(完整word版)职高数学基础模块下册复习题.docx
中职数学基础模块(下)期末试卷
中职数学基础模块(下)期末试卷一、选择题(10⨯4=40分)1、在等差数列{}n a 中,d a a 则公差,12,462==等于 ( ) A 、1 B 、2 C 、2± D 、82、若,22,2,4==-=⋅b a b a 则向量b a,的夹角θ 是 ( ) A 、 0 B 、 90 C 、 180 D 、 270 3、经过点)3,4(-A 与)9,1(-B 的直线方程是( ) A.0112=--y x B.052=--y x C.052=-+y x D.0112=-+y x 4、直线012=+-y x 与直线6121-=x y 的位置关系是( ) A.垂直 B.重合 C.平行 D.相交而不垂直 5、等比数列1,2,4,8.....的前10项和是( )A .63B .1008C .1023D .10246、直线0102=-+y x 与圆422=+y x 的位置关系 ( )A 、相离B 、相切C 、过圆心D 、相交但不过圆心 7、已知A 、B 两点坐标为A (3,-1),B (2,1) ,且B 是线段AC 的中点则 点C 的坐标为 ( )A 、(2,6)B 、(1,3)C 、(2.5,0)D 、(-1,2) 8、经过点A(-1,4) ,且斜率是1/2 的直线方程为 ( )A 、092=+-y xB 、092=--y xC 、0102=++y xD 、0102=-+y x9、直线)1(32+-=-x y 的倾斜角和所过的定点分别是 ( ) A .)2,1(,60-- B. )2,1(,120- C.)2,1(,150- D.)2,1(,120- 10、过点)3,2(A ,且与y 轴平行的直线方程为( )A.2=xB.2=yC.3=xD.3=y 二、填空题(4⨯4=16分)1、直线0623=--y x 的斜率为 ,在y 轴上的截距为2、方程062622=-+-+y x y x 化为圆的标准方程为3、已知==-=a b a 则),2,21(),3,2( ,=⋅b a 。
最新中职数学基础模块(下)期末试卷
中职数学基础模块(下)期末试卷一、选择题(10⨯4=40分)1、在等差数列{}n a 中,d a a 则公差,12,462==等于 ( ) A 、1 B 、2 C 、2± D 、82、若,22,2,4==-=⋅b a b a则向量b a ,的夹角θ 是 ( ) A 、 0 B 、 90 C 、 180 D 、 270 3、经过点)3,4(-A 与)9,1(-B 的直线方程是( ) A.0112=--y x B.052=--y x C.052=-+y x D.0112=-+y x 4、直线012=+-y x 与直线6121-=x y 的位置关系是( ) A.垂直 B.重合 C.平行 D.相交而不垂直 5、等比数列1,2,4,8.....的前10项和是( ) A .63 B .1008 C .1023 D .10246、直线0102=-+y x 与圆422=+y x 的位置关系 ( )A 、相离B 、相切C 、过圆心D 、相交但不过圆心 7、已知A 、B 两点坐标为A (3,-1),B (2,1) ,且B 是线段AC 的中点则 点C 的坐标为 ( )A 、(2,6)B 、(1,3)C 、(2.5,0)D 、(-1,2) 8、经过点A(-1,4) ,且斜率是1/2 的直线方程为 ( )A 、092=+-y xB 、092=--y xC 、0102=++y xD 、0102=-+y x9、直线)1(32+-=-x y 的倾斜角和所过的定点分别是 ( ) A .)2,1(,60-- B. )2,1(,120- C.)2,1(,150- D.)2,1(,120- 10、过点)3,2(A ,且与y 轴平行的直线方程为( )A.2=xB.2=yC.3=xD.3=y 二、填空题(4⨯4=16分)1、直线0623=--y x 的斜率为 ,在y 轴上的截距为2、方程062622=-+-+y x y x 化为圆的标准方程为3、已知==-=a b a 则),2,21(),3,2( ,=⋅b a 。
中职数学(基础模块)下册第六章数列单元考试卷(含答案)
中职数学(基础模块)下册第六章数列单元考试卷(含答案)中职数学(基础模块)下册第六章数列单元考试卷含答案一、选择题1.数列{an}的通项公式an=(-1)^3*(n+1)*9,因此a2=9,选B。
2.选A,因为2,6,10,14,18是公差为4的等差数列。
3.已知a1=-3,d=2,所以a5=-3+4*2=5,选B。
4.已知a5=9,d=2,所以a(n)=a5+(n-5)*d=9+(n-5)*2=2n-1,选D。
5.已知a1=-3,d=3,所以S8=(a1+a8)*4/2=(-3+a1+7d)*4/2=(-3+21)*4/2=36,选A。
6.已知a4+a7=16,又a4=a1+3d,a7=a1+6d,所以a1+9d=16,又S10=(a1+a10)*10/2=(a1+a1+9d)*10/2=5(a1+9d)=5*16=80,选B。
7.已知a1=2,q=-3,所以a3=a1*q^2=-18,选A。
8.已知a1=-8,a4=1,所以q=(a4/a1)^(1/3)=2,选A。
9.已知a1=2,q=-3,所以S5=(a1*(1-q^5))/(1-q)=(2*(1-(-3)^5))/(1-(-3))=122,选B。
10.已知2,a,8成等差数列,所以a=5,选C。
11.已知,a,8成等比数列,所以a=-2,选D。
12.“a+c=2b”是“a,b,c组成等差数列”的必要不充分条件,选B。
二、填空题13.公差d=5,an=-1+(n-1)*5=5n-6.14.通项公式an=n+1.15.设a2=x,所以a6=x^3,代入等比数列的通项公式an=a1*q^(n-1),得到a1*x^5=16,即a1=16/x^5.16.公差d=3.三、解答题17.(1)已知a1=-5,d=6,所以an=-5+(n-1)*6=6n-11.2)S5=(a1+a5)*5/2=(-5+19)*5/2=35.18.设三个数为a-d,a,a+d,根据题意得到以下两个方程:a-d+a+a+d=12,解得a=4;a-d)*a*(a+d)=28,代入a=4,解得d=2;因此三个数为2,4,6.19.题目:已知成等比数列的三个数和为13,积为27,求这三个数。
中职数学基础模块下册等差数列word练习题
七月十日试讲题目答案第一题:{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S . 解:设数列{}n a 的公差为d ,那么3410a a d d =-=-, 642102a a d d =+=+, 1046106a a d d=+=+. ················ 3分由3610a a a ,,成等比数列得23106a a a =, 即2(10)(106)(102)d d d -+=+, 整理得210100d d -=,解得0d =或1d =. ················ 7分 当0d =时,20420200S a ==. ············· 9分 当1d =时,14310317a a d =-=-⨯=, 于是2012019202S a d⨯=+207190330=⨯+=. ······· 12分第二题:(2006年福建卷)已知数列{}n a 知足*111,21().n n a a a n N +==+∈(I )求数列{}n a 的通项公式;第三题:在数列{}n a 中,11a =,122n n n a a +=+. (Ⅰ)设12n n n a b -=.证明:数列{}n b 是等差数列;(Ⅱ)求数列{}n a 的前n 项和n S . 解:(1)122n n n a a +=+,11122n nn n a a +-=+, 11n n b b +=+,则n b 为等差数列,11b =,n b n =,12n n a n -=.(2)1221022)1(232221--⨯+⨯-++⨯+⨯+⨯=n n n n n Sn n n n n S 22)1(23222121321⨯+⨯-++⨯+⨯+⨯=-两式相减,得1222222121210+-⨯=----⨯-⨯=-n n n n n n n S第四题:(2006年四川卷)已知数列{}n a ,其中()12111,3,22n n n a a a a a n +-===+≥,记数列{}n a 的前n 项和为n S ,数列{}ln n S 的前n 项和为n U (Ⅰ)求n U ; 解:(Ⅰ)由题意,{}n a 是首项为1,公差为2的等差数列前n 项和()211212n n S n n ++-=⋅=,2ln ln 2ln n S n n ==()()2ln1ln 2ln 2ln !n U n n =+++=第五题:26.()已知正项数列{}n a ,其前n 项和n S 知足21056,n n n S a a =++且1215,,a a a 成等比数列,求数列{}n a 的通项.n a 解: ∵10S n =a n 2+5a n +6, ① ∴10a 1=a 12+5a 1+6,解之得a 1=2或a 1=3.又10S n -1=a n -12+5a n -1+6(n ≥2),②由①-②得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0∵a n +a n -1>0 , ∴a n -a n -1=5 (n ≥2).当a 1=3时,a 3=13,a 15=73. a 1, a 3,a 15不成等比数列∴a 1≠3; 当a 1=2时, a 3=12, a 15=72, 有 a 32=a 1a 15 , ∴a 1=2, ∴a n =5n -3.第六题:(2006年安徽卷)数列{}n a 的前n 项和为n S ,已知()211,1,1,2,2n n a S n a n n n ==--=⋅⋅⋅ (Ⅰ)写出n S 与1n S -的递推关系式()2n ≥,并求n S 关于n 的表达式;解:由()21n n S n a n n =--()2n ≥得:()21()1n n n S n S S n n -=---,即()221(1)1n n n S n S n n ---=-,因此1111n n n nS S n n -+-=-,对2n ≥成立。
(完整word版)职高数学基础模块下册复习题
第六章:数列1. 选择题:(1) 已知数列{a n }的通项公式为a n =2n-5,那么a 2n =( )。
A 2n-5B 4n-5C 2n-10D 4n-10(2)等差数列-7/2,-3,-5/2,-2,··第n+1项为( )A )7(21-nB )4(21-nC 42-nD 72-n (3)在等差数列{ a n }中,已知S 3=36,则a 2=( )A 18B 12C 9D 6(4)在等比数列{a n }中,已知a 2=2,a 5=6,则a 8=( )A 10B 12C 18D 242.填空题:(1)数列0,3,8,15,24,…的一个通项公式为_________________.(2)数列的通项公式为a n =(-1)n+1•2+n,则a 10=_________________.(3)等差数列-1,2,5,…的一个通项公式为________________.(4)等比数列10,1,101,…的一个通项公式为______________. 3.数列的通项公式为a n =sin ,4πn 写出数列的前5项。
