(1)如图,(2)已知:如图,∠BPD=120°,点A、C分别在射线PB、PD上,∠PAC=30°,AC=2√3,过A、C分别作PB、PD的垂线,它们相交于O,以OA为半径作⊙O,OA⊥PB,求证:PB、PC为⊙O的切线;证明:∵∠BPD=120°,PAC=30°,∴∠PCA=30°,∴PA=PC,连接OP,∵OA⊥PA,PC⊥OC,∴∠PAO=∠PCO=90°,∵OP=OP,∴Rt△PAO≌Rt△PCO(HL)∴OA=OC,∴PB、PC为⊙O的切线;(3)∵∠OAP=∠OCP=90°-30°=60°,∴△OAC为等边三角形,∴OA=AC=2√3,∠AOC=60°,∵OP平分∠APC,∴∠APO=60°,∴AP=√33×2√3=2,∴劣弧AC与线段PA、PC围成的封闭图形的面积=S四边形APCO-S扇形AOC =2×12×2√3×2-60⋅π⋅(2√3)2360=4√3-2π.【解析】(1)过A、C分别作PB、PD的垂线,它们相交于O,然后以OA为半径作⊙O 即可;(2)写出已知、求证,然后进行证明;连接OP,先证明Rt△PAO≌Rt△PCO,然后根据切线的判定方法判断PB、PC为⊙O的切线;(3)先证明△OAC为等边三角形得到OA=AC=2,∠AOC=60°,再计算出AP=2,然后根据扇形的面积公式,利用劣弧AC与线段PA、PC围成的封闭图形的面积进行计算.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理和扇形面积公式.23.【答案】0≤x≤853853≤x≤1753x>1753【解析】解:(1)∵0.1元/min=6元/h,∴由题意可得,y1=,y2=,y3=100(x≥0);(2)作出函数图象如图:结合图象可得:若选择方式A最省钱,则月通话时间x的取值范围为:0≤x≤,若选择方式B最省钱,则月通话时间x的取值范围为:≤x≤,若选择方式C最省钱,则月通话时间x的取值范围为:x>.故答案为:0≤x≤,≤x≤,x>.(3)∵小王、小张今年5月份通话费均为80元,但小王比小张通话时间长,∴结合图象可得:小张选择的是方式A,小王选择的是方式B,将y=80分别代入y2=,可得6x-250=80,解得:x=55,∴小王该月的通话时间为55小时.(1)根据题意可以分别写出y1、y2、y3关于x的函数关系式,并写出相应的自变量的取值范围;(2)根据题意作出图象,结合图象即可作答;(3)结合图象可得:小张选择的是方式A,小王选择的是方式B,将y=81代入y2关于x的函数关系式,解方程即可得出小王该月的通话时间.本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.24.【答案】解:(1)连接AG,∵菱形AEGH的顶点E、H在菱形ABCD的边上,且∠BAD=60°,∴∠GAE=∠CAB=30°,AE=AH,AB=AD,∴A,G,C共线,AB-AE=AD-AH,∴HD=EB,延长HG交BC于点M,延长EG交DC于点N,连接MN,交GC于点O,则GMCN 也为菱形,∴GC⊥MN,∠NGO=∠AGE=30°,∴OG GN =cos30°=√32,∵GC=2OG,∴GN GC =√3,∵HGND为平行四边形,∴HD=GN,∴HD:GC:EB=1:√3:1.(2)如图2,连接AG,AC,∴AD:AC=AH:AG=1:√3,∠DAC=∠HAG=30°,∴∠DAH=∠CAG,∴△DAH∽△CAG,∴HD:GC=AD:AC=1:√3,∵∠DAB=∠HAE=60°,∴∠DAH=∠BAE,在△DAH和△BAE中,{AD=AB∠DAH=∠BAE AH=AE∴△DAH≌△BAE(SAS)∴HD=EB,∴HD:GC:EB=1:√3:1.(3)有变化.如图3,连接AG,AC,∵AD:AB=AH:AE=1:2,∠ADC=∠AHG=90°,∴△ADC∽△AHG,∴AD:AC=AH:AG=1:√5,∵∠DAC=∠HAG,∴∠DAH=∠CAG,∴△DAH∽△CAG,∴HD:GC=AD:AC=1:√5,∵∠DAB=∠HAE=90°,∴∠DAH=∠BAE,∵DA:AB=HA:AE=1:2,∴△ADH∽△ABE,∴DH:BE=AD:AB=1:2,∴HD:GC:EB=1:√5:2【解析】(1)连接AG,由菱形AEGH的顶点E、H在菱形ABCD的边上,且∠BAD=60°,易得A,G,C共线,延长HG交BC于点M,延长EG交DC于点N,连接MN,交GC 于点O ,则GMCN 也为菱形,利用菱形对角线互相垂直,结合三角函数可得结论;(2)连接AG ,AC ,由△ADC 和△AHG 都是等腰三角形,易证△DAH ∽△CAG 与△DAH ≌△BAE ,利用相似三角形的性质及菱形的性质可得结论;(3)连接AG ,AC ,易证△ADC ∽△AHG 和△ADH ∽△ABE ,利用相似三角形的性质可得结论.本题是菱形与相似三角形,全等三角形,三角函数等知识点的综合运用,难度较大.25.【答案】解:(1)函数的对称轴为:x =-b 2a =54=x 1+x 22,而且x 2-x 1=112, 将上述两式联立并解得:x 1=-32,x 2=4,则函数的表达式为:y =a (x +32)(x -4)=a (x 2-4x +32x -6),即:-6a =-4,解得:a =23,故抛物线的表达式为:y =23x 2-53x -4;(2)当x 2=94时,y 2=2,①当a ≤a +2≤54时(即:a ≤-34),y 1≤y 2,则23a 2-53a -4≤2, 解得:-2≤a ≤-92,而a ≤-34,故:-2≤a ≤−34;②当54≤a ≤a +2(即a ≥54)时,则23(a +2)2-53(a +2)-4≤2,同理可得:-34≤a ≤54,故a 的取值范围为:-2≤a ≤54;(3)∵当∠BDC =∠MCE ,△MDC 为等腰三角形,故取DC 的中点H ,过点H 作线段CD 的中垂线交直线BD 与点M ,则点M 为符合条件的点,点H (12,-92), 将点C 、D 坐标代入一次函数表达式:y =mx +n 并解得:直线CD 的表达式为:y =-x -4,同理可得:直线BD 的表达式为:y =53x -203…①,直线DC ⊥MH ,则直线MH 表达式中的k 值为1,同理可得直线HM 的表达式为:y =x -5…②,联立①②并解得:x =52,故点M (52,-52).【解析】(1)函数的对称轴为:x=-==,而且x 2-x 1=,将上述两式联立并解得:x 1=-,x 2=4,即可求解;(2)分a≤a+2≤、≤a≤a+2两种情况,分别求解即可;(3)取DC 的中点H ,过点H 作线段CD 的中垂线交直线BD 与点M ,则点M 为符合条件的点,即可求解.本题考查的是二次函数综合运用,涉及到一次函数、等腰三角形性质等,其中(2),要注意分类求解,避免遗漏.中考数学知识点代数式一、 重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
中考数学考点系统复习 第一章 数与式 第一节 实 数
(6)一个整数 3 212…0 用科学记数法表示为 3.212×108,则原数中“0”
有 5 5 个.
(7)(9.6×106)×(1.5×105)运算结果用科学记数法表示为 1.14.44×4×10112. 012
8.(数学文化)《九章算术》中注有“今两算得失相反,要令正负以名之”,
意思是:今有两数,若其意义相反,则分别叫做正数与负数.若气温为
(2)数据 2 000 000 用科学记数法表示为 2×10n,则 n= 6 6.
(3)用科学记数法表示的数是 1.69×105,则原来的数是 161969 000.
(4)2.05×10-3 用小数表示为 0.0.0000 205.
000
(5)把 0.081 3 写成 a×10n(1≤a≤20150,n 为整数)的形式,则 a 为 8 8.1.313.
命题点 1:实数的有关概念(近 6 年考查 2 次)
1.(2017·安徽第 1 题 4 分)12的相反数是
1
1
A.2 B.-2 C. 2 D.-2
( B)
2.(2013·安徽第 1 题 4 分)-2 的倒数是 A.-12 B.12 C.2 D.-2
(A)
3.(2021·安徽第 1 题 4 分)-9 的绝对值是 A.9 B.-9 C.19 D.-19
零上 10 ℃记作“+10 ℃”,则“-3 ℃”表示气温为
( B)
A.零上 3 ℃ B.零下 3 ℃ C.零上 7 ℃ D.零下 7 ℃
【考情分析】安徽近 6 年主要以填空题、选择题的形式考查实数的概念 及实数的大小比较;结合实际问题考查科学记数法;结合绝对值、算术 平方根、负指数幂等考查实数的混合运算.