4.在等差数列{ a n }中,a 1=2,a 7=20,求S 15.5.在等比数列{ a n }中,a 5=43,q=21-,求S 7.6. 已知本金p=1000元,每期利i=2%,期数n=5,按复利计息,求到期后的本利和7. 在同一根轴上安装五个滑轮,它们的直径成等差数,最小与最大的滑轮直径分别为 120厘米与216厘米,求中间三个滑轮的直径.第七章:向量1. 选择题:(1)平面向量定义的要素是( )A 大小和起点B 方向和起点C 大小和方向D 大小、方向和起点(2)--等于( )A 2B 2CD 0(3)下列说法不正确的是( ).A 零向量和任何向量平行B 平面上任意三点A 、B 、C ,一定有AC BC AB =+C 若)(R m m ∈=,则//D 若2211,e x e x ==,当21x x =时,=(4)设点A (a 1,a 2 )及点B (b 1,b 2),则的坐标是( )A (2211,b a b a --)B (2121,b b a a --)C (2211,a b a b --)D (1212,b b a a --)(5)若•=-4,||=2,||=22,则<,>是( )A 0B 90C 180 D270 (6)下列各对向量中互相垂直的是( )A )5,3(),2,4(-==B )3,4(),4,3(=-=C )5,2(),2,5(--==D )2,3(),3,2(-=-=2. 填空题:(1)BC CD AB ++=______________.(2)已知2(+)=3(-),则=_____________.(3)向量,的坐标分别为(2,-1),(-1,3),则b a +的坐标_______, 23+的坐标为__________.(4)已知A (-3,6),B (3,-6),则=__________,||=____________.(5)已知三点A (3+1,1),B (1,1),C (1,2),则<,>=_________.(6)若非零向量),(),,(2121b b a a ==,则_____________=0是⊥的充要条件.3.在平行四边形ABCD 中,O 为对角线交点,试用、表示.4.任意作一个向量,请画出向量b a c a b -=-=,2.5.已知点B (3,-2),=(-2,4),求点A 的坐标.6.已知点A (2,3),AB =(-1,5), 求点B 的坐标.7. 已知)5,1(),4,3(),2,2(=-=-=,求:(1)c b a 32+-; (2) +-)(38. 已知点A (1,2),B (5,-2),且AB a 21=,求向量的坐标.第八章:直线和圆的方程1. 选择题:(1)直线1l :2x+y+1=0和2l :x+2y-1=0的位置关系是( )A 垂直B 相交但不垂直C 平行D 重合(2)直线ax+2y-3=0与直线x+y+1=0相互垂直,则a 等于( )A 1B 31- C 32- D -2(3)圆01022=-+y y x 的圆心到直线l:3x+4y-5=0的距离等于( )A 52B 3C 75D 15(4)以点A (1,3)、B (-5,1)为端点的线段的垂直平分线的方程为()A 3x-y+8=0B 2x-y-6=0C 3x+y+4=0D 12x+y+2=0(5)半径为3,且与y 轴相切于原点的圆的方程为( )A 9)3(22=+-y xB 9)3(22=++y xC 9)3(22=++y xD 9)3(22=+-y x 或9)3(22=++y x(6)直线y=x 3-与圆4)4(22=+-y x 的位置关系是( ) A 相切 B 相离 C 相交且过圆心 D 相交不过圆心2. 填空题:(1)点(a+1,2a-1)在直线x-2y=0上,则a 的值为___________.(2)过点A (-1,m ),B (m,6)的直线与直线l:x-2y+1=0垂直,则m=_________.(3)直线过点M (-3,2),N (4,-5),则直线MN 的斜率为_________.(4)若点P (3,4)是线段AB 的中点,点A 的坐标为(-1,2),则点B 的坐标为_______.3.设直线l 平行于直线l 1:6x-2y+5=0,并且经过直线3x+2y+1=0与2x+3y+4=0的交点,求直线l 的方程。
职业中专(基础模块上下册)数学试卷.doc
职专2014-2015学年期末考试数学试卷(满分100分,考试时间120分钟)姓名 座号 成绩一、 单项选择题(每小题3分,共30分)1、已知全集I={不大于5的正整数},A={1,2,5},B={2,4,5},则C I A ∩C I B=( )A 、{1,2,4,5}。
B 、{3}。
C{3,4}。
D 、{1,3}。
2、函数f(x)=22x x - 的定义域是( )A 、(―∞,0)。
B 、(0,2]。
C 、(―2,0].D 、[0,2].3、x >5是x >3的( )条件。
A 、充分且不必要。
B 、必要且不充分。
C 、充要。
D 、既不充分也不必要。
4、二次函数5822+-=x x y 在( )内是单调递减函数。
A 、[2,+∞)。
B 、(―∞,2].C 、(―∞,―2].D 、[―2,+∞)。
5、设自变量x ∈R ,下列是偶函数的是( )A 、y=sinx.B 、y=3x 3―1 .C 、y=∣2x ∣.D 、y=―4x.6、不等式∣x ―2∣<1的解集是( )A 、{x ∣x <3}。
B 、{x ∣1<x <3}。
C 、{x ∣x <1}。
D 、{x ∣x <1或x >3}。
7、在等比数列{a n }中,已知a 3a 4=5,则a 1a 2a 5a 6=( )A 、25.B 、10.C 、―25.D 、―10.8、已知向量=(5,―3),=(―1,m ),且⊥,则m=( )A 、35。
B 、―35。
C 、53-。
D 、53。
9、圆方程为026222=+-++y x y x 的圆心坐标与半径分别是( )A 、(―1,3)r=22.B 、(1,―3)r=22.C 、(1,―3)r=42.D 、(―1,3)r=4.10、下面命题正确的是( )A 、如果两条直线同垂直于一条直线,则这两条直线互相平行。
B 、如果两条直线同平行于一个平面,则这两条直线互相平行。
C 、如果两个平面同垂直于一个平面,则这两个平面互相平行。
中职高数学基础模块下试卷 (一)
中职高数学基础模块下试卷 (一)中职高数学基础模块下的试卷是学生接受数学基础教育的必要环节,它是对于学生在学习中掌握程度的检验,也是对于教师教学水平和教学效果的一种考察,因此,中职高数学基础模块下的试卷具有重要的意义。
首先,试卷的出题应该根据学生的实际情况和学习目标合理设置。
试卷的题目数量应当适宜,不宜过多或过少。
如果题目设置过多,可能影响学生的业余生活和学业负担,而题目设置过少则无法检验学生是否真正掌握了知识点。
在试题难度上,应根据学生的学习程度,合理分配难度。
紧贴教材知识点,既不能过于简易,也不能过于艰涩难懂。
同时,还需要注意试卷的题型与教学效果的贴合度。
试卷应包括选择题、填空题、简答题以及应用题等,这样有利于将知识点渗透到不同的层面中,让学生理解更加全面。
其次,在试卷的出题过程中,还需要注意试卷的难度和分值的设置。
难度和分值相互影响,一定要根据试卷的总分数,适当划分各种题型,并且按照难度和重要性给予不同的分值。
一般选择题得分较低,而应用题与综合题会占更多的分值。
最后,根据试卷批改过程需要注意的点,可以合理安排试卷的形式和内容。
试卷中的每一个问题都需要精准并且清晰的描述和解答方式,并且在总评分时,要根据作答情况和答案的正确性共同决定得分。
在评分标准上,也要根据学校的要求和国家的标准进行评分,并且在评分时要坚持公正、客观和严谨的态度。
综上所述,中职高数学基础模块下的试卷对于学生和教师都具有重要的意义,必须严格按照国家教育部的要求和标准制定,合理设置难度和分值,根据实际情况合理安排形式和内容,这样才能真正发挥试卷的作用,评估学生的水平,提高教学水平。
职高数学一年级下册复习题
加满油! 跑得更远!数学基础模块下册复习题第一章 数列1.数列112,223,334,445,…的一个通项公式是 ( ) (A )21n n a n =+ (B )221n n n a n +=+ (C )211n n n a n ++=+ (D )221n n n a n +=+ 2.数列通项是n n a n ++=11,当其前n 项和为9时,项数n 是 ( )(A )9 (B )99 (C )10 (D )1003.在数列2,5,9,14,20,x ,…中,x 的值应当是 ( )(A )24 (B )25 (C )26 (D )274.数列{a n }通项公式a n =log n+1(n+2),则它的前30项之积是 ( )(A )51 (B )5 (C )6 (D )231log 3log 3215+ 5.已知数列{a n }满足a 1=1,且121(2)n n a a n -=+≥,则数列的第五项a 5= 6.已知数列{a n }前n 项之和S n =1n n +,则a n= 7.一数列的通项公式为a n = 30 + n -n 2.①问-60是否为这个数列中的一项.②当n 分别为何值时,a n = 0, a n >0, a n <08.等差数列8,5,2…的第20项为9.数列{a n }的通项公式为25n a n =+,则此数列的公差为10.在等差数列{a n }中,已知a 1=2,a 2+a 3=13,则a 4+a 5+a 6等于 ( )(A )40 (B )42 (C )43 (D )4511.若等差数列共有10项,其奇数项之和为15,偶数项之和为30,则d= ( )(A )5 (B )4 (C )3 (D )212.方程lgx+lgx 3+lgx 5+….+lgx 2n-1=2n 2的解是13.等差数列{ a n },a 1=1, a 1+a 2+…+a 10 =100,则此数列的通项a n = .14.在等差数列{ a n }中,(1)已知a 3+a 11=20,则a 7=(2)已知3a +4a +5a +6a +7a =450, 求2a +8a 及前9项和9S .15.等差数列{a n }的前n 项和记为S n .已知a 10=30,a 20=50. (1)求通项a n ; (2)若S n =242,求n .16.在等差数列{}n a 中,已知.,63,6,994n S a a n 求=-==17.在等比数列{a n }中a 2=2, a 5=54,则q = ;18.在等比数列{a n }中a 5=1, a n =256,q =2,则n = .19.公差不为0的等差数列第二、三、六项成等比数列,则公比等于20.等比数列的前三项和等于首项的3倍,则该等比数列的公比为 ( )(A )-2 (B )1 (C )-2或1 (D )2或-121.11的等比中项是 .22.lgx+lgx 2+lgx 3+…+lgx 10=110,则lgx+lg 2x+…+lg 10x=23.在2与32之间插入三个实数,使这5个数成等比数列,则插入的3个数为24.在数列{a n }中,a 3、a 10是方程 x 2- 3x -5 = 0的两个根,则 a 6.a 7= .25.数列{a n }中,若a n+1=2a n(1)n ≥,且a 1=2,则S 5= 第二章 向量1.______OA OB CO BO +++=,______CE AC DE AD +--=。