(2)-122=
山东省德州市2019年中考数学同步复习第一章数与式第一节实数及其运算训练
第一章 数与式第一节 实数及其运算姓名:________ 班级:________ 用时:______分钟1.(2019·原创题)2 019的相反数是( ) A .2 019 B .-2 019 C.12 019 D .-12 0192.(2018·岳阳中考)2 018的倒数是( ) A .2 018 B.12 018C .-12 018D .-2 0183.(2018·杭州中考)|-3|=( ) A .3B .-3 C.13D .-134.(2018·南京中考)94的值等于( ) A.32B .-32C .±32D.81165.(2018·攀枝花中考)下列实数中,无理数是( ) A .0B .-2C. 3D.176.(2018·南充中考)下列实数中,最小的数是( ) A .- 2B .0C .1D.387.(2019·易错题)下列各数中绝对值最小的是( ) A .3 B .-π C .2 3 D .-2 8.(2018·恩施州中考)64的立方根为( ) A .8 B .-8 C .4D .-49.(2018·邵阳中考)用计算器依次按键,得到的结果最接近的是( )A .1.5B .1.6C .1.7D .1.810.(2018·宜宾中考)我国首艘国产航母于2018年4月26日正式下水,排水量约为65 000吨.将65 000用科学记数法表示为( )A .6.5×10-4B .6.5×104C .-6.5×104D .0.65×10411.(2018·重庆中考B 卷)估计56-24的值应在( ) A .5和6之间 B .6和7之间 C .7和8之间 D .8和9之间12.我国在数的发展史上有辉煌的成就.早在东汉初,我国著名的数学书《九章算术》明确提出了“正负术”.如果“盈5”记为“+5”,那么“亏7”可以记为________.13.(2018·南充中考)某地某天的最高气温是 6 ℃,最低气温是-4 ℃,则该地当天的温差为________℃.14.(2018·重庆中考B 卷)计算:|-1|+20=______.15.(2018·内江中考改编)小时候我们用肥皂水吹泡泡,其泡沫的厚度约0.000 326毫米,将0.000 326用科学记数法表示为__________________.16.(2018·邵阳中考)点A 在数轴上的位置如图所示,则点A 表示的数的相反数是________.17.(2019·原创题)计算:(2 019-2)0-(12)-1+|-2|.18.(2018·衢州中考)计算:|-2|-9+23-(1-π)0.19.(2018·攀枝花中考)如图,实数-3,x ,3,y 在数轴上的对应点分别为M ,N ,P ,Q ,这四个数中绝对值最小的数对应的点是( )A .点MB .点NC .点PD .点Q20.(2018·重庆中考B 卷改编)下列说法中正确的是( ) A .如果一个数的相反数等于这个数本身,那么这个数一定是0 B .如果一个数的倒数等于这个数本身,那么这个数一定是1 C .如果一个数的平方等于这个数本身,那么这个数一定是0D .如果一个数的算术平方根等于这个数本身,那么这个数一定是0 21.(2019·易错题)9的平方根是______. 22.(2018·武威中考)计算:2sin 30°+(-1)2 018-(12)-1=______.23.(2018·黔南州中考)如图为洪涛同学的小测卷,他的得分应是__________分.24.(2018·南充中考)计算:(1-2)2-(1-22)0+sin 45°+(12)-1.25.(2018·达州中考)计算:(-1)2 018+(-12)-2-|2-12|+4sin 60°.26.(2019·原创题)计算:-23+2 0190-(-8)2 019×(-0.125)2 018+|π-3.14|.27.(2019·创新题)在平面直角坐标系中,点P 的坐标为(m ,n),则OP →可以用点P 的坐标表示为OP →=(m ,n).已知OA 1→=(x 1,y 1),OA 2→=(x 2,y 2),若x 1x 2+y 1y 2=0,则OA 1→与OA 2→互相垂直. 下面四组向量:①OB 1→=(3,-9),OB 2→=(1,-13);②OC 1→=(2,π0),OC 2→=(2-1,-1);③OD 1→=(cos 30°,tan 45°),OD 2→=(sin 30°,tan 45°); ④OE 1→=(5+2,2),OE 2→=(5-2,-22).其中互相垂直的有( )A .1组B .2组C .3组D .4组参考答案【基础训练】1.B 2.B 3.A 4.A 5.C 6.A 7.D 8.C 9.C 10.B 11.C 12.-7 13.10 14.2 15.3.26×10-416.-2 17.解:原式=1-2+2=1.18.解:原式=2-3+8-1=6. 【拔高训练】19.B 20.A21.± 3 22.0 23.10024.解:原式=2-1-1+22+2=322.25.解:原式=1+4-(23-2)+4×3 2=1+4-23+2+23=7.26.解:原式=-8+1-(-8)+π-3.14=π-2.14. 【培优训练】27.B。
山东省德州市2019年中考数学一轮复习 第一章 数与式 第1讲 实数及其运算(过预测)练习
第1讲 实数及其运算考向实数的相关概念1.[2018·济南]4的算术平方根是(A )A .2B .-2C .±2 D. 22.[2018·株洲] 如图,25的倒数在数轴上表示的点位于下列哪两个点之间 (C )A .点E 和点FB .点F 和点GC .点G 和点HD .点H 和点I 考向科学记数法3.[2018·济南]2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为(B )A .0.76×104B .7.6×103C .7.6×104D .76×1024.[2018·益阳] 2017年我国已开通的高速公路里程数达13.5万公里,居世界第一.将数据135000用科学记数法表示正确的是(B )A .1.35×106B .1.35×105C .13.5×104D .13.5×1032 考向实数大小比较5.[2018·福建]在实数|-3|、π、0、-2中,最小的数是(B )A .|-3|B .-2C .0D .π6.[2018·仙桃]点A ,B 在数轴上的位置如图所示,其对应的实数分别是a ,b ,下列结论错误的是 (C)A .|b|<2<|a|B .1-2a >1-2bC .-a <b <2D .a <-2<-b 考向实数的运算7.[2018·新疆]某市有一天的最高气温为2℃,最低气温为-8℃,则这天的最高气温比最低气温高(A )A .10℃B .6℃C .-6℃D .-10℃8.计算:|1-2019|=2018.9.[2018·黄冈]化简:(2-1)0+(12)-2-9+3-27=-1 .。
中考总复习 第一章数与式
多项式的乘方只涉及
(a b) 2 a 2 2ab b 2 , (a b c) 2 a 2 b 2 c 2 2ab 2bc 2ca.
(二)讲解知识要点
| a | | b | (a, b同号) ab | a | | b | (a, b异号) 0(a或b为零)
a 1 a (b 0) b b (5)乘方的相关运算性质 ①乘方的意义 a n aa a
(4)除法法则
n个
1 a n an ②运算性质: a 1(a 0) ;( ) n . ;a n n (a 0, n为正整数 ). a b b
a m a n a m n (m, n是整数) a m a n a mn (a 0, m, n是整数)
多项式乘(除)以单项式, 先把这个多项式的每一项乘(除)以这个单 项式,再把所得的积(商)相加. 多项式与多项式相乘, 先用一个多项式的每一项乘以另一个多项式 的每一项,再把所得的积相加. 遇到特殊形式的多项式乘法,还可以直接算: ( x a)(x b) x 2 一、知识点 因式分解定义,提取公因式、应用公式法、分组分解法、二次三项 式的因式(十字相乘法) 、因式分解一般步骤。 二、课标要求 理解因式分解的概念, 掌握提取公因式法、 公式法等因式分解方法, 能把简单多项式分解因式。 三、考查重点与常见题型 考查因式分解能力,在中考试题中,因式分解出现的频率很高。重 点考查的分式提取公因式、 应用公式法、 分组分解法及它们的综合运用。 习题类型以填空题为多,也有选择题和解答题。 四、过程 (一)自学并完成下列知识要点: 因式分解知识点 多项式的因式分解,就是把一个多项式化为几个整式的积.分解因 式要进行到每一个因式都不能再分解为止.分解因式的常用方法有: (1)提公因式法 如多项式 am bm cm m(a b c), 其中 m 叫做这个多项式各项的公因式, m 既可以是一个单项式,也可 以是一个多项式. (2)运用公式法,即用
山东省各市2019年中考数学分类解析专题1:实数
山东各市2019年中考数学试题分类解析汇编专题1:实数一、选择题1. (2019山东滨州3分)32- 等于【 】A .6-B .6C .8-D .8【答案】C 。
【考点】有理数的乘方。
【分析】根据乘方的运算法则直接计算即可:328-=-。
故选C 。
2. (2019山东德州3分)下列运算正确的是【 】A B .(﹣3)2=﹣9 C .2﹣3=8 D .20=0 【答案】A 。
【考点】算术平方根,有理数的乘方,负整数指数幂,零指数幂。
【分析】分别根据算术平方根、有理数的平方、负整数指数幂及0指数幂的运算法则进行计算即可:A 、∵22=4,故本选项正确;B 、(﹣3)2=9,故本选项错误;C 、33112==82-,故本选项错误;D 、20=1,故本选项错误。
故选A 。
3. (2019山东东营3分)13-的相反数是 【 】 A . 13 B . 13- C . 3 D . -3【答案】B 。
【考点】绝对值,相反数。
【分析】先求13-的绝对值,再求其相反数:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点13-到原点的距离是错1/3,所以13-的绝对值是1/3。
;相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0。
因此13的相反数是13-。
故选B 。
4. (2019山东菏泽3分)在算式⎛⎛ ⎝⎭⎝⎭W 的□中填上运算符号,使结果最大,这个运算符号是【 】A .加号B .减号C .乘号D .除号【答案】D 。
【考点】实数的运算,实数大小比较。
【分析】分别填上运算符号计算后比较大小:当填入加号时:+=⎛⎛ ⎝⎭⎝⎭=0⎛⎛- ⎝⎭⎝⎭;当填入乘号时:1=3⎛⎛⨯ ⎝⎭⎝⎭;当填入除号时:=1⎛⎛÷ ⎝⎭⎝⎭。
∵1013<<,∴这个运算符号是除号。
故选D 。
5. (2019山东济南3分)-12的绝对值是【 】A .12B .-12C .112 D .112- 【答案】A 。
山东省中考数学科一轮复习教案之数与式1--4
第一篇 数与式专题一 实数一、中考要求:1.在经历数系扩X 、探某某数性质及其运算规律的过程;从事借助计算器探索数学规律的活动中,发展同学们的抽象概括能力,并在活动中进一步发展独立思考、合作交流的意识和能力. 2.结合具体情境,理解估算的意义,掌握估算的方法,发展数感和估算能力.3.了解平方根、立方根、实数及其相关概念;会用根号表示并会求数的平方根、立方根;能进行有关实数的简单四则运算.4.能运用实数的运算解决简单的实际问题,提高应用意识,发展解决问题的能力,从中体会数学的应用价值. 二、中考热点:本章多考查平方根、立方根、二次根式的有关运算以及实数的有关概念,另外还有一类新情境下的探索性、开放性问题也是本章的热点考题. 三、考点扫描 1、实数的分类:实数0⎧⎧⎪⎨⎨⎩⎪⎩正实数有理数或无理数负实数2、实数和数轴上的点是一一对应的.3、相反数:只有符号不同的两个数互为相反数. 若a 、b 互为相反数,则a+b=0,1-=ab(a 、b ≠0) 4、绝对值:从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a5、近似数和有效数字;6、科学记数法;7、整指数幂的运算:()()m m mmn nmn m n m b a ab a a a a a ⋅===⋅+,, (a ≠0)负整指数幂的性质:pp pa a a⎪⎭⎫ ⎝⎛==-11零整指数幂的性质:10=a (a ≠0)8、实数的开方运算:()aa a a a =≥=22;0)(9、实数的混合运算顺序*10、无理数的错误认识:⑴无限小数就是无理数如1.414141···(41 无限循环);(2);(3)两个无理数的和、差、积、商也还是无理数,但它们的积却是有理数;(4)无理数是无限不循环小数,所以无法在数轴上表示出来,这种说法错误,每一个无理数在数轴上都有一个唯一位*11、实数的大小比较: (1).数形结合法(2).作差法比较(3).作商法比较 (4).倒数法: 如6756--与(5).平方法 四、考点训练1有下列说法:①有理数和数轴上的点—一对应;②不带根号的数一定是有理数;③负数没有立方根;④-17是17的平方根,其中正确的有( ) A .0个 B .1个 C .2个 D .3个2那么x 取值X 围是()A 、x ≤2 B. x <2 C. x ≥2 D. x >2 3、-8)A .2B .0C .2或一4D .0或-44、若2m -4与3m -1是同一个数的平方根,则m 为( ) A .-3 B .1 C .-3或1 D .-15、若实数a 和 b 满足 b=a+5+-a-5 ,则ab 的值等于_______6、在3-2的相反数是________,绝对值是______.7、81的平方根是( )A .9B .9C .±9D .±3 8、若实数满足|x|+x=0, 则x 是( )五、例题剖析1、设a=3- 2 ,b=2-3,c =5-1,则a 、b 、c 的大小关系是()A .a >b >cB 、a >c >bC .c >b >aD b >c >a化简|1-x|-2x -8x+162x-5的结果是,则x 的取值X 围是()2、若A .X 为任意实数B .1≤X ≤4C .x ≥1D .x <43、阅读下面的文字后,回答问题:小明和小芳解答题目:“先化简下式,再求值:a+21-2a+a 其中a=9时”,得出了不同的答案 ,小明的解答:原式=a+21-2a+a = a+(1-a)=1,小芳的解答:原式= a+(a -1)=2a -1=2×9-1=17 ⑴___________是错误的;⑵错误的解答错在未能正确运用二次根式的性质: ________ 4、计算:20012002(2-3)(2+3)5、我国1990年的人口出生数为23784659人。
2019年山东省德州市中考数学试题(word版,含解析)