高教版职高数学基础模块下期末测试题
高教版职高数学基础模块下期末测试题一、选择题(36分)1、数列-1,1,-1,1,…的一个通项公式是( ).(A )n n a )1(-= (B )1)1(+-=n n a (C )n n a )1(--= (D )2sin πn a n =2.一个等比数列的第3项是45,第4项是-135,它的公比是( ).(A )3 (B )5 (C ) -3 (D )-53 .如果圆的方程为034222=++-+y x y x ,则该圆的圆心坐标和半径分别是 ( )A .(1,-2),2B .(1,-2),2 C .(-1,2),2 D .(-1,2),24.10y -+=的倾斜角为 A .0150 B .0120 C .060 D .0305.以A (1,3)和B(-5,1)为端点的线段AB 的中垂线方程是A .380x y -+=B .340x y ++=C .260x y --=D .380x y ++=6、已知线段AB 的端点A (3,4)及中点0(0,3),则点B 的坐标为( )A 、(27,23)B 、(-3,2)C 、(3,2)D 、(3,10)7、已知a =(3,1),b=(32-,5),则a 与b 的夹角等于( )A 、30oB 、60oC 、120oD 、60o 或120o8、已知a (3,-2)b (-3,-4),则a?b=( )A 、0B 、1C 、-1D 、29.如果空间两条直线互相垂直,那么它们( )A.一定相交B.异面直线C.共面直线D.一定不平行10.下面图形中不一定是平面图形的是( )A.三角形B.平行四边形C.四条线段首尾连接成的四边形D.梯形11、如果平面外一条直线上有两点到这个平面的距离相等,那么这条直线与平面的位置关系是( )。
A 、平行B 、相交C 、垂直D 、平行或相交12、如图,是一个正方体,则? B1AC= ( )A 、30oB 、45oC 、60oD 、75o二、填空题(16分)13.数列{}n a 是等比数列, ,3,11==q a 则=5a _________ .14. 已知三个数13,,13-+A 成等差数列,则A =_________15、 若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于_________16.已知:a = ( 3, 2) , b = ( - 4 , x ) ,若a ⊥b , 则x=_________三、解答题(48分)17.等差数列{}n a 中,64=a ,484=S ,求1a .(6分)18、求以直线x+y-2=0与直线x-2y+1=0的交点为圆心,且半径为4的圆的方程(6分)19、如图、直线AB 、BC 、CA 两两相交,交点分别为A 、B 、C ,判断这三条直线是否共面,并说明理由. (7分)20.已知三点A (1,-1),B (3,3),C (4,5)。
中职数学(基础模块)下册第六章数列单元考试卷(含答案)
中职数学(基础模块)下册第六章数列单元考试卷含答案一、选择题1.数列}{n a 的通项公式n a n n 311+-=)(,则2a =( ) A. 9- B. 9 C. -6 D. 62.下列数列是等差数列的是( )A. 2,6,10,14,18B. 2,4,8,16,32C. 1,4, 9, 16, 25D.514131211,,,,3.已知等差数列}{n a 中,31-=a ,d=2,则5a =( ).A .3B .5C .7D .94.已知等差数列{n a }中,5a =9,d =2,则n a =( )A. 2-2nB. 3-2nC. 2n -lD. 2n -35.已知等差数列{n a }中,31-=a ,d=3,则8S =( ).A . 60B .-24C .-84D .906.已知等差数列}{n a 中,1674=+a a ,则=10S ( )A . 60 B. 80 C. 120 D .1607.已知等比数列{n a }中,21=a ,3-=q ,则=3a ( ).A .-18B .54C .18D .-548.已知等比数列{n a }中,81-=a ,14=a ,则=q ( ).A .2B .-2C .21D .21-9.已知等比数列{n a }中,21=a ,3-=q ,则=5S ( ).A .244B .122C .-244D .-12210.已知2,a ,8成等差数列,则=a ( )A .2B .4C .5D .611.已知21,a ,8成等比数列,则=a ( )A .2B .4C .2±D .-412.“a+c=2b ”是“a ,b ,c 组成等差数列”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件二、填空题13.己知等差数列-1,4,9,14,……,则该数列的公差d= ,=n a 。
14.已知数列{n a }中,11=a , 21+=+n n a a ,则此数列的通项公式=n a 。
职高数学一年级下册复习题
职⾼数学⼀年级下册复习题加满油!跑得更远!数学基础模块下册复习题第⼀章数列1.数列112,223,334,445,…的⼀个通项公式是()(A )21n n a n =+ (B )221n n n a n +=+ (C )211n n n a n ++=+ (D )221n n n a n +=+ 2.数列通项是n n a n ++=11,当其前n 项和为9时,项数n 是()(A )9 (B )99 (C )10 (D )1003.在数列2,5,9,14,20,x ,…中,x 的值应当是()(A )24 (B )25 (C )26 (D )274.数列{a n }通项公式a n =log n+1(n+2),则它的前30项之积是()(A )51 (B )5 (C )6 (D )231log 3log 3215+ 5.已知数列{a n }满⾜a 1=1,且121(2)n n a a n -=+≥,则数列的第五项a 5= 6.已知数列{a n }前n 项之和S n =1n n +,则a n= 7.⼀数列的通项公式为a n = 30 + n -n 2.①问-60是否为这个数列中的⼀项.②当n 分别为何值时,a n = 0, a n >0, a n <08.等差数列8,5,2…的第20项为9.数列{a n }的通项公式为25n a n =+,则此数列的公差为10.在等差数列{a n }中,已知a 1=2,a 2+a 3=13,则a 4+a 5+a 6等于()(A )40 (B )42 (C )43 (D )4511.若等差数列共有10项,其奇数项之和为15,偶数项之和为30,则d= ( )(A )5 (B )4 (C )3 (D )212.⽅程lgx+lgx 3+lgx 5+….+lgx 2n-1=2n 2的解是13.等差数列{ a n },a 1=1, a 1+a 2+…+a 10 =100,则此数列的通项a n = .14.在等差数列{ a n }中,(1)已知a 3+a 11=20,则a 7=(2)已知3a +4a +5a +6a +7a =450, 求2a +8a 及前9项和9S .15.等差数列{a n }的前n 项和记为S n .已知a 10=30,a 20=50. (1)求通项a n ;(2)若S n =242,求n .16.在等差数列{}n a 中,已知.,63,6,994n S a a n 求=-==17.在等⽐数列{a n }中a 2=2, a 5=54,则q =;18.在等⽐数列{a n }中a 5=1, a n =256,q =2,则n = .19.公差不为0的等差数列第⼆、三、六项成等⽐数列,则公⽐等于20.等⽐数列的前三项和等于⾸项的3倍,则该等⽐数列的公⽐为()(A )-2 (B )1 (C )-2或1 (D )2或-121.两数31-与31+的等⽐中项是.22.lgx+lgx 2+lgx 3+…+lgx 10=110,则lgx+lg 2x+…+lg 10x=23.在2与32之间插⼊三个实数,使这5个数成等⽐数列,则插⼊的3个数为24.在数列{a n }中,a 3、a 10是⽅程 x 2- 3x -5 = 0的两个根,则 a 6.a 7= .25.数列{a n }中,若a n+1=2a n (1)n ≥,且a 1=2,则S 5=第⼆章向量1.______OA OB CO BO +++=,______CE AC DE AD +--=。
职高基础模块下数学期末试卷
高一下学期数学期末测试卷姓名: 得分:一、 选择题1、下列命题中正确的是( )A 、三个点确定一个平面B 、经过一条直线和一个点可以确定一个平面C 、三条互相平行的直线可以确定一个平面D 、平行四边形可以确定一个平面2、已知{}n a 是首项为2,公差为4的等差数列,如果2006,n a n ==则( )A 、500B 、501C 、502D 、5033、已知等差数列{a n }的前三项依次为-1, 1, 3,则数列的通项公式是( ) A 、a n =2n -5B 、a n =2n+1C 、a n =2n -1D 、a n =2n -34、等差数列{a n }中, a 1=4,a 3=3,则当n 为何值时,n S 最大?( )A 、7B 、8C 、9D 、8或95、已知线段AB 的端点A (3,4)及中点0(0,3),则点B 的坐标为( )A 、(27,23) B 、(-3,2) C 、(3,2) D 、(3,10) 6、如果a <b ,下列不等式正确的是( )A 、a -3>b -3B 、3a >3bC 、-2a >-2bD 、5a >5b 7、如图,四边形ABCD 中,AB →=DC →,则相等的向量是( )A. AD →与CB →B. OB →与OD →C. AC →与BD →D. AO →与OC →8、已知平行四边形ABCD 中,A (-4,-2),B (2,-4),C (5,-1),则点D 的坐标为( )A 、(1,-1)B 、(-1,1)C 、(11,-3)D 、(-11,3)9、已知点M,N (,则直线MN 的倾斜角为( ) A 、045 B 、0135 C 、060 D 、012010、直线340x y +-=与直线340x y -+=的位置关系为( )A 、垂直B 、相交但不垂直C 、平行D 、重合选择题答案:1~5 ,6~10 .二、填空题1、直线260x y -+=在x 轴与y 轴上的截距分别是 ;2、点(2,1)到直线3470x y -+=的距离为 ;3、已知点A(5,3)、B (6,-2),则以AB 为直径的圆的方程为 ;4、已知点A (-4,6)、B (0,2),则AB uu u r = ,||BA uu r = ;5、设直线a 与b 是异面直线,直线c//a ,则b 与c 的位置关系是 ;三、解答题1、在8和200之间插入3个数,使5个数成等比数列,求这三个数。
中职数学基础模块下册第七单元《平面向量》word练习题