2019年山东省德州市中考数学试卷一、选择题(本大题共12小题,共48.0分)1.-12的倒数是()A. −2B. 12C. 2D. 12.下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.3.据国家统计局统计,我国2018年国民生产总值(GDP)为900300亿元.用科学记数法表示900300亿是()A. 9.003×1012B. 90.03×1012C. 0.9003×1014D. 9.003×10134.下列运算正确的是()A. (−2a)2=−4a2B. (a+b)2=a2+b2C. (a5)2=a7D. (−a+2)(−a−2)=a2−45.若函数y=kx与y=ax2+bx+c的图象如图所示,则函数y=kx+b的大致图象为()A. B.C. D.6.不等式组{5x+2>3(x−1)12x−1≤7−32x的所有非负整数解的和是()A. 10B. 7C. 6D. 07.下列命题是真命题的是()A. 两边及其中一边的对角分别相等的两个三角形全等B. 平分弦的直径垂直于C. 对边平行且一组对角相等的四边形是平行四边形D. 两条直线被第三条直线所截,内错角相等8. 《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为( )A. {y −x =4.5y −12x =1 B. {x −y =4.5y −12x =1 C. {x −y =4.512x −y =1 D. {y −x =4.512x −y =1 9. 如图,点O 为线段BC 的中点,点A ,C ,D 到点O 的距离相等,若∠ABC =40°,则∠ADC 的度数是( )A. 130∘B. 140∘C. 150∘D. 160∘10. 甲、乙是两个不透明的纸箱,甲中有三张标有数字14,12,1的卡片,乙中有三张标有数字1,2,3的卡片,卡片除所标数字外无其他差别,现制定一个游戏规则:从甲中任取一张卡片,将其数字记为a ,从乙中任取一张卡片,将其数字记为b .若a ,b 能使关于x 的一元二次方程ax 2+bx +1=0有两个不相等的实数根,则甲获胜;否则乙获胜.则乙获胜的概率为( )A. 23B. 59C. 49D. 1311. 在下列函数图象上任取不同两点P 1(x 1,y 1)、P 2(x 2,y 2),一定能使y 2−y 1x2−x 1<0成立的是( )A. y =3x −1(x <0)B. y =−x 2+2x −1(x >0)C. y =−√3x(x >0)D. y =x 2−4x −1(x <0)12. 如图,正方形ABCD ,点F 在边AB 上,且AF :FB =1:2,CE ⊥DF ,垂足为M ,且交AD 于点E ,AC 与DF 交于点N ,延长CB 至G ,使BG =12BC ,连接CM .有如下结论:①DE =AF ;②AN =√24AB ;③∠ADF =∠GMF ;④S △ANF :S 四边形CNFB =1:8.上述结论中,所有正确结论的序号是( )A. ①②B. ①③C. ①②③D. ②③④二、填空题(本大题共6小题,共24.0分) 13. |x -3|=3-x ,则x 的取值范围是______. 14. 方程6(x+1)(x−1)-3x−1=1的解为______.15. 如图,一架长为6米的梯子AB 斜靠在一竖直的墙AO 上,这时测得∠ABO =70°,如果梯子的底端B 外移到D ,则梯子顶端A 下移到C ,这时又测得∠CDO =50°,那么AC 的长度约为______米.(sin70°≈0.94,sin50°≈0.77,cos70°≈0.34,cos50°≈0.64)16.已知:[x]表示不超过x的最大整数.例:[4.8]=4,[-0.8]=-1.现定义:{x}=x-[x],例:{1.5}=1.5-[1.5]=0.5,则{3.9}+{-1.8}-{1}=______.17.如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,AB⏜=BF⏜,CE=1,AB=6,则弦AF的长度为______.18.如图,点A1、A3、A5…在反比例函数y=kx(x>0)的图象上,点A2、A4、A6……在反比例函数y=−kx(x>0)的图象上,∠OA1A2=∠A1A2A3=∠A2A3A4=…=∠α=60°,且OA1=2,则A n(n为正整数)的纵坐标为______.(用含n的式子表示)三、计算题(本大题共1小题,共10.0分)19.习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末累计进馆608人次,若进馆人次的月平均增长率相同.(1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳能力不超过500人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接纳第四个月的进馆人次,并说明理由.四、解答题(本大题共6小题,共68.0分)20.先化简,再求值:(2m -1n)÷(m2+n2mn-5nm)•(m2n+2nm+2),其中√m+1+(n-3)2=0.21.《中学生体质健康标准》规定的等级标准为:90分及以上为优秀,80~89分为良好,60~79分为及格,59分及以下为不及格.某校为了解七、八年级学生的体质健康情况,现从两年级中各随机抽取10名同学进行体质健康检测,并对成绩进行分析.成绩如下:七年级80748363909174618262八年级74618391608546847482(1)根据上述数据,补充完成下列表格.整理数据:优秀良好及格不及格七年级2350八年级14______ 1分析数据:年级平均数众数中位数七年级767477八年级______ 74______(2)该校目前七年级有200人,八年级有300人,试估计两个年级体质健康等级达到优秀的学生共有多少人?(3)结合上述数据信息,你认为哪个年级学生的体质健康情况更好,并说明理由.22.如图,∠BPD=120°,点A、C分别在射线PB、PD上,∠PAC=30°,AC=2√3.(1)用尺规在图中作一段劣弧,使得它在A、C两点分别与射线PB和PD相切.要求:写出作法,并保留作图痕迹;(2)根据(1)的作法,结合已有条件,请写出已知和求证,并证明;(3)求所得的劣弧与线段PA、PC围成的封闭图形的面积.23.A B C收费方式月通话费/元包时通话时间/h超时费/(元/min)A30250.1B50500.1C100不限时()设月通话时间为小时,则方案,,的收费金额1,2,3都是的函数,请分别求出这三个函数解析式.(2)填空:若选择方式A最省钱,则月通话时间x的取值范围为______;若选择方式B最省钱,则月通话时间x的取值范围为______;若选择方式C最省钱,则月通话时间x的取值范围为______;(3)小王、小张今年5月份通话费均为80元,但小王比小张通话时间长,求小王该月的通话时间.24.(1)如图1,菱形AEGH的顶点E、H在菱形ABCD的边上,且∠BAD=60°,请直接写出HD:GC:EB的结果(不必写计算过程)(2)将图1中的菱形AEGH绕点A旋转一定角度,如图2,求HD:GC:EB;(3)把图2中的菱形都换成矩形,如图3,且AD:AB=AH:AE=1:2,此时HD:GC:EB的结果与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程);若无变化,请说明理由.mx-4与x轴交于A(x1,0),B(x2,25.如图,抛物线y=mx2-520)两点,与y轴交于点C,且x2-x1=11.2(1)求抛物线的解析式;(2)若P(x1,y1),Q(x2,y2)是抛物线上的两点,当a≤x1≤a+2,x2≥9时,均有y1≤y2,求a的取值范围;2(3)抛物线上一点D(1,-5),直线BD与y轴交于点E,动点M在线段BD上,当∠BDC=∠MCE时,求点M的坐标.答案和解析1.【答案】A【解析】解:-的到数是-2,故选:A.根据倒数的定义求解即可.本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.【答案】B【解析】解:A、是轴对称图形,不是中心对称图形,故本选项错误,B、是中心对称图形但不是轴对称图形,故本选项正确,C、不是轴对称图形,也不是中心对称图形,故本选项错误,D、是轴对称图形,也是中心对称图形,故本选项错误.故选:B.根据轴对称图形的概念先求出图形中轴对称图形,再根据中心对称图形的概念得出其中不是中心对称的图形.题考查了中心对称图形与轴对称图形的概念,轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,难度适中.3.【答案】D【解析】解:将900300亿元用科学记数法表示为:9.003×1013.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】D【解析】解:(-2a)2=4a2,故选项A不合题意;(a+b)2=a2+2ab+b2,故选项B不合题意;(a5)2=a10,故选项C不合题意;(-a+2)(-a-2)=a2-4,故选项D符合题意.故选:D.按照积的乘方运算、完全平方公式、幂的乘方、平方差公式分别计算,再选择.此题考查整式的运算,掌握各运算法则是关键,还要注意符号的处理.5.【答案】C【解析】解:根据反比例函数的图象位于二、四象限知k<0,根据二次函数的图象确知a>0,b<0,∴函数y=kx+b的大致图象经过二、三、四象限,故选:C.首先根据二次函数及反比例函数的图象确定k、b的符号,然后根据一次函数的性质确定答案即可.本题考查了函数的图象的知识,解题的关键是了解三种函数的图象的性质,难度不大.6.【答案】A【解析】解:,解不等式①得:x>-2.5,解不等式②得:x≤4,∴不等式组的解集为:-2.5<x≤4,∴不等式组的所有非负整数解是:0,1,2,3,4,∴不等式组的所有非负整数解的和是0+1+2+3+4=10,故选:A.分别求出每一个不等式的解集,即可确定不等式组的解集,继而可得知不等式组的非负整数解.本题主要考查解一元一次不等式组的基本技能,准确求出每个不等式的解集是解题的根本,确定不等式组得解集及其非负整数解是关键.7.【答案】C【解析】解:A、由两边及其中一边的对角分别相等无法证明两个三角形全等,故A错误,是假命题;B、平分弦(非直径)的直径垂直于弦,故B错误,是假命题;C、一组对边平行且一组对角相等的四边形是平行四边形,故C正确,是真命题;D、两条平行线被第三条直线所截,内错角相等,故D错误,是假命题;故选:C.A、根据全等三角形的判定方法,判断即可.B、根据垂径定理的推理对B进行判断;C、根据平行四边形的判定进行判断;D、根据平行线的判定进行判断.本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,有些命题的正确性是用推理证实的,这样的真命题叫做定理.8.【答案】B【解析】解:设绳长x尺,长木为y尺,依题意得,故选:B.本题的等量关系是:绳长-木长=4.5;木长-绳长=1,据此可列方程组求解.此题考查二元一次方程组问题,关键是弄清题意,找准等量关系,列对方程组,求准解.9.【答案】B【解析】解:由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故选:B.根据题意得到四边形ABCD共圆,利用圆内接四边形对角互补即可求出所求角的度数.此题考查了圆内接四边形的性质,熟练掌握圆内接四边形的性质是解本题的关键.10.【答案】C【解析】解:(1)画树状图如下:由图可知,共有9种等可能的结果,其中能使乙获胜的有4种结果数,∴乙获胜的概率为,故选:C.首先根据题意画出树状图,然后由树状图求得所有等可能的结果,利用一元二次方程根的判别式,即可判定各种情况下根的情况,然后利用概率公式求解即可求得乙获胜的概率本题考查的是用树状图法求概率,树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.11.【答案】D【解析】解:A、∵k=3>0∴y随x的增大而增大,即当x1>x2时,必有y1>y2∴当x<0时,>0,故A选项不符合;B、∵对称轴为直线x=1,∴当0<x<1时y随x的增大而增大,当x>1时y随x的增大而减小,∴当0<x<1时:当x1>x2时,必有y1>y2此时>0,故B选项不符合;C、当x>0时,y随x的增大而增大,即当x1>x2时,必有y1>y2此时>0,故C选项不符合;D、∵对称轴为直线x=2,∴当x<0时y随x的增大而减小,即当x1>x2时,必有y1<y2此时<0,故D选项符合;故选:D.根据各函数的增减性依次进行判断即可.本题主要考查了一次函数、反比例函数和二次函数的图象和性质,需要结合图象去一一分析,有点难度.12.【答案】C【解析】解:∵四边形ABCD是正方形,∴AD=AB=CD=BC,∠CDE=∠DAF=90°,∵CE⊥DF,∴∠DCE+∠CDF=∠ADF+∠CDF=90°,∴∠ADF=∠DCE,在△ADF与△DCE中,,∴△ADF≌△DCE(ASA),∴DE=AF;故①正确;∵AB∥CD,∴=,∵AF:FB=1:2,∴AF:AB=AF:CD=1:3,∴=,∴=,∵AC=AB,∴=,∴AN=AB;故②正确;作GH⊥CE于H,设AF=DE=a,BF=2a,则AB=CD=BC=3a,EC=a,由△CMD∽△CDE,可得CM=a,由△GHC∽△CDE,可得CH=a,∴CH=MH=CM,∵GH⊥CM,∴GM=GC,∴∠GMH=∠GCH,∵∠FMG+∠GMH=90°,∠DCE+∠GCM=90°,∴∠FEG=∠DCE,∵∠ADF=∠DCE,∴∠ADF=∠GMF;故③正确,设△ANF的面积为m,∵AF∥CD,∴==,△AFN∽△CDN,∴△ADN的面积为3m,△DCN的面积为9m,∴△ADC的面积=△ABC的面积=12m,∴S△ANF:S四边形CNFB=1:11,故④错误,故选:C.①正确.证明△ADF≌△DCE(ASA),即可判断.②正确.利用平行线分线段成比例定理,等腰直角三角形的性质解决问题即可.③正确.作GH⊥CE于H,设AF=DE=a,BF=2a,则AB=CD=BC=3a,EC= a,通过计算证明MH=CH即可解决问题.④错误.设△ANF的面积为m,由AF∥CD,推出==,△AFN∽△CDN,推出△ADN的面积为3m,△DCN的面积为9m,推出△ADC 的面积=△ABC的面积=12m,由此即可判断.本题考查正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会利用参数解决问题,属于中考选择题中的压轴题.13.【答案】x≤3【解析】解:3-x≥0,∴x≤3;故答案为x≤3;根据绝对值的意义,绝对值表示距离,所以3-x≥0,即可求解;本题考查绝对值的意义;理解绝对值的意义是解题的关键.14.【答案】x=-4【解析】解:-=1,=1,=1,=1,x+1=-3,x=-4,经检验x=-4是原方程的根;故答案为x=-4;根据分式方程的解法,先将式子通分化简为=1,最后验证根的情况,进而求解;本题考查分式方程的解法;熟练掌握分式方程的解法,勿遗漏验根环节是解题的关键.15.【答案】1.02【解析】解:由题意可得:∵∠ABO=70°,AB=6m,∴sin70°==≈0.94,解得:AO=5.64(m),∵∠CDO=50°,DC=6m,∴sin50°=≈0.77,解得:CO=4.62(m),则AC=5.64-4.62=1.02(m),答:AC的长度约为1.02米.故答案为:1.02.直接利用锐角三角函数关系得出AO,CO的长,进而得出答案.此题主要考查了解直角三角形的应用,正确得出AO,CO的长是解题关键.16.【答案】0.7【解析】解;根据题意可得:{3.9}+{-1.8}-{1}=3.9-3-1.8+2-1+1=0.7,故答案为:0.7根据题意列出代数式解答即可.此题考查解一元一次不等式,关键是根据题意列出代数式解答.17.【答案】485【解析】解:连接OA、OB,OB交AF于G,如图,∵AB⊥CD,∴AE=BE=AB=3,设⊙O的半径为r,则OE=r-1,OA=r,在Rt△OAE中,32+(r-1)2=r2,解得r=5,∵=,∴OB⊥AF,AG=FG,在Rt△OAG中,AG2+OG2=52,①在Rt△ABG中,AG2+(5-OG)2=62,②解由①②组成的方程组得到AG=,∴AF=2AG=.故答案为.连接OA、OB,OB交AF于G,如图,利用垂径定理得到AE=BE=3,设⊙O的半径为r,则OE=r-1,OA=r,根据勾股定理得到32+(r-1)2=r2,解得r=5,再利用垂径定理得到OB⊥AF,AG=FG,则AG2+OG2=52,AG2+(5-OG)2=62,然后解方程组求出AG,从而得到AF的长.本题考查了圆周角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理.18.【答案】(-1)n+1√3(√n−√n−1)【解析】解:过A1作A1D1⊥x轴于D1,∵OA1=2,∠OA1A2=∠α=60°,∴△OA1E是等边三角形,∴A1(1,),∴k=,∴y=和y=-,过A2作A2D2⊥x轴于D2,∵∠A2EF=∠A1A2A3=60°,∴△A2EF是等边三角形,设A2(x,-),则A2D2=,Rt△EA2D2中,∠EA2D2=30°,∴ED2=,∵OD2=2+=x,解得:x1=1-(舍),x2=1+,∴EF====2(-1)=2-2,A2D2===,即A2的纵坐标为-;过A3作A3D3⊥x轴于D3,同理得:△A3FG是等边三角形,设A3(x,),则A3D3=,Rt△FA3D3中,∠FA3D3=30°,∴FD3=,∵OD3=2+2-2+=x,解得:x1=(舍),x2=+;∴GF===2(-)=2-2,A3D3===(-),即A3的纵坐标为(-);…∴A n(n为正整数)的纵坐标为:(-1)n+1();故答案为:(-1)n+1();先证明△OA1E是等边三角形,求出A1的坐标,作高线A1D1,再证明△A2EF 是等边三角形,作高线A2D2,设A2(x,-),根据OD2=2+=x,解方程可得等边三角形的边长和A2的纵坐标,同理依次得出结论,并总结规律:发现点A1、A3、A5…在x轴的上方,纵坐标为正数,点A2、A4、A6……在x轴的下方,纵坐标为负数,可以利用(-1)n+1来解决这个问题.本题考查了待定系数法求反比例函数解析式,等边三角形的性质和判定,直角三角形30度角的性质,勾股定理,反比例函数图象上点的坐标特征,并与方程相结合解决问题.19.【答案】解:(1)设进馆人次的月平均增长率为x,则由题意得:128+128(1+x)+128(1+x)2=608化简得:4x2+12x-7=0∴(2x-1)(2x+7)=0,∴x=0.5=50%或x=-3.5(舍)答:进馆人次的月平均增长率为50%.(2)∵进馆人次的月平均增长率为50%,∴第四个月的进馆人次为:128(1+50%)3=128×27=432<5008答:校图书馆能接纳第四个月的进馆人次.【解析】(1)先分别表示出第二个月和第三个月的进馆人次,再根据第一个月的进馆人次加第二和第三个月的进馆人次等于608,列方程求解;(2)根据(1)所计算出的月平均增长率,计算出第四个月的进馆人次,再与500比较大小即可.本题属于一元二次方程的应用题,列出方程是解题的关键.本题难度适中,属于中档题.20.