第七章 平面向量(A )一、选择题:1.四边形ABCD 中,→=→→+0CD AB ,则它一定是A .矩形B .平行四边形C .菱形D .正方形2.=→+→-→→+CE AE BC ABA .→0B .→AEC .→CED .→AC3.设向量)2,1(-=→a ,)1,3(-=→b ,则=-→→a b 2A .)4,7(--B .)4,7(-C .)4,7(D .)4,7(-4.满足向量等式→→→→→→+=---a b x b a x )(2)(3的向量=→xA .→→+b x 34B .→→+-b x 34C .→→-b x 34D .→→--b x 345.已知向量)2,1(=→a ,),6(y b -=→,且→a 与→b 共线,则=yA .12B .12-C .3D .3-6.已知向量)3,2(-=→a ,)4,(x b =→,且→a ⊥→b ,则=xA .6B .6-C .38 D .38- 7.已知向量)1,2(-=→a ,)6,3(=→b ,则>=<→→b a ,A .︒45B .︒60C .︒90D .︒1208.若1=→a ,2=→b ,︒→→>=<60,b a ,则=+⋅-→→→→)2()2(b a b a A .0 B .2 C .2- D .3-9.已知点A )1,2(-和B )2,3(-,且→=→PB AP 4,则点P 的坐标为A .)57,2(B .)2,57(C .)57,2(-D .)2,57(- 10.点A )2,1(经过向量)3,2(-=→a 平移后坐标为A .)1,3(-B .)5,1(-C .)1,3(-D .)1,5(-11.函数)632cos(π+=x y 的图像平移向量)0,4(π=→a 后的新图像对应的函数为A .x y 32sin =B .x y 32sin -=C .x y 32cos =D .x y 32cos -= 12.某函数的图像经过向量)1,6(π=→a 后与1)32sin(+-=πx y 的图像重合,则此函数为A .x y 2sin =B .x y 2sin -=C .x y 2cos =D .x y 2cos -=13.点A )2,1(,B )4,3(,则A 关于B 的对称点C 的坐标为A .)6,4(B .)6,5(C .)4,6(D .)5,6(14.→→→→⋅=⋅b a b a 是→a 、→b 平行的A .必要非充分条件B .充分非必要条件C .充要条件D .非充分非必要条件15.点A )2,1(,B ),4(y ,若5=→AB ,则=yA .2-B .6C .2D .2-或6二、填空题:16.已知向量)4,2(-=→a ,)2,5(=→b ,则=-→→b a 2317.=+--+→→→→→a b a b a )2(3)(218.已知点)2,2(-M ,)5,1(N ,则MN 中点坐标为19.向量)2,3(=→a 向量)4,3(-=→b 方向的射影的数量为20.已知向量)3,4(=→a ,)4,2(=→b ,则>=<→→b a ,cos三、解答题: 21.已知ABC ∆,→=→AB AM 31,→=→AC AN 31,用向量运算证明M N ∥BC ,且MN=31BC 。
中职数学基础模块下册计数原理word练习题
第十编计数原理§两个基本计数原理1.有不同颜色的四件上衣与不同颜色的三件长裤,如果一条长裤与一件上衣配成一套,则不同的配法有__________种.2.从3名女同学和2名男同学中选1人主持本班的某次主题班会,则不同的选法有种.3.一个乒乓球队里有男队员5人,女队员4人,从中选出男、女队员各一名组成混合双打,共有种不同的选法.4.将4个不同的小球放入3个不同的盒子,其中每个盒子都不空的放法共有种.5.有一项活动需在3名老师,8名男同学和5名女同学中选人参加,(1)若只需一人参加,有多少种不同的选法?(2)若需一名老师,一名学生参加,有多少种不同的选法?(3)若只需老师,男同学,女同学各一人参加,有多少种不同的选法?例1在所有的两位数中,个位数字大于十位数字的两位数共有多少个?例2已知集合M={-3,-2,-1,0,1,2},P(a,b)表示平面上的点(a,b∈M),问:(1)P可表示平面上多少个不同的点?(2)P可表示平面上多少个第二象限的点?(3)P可表示多少个不在直线y=x上的点?例3现有高一四个班学生34人,其中一、二、三、四班各7人、8人、9人、10人,他们自愿组成数学课外小组.(1)选其中一人为负责人,有多少种不同的选法?(2)每班选一名组长,有多少种不同的选法?(3)推选二人作中心发言,这二人需来自不同的班级,有多少种不同的选法?基础自测1.从1到20这20个整数中,任取两个相加,使其和大于20,共有几种取法?2.某体育彩票规定:从01到36共36个号中抽出7个号为一注,每注2元.某人想先选定吉利号18,然后从01至17中选3个连续的号,从19至29中选2个连续的号,从30至36中选1个号组成一注.若这个人要把这种要求的号全买下,至少要花多少元钱?3.某校高中部,高一有6个班,高二有7个班,高三有8个班,学校利用星期六组织学生到某厂进行社会实践活动.(1)任选1个班的学生参加社会实践,有多少种不同的选法?(2)三个年级各选一个班的学生参加社会实践,有多少种不同的选法?(3)选2个班的学生参加社会实践,要求这2个班不同年级,有多少种不同的选法?一、填空题位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有种. 2.某通讯公司推出一组手机卡号码,卡号的前七位数字固定,从“×××××××0000”到“×××××××9999”共10 000个号码,公司规定:凡卡号的后四位中带有数字“4”或“7”的一律作为优惠卡,则这组号码中“优惠卡”共有个.3.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列共有 __个.4.如图所示,用五种不同的颜色分别给A、B、C、D四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有种.5.一植物园参观路径如图所示,若要全部参观并且路线不重复,则不同的参观路线种数共有种.6.(2008·全国Ⅰ文)将1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,右面是一种填法,则不同的填写方法共有种.7.在2008年奥运选手选拔赛上,8名男运动员参加100米决赛.其中甲、乙、丙三人必须在1、2、3、4、5、6、7、8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有种.8.若一个m,n均为非负整数的有序数对(m,n),在做m+n的加法时各位均不会进位,则称(m,n)为“简单的”有序数对,m+n称为有序数对(m,n)的值,那么值为1 942的“简单的”有序数对的个数是 .二、解答题9.(1)4名同学选报跑步、跳高、跳远三个项目,每人报一项,共有多少种报名方法?(2)4名同学争夺跑步、跳高、跳远三项冠军,共有多少种可能的结果?10.用5种不同的颜色给图中所给出的四个区域涂色,每个区域涂一种颜色,若要求相邻(有公共边)的区域不同色,那么共有多少种不同的涂色方法?11.在平面直角坐标系内,点P(a,b)的坐标满足a≠b,且a,b都是集合{1,2,3,4,5,6}的元素,又点P到原点的距离|OP|≥5.求这样的点P的个数.12.将3种作物种植在如图所示的5块试验田里,每块种植一种作物且相邻的试验田不能种植同一种作物,不同的种植方法共有多少种?§排列与组合1.从1,2,3,4,5,6六个数字中,选出一个偶数和两个奇数,组成一个没有重复数字的三位数,这样的三位数共有个.2.(2008·福建理)某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案共有种.3.停车场每排恰有10个停车位.当有7辆不同型号的车已停放在同一排后,恰有3个空车位连在一起的排法有种.(用式子表示)4.在100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法种数是(用式子表示).5.(2007·天津理)如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有种(用数字作答).例1六人按下列要求站一横排,分别有多少种不同的站法?(1)甲不站两端;(2)甲、乙必须相邻;(3)甲、乙不相邻;(4)甲、乙之间间隔两人;(5)甲、乙站在两端;(6)甲不站左端,乙不站右端.例2男运动员6名,女运动员4名,其中男女队长各1人.选派5人外出比赛.在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名;(2)至少有1名女运动员;(3)队长中至少有1人参加;(4)既要有队长,又要有女运动员.例3 4个不同的球,4个不同的盒子,把球全部放入盒内.(1)恰有1个盒不放球,共有几种放法?(2)恰有1个盒内有2个球,共有几种放法?(3)恰有2个盒不放球,共有几种放法?基础自测1.用0、1、2、3、4、5这六个数字,可以组成多少个分别符合下列条件的无重复数字的四位数:(1)奇数;(2)偶数;(3)大于3 125的数.2.某医院有内科医生12名,外科医生8名,现选派5名参加赈灾医疗队,其中(1)某内科医生甲与某外科医生乙必须参加,共有多少种不同选法?(2)甲、乙均不能参加,有多少种选法?(3)甲、乙两人至少有一人参加,有多少种选法?(4)队中至少有一名内科医生和一名外科医生,有几种选法?3.有6本不同的书按下列分配方式分配,问共有多少种不同的分配方式?(1)分成1本、2本、3本三组;(2)分给甲、乙、丙三人,其中一人1本,一人2本,一人3本;(3)分成每组都是2本的三组;(4)分给甲、乙、丙三人,每人2本.一、填空题1.用数字1,2,3,4,5组成没有重复数字的五位数,其中小于50 000的偶数共有个.2.将编号为1,2,3,4,5的五个球放入编号为1,2,3,4,5的五个盒子里,每个盒子内放一个球,若恰好有三个球的编号与盒子编号相同,则不同投放方法共有种.3.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有种.4.在图中,“构建和谐社会,创美好未来”,从上往下读(不能跳读),共有种不同的读法.5.(2008·天津理)有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有中间行的两张卡片上的数字之和为5,则不同的排法共有种.6.(2008·安徽理)12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,其他人的相对顺序不变,则不同调整方法的种数是(用式子表示).7.平面α内有四个点,平面β内有五个点,从这九个点中任取三个,最多可确定个平面,任取四点,最多可确定个四面体.(用数字作答)8.(2008·浙江理,16)用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻.这样的六位数的个数是 .(用数字作答)二、解答题9.某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,求该外商不同的投资方案有多少种?10.