【答案】解:(2m -1n)÷(m2+n2mn-5nm)•(m2n+2nm+2)=2n−mmn ÷m2+n2−5n2mn•m2+4n2+4mn2mn=2n−mmn •mn(m+2n)(m−2n)•(m+2n)22mn=-m+2n2mn.∵√m+1+(n-3)2=0.∴m+1=0,n-3=0,∴m=-1,n=3.∴-m+2n2mn =-−1+2×32×(−1)×3=56.∴原式的值为56.【解析】先通分,再利用因式分解,把可以分解的分解,然后统一化成乘法运算,约分化简,再将所给等式化简,得出m和n的值,最后代回化简后的分式即可.本题是分式化简求值题,需要熟练掌握通分和因式分解及分式乘除法运算.21.【答案】74 78【解析】解:(1)八年级及格的人数是4,平均数=,中位数=;故答案为:4;74;78;(2)计两个年级体质健康等级达到优秀的学生共有200×人;(3)根据以上数据可得:七年级学生的体质健康情况更好.(1)根据平均数和中位数的概念解答即可;(2)根据样本估计总体解答即可;(3)根据数据调查信息解答即可.本题考查了众数、中位数以及平均数的运用,掌握众数、中位数以及平均数的定义以及用样本估计总体是解题的关键.22.【答案】解:(1)如图,(2)已知:如图,∠BPD=120°,点A、C分别在射线PB、PD上,∠PAC=30°,AC=2√3,过A、C分别作PB、PD的垂线,它们相交于O,以OA为半径作⊙O,OA⊥PB,求证:PB、PC为⊙O的切线;证明:∵∠BPD=120°,PAC=30°,∴∠PCA=30°,∴PA=PC,连接OP,∵OA⊥PA,PC⊥OC,∴∠PAO=∠PCO=90°,∵OP=OP,∴Rt△PAO≌Rt△PCO(HL)∴OA=OC,∴PB、PC为⊙O的切线;(3)∵∠OAP=∠OCP=90°-30°=60°,∴△OAC为等边三角形,∴OA=AC=2√3,∠AOC=60°,∵OP平分∠APC,∴∠APO=60°,∴AP=√33×2√3=2,∴劣弧AC与线段PA、PC围成的封闭图形的面积=S四边形APCO-S扇形AOC =2×12×2√3×2-60⋅π⋅(2√3)2360=4√3-2π.【解析】(1)过A、C分别作PB、PD的垂线,它们相交于O,然后以OA为半径作⊙O 即可;(2)写出已知、求证,然后进行证明;连接OP,先证明Rt△PAO≌Rt△PCO,然后根据切线的判定方法判断PB、PC为⊙O的切线;(3)先证明△OAC为等边三角形得到OA=AC=2,∠AOC=60°,再计算出AP=2,然后根据扇形的面积公式,利用劣弧AC与线段PA、PC围成的封闭图形的面积进行计算.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理和扇形面积公式.23.【答案】0≤x≤853853≤x≤1753x>1753【解析】解:(1)∵0.1元/min=6元/h,∴由题意可得,y1=,y2=,y3=100(x≥0);(2)作出函数图象如图:结合图象可得:若选择方式A最省钱,则月通话时间x的取值范围为:0≤x≤,若选择方式B最省钱,则月通话时间x的取值范围为:≤x≤,若选择方式C最省钱,则月通话时间x的取值范围为:x>.故答案为:0≤x≤,≤x≤,x>.(3)∵小王、小张今年5月份通话费均为80元,但小王比小张通话时间长,∴结合图象可得:小张选择的是方式A,小王选择的是方式B,将y=80分别代入y2=,可得6x-250=80,解得:x=55,∴小王该月的通话时间为55小时.(1)根据题意可以分别写出y1、y2、y3关于x的函数关系式,并写出相应的自变量的取值范围;(2)根据题意作出图象,结合图象即可作答;(3)结合图象可得:小张选择的是方式A,小王选择的是方式B,将y=81代入y2关于x的函数关系式,解方程即可得出小王该月的通话时间.本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.24.【答案】解:(1)连接AG,∵菱形AEGH的顶点E、H在菱形ABCD的边上,且∠BAD=60°,∴∠GAE=∠CAB=30°,AE=AH,AB=AD,∴A,G,C共线,AB-AE=AD-AH,∴HD=EB,延长HG交BC于点M,延长EG交DC于点N,连接MN,交GC于点O,则GMCN 也为菱形,∴GC⊥MN,∠NGO=∠AGE=30°,∴OG GN =cos30°=√32,∵GC=2OG,∴GN GC =√3,∵HGND为平行四边形,∴HD=GN,∴HD:GC:EB=1:√3:1.(2)如图2,连接AG,AC,∵△ADC和△AHG都是等腰三角形,∴AD:AC=AH:AG=1:√3,∠DAC=∠HAG=30°,∴∠DAH=∠CAG,∴△DAH∽△CAG,∴HD:GC=AD:AC=1:√3,∵∠DAB=∠HAE=60°,∴∠DAH=∠BAE,在△DAH和△BAE中,{AD=AB∠DAH=∠BAE AH=AE∴△DAH≌△BAE(SAS)∴HD=EB,∴HD:GC:EB=1:√3:1.(3)有变化.如图3,连接AG,AC,∵AD:AB=AH:AE=1:2,∠ADC=∠AHG=90°,∴△ADC∽△AHG,∴AD:AC=AH:AG=1:√5,∵∠DAC=∠HAG,∴∠DAH=∠CAG,∴△DAH∽△CAG,∴HD:GC=AD:AC=1:√5,∵∠DAB=∠HAE=90°,∴∠DAH=∠BAE,∵DA:AB=HA:AE=1:2,∴△ADH∽△ABE,∴DH:BE=AD:AB=1:2,∴HD:GC:EB=1:√5:2【解析】(1)连接AG ,由菱形AEGH 的顶点E 、H 在菱形ABCD 的边上,且∠BAD=60°,易得A ,G ,C 共线,延长HG 交BC 于点M ,延长EG 交DC 于点N ,连接MN ,交GC 于点O ,则GMCN 也为菱形,利用菱形对角线互相垂直,结合三角函数可得结论;(2)连接AG ,AC ,由△ADC 和△AHG 都是等腰三角形,易证△DAH ∽△CAG 与△DAH ≌△BAE ,利用相似三角形的性质及菱形的性质可得结论;(3)连接AG ,AC ,易证△ADC ∽△AHG 和△ADH ∽△ABE ,利用相似三角形的性质可得结论.本题是菱形与相似三角形,全等三角形,三角函数等知识点的综合运用,难度较大.25.【答案】解:(1)函数的对称轴为:x =-b2a =54=x 1+x 22,而且x 2-x 1=112, 将上述两式联立并解得:x 1=-32,x 2=4,则函数的表达式为:y =a (x +32)(x -4)=a (x 2-4x +32x -6), 即:-6a =-4,解得:a =23, 故抛物线的表达式为:y =23x 2-53x -4; (2)当x 2=94时,y 2=2, ①当a ≤a +2≤54时(即:a ≤-34), y 1≤y 2,则23a 2-53a -4≤2,解得:-2≤a ≤-92,而a ≤-34, 故:-2≤a ≤−34;②当54≤a ≤a +2(即a ≥54)时, 则23(a +2)2-53(a +2)-4≤2, 同理可得:-34≤a ≤54,故a 的取值范围为:-2≤a ≤54;(3)∵当∠BDC =∠MCE ,△MDC 为等腰三角形,故取DC 的中点H ,过点H 作线段CD 的中垂线交直线BD 与点M ,则点M 为符合条件的点,点H (12,-92),将点C 、D 坐标代入一次函数表达式:y =mx +n 并解得: 直线CD 的表达式为:y =-x -4,同理可得:直线BD 的表达式为:y =53x -203…①, 直线DC ⊥MH ,则直线MH 表达式中的k 值为1, 同理可得直线HM 的表达式为:y =x -5…②, 联立①②并解得:x =52, 故点M (52,-52). 【解析】(1)函数的对称轴为:x=-==,而且x 2-x 1=,将上述两式联立并解得:x 1=-,x 2=4,即可求解;(2)分a≤a+2≤、≤a≤a+2两种情况,分别求解即可;(3)取DC 的中点H ,过点H 作线段CD 的中垂线交直线BD 与点M ,则点M 为符合条件的点,即可求解.本题考查的是二次函数综合运用,涉及到一次函数、等腰三角形性质等,其中(2),要注意分类求解,避免遗漏.。
山东专版2019版中考数学总复习第一章数与式1.1实数讲解部分检测
������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
㊀ ㊀ 1. 表示数据时, 有时 很难 取得 准确 数, 或者 不必 使用 准确 2. 科学记数法:把一个数表示成 ������ ������㊀ a ˑ 10 n ㊀ 的形式, 其中 1ɤ ������
数,我们可以使用近似数来表示, 近似数与精确数的接近程度,
{
认识无理数
次扩充都源于实际生活的需要, 在非负有理数知识的基础上引 进负数, 数系发展到有理数, 这是数系的第一次扩张; 但随着人 类对数的认识不断加深和发展, 人们发现现实世界中确实存在 不同于有理数的数 展到实数,这是数系的第二次扩充. 无理数. 在引入无理数的概念后, 数系发 理解无理数是学好实数的关键,为此应注意:
人类对数的认识是在生活中不断加深和发展的. 数系的每一
的数,开方开不尽的数等.
2. 掌握无理数的表现形式:无限不循环小数, 一些与 π 相关 3. 有理数对加㊁减㊁乘㊁除是封闭的,即任何两个有理数的和㊁ 想一想:下列说法是否正确? ①带根号的数是无理数;
1. 把握无理数的定义: 无理数是无限不循环小数, 不能写成 分数 q 的形式( 这里 p,q 是互质的整数,且 pʂ0) . p
山东省德州市2019年中考数学一轮复习 第一章 数与式 第1讲 实数及其运算(过预测)练习
第1讲 实数及其运算考向实数的相关概念1.[2018·济南]4的算术平方根是(A )A .2B .-2C .±2 D. 22.[2018·株洲] 如图,25的倒数在数轴上表示的点位于下列哪两个点之间 (C )A .点E 和点FB .点F 和点GC .点G 和点HD .点H 和点I 考向科学记数法3.[2018·济南]2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为(B )A .0.76×104B .7.6×103C .7.6×104D .76×1024.[2018·益阳] 2017年我国已开通的高速公路里程数达13.5万公里,居世界第一.将数据135000用科学记数法表示正确的是(B )A .1.35×106B .1.35×105C .13.5×104D .13.5×1032 考向实数大小比较5.[2018·福建]在实数|-3|、π、0、-2中,最小的数是(B )A .|-3|B .-2C .0D .π6.[2018·仙桃]点A ,B 在数轴上的位置如图所示,其对应的实数分别是a ,b ,下列结论错误的是 (C)A .|b|<2<|a|B .1-2a >1-2bC .-a <b <2D .a <-2<-b 考向实数的运算7.[2018·新疆]某市有一天的最高气温为2℃,最低气温为-8℃,则这天的最高气温比最低气温高(A )A .10℃B .6℃C .-6℃D .-10℃8.计算:|1-2019|=2018.9.[2018·黄冈]化简:(2-1)0+(12)-2-9+3-27=-1 .。
山东省德州市2019年中考数学一轮复习第一章数与式第1讲实数其运算(过预测)练习
第 1 讲实数及其运算考向实数的有关观点1.[2018·济南 ]4的算术平方根是 ( A)A. 2 B .-2C.±2D. 222.[2018·株洲 ]如图,5的倒数在数轴上表示的点位于以下哪两个点之间( C)A.点C.点E 和点G和点FHB .点D.点F 和点H和点GI考向科学记数法3.[2018 ·济南 ]2018 年 1 月,“墨子号”量子卫星实现了距离达7600 千米的洲际量子密钥散发,这标记着“墨子号”具备了洲际量子保密通讯的能力.数字7600 用科学记数法表示为( B)A. 0.76 × 104 B . 7.6 ×103C. 7.6 × 104 D . 76× 102 4.[2018 ·益阳 ] 2017 年我国已开通的高速公路里程数达13.5万公里,居世界第一.将数据 135000 用科学记数法表示正确的选项是( B)A. 1.35 × 106 B . 1.35 × 105C. 13.5 × 104 D . 13.5 ×103考向实数大小比较5.[2018·福建 ] 在实数 | - 3| 、π、 0、- 2 中,最小的数是 ( B)A.| -3|B.-2 C.0 D.π6.[2018·仙桃 ] 点 A, B 在数轴上的地点如下图,其对应的实数分别是a, b,以下结论错误的选项是( C)A. |b| < 2< |a| B.1-2a>1-2b C.-a<b<2D.a<-2<-b考向实数的运算7.[2018 ·新疆 ] 某市有一天的最高气温为2℃,最低气温为-8℃,则这日的最高气温比最低气温高 ( A)A.10℃B.6℃C.-6℃D.- 10℃8.计算: |1 - 2019| = 2018.139.[2018 ·黄冈 ] 化简: ( 2- 1)0 + ( 2) - 2-9+-27=-1 .。
山东省德州市2019年中考数学同步复习第一章数与式第二节代数式及整式(含因式分解)训练
第一章 数与式第二节 代数式及整式(含因式分解)姓名:________ 班级:________ 用时:______分钟1.(2018·攀枝花中考)下列运算结果是a 5的是( )A .a 10÷a 2B .(a 2)3C .(-a)3D .a 3·a 22.(2019·易错题)计算(-a)3÷a 结果正确的是( )A .a 2B .-a 2C .-a 3D .-a 43.(2018·贵阳中考)当x =-1时,代数式3x +1的值是( )A .-1B .-2C .4D .-44.(2018·邵阳中考)将多项式x -x 3因式分解正确的是( )A .x(x 2-1)B .x(1-x 2)C .x(x +1)(x -1)D .x(1+x)(1-x)5.(2018·河北中考)将9.52变形正确的是( )A .9.52=92+0.52B .9.52=(10+0.5)(10-0.5)C .9.52=102-2×10×0.5+0.52D .9.52=92+9×0.5+0.526.(2019·易错题)若x 2-2mx +1是完全平方式,则m 的值为( )A .2B .1C .±1D .±12 7.(2017·朝阳中考)如果3x 2m yn +1与-12x 2y m +3是同类项,则m ,n 的值为( ) A .m =-1,n =3 B .m =1,n =3C .m =-1,n =-3D .m =1,n =-38.(2018·南充中考)下列计算正确的是( )A .-a 4b÷a 2b =-a 2bB .(a -b)2=a 2-b 2C .a 2·a 3=a 6D .-3a 2+2a 2=-a 29.(2019·原创题)某商店在2018年“世界杯”期间购进一批足球,每个足球的成本为50元,按成本增加a%定价,3个月后因销量下滑,出现库存积压,商家决定按定价的b%打折出售,列代数式表示打折后的价格为( )A .50(1+a%)(1+b%)B .50(1+a%)b%C .50(1+b%)a%D .50·a%·b%10.(2018·株洲中考)单项式5mn 2的次数是______.11.(2018·葫芦岛中考)分解因式:2a 3-8a =__________________________.12.(2018·金华中考)化简(x -1)(x +1)的结果是_____________________.13.(2018·泰州中考)计算:12x·(-2x 2)3=____________. 14.(2018·达州中考)已知a m =3,a n =2,则a 2m -n的值为________.15.(2018·江西中考)计算:(a +1)(a -1)-(a -2)2.16.(2018·重庆中考B 卷)计算:(x +2y)2-(x +y)(x -y).17.(2017·盘锦中考)下列等式从左到右的变形,属于因式分解的是( )A .x 2+2x -1=(x -1)2B .(a +b)(a -b)=a 2-b 2C .x 2+4x +4=(x +2)2D .ax 2-a =a(x 2-1)18.(2018·宁波中考)在矩形ABCD 内,将两张边长分别为a 和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S 1,图2中阴影部分的面积为S 2.当AD -AB =2时,S 2-S 1的值为( )A .2aB .2bC .2a -2bD .-2b19.(2018·攀枝花中考)分解因式:x 3y -2x 2y +xy =____________________.20.(2018·成都中考)已知x +y =0.2,x +3y =1,则代数式x 2+4xy +4y 2的值为____________.21.(2018·宁波中考)先化简,再求值:(x -1)2+x(3-x),其中x =-12.22.先化简,再求值:(2+x)(2-x)+(x -1)(x +5),其中x =32.23.(2018·襄阳中考)先化简,再求值:(x +y)(x -y)+y(x +2y)-(x -y)2,其中x =2+3,y =2-3.24.先化简,再求值:(a +b)(a -b)+(a -b)2-(2a 2-ab),其中a ,b 是一元二次方程x 2+x -2=0的两个实数根.25.(2019·创新题)阅读材料:若a b =N ,则b =log a N ,称b 为以a 为底N 的对数.例如23=8,则log 28=log 223=3.根据材料填空:log 39=______.参考答案【基础训练】1.D 2.B 3.B 4.D 5.C 6.C 7.B 8.D 9.B10.3 11.2a(a +2)(a -2) 12.x 2-1 13.-4x 7 14.9215.解:原式=a 2-1-(a 2-4a +4)=a 2-1-a 2+4a -4=4a -5.16.解:原式=x 2+4xy +4y 2-x 2+y 2=4xy +5y 2.【拔高训练】17.C 18.B 19.xy(x -1)2 20.0.3621.解:原式=x 2-2x +1+3x -x 2=x +1.当x =-12时,原式=-12+1=12. 22.解:原式=4-x 2+x 2+4x -5=4x -1.当x =32时,原式=6-1=5. 23.解:原式=x 2-y 2+xy +2y 2-x 2+2xy -y 2=3xy. 当x =2+3,y =2-3时,原式=3(2+3)(2-3)=3.24.解:原式=a 2-b 2+a 2-2ab +b 2-2a 2+ab =-ab. ∵a,b 是一元二次方程x 2+x -2=0的两个实数根, ∴ab=-2,∴原式=-ab =2.【培优训练】25.2。
山东省德州市2019年中考数学同步复习第一章数与式第三节分式训练