课外活动小组共13人,其中男生8人,女生5人,并且男、女各指定一名队长,现从中选5人主持某种活动,依下列条件各有多少种选法?(1)只有一名女生;(2)两队长当选;(3)至少有一名队长当选;(4)至多有两名女生当选.11.已知平面α∥β,在α内有4个点,在β内有6个点.(1)过这10个点中的3点作一平面,最多可作多少个不同平面?(2)以这些点为顶点,最多可作多少个三棱锥?(3)上述三棱锥中最多可以有多少个不同的体积?12.有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不左右相邻,共有多少种不同排法?§二项式定理1.在(1+x)n(n∈N*)的二项展开式中,若只有x5的系数最大,则n= .2.在(a2-2a31)n的展开式中,则下列说法错误的有个.①没有常数项②当且仅当n=2时,展开式中有常数项③当且仅当n=5时,展开式中有常数项④当n=5k (k∈N*)时,展开式中有常数项3.若多项式0C n(x+1)n-C1n(x+1)n-1+…+(-1)r C r n(x+1)n-r+…+(-1)n C n n=a0x n+a1x n-1+…+a n-1x+a n,则a0+a1+…+a n-1+a n= .4.(2008·山东理)(x-31x)12展开式中的常数项为 .5.(2008·福建理,13)若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a1+a2+a3+a4+a5= .(用数字作答)例1在二项式(x+421x)n的展开式中,前三项的系数成等差数列,求展开式中的有理项和二项式系数最大的项.基础自测例2已知(1-2x)7=a0+a1x+a2x2+…+a7x7.求:(1)a1+a2+…+a7;(2)a1+a3+a5+a7;(3)a0+a2+a4+a6;(4)|a0|+|a1|+|a2|+…+|a7|.例3(1)已知n∈N*,求证:1+2+22+23+…+25n-1能被31整除;(2)求的近似值,使误差小于.1.在(3x-2y)20的展开式中,求:(1)二项式系数最大的项;(2)系数绝对值最大的项;(3)系数最大的项.2.求x(1-x)4+x2(1+2x)5+x3(1-3x)7展开式中各项系数的和.3.求证:3n>(n +2)·2n -1(n ∈N *,n >2).一、填空题1.(1-2x )6=a 0+a 1x +a 2x 2+…+a 6x 6,则|a 0|+|a 1|+|a 2|+…+|a 6|的值为 .2.(2008·安徽理)设(1+x )8=a 0+a 1x +…+a 8x 8,则a 0,a 1,…,a 8中奇数的个数为 . 3.(2008·全国Ⅱ理)(1-x )6(1+x )4的展开式中x 的系数是 . 4.已知(x -xa )8展开式中常数项为1 120,其中实数a 为常数,则展开式中各项系数的和为 . 5.若(1+5x 2)n的展开式中各项系数之和是a n ,(2x 3+5)n的展开式中各项的二项式系数之和为b n ,则nn n b a 13+的值为 .6.设m ∈N *,n ∈N *,若f (x )=(1+2x )m +(1+3x )n 的展开式中x 的系数为13,则x 2的系数为 . 7.(1+x )6(1-x )4展开式中x 3的系数是 .8.(2008·天津理,11)52⎪⎪⎭⎫ ⎝⎛-x x 的二项展开式中x 2的系数是 .(用数字作答) 二、解答题 9.已知(x +22x )n (n ∈N *)的展开式中第5项的系数与第3项的系数之比为10∶1.求展开式中系数最大的是第几项?10.已知(32x +3x 2)n展开式中各项的系数和比各项的二项式系数和大992.求展开式中系数最大的项.11.(1)求(x 2-x21)9的展开式中的常数项; (2)已知(x a -2x )9的展开式中x 3的系数为49,求常数a 的值;(3)求(x 2+3x +2)5的展开式中含x 的项.12.在(2x -3y )10的展开式中,求: (1)二项式系数的和; (2)各项系数的和;(3)奇数项的二项式系数和与偶数项的二项式系数和; (4)奇数项系数和与偶数项系数和; (5)x 的奇次项系数和与x 的偶次项系数和.单元检测十一、填空题(本大题共14小题,每小题5分,共70分)1.不同的五种商品在货架上排成一排,其中甲、乙两种必须排在一起,丙、丁不能排在一起,则不同的排法共有 种.2.直角坐标xOy 平面上,平行直线x =n (n =0,1,2,…,5)与平行直线y =n (n =0,1,2,…,5)组成的图形中,矩形共有 个.3.二项式(a +2b )n中的第二项系数是8,则它的第三项的二项式系数为 . 4.已知(x +1)15=a 0+a 1x +a 2x 2+…+a 15x 15,则a 0+a 1+a 2+…+a 7= .5.(2008·四川理)从甲、乙等10名同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有 种.6.(2009·常州模拟)在(1-x 3)(1+x )10的展开式中,x 5的系数为 .7.(1+3x )6(1+41x)10的展开式中的常数项为 .8.(2008·辽宁理)一生产过程有4道工序,每道工序需要安排一人照看,现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有 种.9.甲、乙、丙三名同学在课余时间负责一个计算机房的周一至周六值班工作,每天一人值班,每人值班两天,如果甲同学不值周一的班,乙同学不值周六的班,则可以排出不同的值班表有 种.10.若(1+x )n +1的展开式中含x n -1的系数为a n ,则11a +21a +…+n a 1的值为 . 11.在(x -x21)9的展开式中,x 3的系数为 (用数字作答). 12.已知(1+x )+(1+x )2+(1+x )3+…+(1+x )8=a 0+a 1x +…+a 8x 8,则a 1+a 2+a 3+…+a 8= .13.(2008·陕西理,16)某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成,如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有 种.(用数字作答) 14.(ax -x 1)8的展开式中x 2的系数是70,则实数a 的值为 . 二、解答题(本大题共6小题,共90分)15.(14分)二次函数y =ax 2+bx +c 的系数a 、b 、c ,在集合{-3,-2,-1,0,1,2,3,4}中选取3个不同的值,则可确定坐标原点在抛物线内部的抛物线多少条?16.(14分)五位老师和五名学生站成一排:(1)五名学生必须排在一起共有多少种排法?(2)五名学生不能相邻共有多少种排法?(3)老师和学生相间隔共有多少种排法?17.(14分)已知在n x x ⎪⎪⎭⎫ ⎝⎛-3321的展开式中,第6项为常数项. (1)求n ;(2)求含x 2的项的系数;(3)求展开式中所有的有理项.18.(16分)4个不同的红球和6个不同的白球放入同一个袋中,现从中取出4个球.(1)若取出的红球的个数不少于白球的个数,则有多少种不同的取法?(2)取出一个红球记2分,取出一个白球记1分,若取出4个球总分不少于5分,则有多少种不同的取法?19.(16分)已知(a 2+1)n 展开式中的各项系数之和等于(516x 2+x1)5的展开式的常数项,而(a 2+1)n 的展开式的系数最大的项等于54,求a 的值(a ∈R ).20.(16分)设(2-3x )100=a 0+a 1x +a 2x 2+…+a 100x 100,求下列各式的值:(1)a 0;(2)a 1+a 2+…+a 100;(3)a 1+a 3+a 5+…+a 99;(4)(a 0+a 2+…+a 100)2-(a 1+a 3+…+a 99)2.。
高教版《数学》基础模块(下册)章复习题(word版直接使用,无需编辑)
高教版《数学》基础模块(下册)章复习题(word版直接使用,无需编辑)《第5章指数函数与对数函数》复习题 5A 知识巩固一、选择题.1. 下列式子计算正确的是 ( ).A. (−1)2=−1B. (−1)0=−1C. (a12)2=a(a>0) D. a−1=a(a≠0)2. 下列描述正确的是 ( ).A. √−273=3 B. 16 的四次方根是±2C. √−325=±2 D. √81=−93. 若指数函数f(x)=(a−1)x是R上的减函数,则a的取值范围是( ).A. a>2B. a<2C. 0<a<1D. 1<a<24. 下列各指数函数中,在(−∞,+∞)上为增函数的是( ).A. y=1.5xB. y=(π5) xC. y =0.2xD. y =(13)x5. 不在指数函数 y =5x 的图像上的点是 ( ).A.(0,1)B.(1,5)C.(-1, - 5)D. (−1,15)6. 函数 y =lgx ( ).A. 在 (−∞,+∞) 上是增函数B. 在 (−∞,+∞) 上是减函数C. 在 (0,+∞) 上是增函数D. 在 (−∞,0) 上是减函数7. 函数 y =log 12(1−2x ) 的定义域是( ). A. (−∞,+∞) B. (−∞,12)∪(12,+∞)C. [12,+∞)D. (−∞,12)8. 已知 3x−1=19 ,则 x = ( ).A. 2B. -2C. 1D. -19. 若 log 4x =−3 ,则 x = ( ).A. 12B. 164C. -12D. −3410. 若 1<x <y ,则下列式子正确的是 ( ).A. 3y <3xB. 3x <3yC. log 4y <log 4xD. log 14x <log 14y11. 若 a 2<a −12,则 a 的取值范围是( ).A. a ≥0B. a >0C. 0<a <1D. 0≤a ≤112. 已知 a =(23)−12,b =(23)−13,c =1 ,则它们的大小关系是( ).A. b >c >aB. a >b >cC. b >a >cD. c >a >b13. (lg5)2+lg2×lg5+lg2= ( ).A 1 B. -1C. 2D. -214. 下列不等式成立的是 ( ).A. log 32<log 23<log 25B. log 32<log 25<log 23C. log 23<log 32<log 25D. log 23<log 25<log 3215. 已知函数 f (x )={3x ,x <1,−x,x >1,则 f (12)= ( ). A. 3 B. √3C. 12D. −12 二、填空题. 16. √734 写成分数指数幂为____ .17. (25)−3=1258 的对数式为____ .18. 0.2512+(181)−14+(π−3)0= ____ . 19. log 28+2lg 1100−log 327= ____ .20. 将三个数 5−12 、 512 、 log 512 按照从小到大的顺序排列为____ . 三、解答题.21. 已知指数函数 y =a x (a >0 且 a ≠1) 的图像经过点 P (2,9) ,求 x =−2 时 y 的值.22. 作出下列各函数的图像.(1) y =4x ; (2) y =log 12x . 23. 计算下列各式的值.(1) 2log 242+12log 2436 ; (2) lg2+2lg3−lg60−lg30 .24. 计算下列各式的值.(1) √(−4)24+27−13⋅(π−√2)0+log 1327 ; (2) (√273×√54)÷√2 .25. 求下列函数的定义域.(1) y =log 0.5(1−x ) ; (2) y =2−x+lg3 .26. 某工厂机器设备的初始价值为 100 万元,由于磨损,每一年比上一年的价值降低 10% ,使用 10 年后, 该机器设备的价值为多少万元 (保留到小数点后第 2 位)?B 能力提升1. 求下列函数的定义域.(1) y =ln (x 2−x ) ; (2) y =√2−lgx . 2. 求函数 f (x )=4x 2−4x+5 的值域.3. 若 √4a 2−4a +1=1−2a ,求实数 a 的取值范围.4. 若 0≤x ≤2 ,求函数 y =(12)x+3 的最大值和最小值.5. 按复利计算利息的一种储蓄产品,设本利和为 y ,存期为 x ,若本金为 a 元,每期利率为 r .(1)试写出本利和 y 随存期 x 变化的函数关系式.(2)如果本金 a =1000 元,每期利率 r =2.25% ,试计算 5 期后本利和是多少 (保留到小数点后第 2 位).6. 声强级 L I (单位: dB ) 由公式 L I =10lg (I 10−12) 给出,其中 I 为声强 (单位: W/m 2 ),一般正常人听觉能忍受的最高声强为 1 W/m 2 ,能听到的最低声强为 10−12 W/m 2 ,那么,人听觉的声强级范围是多少?7. 我国是世界上鸟类种数较多的国家之一, 现有鸟类 1000 多种, 其中具有迁徙习性的鸟类有 800 多种. 燕子每年秋天要从北方飞往南方过冬, 研究发现, 燕子的飞行速度可以表示为函数 v =5log 2Q 10 ,单位是 m/s ,其中 Q 表示燕子耗氧量的单位数.(1) 计算: 燕子静止时的耗氧量是多少个单位?(2)当一只燕子的耗氧量是 80 个单位时, 它的飞行速度是多少? C 学以致用1. 为推动实施扩大内需战略, 促进居住消费健康发展, 满足人民对美好生活向往的现实需要,某地开发商新建住宅单价为 1000元/m 2 ,金融机构可以提供 4 年期短期融资服务,年利率为 4.5% ,采取复利方式支付利息. 若某人购买一套 120 m 2 的房屋,选择融资服务, 总付款多少元?2. 为预防某种病毒, 某职业学校用中药熏雾消毒法对教室进行消毒. 已知药物释放完毕后, 室内每立方米空气中药物的含量 y 与时间 t 的函数关系式为 y =(116)t−a ( a 为常数),假设 0.1 h 时,室内每立方米空气中药物的含量为 1mg ,据测定,当空气中每立方米的含药量降低到 0.25mg 以下时,学生可以进入教室. 请写出从药物释放开始,每立方米空气中药物的含量 y 与时间 t 之间的函数关系式; 从药物释放开始,学生至少需要经过多少小时后才能进入教室? 复习题 6 É《第6章直线与圆的方程》复习题 6A 知识巩固一、选择题.1. 已知两点 A (1,0) 和 B (3,3) ,则直线 AB 的斜率为( ).A. 23B. 32C. 2D. 32. 经过点(1,2)且倾斜角为 π4 的直线方程为( ).A. x +y −1=0B. x +y +1=0C. x −y −1=0D. x −y +1=03. 若直线 l 1:2x +ay −1=0 与直线 l 2:x +3y =0 平行,则实数 a = ( ).A. 4B. 6C. -4D. -64. 已知直线 l 过点(0,1)且与直线 y =x 平行,则直线 l 的方程为( ).A. x −y −1=0B. x +y −1=0C. x −y +1=0D. x +y +1=05. 若第一象限的点A(2,m)到直线3x−4y+2=0的距离为 4,则实数m的值为( ).A. -3B. 7C. -3 或 7D. 3 或 76. 圆x2+y2+4x−10y+20=0的圆心坐标为( ).A.(2, - 5)B.(-2,5)C.(2,5)D.(-2, - 5)7. 过圆x2+y2=5上一点A(1,2) ,与该圆相切的直线方程为( ).A. 2x+y+5=0B. 2x+y−5=0C. x+2y+5=0D. x+2y−5=08. 直线3x+4y=0与圆(x−2)2+(y−1)2=4的位置关系为( ).A. 相离B. 相切C. 相交且过圆心D. 相交但不过圆心二、填空题.9. 已知点A(1,0)和B(4,4) ,则点A与点B之间的距离为____ .10. 直线x+y+1=0的倾斜角是____ .11. 已知直线y=x与圆x2+y2=1交于P和Q两点,则线段PQ的中点坐标为____ .12. 如果直线6x−7y+m=0过原点,则m= _____.13. 已知直线kx−y−2=0与直线x+2y−1=0垂直,则k=____ .三、解答题.14. 已知直线x+y+3=0与直线x−y+1=0相交, A为交点,求:(1) 交点A的坐标; (2)过点A且倾斜角为π的直线的方程.315. 已知直线与两坐标轴的交点为A(2,0)和B(0,2) ,求:(1) 该直线的方程; 呈; (2) 以点A为圆心、以线段AB为半径的圆的方程.16. 求经过点A(0,0)和B(1,1)且圆心在y轴上的圆的方程.17. 已知圆C的方程为x2+y2−2x−4y+4=0 .(1) 求圆心坐标和圆的直径; (2)过原点作圆的切线, 求切线方程.18. 已知直线y=x与圆x2+y2=1相交于P和Q两点,求两点间的距离|PQ| .19. 方程x2+y2−5x−4y+8=0是否为圆的方程? 若是,求出圆心坐标和圆的半径; 若不是,说明理由.B 能力提升1. 已知△OAB的三个顶点分别为O(0,0)、A(1,1)、B(0,2) ,求:(1) 直线AB的方程; (2) △OAB的面积.2. 直线y=−3x+m与y轴交于点A(0,4) ,求:(1) m的值; (2) 以A为圆心,且过原点的圆的方程.3. 已知直线x−2y−5=0与圆x2+y2=50相交于两点A、B ,点O为坐标原点,求:(1) 交点A、B的坐标; (2) △AOB的面积.C 学以致用1. 求过点P(0,2)且与点A(1,1)、B(−3,1)等距离的直线l的方程.2. 已知圆C:(x−2)2+(y−1)2=25 ,直线l:(k−1)x+2y+5−3k=0 . 求直线l被圆C截得的最短弦长.3. 某小岛的周围有环岛暗礁,暗礁分布在以小岛的中心为圆心、半径为30 km的圆形区域内. 已知小岛中心位于轮船正西70 km处,港口位于小岛中心正北40 km处,如果轮船沿直线返港, 那么轮船是否会有触礁的危险?《第7章简单几何体》复习题 7A 知识巩固一、选择题.1. 图 7-69 所示选项中, 可以表示直立摆放的圆柱所对应的主视图的是 ( ).图 7-692. 在太阳光的照射下, 正方形在地面上的投影不可能是 ( ).A. 正方形B. 菱形C. 线段D. 梯形3. 已知正方形的直观图是平行四边形,若平行四边形某一边的边长为4 cm ,则正方形的边长是( )cm .A. 4B. 8C. 4 或 8D. 124. 已知球的直径为6 cm ,则其体积为( )cm3 .A. 36πB. 72πC. 144πD. 288π5. 正六棱锥的底面周长是12 cm ,高是√13 cm ,则它的侧面积是( )cm2 .A. 15√3B. 6C. 24D. 156. 图 7-70 中, 三视图所对应的直观图是 ( ).图 7-70二、填空题.7. 已知正方体ABCD−A1B1C1D1的棱长为a ,则三棱柱A1DD1−B1CC1的体积为____ .8. 已知正三棱锥的底面边长为6 cm ,斜高为4 cm ,则三棱锥的表面积为体积为____ .9. 把一个高12 cm的圆锥形容器装满水,倒进一个与它底面积相等、高度相等的圆柱形容器中,此时水的高度是____ .三、解答题.10. 已知侧棱长为16 cm、底面面积为72 cm2的直三棱柱ABC−A1B1C1中, AB= BC,∠ABC=90∘ , 求三棱柱的侧面积和体积.11. 已知圆柱的轴截面是正方形,面积为S ,求圆柱的侧面积和体积.12. 已知圆柱的侧面展开图是一个长为12 cm、宽为8 cm的矩形,求圆柱的体积.13. 画出图 7-71 所示组合体的三视图.图 7-7114. 根据图 7-72 所示的三视图, 画出物体的直观图.图 7-72B 能力提升1. 如图 7-73 所示的空心圆柱, 以下哪一选项是其在指定方向上的主视图( ).图 7-732. 圆柱形水槽的底面半径是8 cm ,一个铁块完全浸没在水中,当铁块取出时,水面下降了5 cm ,求铁块的体积.3. 过球半径的中点作一个垂直于半径的截面, 该截面的面积与球的大圆面积之比是多少?4. 某粮库现有一个用于储藏粮食的圆柱形仓库,仓库的底面直径为12 m ,高为4 m ,为存放更多粮食, 拟建一个更大的圆柱形仓库. 现有两种方案: 一是新建仓库的底面半径比原来大4 m ,高不变;二是高度增加4 m ,底面半径不变.(1)分别计算这两种方案所建仓库的体积;(2) 仅就仓库墙面 (即仓库的侧面) 而言,若每平方米的成本为a元,分别计算这两种方案的墙面建造成本;(3) 从建造成本和容量大小角度比较, 哪一个方案效益更好?C 学以致用1. 已知一个几何体的三视图如图 7-74 所示.图 7-74(1) 求此几何体的表面积S ;(2) 画出此几何体的直观图.2. 阿基米德的墓碑上刻了一个如图 7-75 所示的图案, 图案中球的直径、圆柱底面的直径和圆柱的高均相等, 圆锥的顶点为圆柱上底面的圆心, 圆锥的底面是圆柱的下底面. 试计算图案中圆锥、球、圆柱的体积比.图 7-75《第8章概率与统计初步》复习题 8A 知识巩固一、选择题.1. 下列说法中, 正确的是 ( ).A. 不可能事件的概率是 0 , 必然事件的概率是 1=0.2B. 进行 100 次随机试验,事件A发生了 20 次,则事件A的概率是20100C. 同时抛掷两颗质地均匀的骰子, 向上一面的点数和一定是 6D. 若某种疾病的治愈率为 0.7 , 则 10 个病人进行治疗, 一定有 7 人被治愈2. 下列试验中, 是古典概型的是 ( ).A. 测量某校任意一名学生的身高B. 了解某个学生每周去图书馆的次数C. 抛掷一颗质地均匀的骰子, 观察向上的点数D. 评估灯的使用寿命3. 下列选项中,两个事件为互斥事件的是( ).A. 运动员射击一次,事件A={命中环数大于8}与事件B={命中环数小于 6 }B. 某班统计数学考试成绩,事件A={成绩不低于 90 分}与事件B={成绩不高于 90 分}C. 抛掷一颗质地均匀的骰子,事件A={向上的一面出现奇数点}与事件B={向上的一面出现 5 点}D. 从数字1,2,3中抽取两个数字,事件A={抽取到1,2}与事件B={抽取的数字中有1}4. 电视台从已经确认编号的 10000 名观众中随机抽取 10 名幸运观众, 采用系统抽样的方法进行抽取, 分段间隔为 ( ).A. 10B. 100C. 1 000D. 10000[(x1−18)2+(x2−18)2+⋯+(x10−18)2]中,数5. 