第一章 数与式第三节 分式姓名:________ 班级:________ 用时:______分钟1.(2019·易错题)若分式x 2-1x +1的值为零,那么x 的值为( ) A .x =1或x =-1B .x =1C .x =-1D .x =0 2.(2018·天津中考)计算2x +3x +1-2x x +1的结果为( ) A .1B .3 C.3x +1 D.x +3x +13.(2019·原创题)下面是四位同学化简分式8x 2y 312x 3y的结果,其中化简结果为最简分式的是( ) A.8y 212xB.8y 12xC.2y 23xD.2y 3x4.(2018·盐城中考)要使分式1x -2有意义,则x 的取值范围是__________. 5.(2018·自贡中考)化简1x +1+2x 2-1的结果是________. 6.(2018·长沙中考改编)当m =2 019时,m 2m -1-1m -1=______________. 7.(2018·宜宾中考)化简:(1-2x -1)÷x -3x 2-1.8.(2018·成都中考)化简:(1-1x +1)÷x x 2-1.9.(2018·南充中考)已知1x -1y =3,则代数式2x +3xy -2y x -xy -y的值是( ) A .-72B .-112 C.92 D.3410.(2018·河北中考)老师设计了接力游戏,用合作的方式完成分式化简.规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示.接力中,自己负责的一步出现错误的是( )A .只有乙B .甲和丁C .乙和丙D .乙和丁11.(2019·易错题)使得代数式1x -3有意义的x 的取值范围是__________. 12.(2018·攀枝花中考)如果a +b =2,那么代数式(a -b 2a )÷a -b a的值是______. 13.(2018·眉山中考)先化简,再求值:(x -1x -x -2x +1)÷2x 2-x x 2+2x +1,其中x 满足x 2-2x -2=0.14.(2019·原创题)先化简,再求值:3-2x +y x +3y ÷4x 2-y 2x 2+6xy +9y 2,其中x ,y 的值是方程组⎩⎪⎨⎪⎧x +y =5,2x -y =1的解.15.(2019·改编题)设A =a -21+2a +a 2÷(a-3a a +1). (1)化简A ;(2)当a =1时,记此时A 的值为f(1);当a =2时,记此时A 的值为f(2);…;求f(1)+f(2)+f(3)+…+f(2 019)的值.参考答案【基础训练】1.B 2.C 3.C 4.x≠2 5.1x -16.2 020 7.解:原式=x -3x -1·(x +1)(x -1)x -3=x +1.8.解:原式=x +1-1x +1·(x +1)(x -1)x=x x +1·(x +1)(x -1)x=x -1.【拔高训练】9.D 10.D 11.x>3 12.213.解:原式=[x 2-1x (x +1)-x 2-2x x (x +1)]÷x (2x -1)(x +1)2 =2x -1x (x +1)·(x +1)2x (2x -1)=x +1x 2. ∵x 2-2x -2=0,∴x 2=2x +2=2(x +1),∴原式=x +12(x +1)=12. 14.解:原式=3-2x +y x +3y ·(x +3y )2(2x -y )(2x +y )=3-x +3y 2x -y=5x -6y 2x -y . ∵x,y 的值是方程组⎩⎪⎨⎪⎧x +y =5,2x -y =1的解, 解方程组得⎩⎪⎨⎪⎧x =2,y =3, ∴原式=10-184-3=-8. 【培优训练】15.解:(1)A =a -21+2a +a 2÷(a-3a a +1) =a -2(a +1)2÷a (a +1)-3a a +1 =a -2(a +1)2·a +1a 2-2a =a -2(a +1)2·a +1a (a -2) =1a (a +1) =1a 2+a. (2)∵a=1时,f(1)=112+1=11×2;a =2时,f(2)=122+2=12×3; a =3时,f(3)=132+3=13×4; …a =2 019时,f(2 019)=12 0192+2 019=12 019×2 020; ∴f(1)+f(2)+f(3)+…+f(2 019) =11×2+12×3+13×4+…+12 019×2 020=1-12+12-13+13-14+…+12 019-12 020 =1-12 020=2 0192 020.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节实数及其运算
姓名:________ 班级:________ 用时:______分钟
1.(2019·原创题)2 019的相反数是( )
A.2 019 B.-2 019 C.
1
2 019
D.-
1
2 019
2.(xx·岳阳中考)2 018的倒数是( )
A.2 018 B.
1
2 018
C.-
1
2 018
D.-2 018
3.(xx·杭州中考)|-3|=( )
A.3 B.-3 C.1
3
D.-
1
3
4.(xx·南京中考)9
4
的值等于( )
A.3
2
B.-
3
2
C.±
3
2
D.
81
16
5.(xx·攀枝花中考)下列实数中,无理数是( )
A.0 B.-2 C. 3 D.1 7
6.(xx·南充中考)下列实数中,最小的数是( )
A.- 2 B.0 C.1 D.3
8
7.(2019·易错题)下列各数中绝对值最小的是( )
A.3 B.-πC.2 3 D.-2
8.(xx·恩施州中考)64的立方根为( )
A.8 B.-8 C.4 D.-4
9.(xx·邵阳中考)用计算器依次按键,得到的结果最接近的是( )
A.1.5 B.1.6 C.1.7 D.1.8
10.(xx·宜宾中考)我国首艘国产航母于2018年4月26日正式下水,排水量约为65 000吨.将65 000用科学记数法表示为( )
A.6.5×10-4B.6.5×104C.-6.5×104D.0.65×104
11.(xx·重庆中考B卷)估计56-24的值应在( )
A.5和6之间B.6和7之间C.7和8之间D.8和9之间
12.我国在数的发展史上有辉煌的成就.早在东汉初,我国著名的数学书《九章算术》明确提出了“正负术”.如果“盈5”记为“+5”,那么“亏7”可以记为________.
13.(xx·南充中考)某地某天的最高气温是6 ℃,最低气温是-4 ℃,则该地当天的温差为________℃.
14.(xx·重庆中考B 卷)计算:|-1|+20=______.
15.(xx·内江中考改编)小时候我们用肥皂水吹泡泡,其泡沫的厚度约0.000 326毫米,将0.000 326用科学记数法表示为______________________.
16.(xx·邵阳中考)点A 在数轴上的位置如图所示,则点A 表示的数的相反数是________.
17.(2019·原创题)计算:(2 019-2)0-(12)-1+|-2|.
18.(xx·衢州中考)计算:|-2|-9+23-(1-π)0
.
19.(xx·攀枝花中考)如图,实数-3,x ,3,y 在数轴上的对应点分别为M ,N ,P ,Q ,这四个数中绝对值最小的数对应的点是( )
A .点M
B .点N
C .点P
D .点Q 20.(xx·重庆中考B 卷改编)下列说法中正确的是( )
A .如果一个数的相反数等于这个数本身,那么这个数一定是0
B .如果一个数的倒数等于这个数本身,那么这个数一定是1
C .如果一个数的平方等于这个数本身,那么这个数一定是0
D .如果一个数的算术平方根等于这个数本身,那么这个数一定是0
21.(2019·易错题)9的平方根是____3__.
22.(xx·齐河一模)计算:( 2 015)0
+2sin 45°-8=________.
23.(xx·黔南州中考)如图为洪涛同学的小测卷,他的得分应是______分.
24.(xx·德城区一模)计算:4cos 30°+(1-2)0-12+|-2|.
25.(xx·达州中考)计算:(-1)
2 018+(-12)-2-|2-12|+4sin 60°.
26.(2019·原创题)计算:-23+2 0190-(-8)
2 019×(-0.125)2 018+|π-3.14|.
27.(xx·宁津一模)在平面直角坐标系中,点P 的坐标为(m ,n),则OP →可以用点P 的坐标表示为OP →=(m ,
n).已知OA 1→=(x 1,y 1),OA 2→=(x 2,y 2),若x 1x 2+y 1y 2=0,则OA 1→与OA 2→互相垂直.
下面四组向量:
①OB 1→=(3,-9),OB 2→=(1,-13
); ②OC 1→=(2,π0),OC 2→=(2-1,-1);
③OD 1→=(cos 30°,tan 45°),OD 2→=(sin 30°,tan 45°);
④OE 1→=(5+2,2),OE 2→=(5-2,-22
). 其中互相垂直的有( )
A .1组
B .2组
C .3组
D .4组
参考答案
【基础训练】
1.B 2.B 3.A 4.A 5.C 6.A 7.D 8.C 9.C 10.B 11.C
12.-7 13.10 14.2 15.3.26×10-4 16.-2
17.解:原式=1-2+2=1.
18.解:原式=2-3+8-1=6.
【拔高训练】
19.B 20.A
21.± 3 22.1- 2 23.100
24.解:原式=4×32+1-23+2 =23+1-23+2=3. 25.解:原式=1+4-(23-2)+4×
32
=1+4-23+2+23=7.
26.解:原式=-8+1-(-8)+π-3.14=π-2.14.
【培优训练】
27.B 如有侵权请联系告知删除,感谢你们的配合!。