在样本标准差的计算公式s=√19字 10 和 18 分别表示样本的( ).A. 容量、方差B. 均值、容量C. 容量、均值D. 标准差、均值二、填空题.6. 事件A={367个人中至少有两个人生日相同}是____ 事件.7. 已知事件A与事件B是互斥事件, P(A∪B)=1,P(A)=0.3 ,则P(B)= _____.8. 从甲、乙、丙三名学生中任选两名参加比赛, 丙被选中的概率是_____.9. 某学校要了解实习学生情况, 从 500 名实习学生中用系统抽样的方法抽取 50 名学生, 则分段间隔为_____10. 将样本容量为 100 的数据分成 8 组, 见表 8-18 :表 8-18则第 3 组的频率是_____.三、解答题.11. 某中职学校为丰富学生课余生活, 开设了合唱社团、舞蹈社团、摄影社团和礼仪社团, 如果某学生要选报其中的两个社团, 请列出所有的基本事件.12. 某单选题有四个选项, 如果学生从中随机选择一个答案, 求学生选对的概率.13. 已知样本数据是12,11,9,15,12,13,求样本标准差.14. 为了解职业院校一年级男生的身体素质情况, 对某职业院校的 24 名一年级男生进行1 min脉搏检查. 结果记录如下:71,72,66,74,83,75,62,58,85,74,67,62,71,90,73,64,80,78,67,56,86,59,105,65 .(1)列出频率分布表 (保留到小数点后第 3 位);(2) 绘出频率分布直方图.B 能力提升1. 连续 2 次抛掷一颗质地均匀的骰子, 计算向上的点数之和是 7 的概率.2. 甲、乙两人做猜拳游戏 (锤子、剪刀、布) ,求:(1) 两人平局的概率;(2) 甲获胜的概率;(3) 乙获胜的概率.3. 某学校举办文明风采比赛,评委有两组, A组由 12 名老师组成; B组由 12 名学生组成. 两组同时给一名选手打分, 成绩如下:A 组:44,45,48,46,52,47,49,55,47,51,47,45;B 组:55,36,70,66,75,49,46,68,40,62,58,47. 哪组的打分更有参考价值? 说明理由 (保留到小数点第 3 位).4. 在一个不透明的袋子里装有 3 个白色乒乓球和若干个黄色乒乓球, 若从这个袋子里,求袋子里共有多少个乒乓球?随机摸出一个乒乓球,恰好是黄球的概率为7105. 端午节是我国传统佳节, 小芳同学带了 4 个粽子 (除粽馅不同外, 其他均相同) 到学校, 其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子, 准备从中任意拿出两个送给她的好朋友小丽.(1)列出小丽收到两个粽子的所有可能结果;(2) 请你计算小丽收到的两个粽子都是肉馅的概率.C 学以致用蒙提霍尔问题, 又称三门问题, 是博弈论中的数学游戏问题. 有三扇关闭的门, 其中一扇门的后面有一辆汽车, 选中该门可赢得汽车, 另外两扇门后面各有一只山羊. 如果参赛者选定了一扇门, 在未开启它时, 主持人开启了另外两扇门中的一扇, 露出的是山羊, 此时主持人允许参赛者重新选择. 问参赛者是坚持已选, 还是重新选另一扇门, 赢得汽车的概率更大? 概率各是多少?。
(word版,可编辑)基础模块下册综合试卷(二)(后附答案)
中职基础模块下册综合测试题(二)第I 卷(选择题)请点击修改第I 卷的文字说明一、单选题 1.已知()f x ()f x 的定义域是( ) A .(),0∞- B .()(],00,1-∞⋃ C .()(),00,1-∞⋃D .()1,+∞2.已知()f x 是偶函数,()f x 在[]1,3上是增函数,则()1f ,()2f -,()3f -的大小关系为:( ) A .()()()123f f f >->- B .()()()231f f f ->-> C .()()()312f f f ->>-D .()()()321f f f ->->3.在同一直角坐标系中的函数log a y x =与y x a =-+的图象可能是( )A .B .C .D .4.给出下列命题:①两个具有公共终点的向量,一定是平行向量; ①两个向量不能比较大小,但它们的模能比较大小; ①0a λ=(λ为实数),则λ必为零; ①,λμ为实数,若a b λμ=,则a 与b 共线; ①向量的大小与方向有关. 其中正确的命题的个数为( ) A .1B .2C .3D .45.已知角θ的终边经过点(),3P x ,且4cos 5θ=-,则x =( )A .4-B .4C .154-D .1546.已知函数()()cos 2f x x ϕ=+,则“π2ϕ=”是“()f x 是奇函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件7.为研究病毒的变异情况,某实验室成功分离出贝塔毒株、德尔塔毒株、奥密克戎毒株共130株,其数量之比为7:2:4,现采用按比例分配的分层抽样的方法从中抽取一个容量为26的样本,则奥密克戎毒株应抽取( )株 A .4B .6C .8D .148.2023年春节影市火爆依旧,《无名》、《满江红》、《交换人生》票房不断刷新,为了解我校高三2300名学生的观影情况,随机调查了100名在校学生,其中看过《无名》或《满江红》的学生共有80位,看过《满江红》的学生共有60位,看过《满江红》且看过《无名》的学生共有50位,则该校高三年级看过《无名》的学生人数的估计值为( ) A .1150B .1380C .1610D .18609.“1x >”是“()ln 210x ->”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件10.下列函数中,既是奇函数又是增函数的为( ) A .()ln f x x =B .()22x x f x -=-C .3()f x x =-D .()sin f x x =11.()2log (2)f x x =-的定义域为( ) A .(),2-∞B .(],2-∞C .()2,+∞D .[)2,+∞12.若函数()log 1(0a f x x a =+>,且1)a ≠的图象过定点(),A m n ,则m n +=( ) A .1-B .1C .2D .313.函数()12x f x a -=-(0a >且1a ≠)的图象过定点( )A .(0,-2)B .(0,-1)C .(1,-2)D .(1,-1)14.边长为1的正四面体内切球的体积为( )ABC .π6D15.若直线1l :430x y --=与直线2l :310x my -+=(m ∈R )互相垂直,则m =( )A .34B .34-C .12D .12-16.已知三角形三个顶点的坐标分别为()4,2A ,()1,2B -,()2,4C -,则BC 边上的高的斜率为( ) A .2B .2-C .12D .12-17.直线21y x =-与圆222440x y x y ++--=交于A ,B 两点,则AB =( ) A .2BC .4D.18.六名同学排成一排照相,则其中甲、乙、丙三人两两不相邻,且甲和丁相邻的概率为( ) A .25B .15C .215D .11019.2022年11月30日,我国神舟十五号载人飞船圆满发射,并成功对接空间站组合体,据中国载人航天工程办公室消息,神舟十六号等更多的载人飞船正在测试准备中,第**号载人飞船将从四名男航天员A ,B ,C ,D 与两名女航天员E ,F 中选择3人执行飞天任务(假设每位航天员被选中的可能性相同),则其中有且仅有一名女航天员的概率为( ) A .13B .25C .35D .45第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题20.设集合{}1,2,3,4,5M =,集合{}2,4,6N =,集合{}4,5,6T =,则()M T N ⋂⋃=___________. 21.实数232log 321272log lg 42lg58--++=___________.22.若直线1:20l ax y +=与直线()2:140l x a y +++=垂直,则a =______.23.若点()3,0M 是圆2284100x y x y +--+=内一点,则过点()3,0M 的最长的弦所在的直线方程是__________.24.如图是一个几何体的三视图及其尺寸,则该几何体的体积为 __________________.25.由数字0,1,2,3,4,5,6,7组成没有重复数字的三位数,则能被5整除的三位数共有__________个.三、解答题 26.求解下列问题:(1)2433641)27--⎛⎫++ ⎪⎝⎭;(2)2log 3491lg2log 27log 8100--⋅. 27.已知函数()log a f x x =(0a >且1a ≠)的图像过点(4,2). (1)求a 的值;(2)求不等式(1)(1)f x f x +<-的解集.28.已知正实数a 满足14a a -+=,求下列各式的值; (1)1122a a -+(2)22a a -+29.已知直线l 经过两条直线250x y +-=和310x y --=的交点. (1)若直线l 与直线210x y --=平行,求直线l 的方程; (2)若直线l 与直线210x y --=垂直,求直线l 的方程.30.已知圆C 与y 轴正半轴相切,圆心C 在直线30x y -=上,且直线x y =被圆C所截得的弦长为C 的方程.参考答案:1.B 2.D 3.A 4.A 5.A 6.A 7.C 8.C 9.C 10.B 11.A 12.C 13.D 14.D 15.B 16.C 17.C 18.D 19.C 20.{}2,4,5,6 21.11 22.23-23.260x y --= 24.12π 25.78 26.(1)2916(2)74-27.(1)2a = (2)(1,0)-28.(1)1122a a -+= (2)2214a a -+=29.(1)230x y -+=; (2)240x y +-=.30.22(3)(1)9x y -+-=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章:数列
1. :
(1)
已知数列 {a n } 的通 公式 a n =2n-5,那么 a 2n =( )。
A
2n-5B 4n-5 C2n-10 D
4n-10
( 2)等差数列 -7/2, -3, -5/2, -2, ·第 n+1
( )
A
1
( n 7) B
1
(n 4)
C n
4
D n 7
2
2
2
2
(3)在等差数列 { a n } 中,已知 S 3=36 , a 2=(
)
A 18
B 12
C
9 D
6
(4)在等比数列 {a n
2
5
8
)
} 中,已知 a =2 , a =6, a =(
A 10
B 12
C 18
D 24
2.填空 :
( 1)数列 0, 3, 8, 15, 24,⋯ 的一个通 公式 _________________. ( 2)数列的通 公式 a n =( -1) n+1 ? 2+n, a 10=_________________. ( 3)等差数列 -1, 2, 5, ⋯ 的一个通 公式 ________________.
( 4)等比数列 10,1, 1
, ⋯的一个通 公式 ______________.
10
3.数列的通 公式
a n =sin
n
, 写出数列的前 5 。
4
4.在等差数列 { a n } 中, a 1=2, a 7=20 ,求 S 1
5.
5.在等比数列 { a n } 中, a 5= 3
, q=
1
,求
S 7.
4 2
6. 已知本金 p=1000 元,每期利 i=2% ,期数 n=5,按复利 息,求到期后的本利和
7. 在同一根 上安装五个滑 ,它 的直径成等差数,最小与最大的滑 直径分
120 厘米与 216 厘米,求中 三个滑 的直径
.
第七章:向量
1.选择题:
(1)平面向量定义的要素是()
A 大小和起点B方向和起点C大小和方向D大小、方向和起点(2)A
B A
C BC 等于()
A 2 BC
B 2 CB C0D0
(3)下列说法不正确的是().
A零向量和任何向量平行
B平面上任意三点 A 、 B 、C,一定有AB BC AC
C若 AB mCD( m R) ,则AB // CD
D若a x1e1, b x2 e2,当x1x2时, a b
(4)设点 A ( a12
)及点12
),则 AB 的坐标是()
,a B (b,b
A (a1b1 ,a2b2)
B (a1a2 ,b1b2)
C (b1a1 , b2a2)
D (a2a1 , b2b1)
(5)若a ?b =-4 , | a |= 2 ,| b |=2 2 ,则<a, b>是()A0B90C180D270
(6)下列各对向量中互相垂直的是()
A a( 4,2),b(3,5)
B a(3,4), b(4,3)
C a(5,2),b(2, 5)
D a(2, 3),b(3,2)
2.填空题:
(1)AB CD BC =______________.
(2)已知2(a x )=3( b x ),则 x =_____________.
3
)向量a, b
的坐标分别为(
2-1
),(
-13
b 的坐标
_______
,
(,,),则 a
2 a3b 的坐标为__________.
(4)已知 A ( -3,6), B( 3, -6),则AB =__________,| BA |=____________.(5)已知三点 A ( 3 +1,1),B(1,1),C(1,2),则< CA , CB >=_________.
(6)若非零向量 a (a1 , a2 ),b (b1 ,b2 ) ,则_____________=0是a b 的充要条件.
3.在平行四边形ABCD 中, O 为对角线交点,试用BA、BC表示BO .
4.任意作一个向量 a ,请画出向量b2a, c a b .
5.已知点 B( 3, -2),AB =( -2, 4),求点 A 的坐标 .
6.已知点 A ( 2, 3),AB =( -1, 5) , 求点 B 的坐标 .
7.已知 a( 2,2), b (3, 4), c (1,5) ,求:
(1)2a b 3c ;(2)3( a b)c
8.已知点 A ( 1,2), B( 5, -2),且a 1
AB ,求向量a的坐标. 2
第八章:直线和圆的方程
1.选择题:
(1)直线l1: 2x+y+1=0 和l2: x+2y-1=0的位置关系是()
A垂直B相交但不垂直C平行D重合
(2)直线 ax+2y-3=0 与直线 x+y+1=0 相互垂直,则 a 等于()
A1B 12
D-2 C
3
3
(3)圆x2y 210 y0 的圆心到直线l:3x+4y-5=0的距离等于()
A 2
B 3
5
D15 5
C
7
(4)以点 A ( 1,3)、 B( -5, 1)为端点的线段的垂直平分线的方程为()A3x-y+8=0 B 2x-y-6=0C3x+y+4=0D12x+y+2=0
(5)半径为3,且与 y 轴相切于原点的圆的方程为()
A( x 3) 2y29 B (x 3)2y 29
C x2( y 3) 29
D ( x 3) 2y 29 或 ( x 3) 2y 29
(6)直线 y=3x 与圆 ( x4) 2y2 4 的位置关系是()
A相切B相离C相交且过圆心D相交不过圆心
2.填空题:
(1)点( a+1,2a-1)在直线 x-2y=0 上,则 a 的值为 ___________.
(2)过点 A ( -1,m) ,B ( m,6)的直线与直线l:x-2y+1=0 垂直,则 m=_________.
(3)直线过点 M ( -3, 2), N( 4, -5),则直线 MN 的斜率为 _________.
(4)若点 P( 3,4)是线段 AB 的中点,点 A 的坐标为( -1,2),则点 B 的坐标为 _______.
3.设直线 l 平行于直线l1:6x-2y+5=0, 并且经过直线3x+2y+1=0 与 2x+3y+4=0 的交点,求直线
l的方程。
4.设点 P 到直线 3x-4y+6=0 的距离为6,且点 P 在 x 轴上。
求点P 的坐标。
5.求圆心为C(1,3) 且与直线3x-4y-7=0 相切的圆的方程。
第九章:立体几何
1.判断题:
(1)与两条异面直线都分别相交的两条直线一定是异面直线.()
(2)平行于同一条直线的两条直线必平行.()
(3)平行于同一个平面的两条直线必平行.()
(4)垂直于同一条直线的两条直线必平行.()
(5)垂直于同一个平面的两条直线平行.()
(6)平行于同一个平面的两平面必平行.()
(7)垂直于同一个平面的两平面平行.()
(8)如果一个平面内的两条直线和另一个平面平行,那么这两个平面平行.()
2.选择题:
(1)设直线m//平面α,直
线n 在α内,则
(
).
A.mn
B.m 与 n 相交
C.m 与 n 异面
D.m 与 n 平行或异面
(2)如果 a、 b 是异面直线,那么与a、b 都平行的平面(
A. 有且只有一个
B.有两个
C.有无数个
D.不一定存在
) .(3)过空间一点,与已知直线平行的平面有() .
A.1 个
B.2 个
C.3 个
D.无数个(4)下列结论中,错误的是().
A.在空间内,与定点的距离等于定长的点的集合是球面
B.球面上的三个不同的点,不可能在一条直线上
C.过球面上的两个不同的点,只能做一个大圆
D.球的体积是这个球的表面积与球半径乘积的1/3
3.填空题
(1)如图所示,正方体ABCD-A
1B C D中, B C 与 AD所成的角度数为___。
11111
(2)设直线α与 b 是异面直线,直线c∥α,则 b 与 c 的位置关系是______。
(3)如果直线 l 1∥ l2, l 1∥平面 a ,那么 l2____平面 a。
(4)正四棱锥底面边长是α,侧面积是底面积的 2 倍则他的体积是____。
4.如平面的斜线段长 4cm ,则它的射影长 2√3cm ,求这条斜线段所在的直线与平面所成的角的大小。
5.一个圆锥的母线长12cm ,母线和轴的夹角是30°,求这个圆锥的侧面积和全面积。
6.高是 6cm ,底面边长是 5cm 的正方四棱柱形工件,以它的两个底面中心的连线为轴,钻出
一个直径是 4cm 的圆柱形孔。
求剩余部分几何体的体积。
B 组
1.平面α∥平面β于点 S,设 AS=18,点 A 、C 在平面α内,点
, BS=9 ,CD=24。
求CS
B、D 在平面β内,直
线的长。
AB与直线CD相交
2.一个平面斜坡与水平面成30°的二面角,斜坡上有一条直线小路与斜坡底线成60°角,眼这条小路前进,要上升10m ,求所走的路程是多少。